1
|
Zhang Y, Zou M, Wu H, Zhu J, Jin T. The cGAS-STING pathway drives neuroinflammation and neurodegeneration via cellular and molecular mechanisms in neurodegenerative diseases. Neurobiol Dis 2024; 202:106710. [PMID: 39490400 DOI: 10.1016/j.nbd.2024.106710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a type of common chronic progressive disorders characterized by progressive damage to specific cell populations in the nervous system, ultimately leading to disability or death. Effective treatments for these diseases are still lacking, due to a limited understanding of their pathogeneses, which involve multiple cellular and molecular pathways. The triggering of an immune response is a common feature in neurodegenerative disorders. A critical challenge is the intricate interplay between neuroinflammation, neurodegeneration, and immune responses, which are not yet fully characterized. In recent years, the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) pathway, a crucial immune response for intracellular DNA sensing, has gradually gained attention. However, the specific roles of this pathway within cellular types such as immune cells, glial and neuronal cells, and its contribution to ND pathogenesis, remain not fully elucidated. In this review, we systematically explore how the cGAS-STING signaling links various cell types with related cellular effector pathways under the context of NDs for multifaceted therapeutic directions. We emphasize the discovery of condition-dependent cellular heterogeneity in the cGAS-STING pathway, which is integral for understanding the diverse cellular responses and potential therapeutic targets. Additionally, we review the pathogenic role of cGAS-STING activation in Parkinson's disease, ataxia-telangiectasia, and amyotrophic lateral sclerosis. We focus on the complex bidirectional roles of the cGAS-STING pathway in Alzheimer's disease, Huntington's disease, and multiple sclerosis, revealing their double-edged nature in disease progression. The objective of this review is to elucidate the pivotal role of the cGAS-STING pathway in ND pathogenesis and catalyze new insights for facilitating the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yuxin Zhang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Meijuan Zou
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hao Wu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China; Department of Neurobiology, Care Sciences & Society, Karolinska Institute, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Zhang Y, Wang Y, Mu P, Zhu X, Dong Y. Bidirectional regulation of the cGAS-STING pathway in the immunosuppressive tumor microenvironment and its association with immunotherapy. Front Immunol 2024; 15:1470468. [PMID: 39464890 PMCID: PMC11502381 DOI: 10.3389/fimmu.2024.1470468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Adaptive anti-tumor immunity is currently dependent on the natural immune system of the body. The emergence of tumor immunotherapy has improved prognosis and prolonged the survival cycle of patients. Current mainstream immunotherapies, including immune checkpoint blockade, chimeric antigen receptor T-cell immunotherapy, and monoclonal antibody therapy, are linked to natural immunity. The cGAS-STING pathway is an important natural immunity signaling pathway that plays an important role in fighting against the invasion of foreign pathogens and maintaining the homeostasis of the organism. Increasing evidence suggests that the cGAS-STING pathway plays a key role in tumor immunity, and the combination of STING-related agonists can significantly enhance the efficacy of immunotherapy and reduce the emergence of immunotherapeutic resistance. However, the cGAS-STING pathway is a double-edged sword, and its activation can enhance anti-tumor immunity and immunosuppression. Immunosuppressive cells, including M2 macrophages, MDSC, and regulatory T cells, in the tumor microenvironment play a crucial role in tumor escape, thereby affecting the immunotherapy effect. The cGAS-STING signaling pathway can bi-directionally regulate this group of immunosuppressive cells, and targeting this pathway can affect the function of immunosuppressive cells, providing new ideas for immunotherapy. In this study, we summarize the activation pathway of the cGAS-STING pathway and its immunological function and elaborate on the key role of this pathway in immune escape mediated by the tumor immunosuppressive microenvironment. Finally, we summarize the mainstream immunotherapeutic approaches related to this pathway and explore ways to improve them, thereby providing guidelines for further clinical services.
Collapse
Affiliation(s)
- Yurui Zhang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Yudi Wang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Peizheng Mu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Xiao Zhu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Yucui Dong
- Department of Immunology, Binzhou Medical University, Yantai, China
| |
Collapse
|
3
|
Xu H, Russell SN, Steiner K, O'Neill E, Jones KI. Targeting PI3K-gamma in myeloid driven tumour immune suppression: a systematic review and meta-analysis of the preclinical literature. Cancer Immunol Immunother 2024; 73:204. [PMID: 39105848 PMCID: PMC11303654 DOI: 10.1007/s00262-024-03779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/11/2024] [Indexed: 08/07/2024]
Abstract
The intricate interplay between immune and stromal cells within the tumour microenvironment (TME) significantly influences tumour progression. Myeloid cells, including tumour-associated macrophages (TAMs), neutrophils (TANs), and myeloid-derived suppressor cells (MDSCs), contribute to immune suppression in the TME (Nakamura and Smyth in Cell Mol Immunol 17(1):1-12 (2020). https://doi.org/10.1038/s41423-019-0306-1 ; DeNardo and Ruffell in Nat Rev Immunol 19(6):369-382 (2019). https://doi.org/10.1038/s41577-019-0127-6 ). This poses a significant challenge for novel immunotherapeutics that rely on host immunity to exert their effect. This systematic review explores the preclinical evidence surrounding the inhibition of phosphoinositide 3-kinase gamma (PI3Kγ) as a strategy to reverse myeloid-driven immune suppression in solid tumours. EMBASE, MEDLINE, and PubMed databases were searched on 6 October 2022 using keyword and subject heading terms to capture relevant studies. The studies, focusing on PI3Kγ inhibition in animal models, were subjected to predefined inclusion and exclusion criteria. Extracted data included tumour growth kinetics, survival endpoints, and immunological responses which were meta-analysed. PRISMA and MOOSE guidelines were followed. A total of 36 studies covering 73 animal models were included in the review and meta-analysis. Tumour models covered breast, colorectal, lung, skin, pancreas, brain, liver, prostate, head and neck, soft tissue, gastric, and oral cancer. The predominant PI3Kγ inhibitors were IPI-549 and TG100-115, demonstrating favourable specificity for the gamma isoform. Combination therapies, often involving chemotherapy, radiotherapy, immune checkpoint inhibitors, biological agents, or vaccines, were explored in 81% of studies. Analysis of tumour growth kinetics revealed a statistically significant though heterogeneous response to PI3Kγ monotherapy, whereas the tumour growth in combination treated groups were more consistently reduced. Survival analysis showed a pronounced increase in median overall survival with combination therapy. This systematic review provides a comprehensive analysis of preclinical studies investigating PI3Kγ inhibition in myeloid-driven tumour immune suppression. The identified studies underscore the potential of PI3Kγ inhibition in reshaping the TME by modulating myeloid cell functions. The combination of PI3Kγ inhibition with other therapeutic modalities demonstrated enhanced antitumour effects, suggesting a synergistic approach to overcome immune suppression. These findings support the potential of PI3Kγ-targeted therapies, particularly in combination regimens, as a promising avenue for future clinical exploration in diverse solid tumour types.
Collapse
Affiliation(s)
- Haonan Xu
- Department of Oncology, University of Oxford, Oxford, UK
| | | | | | - Eric O'Neill
- Department of Oncology, University of Oxford, Oxford, UK
| | - Keaton Ian Jones
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Sędzik M, Rakoczy K, Sleziak J, Kisiel M, Kraska K, Rubin J, Łuniewska W, Choromańska A. Comparative Analysis of Exosomes and Extracellular Microvesicles in Healing Pathways: Insights for Advancing Regenerative Therapies. Molecules 2024; 29:3681. [PMID: 39125084 PMCID: PMC11314465 DOI: 10.3390/molecules29153681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Exosomes and microvesicles bear great potential to broaden therapeutic options in the clinical context. They differ in genesis, size, cargo, and composition despite their similarities. They were identified as participating in various processes such as angiogenesis, cell migration, and intracellular communication. Additionally, they are characterized by their natural biocompatibility. Therefore, researchers concluded that they could serve as a novel curative method capable of achieving unprecedented results. Indeed, in experiments, they proved remarkably efficient in enhancing wound regeneration and mitigating inflammation. Despite immense advancements in research on exosomes and microvesicles, the time for their large-scale application is yet to come. This article aims to gather and analyze current knowledge on those promising particles, their characteristics, and their potential clinical implementations.
Collapse
Affiliation(s)
- Mikołaj Sędzik
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Katarzyna Rakoczy
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Jakub Sleziak
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Michał Kisiel
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Karolina Kraska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Jakub Rubin
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Wiktoria Łuniewska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
5
|
Song J, Xie D, Wei X, Liu B, Yao F, Ye W. A cuproptosis-related lncRNAs signature predicts prognosis and reveals pivotal interactions between immune cells in colon cancer. Heliyon 2024; 10:e34586. [PMID: 39114018 PMCID: PMC11305305 DOI: 10.1016/j.heliyon.2024.e34586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Copper-mediated cell death presents distinct pathways from established apoptosis processes, suggesting alternative therapeutic approaches for colon cancer. Our research aims to develop a predictive framework utilizing long-noncoding RNAs (lncRNAs) related to cuproptosis to predict colon cancer outcomes while examining immune interactions and intercellular signaling. We obtained colon cancer-related human mRNA expression profiles and clinical information from the Cancer Genome Atlas repository. To isolate lncRNAs involved in cuproptosis, we applied Cox proportional hazards modeling alongside the least absolute shrinkage and selection operator technique. We elucidated the underlying mechanisms by examining the tumor mutational burden, the extent of immune cell penetration, and intercellular communication dynamics. Based on the model, drugs were predicted and validated with cytological experiments. A 13 lncRNA-cuproptosis-associated risk model was constructed. Two colon cancer cell lines were used to validate the predicted representative mRNAs with high correlation coefficients with copper-induced cell death. Survival enhancement in the low-risk cohort was evidenced by the trends in Kaplan-Meier survival estimates. Analysis of immune cell infiltration suggested that survival was induced by the increased infiltration of naïve CD4+ T cells and a reduction of M2 macrophages within the low-risk faction. Decreased infiltration of naïve B cells, resting NK cells, and M0 macrophages was significantly associated with better overall survival. Combined single-cell analysis suggested that CCL5-ACKR1, CCL2-ACKR1, and CCL5-CCR1 pathways play key roles in mediating intercellular dialogues among immune constituents within the neoplastic microhabitat. We identified three drugs with a high sensitivity in the high-risk group. In summary, this discovery establishes the possibility of using 13 cuproptosis-associated lncRNAs as a risk model to assess the prognosis, unravel the immune mechanisms and cell communication, and improve treatment options, which may provide a new idea for treating colon cancer.
Collapse
Affiliation(s)
- Jingru Song
- Department of Gastroenterology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, Zhejiang, China
| | - Dong Xie
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xia Wei
- Department of Gastroenterology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, Zhejiang, China
| | - Binbin Liu
- Department of Gastroenterology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, Zhejiang, China
| | - Fang Yao
- Department of Gastroenterology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, Zhejiang, China
| | - Wei Ye
- Department of Gastroenterology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310007, Zhejiang, China
| |
Collapse
|
6
|
Liu D, He W, Yang LL. Revitalizing antitumor immunity: Leveraging nucleic acid sensors as therapeutic targets. Cancer Lett 2024; 588:216729. [PMID: 38387757 DOI: 10.1016/j.canlet.2024.216729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
Nucleic acid sensors play a critical role in recognizing and responding to pathogenic nucleic acids as danger signals. Upon activation, these sensors initiate downstream signaling cascades that lead to the production and release of pro-inflammatory cytokines, chemokines, and type I interferons. These immune mediators orchestrate diverse effector responses, including the activation of immune cells and the modulation of the tumor microenvironment. However, careful consideration must be given to balancing the activation of nucleic acid sensors to avoid unwanted autoimmune or inflammatory responses. In this review, we provide an overview of nucleic acid sensors and their role in combating cancer through the perception of various aberrant nucleic acids and activation of the immune system. We discuss the connections between different programmed cell death modes and nucleic acid sensors. Finally, we outline the development of nucleic acid sensor agonists, highlighting how their potential as therapeutic targets opens up new avenues for cancer immunotherapy.
Collapse
Affiliation(s)
- Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
7
|
Yang S, Zheng B, Raza F, Zhang S, Yuan WE, Su J, Qiu M. Tumor-derived microvesicles for cancer therapy. Biomater Sci 2024; 12:1131-1150. [PMID: 38284828 DOI: 10.1039/d3bm01980b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Extracellular vesicles (EVs) are vesicles with lipid bilayer structures shed from the plasma membrane of cells. Microvesicles (MVs) are a subset of EVs containing proteins, lipids, nucleic acids, and other metabolites. MVs can be produced under specific cell stimulation conditions and isolated by modern separation technology. Due to their tumor homing and large volume, tumor cell-derived microvesicles (TMVs) have attracted interest recently and become excellent delivery carriers for therapeutic vaccines, imaging agents or antitumor drugs. However, preparing sufficient and high-purity TMVs and conducting clinical transformation has become a challenge in this field. In this review, the recent research achievements in the generation, isolation, characterization, modification, and application of TMVs in cancer therapy are reviewed, and the challenges facing therapeutic applications are also highlighted.
Collapse
Affiliation(s)
- Shiqi Yang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| | - Bo Zheng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| | - Shulei Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| | - Wei-En Yuan
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
- Engineering Research Center of Cell & Therapeuti c Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Su
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| | - Mingfeng Qiu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, China.
| |
Collapse
|
8
|
Chak PT, Kam NW, Choi TH, Dai W, Kwong DLW. Unfolding the Complexity of Exosome-Cellular Interactions on Tumour Immunity and Their Clinical Prospects in Nasopharyngeal Carcinoma. Cancers (Basel) 2024; 16:919. [PMID: 38473281 DOI: 10.3390/cancers16050919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial malignancy situated in the posterolateral nasopharynx. NPC poses grave concerns in Southeast Asia due to its late diagnosis. Together with resistance to standard treatment combining chemo- and radiotherapy, NPC presents high metastatic rates and common recurrence. Despite advancements in immune-checkpoint inhibitors (ICIs) and cytotoxic-T-lymphocytes (CTLs)-based cellular therapy, the exhaustive T cell profile and other signs of immunosuppression within the NPC tumour microenvironment (TME) remain as concerns to immunotherapy response. Exosomes, extracellular vesicles of 30-150 nm in diameter, are increasingly studied and linked to tumourigenesis in oncology. These bilipid-membrane-bound vesicles are packaged with a variety of signalling molecules, mediating cell-cell communications. Within the TME, exosomes can originate from tumour, immune, or stromal cells. Although there are studies on tumour-derived exosomes (TEX) in NPC and their effects on tumour processes like angiogenesis, metastasis, therapeutic resistance, there is a lack of research on their involvement in immune evasion. In this review, we aim to enhance the comprehension of how NPC TEX contribute to cellular immunosuppression. Furthermore, considering the detectability of TEX in bodily fluids, we will also discuss the potential development of TEX-related biomarkers for liquid biopsy in NPC as this could facilitate early diagnosis and prognostication of the disease.
Collapse
Affiliation(s)
- Paak-Ting Chak
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Ngar-Woon Kam
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science Park, New Territories, Hong Kong 999077, China
| | - Tsz-Ho Choi
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Wei Dai
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Dora Lai-Wan Kwong
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| |
Collapse
|
9
|
Yu L, Zeng X, Hu X, Wen Q, Chen P. Advances and challenges in clinical applications of tumor cell-derived extracellular vesicles. Colloids Surf B Biointerfaces 2024; 234:113704. [PMID: 38113751 DOI: 10.1016/j.colsurfb.2023.113704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Extracellular vesicles (EVs) are a class of substances that feature vesicle-like structures. Initially deemed to be "biological waste", recent studies have highlighted the crucial role of EVs in mediating information communication between cells by transporting bioactive components. Specifically, tumor cell-derived extracellular vesicles (TEVs) contain components that can be utilized for disease diagnosis and as vaccines to activate the immune system. Moreover, since TEVs have a phospholipid bilayer shell and can transport exogenous substances, they are being increasingly explored as drug delivery vehicles in anti-tumor therapy. TEVs have proven highly compatible with their corresponding tumor cells, allowing for efficient drug delivery and exerting killing effects on tumor cells through various mechanisms such as domino effects, lysosomal pathways, and inhibition of drug efflux from tumor tissues. Despite these promising developments, challenges remain in the clinical applications of EVs derived from tumor cells. This paper outlines the current advances and limitations in this field, highlighting the potential of TEVs as a powerful tool for combating cancer.
Collapse
Affiliation(s)
- Li Yu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oncology, Jiangsu Cancer Hospital, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, China
| | - Xiaonan Zeng
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiao Hu
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Department of Oncology, the Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Qinglian Wen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ping Chen
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
10
|
Luo F, Li H, Ma W, Cao J, Chen Q, Lu F, Qiu M, Zhou P, Xia Z, Zeng K, Zhan J, Zhou T, Luo Q, Pan W, Zhang L, Lin C, Huang Y, Zhang L, Yang D, Zhao H. The BCL-2 inhibitor APG-2575 resets tumor-associated macrophages toward the M1 phenotype, promoting a favorable response to anti-PD-1 therapy via NLRP3 activation. Cell Mol Immunol 2024; 21:60-79. [PMID: 38062129 PMCID: PMC10757718 DOI: 10.1038/s41423-023-01112-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 01/01/2024] Open
Abstract
The main challenges in the use of immune checkpoint inhibitors (ICIs) are ascribed to the immunosuppressive tumor microenvironment and the lack of sufficient infiltration of activated CD8+ T cells. Transforming the tumor microenvironment (TME) from "cold" to "hot" and thus more likely to potentiate the effects of ICIs is a promising strategy for cancer treatment. We found that the selective BCL-2 inhibitor APG-2575 can enhance the antitumor efficacy of anti-PD-1 therapy in syngeneic and humanized CD34+ mouse models. Using single-cell RNA sequencing, we found that APG-2575 polarized M2-like immunosuppressive macrophages toward the M1-like immunostimulatory phenotype with increased CCL5 and CXCL10 secretion, restoring T-cell function and promoting a favorable immunotherapy response. Mechanistically, we demonstrated that APG-2575 directly binds to NF-κB p65 to activate NLRP3 signaling, thereby mediating macrophage repolarization and the activation of proinflammatory caspases and subsequently increasing CCL5 and CXCL10 chemokine production. As a result, APG-2575-induced macrophage repolarization could remodel the tumor immune microenvironment, thus improving tumor immunosuppression and further enhancing antitumor T-cell immunity. Multiplex immunohistochemistry confirmed that patients with better immunotherapeutic efficacy had higher CD86, p-NF-κB p65 and NLRP3 levels, accompanied by lower CD206 expression on macrophages. Collectively, these data provide evidence that further study on APG-2575 in combination with immunotherapy for tumor treatment is required.
Collapse
Affiliation(s)
- Fan Luo
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Han Li
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenjuan Ma
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiaxin Cao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qun Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Feiteng Lu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Miaozhen Qiu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Penghui Zhou
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zengfei Xia
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Kangmei Zeng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianhua Zhan
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ting Zhou
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiuyun Luo
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wentao Pan
- Ascentage Pharma (Suzhou) Co Ltd, 218 Xinghu Street, Suzhou, Jiangsu Province, China
| | - Lin Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chaozhuo Lin
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Li Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Dajun Yang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Hongyun Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
11
|
Li C, Xiang F, Gong Y, Fu Y, Chen G, Wang Z, Li Z, Wei D. Tumor-derived microparticles promoted M2-like macrophages polarization to stimulate osteosarcoma progression. Int J Biochem Cell Biol 2024; 166:106494. [PMID: 37956954 DOI: 10.1016/j.biocel.2023.106494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/14/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Microparticles (MPs) are a heterogeneous subpopulation of extracellular vesicles that originate from the plasma membranes of cells. There is increasing evidence that tumor-derived MPs (T-MPs) play a significant role in tumor progression and immune response in cancer. In our study, we found an increased secretion of MPs in osteosarcoma tissues obtained from metastatic patients. These T-MPs promoted polarization of M2-like macrophages and stimulated the migration and chemoresistance of osteosarcoma cells. Mechanistically, T-MPs promoted macrophage polarization to an M2-like phenotype through TBK1-STAT6 signaling. Consequently, these M2-like macrophages mediated osteosarcoma cell migration via CCL18/STAT3 signaling. Blockade of STAT3 signaling pathway improved the outcome of chemotherapy in LM8-bearing osteosarcoma mice model. Thus, our study reveals how tumor cells regulate macrophage polarization by releasing MPs and provides new insights into clinical osteosarcoma therapy.
Collapse
Affiliation(s)
- Cui Li
- Department of Nosocomial Infection Control, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Feifan Xiang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China; Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou 646000, Sichuan, China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, Sichuan, China
| | - Yuqi Gong
- Department of Clinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yi Fu
- Department of Clinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Ge Chen
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China; Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou 646000, Sichuan, China
| | - Zhi Wang
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China; Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou 646000, Sichuan, China
| | - Zhong Li
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China; Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou 646000, Sichuan, China
| | - Daiqing Wei
- Department of Orthopaedics, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China; Sichuan Provincial Laboratory of Orthopaedic Engineering, Luzhou 646000, Sichuan, China.
| |
Collapse
|
12
|
Sun Y, Tian Y, Wu S, Huang A, Hu Y, Liao Z, Swift M, Deng S, Yang X, Zhang B, Zhang Z, Wu B, Huang J, Jiang K, Huang F, Jin H, Wan C, Yang K. Engineering irradiated tumor-derived microparticles as personalized vaccines to enhance anti-tumor immunity. Cell Rep Med 2023; 4:101303. [PMID: 38029750 PMCID: PMC10772344 DOI: 10.1016/j.xcrm.2023.101303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/05/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023]
Abstract
The inadequate activation of antigen-presenting cells, the entanglement of T cells, and the highly immunosuppressive conditions in the tumor microenvironment (TME) are important factors that limit the effectiveness of cancer vaccines. Studies show that a personalized and broad antigen repertoire fully activates anti-tumor immunity and that inhibiting the function of transforming growth factor (TGF)-β facilitates T cell migration. In our study, we introduce a vaccine strategy by engineering irradiated tumor cell-derived microparticles (RT-MPs), which have both personalized and broad antigen repertoire, to induce comprehensive anti-tumor effects. Encouraged by the proinflammatory effects of the spike protein from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the high affinity between TGF-β receptor 2 (TGFBR2) and TGF-β, we develop RT-MPs with the SARS-CoV-2 spike protein and TGFBR2. This spike protein and high TGFBR2 expression induce the innate immune response and ameliorate the immunosuppressive TME, thereby promoting T cell activation and infiltration and ultimately inhibiting tumor growth. Our study provides a strategy for producing an effective personalized anti-tumor vaccine.
Collapse
Affiliation(s)
- Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Tian
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuhui Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ai Huang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiyun Liao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Michelle Swift
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Suke Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiao Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bin Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhanjie Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ke Jiang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fang Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
13
|
Zhang Y, Guo J, Zhang L, Li Y, Sheng K, Zhang Y, Liu L, Gong W, Guo K. CircASPH Enhances Exosomal STING to Facilitate M2 Macrophage Polarization in Colorectal Cancer. Inflamm Bowel Dis 2023; 29:1941-1956. [PMID: 37624989 DOI: 10.1093/ibd/izad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 08/27/2023]
Abstract
Exosomes are considered a mediator of communication within the tumor microenvironment (TME), which modulates cancer progression through transmitting cargos between cancer cells and other cancer-related cells in TME. Circular RNAs (circRNAs) have emerged to be regulators in colorectal cancer (CRC) progression, but most of them have not been discussed in CRC. This study aims to investigate the role of circRNA aspartate beta-hydroxylase (circASPH) in CRC progression and its correlation with exosome-mediated TME. At first, we determined that circASPH was upregulated in CRC samples and cell lines. Functionally, the circASPH deficiency suppressed the malignant processes of CRC cells and also inhibited in vivo tumor growth via enhancing antitumor immunity. Mechanically, circASPH facilitated macrophage M2 polarization by upregulating exosomal stimulator of interferon genes (STING). CircASPH interacted with insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) to stabilize IGF2BP2 protein, therefore enhancing the stability of m6A-modified STING mRNA. In turn, coculture of STING-overexpressed macrophages recovered the suppression of silenced circASPH on the malignancy of CRC cells both in vitro and in vivo. Our study demonstrated that circASPH enhances exosomal STING to facilitate M2 macrophage polarization, which further accelerates CRC progression. The findings support circASPH as a promising therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Gastroenterology, the First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Jiakun Guo
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Liyin Zhang
- Department of Dermatology, Wuxi's Second People Hospital Affiliated With Nanjing Medical University, 68 Zhongshan Road, Wuxi, Jiangsu 214000, China
| | - Ying Li
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230001, Anhui, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, 230001, Anhui, China
| | - Yawei Zhang
- Department of General Surgery, the First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Liu Liu
- Department of Clinical Laboratory, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Wenbin Gong
- Department of General Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Kun Guo
- Department of General Surgery, the First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| |
Collapse
|
14
|
Asao T, Tobias GC, Lucotti S, Jones DR, Matei I, Lyden D. Extracellular vesicles and particles as mediators of long-range communication in cancer: connecting biological function to clinical applications. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:461-485. [PMID: 38707985 PMCID: PMC11067132 DOI: 10.20517/evcna.2023.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Over the past decade, extracellular vesicles and particles (EVPs) have emerged as critical mediators of intercellular communication, participating in numerous physiological and pathological processes. In the context of cancer, EVPs exert local effects, such as increased invasiveness, motility, and reprogramming of tumor stroma, as well as systemic effects, including pre-metastatic niche formation, determining organotropism, promoting metastasis and altering the homeostasis of various organs and systems, such as the liver, muscle, and circulatory system. This review provides an overview of the critical advances in EVP research during the past decade, highlighting the heterogeneity of EVPs, their roles in intercellular communication, cancer progression, and metastasis. Moreover, the clinical potential of systemic EVPs as useful cancer biomarkers and therapeutic agents is explored. Last but not least, the progress in EVP analysis technologies that have facilitated these discoveries is discussed, which may further propel EVP research in the future.
Collapse
Affiliation(s)
- Tetsuhiko Asao
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell & Developmental Biology, Drukier Institute for Children’s Health and Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Tokyo 163-8001, Japan
| | - Gabriel Cardial Tobias
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell & Developmental Biology, Drukier Institute for Children’s Health and Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Serena Lucotti
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell & Developmental Biology, Drukier Institute for Children’s Health and Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - David R. Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Irina Matei
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell & Developmental Biology, Drukier Institute for Children’s Health and Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell & Developmental Biology, Drukier Institute for Children’s Health and Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
15
|
Wang X, Wang L, Liu W, Liu X, Jia X, Feng X, Li F, Zhu R, Yu J, Zhang H, Wu H, Wu J, Wang C, Yu B, Yu X. Dose-related immunomodulatory effects of recombinant TRAIL in the tumor immune microenvironment. J Exp Clin Cancer Res 2023; 42:216. [PMID: 37605148 PMCID: PMC10464183 DOI: 10.1186/s13046-023-02795-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND In addition to specifically inducing tumor cell apoptosis, recombinant tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has also been reported to influence the cancer immune microenvironment; however, its underlying effects and mechanisms remain unclear. Investigating the immunomodulatory effects and mechanisms of recombinant TRAIL in the tumor microenvironment (TME) may provide an important perspective and facilitate the exploration of novel TRAIL strategies for tumor therapy. METHODS Immunocompetent mice with different tumors were treated with three doses of recombinant TRAIL, and then the tumors were collected for immunological detection and mechanistic investigation. Methodological approaches include flow cytometry analysis and single-cell sequencing. RESULTS In an immunocompetent mouse model, recombinant soluble mouse TRAIL (smTRAIL) had dose-related immunomodulatory effects. The optimal dose of smTRAIL (2 mg/kg) activated innate immune cells and CD8+ T cells, whereas higher doses of smTRAIL (8 mg/kg) promoted the formation of a tumor-promoting immune microenvironment to counteract the apoptotic effects on tumor cells. The higher doses of smTRAIL treatment promoted M2-like macrophage recruitment and polarization and increased the production of protumor inflammatory cytokines, such as IL-10, which deepened the suppression of natural killer (NK) cells and CD8+ T cells in the tumor microenvironment. By constructing an HU-HSC-NPG.GM3 humanized immune system mouse model, we further verified the immunomodulatory effects induced by recombinant soluble human TRAIL (shTRAIL) and found that combinational administration of shTRAIL and trabectedin, a macrophage-targeting drug, could remodel the tumor immune microenvironment, further enhance antitumor immunity, and strikingly improve antitumor effects. CONCLUSION Our results highlight the immunomodulatory role of recombinant TRAIL and suggest promising therapeutic strategies for clinical application.
Collapse
Affiliation(s)
- Xupu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Lizheng Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, and the Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada
| | - Wenmo Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xinyao Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xinyuan Jia
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xinyao Feng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Fangshen Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Rui Zhu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jiahao Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
16
|
Xiang L, Rao Q, He B, Guo XH, Xu YD, Luo BP, Zhao G, Wu FH. Role of Cyclin D1b in Inducing Macrophages Toward a Tumor-associated Macrophage-like Phenotype in Murine Breast Cancer. Curr Med Sci 2023; 43:655-667. [PMID: 37391677 DOI: 10.1007/s11596-023-2762-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/21/2023] [Indexed: 07/02/2023]
Abstract
OBJECTIVE Tumor-associated macrophages (TAMs) of the M2 phenotype are frequently associated with cancer progression. Invasive cancer cells undergoing epithelial-mesenchymal transition (EMT) have a selective advantage as TAM activators. Cyclin D1b is a highly oncogenic splice variant of cyclin D1. We previously reported that cyclin D1b enhances the invasiveness of breast cancer cells by inducing EMT. However, the role of cyclin D1b in inducing macrophage differentiation toward tumor-associated macrophage-like cells remains unknown. This study aimed to explore the relationship between breast cancer cells overexpressing cyclin D1b and TAMs. METHODS Mouse breast cancer 4T1 cells were transfected with cyclin D1b variant and co-cultured with macrophage cells in a Transwell coculture system. The expression of characteristic cytokines in differentiated macrophages was detected using qRT-PCR, ELISA and zymography assay. Tumor-associated macrophage distribution in a transplanted tumor was detected by immunofluorescence staining. The proliferation and migration ability of breast cancer cells was detected using the cell counting kit-8 (CCK-8) assay, wound healing assay, Transwell invasion assay, and lung metastasis assay. Expression levels of mRNAs were detected by qRT-PCR. Protein expression levels were detected by Western blotting. The integrated analyses of The Cancer Genome Atlas (TCGA) datasets and bioinformatics methods were adopted to discover gene expression, gene coexpression, and overall survival in patients with breast cancer. RESULTS After co-culture with breast cancer cells overexpressing cyclin D1b, RAW264.7 macrophages were differentiated into an M2 phenotype. Moreover, differentiated M2-like macrophages promoted the proliferation and migration of breast cancer cells in turn. Notably, these macrophages facilitated the migration of breast cancer cells in vivo. Further investigations indicated that differentiated M2-like macrophages induced EMT of breast cancer cells accompanied with upregulation of TGF-β1 and integrin β3 expression. CONCLUSION Breast cancer cells transfected with cyclin D1b can induce the differentiation of macrophages into a tumor-associated macrophage-like phenotype, which promotes tumor metastasis in vitro and in vivo.
Collapse
Affiliation(s)
- Lei Xiang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Qi Rao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Bin He
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xiao-Hong Guo
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yun-Dan Xu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Bao-Ping Luo
- Institute of Liver Diseases, Hubei Key Laboratory of the Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, 430074, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Gang Zhao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Feng-Hua Wu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, China.
- Institute of Liver Diseases, Hubei Key Laboratory of the Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.
| |
Collapse
|
17
|
Hao Y, Ji Z, Zhou H, Wu D, Gu Z, Wang D, ten Dijke P. Lipid-based nanoparticles as drug delivery systems for cancer immunotherapy. MedComm (Beijing) 2023; 4:e339. [PMID: 37560754 PMCID: PMC10407046 DOI: 10.1002/mco2.339] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 08/11/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have shown remarkable success in cancer treatment. However, in cancer patients without sufficient antitumor immunity, numerous data indicate that blocking the negative signals elicited by immune checkpoints is ineffective. Drugs that stimulate immune activation-related pathways are emerging as another route for improving immunotherapy. In addition, the development of nanotechnology presents a promising platform for tissue and cell type-specific delivery and improved uptake of immunomodulatory agents, ultimately leading to enhanced cancer immunotherapy and reduced side effects. In this review, we summarize and discuss the latest developments in nanoparticles (NPs) for cancer immuno-oncology therapy with a focus on lipid-based NPs (lipid-NPs), including the characteristics and advantages of various types. Using the agonists targeting stimulation of the interferon genes (STING) transmembrane protein as an exemplar, we review the potential of various lipid-NPs to augment STING agonist therapy. Furthermore, we present recent findings and underlying mechanisms on how STING pathway activation fosters antitumor immunity and regulates the tumor microenvironment and provide a summary of the distinct STING agonists in preclinical studies and clinical trials. Ultimately, we conduct a critical assessment of the obstacles and future directions in the utilization of lipid-NPs to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Yang Hao
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
- Department of Basic MedicineChangzhi Medical CollegeChangzhiChina
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| | - Zhonghao Ji
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
- Department of Basic MedicineChangzhi Medical CollegeChangzhiChina
| | - Hengzong Zhou
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
| | - Dongrun Wu
- Departure of Philosophy, Faculty of HumanitiesLeiden UniversityLeidenThe Netherlands
| | - Zili Gu
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Dongxu Wang
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
| | - Peter ten Dijke
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
18
|
Kumar V, Bauer C, Stewart JH. Targeting cGAS/STING signaling-mediated myeloid immune cell dysfunction in TIME. J Biomed Sci 2023; 30:48. [PMID: 37380989 PMCID: PMC10304357 DOI: 10.1186/s12929-023-00942-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023] Open
Abstract
Myeloid immune cells (MICs) are potent innate immune cells serving as first responders to invading pathogens and internal changes to cellular homeostasis. Cancer is a stage of altered cellular homeostasis that can originate in response to different pathogens, chemical carcinogens, and internal genetic/epigenetic changes. MICs express several pattern recognition receptors (PRRs) on their membranes, cytosol, and organelles, recognizing systemic, tissue, and organ-specific altered homeostasis. cGAS/STING signaling is a cytosolic PRR system for identifying cytosolic double-stranded DNA (dsDNA) in a sequence-independent but size-dependent manner. The longer the cytosolic dsDNA size, the stronger the cGAS/STING signaling activation with increased type 1 interferon (IFN) and NF-κB-dependent cytokines and chemokines' generation. The present article discusses tumor-supportive changes occurring in the tumor microenvironment (TME) or tumor immune microenvironment (TIME) MICs, specifically emphasizing cGAS/STING signaling-dependent alteration. The article further discusses utilizing MIC-specific cGAS/STING signaling modulation as critical tumor immunotherapy to alter TIME.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA, 70012, USA.
| | - Caitlin Bauer
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA, 70012, USA
| | - John H Stewart
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA, 70012, USA.
- Louisiana Children's Medical Center Cancer Center, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA, 70012, USA.
- Surgery, Section of Surgical Oncology, Louisiana State University New Orleans-Louisiana Children's Medical Center Cancer Center, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA, 70012, USA.
| |
Collapse
|
19
|
Yang T, Luo Y, Liu J, Liu F, Ma Z, Liu G, LI H, Wen J, Chen C, Zeng X. A novel signature incorporating lipid metabolism- and immune-related genes to predict the prognosis and immune landscape in hepatocellular carcinoma. Front Oncol 2023; 13:1182434. [PMID: 37346073 PMCID: PMC10279962 DOI: 10.3389/fonc.2023.1182434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023] Open
Abstract
Background Liver hepatocellular carcinoma (LIHC) is a highly malignant tumor with high metastasis and recurrence rates. Due to the relation between lipid metabolism and the tumor immune microenvironment is constantly being elucidated, this work is carried out to produce a new prognostic gene signature that incorporates immune profiles and lipid metabolism of LIHC patients. Methods We used the "DEseq2" R package and the "Venn" R package to identify differentially expressed genes related to lipid metabolism (LRDGs) in LIHC. Additionally, we performed unsupervised clustering of LIHC patients based on LRDGs to identify their subgroups and immuno-infiltration and Gene Ontology (GO) enrichment analysis on the subgroups. Next, we employed multivariate, LASSO and univariate Cox regression analyses to determine variables and to create a prognostic profile on the basis of immune- and lipid metabolism-related differential genes (IRDGs and LRDGs). We separated patients into low- and high-risk groups in accordance with the best cut-off value of risk score. We conducted Decision Curve Analysis (DCA), Receiver Operating Characteristic curve analysis as a function of time as well as Survival Analysis to evaluate this signature's prognostic value. We incorporated the clinical characteristics of patients into the risk model to obtain a nomogram prognostic model. GEO14520 and ICGC-LIRI JP datasets were employed to externally confirm the accuracy and robustness of signature. The gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA) were applied for investigating the underlying mechanisms. Immune infiltration analysis was implemented to examine the differences in immune between both risk groups. Single-cell RNA sequencing (scRNA-SEQ) was utilized to characterize the genes that were involved in the distribution of signature and expression characteristics of different LIHC cell types. The patients' sensitivity in both risk groups to commonly used chemotherapeutic agents and semi-inhibitory concentrations (IC50) of the drugs was assessed using the GDSC database. On the basis of the differentially expressed genes (DEGs) in the two groups, the CMAP database was adopted for the prediction of potential small-molecule compounds. Small-molecule compounds were molecularly docked with prognostic markers. Lastly, we investigated the prognostic gene expression levels in normal and LIHC tissues with immunohistochemistry (IHC) and quantitative reverse transcription polymerase chain reaction(qRT-PCR). Results We built and verified a prognostic signature with seven genes that incorporated immune profiles and lipid metabolism. Patients were classified as low- and high-risk groups depending on their prognostic profiles. The overall survival (OS) was markedly lower in the high-risk group as compared to low-risk group. Time-dependent ROC curves more precisely predicted patients' survival at 1, 3 and 5 years; the area under the ROC curve was 0.81 (1 year), 0.75 (3 years) and 0.77 (5 years). The DCA curves showed the value of the prognostic genes in this signature for clinical applications. We included the patients' clinical characteristics in the risk model for both multivariate and univariate Cox regression analyses, and the findings revealed that the risk model represents an independent factor that influences OS in LIHC patients. With immune analysis, GSVA and GSEA, we identified that there are remarkable differences between the two risk groups in immune pathways, lipid metabolism, tumor development, immune cell infiltration and immune microenvironment, response to immunotherapy, and sensitivity to chemotherapy. Moreover, those with higher risk scores presented greater sensitivity to the chemotherapeutic agents. Experiments in vitro further elucidated the roles of SPP1 and FLT3 in the LIHC immune microenvironment. Furthermore, four small-molecule drugs that could target LIHC were screened. In vitro qRT-PCR , IHC revealed that the SPP1,KIF18A expressions were raised in LIHC in tumor samples, whereas FLT3,SOCS2 showed the opposite trend. Conclusions We developed and verified a new signature comprising immune- and lipid metabolism-associated markers and to assess the prognosis and the immune status of LIHC patients. This signature can be applied to survival prediction, individualized chemotherapy, and immunotherapeutic guidance for patients with liver cancer. This study also provides potential targeted therapeutics and novel ideas for the immune evasion and progression of LIHC.
Collapse
Affiliation(s)
- Ti Yang
- Department of Hepatobiliary-Pancreatic and Hernia Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yurong Luo
- Department of Hepatobiliary-Pancreatic and Hernia Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Junhao Liu
- Department of Hepatobiliary-Pancreatic and Hernia Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Fang Liu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zengxin Ma
- Department of Hepatobiliary-Pancreatic and Hernia Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Gai Liu
- Department of Hepatobiliary-Pancreatic and Hernia Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Hailiang LI
- Department of Hepatobiliary-Pancreatic and Hernia Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jianfan Wen
- Department of Hepatobiliary-Pancreatic and Hernia Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Chengcong Chen
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiancheng Zeng
- Department of Hepatobiliary-Pancreatic and Hernia Surgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
20
|
Hu Y, Wan C, Yang X, Tian Y, Deng S, An D, Wang Y, Wang J, Liao Z, Meng J, Qin Y, Sun Y, Yang K. Radiated tumor cell-derived microparticles effectively kill stem-like tumor cells by increasing reactive oxygen species. Front Bioeng Biotechnol 2023; 11:1156951. [PMID: 37342505 PMCID: PMC10277801 DOI: 10.3389/fbioe.2023.1156951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/21/2023] [Indexed: 06/23/2023] Open
Abstract
Stem-like tumor cells (SLTCs) are thought to be the cellular entity responsible for clinical recurrence and subsequent metastasis. Inhibiting or killing SLTCs can effectively reduce recurrence and metastasis, yet little has been done to clear SLTCs because they are usually resistant to chemotherapy, radiotherapy, and even immunotherapy. In this study, we established SLTCs by low-serum culture and confirmed that the low-serum-cultured tumor cells were in a quiescent state and resistant to chemotherapy, showing features of SLTCs, consistent with the reported data. We demonstrated that SLTCs had high levels of reactive oxygen species (ROS). Based on the finding that radiated tumor cell-derived microparticles (RT-MPs) contained ROS, we used RT-MPs to kill SLTCs. We found that RT-MPs could further increase ROS levels and kill SLTCs in vivo and in vitro partially by ROS carried by the RT-MPs themselves, providing a new method for eliminating SLTCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yajie Sun
- *Correspondence: Yajie Sun, ; Kunyu Yang,
| | - Kunyu Yang
- *Correspondence: Yajie Sun, ; Kunyu Yang,
| |
Collapse
|
21
|
Jing H, Wu X, Xiang M, Wang C, Novakovic VA, Shi J. Microparticle Phosphatidylserine Mediates Coagulation: Involvement in Tumor Progression and Metastasis. Cancers (Basel) 2023; 15:cancers15071957. [PMID: 37046617 PMCID: PMC10093313 DOI: 10.3390/cancers15071957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Tumor progression and cancer metastasis has been linked to the release of microparticles (MPs), which are shed upon cell activation or apoptosis and display parental cell antigens, phospholipids such as phosphatidylserine (PS), and nucleic acids on their external surfaces. In this review, we highlight the biogenesis of MPs as well as the pathophysiological processes of PS externalization and its involvement in coagulation activation. We review the available evidence, suggesting that coagulation factors (mainly tissue factor, thrombin, and fibrin) assist in multiple steps of tumor dissemination, including epithelial-mesenchymal transition, extracellular matrix remodeling, immune escape, and tumor angiogenesis to support the formation of the pre-metastatic niche. Platelets are not just bystander cells in circulation but are functional players in primary tumor growth and metastasis. Tumor-induced platelet aggregation protects circulating tumor cells (CTCs) from the blood flow shear forces and immune cell attack while also promoting the binding of CTCs to endothelial cells and extravasation, which activates tumor invasion and sustains metastasis. Finally, in terms of therapy, lactadherin can inhibit coagulation by competing effectively with coagulation factors for PS binding sites and may similarly delay tumor progression. Furthermore, we also investigate the therapeutic potential of coagulation factor inhibitors within the context of cancer treatment. The development of multiple therapies targeting platelet activation and platelet-tumor cell interactions may not only reduce the lethal consequences of thrombosis but also impede tumor growth and spread.
Collapse
Affiliation(s)
- Haijiao Jing
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Xiaoming Wu
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Mengqi Xiang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Chengyue Wang
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
| | - Valerie A Novakovic
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02132, USA
| | - Jialan Shi
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin 150001, China
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA 02132, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02132, USA
| |
Collapse
|
22
|
cGAS-STING signalling in cancer: striking a balance with chromosomal instability. Biochem Soc Trans 2023; 51:539-555. [PMID: 36876871 DOI: 10.1042/bst20220838] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 03/07/2023]
Abstract
Chromosomal instability (CIN) is a hallmark of cancer that drives tumour evolution. It is now recognised that CIN in cancer leads to the constitutive production of misplaced DNA in the form of micronuclei and chromatin bridges. These structures are detected by the nucleic acid sensor cGAS, leading to the production of the second messenger 2'3'-cGAMP and activation of the critical hub of innate immune signalling STING. Activation of this immune pathway should instigate the influx and activation of immune cells, resulting in the eradication of cancer cells. That this does not universally occur in the context of CIN remains an unanswered paradox in cancer. Instead, CIN-high cancers are notably adept at immune evasion and are highly metastatic with typically poor outcomes. In this review, we discuss the diverse facets of the cGAS-STING signalling pathway, including emerging roles in homeostatic processes and their intersection with genome stability regulation, its role as a driver of chronic pro-tumour inflammation, and crosstalk with the tumour microenvironment, which may collectively underlie its apparent maintenance in cancers. A better understanding of the mechanisms whereby this immune surveillance pathway is commandeered by chromosomally unstable cancers is critical to the identification of new vulnerabilities for therapeutic exploitation.
Collapse
|
23
|
Lu S, Cui Q, Zheng H, Ma Y, Kang Y, Tang K. Challenges and Opportunities for Extracellular Vesicles in Clinical Oncology Therapy. Bioengineering (Basel) 2023; 10:bioengineering10030325. [PMID: 36978715 PMCID: PMC10045216 DOI: 10.3390/bioengineering10030325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound vesicles that can be released by all cell types. They may have different biogenesis, physical features, and cargo. EVs are important biomarkers for the diagnosis and prediction of many diseases due to their essential role in intercellular communication, their highly variable cargoes, and their accumulation in various body fluids. These natural particles have been investigated as potential therapeutic materials for many diseases. In our previous studies, the clinical usage of tumor-cell-derived microparticles (T-MPs) as a novel medication delivery system was examined. This review summarizes the clinical translation of EVs and related clinical trials, aiming to provide suggestions for safer and more effective oncology therapeutic systems, particularly in biotherapeutic and immunotherapeutic systems.
Collapse
Affiliation(s)
- Shuya Lu
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qingfa Cui
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huan Zheng
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuan Ma
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanchun Kang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Tang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence:
| |
Collapse
|
24
|
Formation of pre-metastatic niches induced by tumor extracellular vesicles in lung metastasis. Pharmacol Res 2023; 188:106669. [PMID: 36681367 DOI: 10.1016/j.phrs.2023.106669] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
There are a number of malignant tumors that metastasize into the lung as one of their most common sites of dissemination. The successful infiltration of tumor cells into distant organs is the result of the cooperation between tumor cells and distant host cells. When tumor cells have not yet reached distant organs, in situ tumor cells secrete extracellular vesicles (EVs) carrying important biological information. In recent years, scholars have found that tumor cells-derived EVs act as the bridge between orthotopic tumors and secondary metastases by promoting the formation of a pre-metastatic niche (PMN), which plays a key role in awakening dormant circulating tumor cells and promoting tumor cell colonization. This review provides an overview of multiple routes and mechanisms underlying PMN formation induced by EVs and summaries study findings that underline a potential role of EVs in the intervention of lung PMN, both as a target or a carrier for drug design. In this review, the underlying mechanisms of EVs in lung PMN formation are highlighted as well as potential applications to lung metastasis diagnosis and treatment.
Collapse
|
25
|
Dubey S, Ghosh S, Goswami D, Ghatak D, De R. Immunometabolic attributes and mitochondria-associated signaling of Tumor-Associated Macrophages in tumor microenvironment modulate cancer progression. Biochem Pharmacol 2023; 208:115369. [PMID: 36481347 DOI: 10.1016/j.bcp.2022.115369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Macrophages are specialized immune cells, which have the capacity to phagocytize and destroy the target cells, including tumor cells. Some macrophages, however on their way to devour the cancer cells undergo a change due to a complex set of signaling pathways. They are induced to change into a polarized state known as M2. The M2 macrophages help in metastasis, tumor suppression, and angiogenesis. The macrophage which gets associated with this TME, are referred to as tumor-associated macrophages (TAMs). TAMS undergo a metabolic reprogramming toward oxidative metabolism for bioenergetic purposes (OXPHOS), fatty acid oxidation (FAO), decreased glycolysis, decreased metabolism via the PPP, and upregulation of arginase 1 (ARG1) which triggers immunosuppressive pro-tumor signaling in the tumor microenvironment (TME) in which mitochondria plays an instrumental role. Reports have suggested that a complex series of interactions and exchange of materials, such as cytokines, metabolic intermediates and sometimes even transfer of mitochondria take place between TAMS and other TME components most importantly cancer cells that reprogram their metabolism to encourage cell growth, division, epithelial to mesenchymal transition, that ultimately play an important role in tumor progression. This review will try to focus on the crosstalk between the TAMs with several other components of TME, what instrumental role mitochondria play in that and also try to explore some of the therapeutic options available in cancer patients.
Collapse
Affiliation(s)
- Srijan Dubey
- Amity Institute of Biotechnology, Amity University, Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata 700135, West Bengal, India
| | - Sayak Ghosh
- Amity Institute of Biotechnology, Amity University, Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata 700135, West Bengal, India
| | - Debosmita Goswami
- Amity Institute of Biotechnology, Amity University, Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata 700135, West Bengal, India
| | - Debapriya Ghatak
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University, Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata 700135, West Bengal, India.
| |
Collapse
|
26
|
Wei K, Zhang H, Yang S, Cui Y, Zhang B, Liu J, Tang L, Tan Y, Liu S, Chen S, Yuan W, Luo X, Chen C, Li F, Liu J, Chen J, Xu P, Lv J, Tang K, Zhang Y, Ma J, Huang B. Chemo-drugs in cell microparticles reset antitumor activity of macrophages by activating lysosomal P450 and nuclear hnRNPA2B1. Signal Transduct Target Ther 2023; 8:22. [PMID: 36658134 PMCID: PMC9852455 DOI: 10.1038/s41392-022-01212-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/01/2022] [Accepted: 09/28/2022] [Indexed: 01/21/2023] Open
Abstract
Macrophages in tumors (tumor-associated macrophages, TAMs), a major population within most tumors, play key homeostatic functions by stimulating angiogenesis, enhancing tumor cell growth, and suppressing antitumor immunity. Resetting TAMs by simple, efficacious and safe approach(s) is highly desirable to enhance antitumor immunity and attenuate tumor cell malignancy. Previously, we used tumor cell-derived microparticles to package chemotherapeutic drugs (drug-MPs), which resulted in a significant treatment outcome in human malignant pleural effusions via neutrophil recruitments, implicating that drug-MPs might reset TAMs, considering the inhibitory effects of M2 macrophages on neutrophil recruitment and activation. Here, we show that drug-MPs can function as an antitumor immunomodulator by resetting TAMs with M1 phenotype and IFN-β release. Mechanistically, drug molecules in tumor MPs activate macrophage lysosomal P450 monooxygenases, resulting in superoxide anion formation, which further amplifies lysosomal ROS production and pH value by activating lysosomal NOX2. Consequently, lysosomal Ca2+ signaling is activated, thus polarizing macrophages towards M1. Meanwhile, the drug molecules are delivered from lysosomes into the nucleus where they activate DNA sensor hnRNPA2B1 for IFN-β production. This lysosomal-nuclear machinery fully arouses the antitumor activity of macrophages by targeting both lysosomal pH and the nuclear innate immunity. These findings highlight that drug-MPs can act as a new immunotherapeutic approach by revitalizing antitumor activity of macrophages. This mechanistic elucidation can be translated to treat malignant ascites by drug-MPs combined with PD-1 blockade.
Collapse
Affiliation(s)
- Keke Wei
- grid.33199.310000 0004 0368 7223Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Huafeng Zhang
- grid.33199.310000 0004 0368 7223Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Shuaishuai Yang
- grid.33199.310000 0004 0368 7223Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Yuxiao Cui
- grid.33199.310000 0004 0368 7223Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Bingxia Zhang
- grid.33199.310000 0004 0368 7223Cardiovascular Surgery, Union Hospital, Huazhong University of Science & Technology, Wuhan, 430071 China
| | - Jincheng Liu
- grid.33199.310000 0004 0368 7223Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Liang Tang
- grid.33199.310000 0004 0368 7223Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Yaoyao Tan
- grid.33199.310000 0004 0368 7223Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Simin Liu
- grid.33199.310000 0004 0368 7223Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Shiqi Chen
- grid.33199.310000 0004 0368 7223Cardiovascular Surgery, Union Hospital, Huazhong University of Science & Technology, Wuhan, 430071 China
| | - Wu Yuan
- grid.33199.310000 0004 0368 7223Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Xiao Luo
- grid.33199.310000 0004 0368 7223Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Chen Chen
- grid.33199.310000 0004 0368 7223Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Fei Li
- grid.33199.310000 0004 0368 7223Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Junwei Liu
- grid.33199.310000 0004 0368 7223Cardiovascular Surgery, Union Hospital, Huazhong University of Science & Technology, Wuhan, 430071 China
| | - Jie Chen
- grid.506261.60000 0001 0706 7839Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005 China
| | - Pingwei Xu
- grid.414906.e0000 0004 1808 0918Translational Medicine Laboratory, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035 China
| | - Jiadi Lv
- grid.506261.60000 0001 0706 7839Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005 China
| | - Ke Tang
- grid.33199.310000 0004 0368 7223Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030 China
| | - Yi Zhang
- grid.412633.10000 0004 1799 0733Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China.
| | - Bo Huang
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China. .,Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
27
|
Donoso‐Meneses D, Figueroa‐Valdés AI, Georges N, Tobar HE, Alcayaga‐Miranda F. Turning adversity into opportunity: Small extracellular vesicles as nanocarriers for tumor-associated macrophages re-education. Bioeng Transl Med 2023; 8:e10349. [PMID: 36684102 PMCID: PMC9842057 DOI: 10.1002/btm2.10349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 01/25/2023] Open
Abstract
Currently, small extracellular vesicles (sEV) as a nanoscale drug delivery system, are undergoing biotechnological scaling and clinical validation. Nonetheless, preclinical pharmacokinetic studies revealed that sEV are predominantly uptaken by macrophages. Although this "sEV-macrophage" propensity represents a disadvantage in terms of sEV targeting and their bioavailability as nanocarriers, it also represents a strategic advantage for those therapies that involve macrophages. Such is the case of tumor-associated macrophages (TAMs), which can reprogram/repolarize their predominantly immunosuppressive and tumor-supportive phenotype toward an immunostimulatory and anti-tumor phenotype using sEV as nanocarriers of TAMs reprogramming molecules. In this design, sEV represents an advantageous delivery system, providing precision to the therapy by simultaneously matching their tropism to the therapeutic cell target. Here, we review the current knowledge of the role of TAMs in the tumoral microenvironment and the effect generated by the reprogramming of these phagocytic cells fate using sEV. Finally, we discuss how these vesicles can be engineered by different bioengineering techniques to improve their therapeutic cargo loading and preferential uptake by TAMs.
Collapse
Affiliation(s)
- Dario Donoso‐Meneses
- Laboratory of Nano‐Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of MedicineUniversidad de Los AndesSantiagoChile
- Consorcio RegeneroChilean Consortium for Regenerative MedicineSantiagoChile
- IMPACTCenter of Interventional Medicine for Precision and Advanced Cellular TherapySantiagoChile
| | - Aliosha I. Figueroa‐Valdés
- Laboratory of Nano‐Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of MedicineUniversidad de Los AndesSantiagoChile
- Consorcio RegeneroChilean Consortium for Regenerative MedicineSantiagoChile
- IMPACTCenter of Interventional Medicine for Precision and Advanced Cellular TherapySantiagoChile
| | - Nicolás Georges
- Laboratory of Nano‐Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of MedicineUniversidad de Los AndesSantiagoChile
- Consorcio RegeneroChilean Consortium for Regenerative MedicineSantiagoChile
- IMPACTCenter of Interventional Medicine for Precision and Advanced Cellular TherapySantiagoChile
| | - Hugo E. Tobar
- Laboratory of Nano‐Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of MedicineUniversidad de Los AndesSantiagoChile
- IMPACTCenter of Interventional Medicine for Precision and Advanced Cellular TherapySantiagoChile
| | - Francisca Alcayaga‐Miranda
- Laboratory of Nano‐Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of MedicineUniversidad de Los AndesSantiagoChile
- Consorcio RegeneroChilean Consortium for Regenerative MedicineSantiagoChile
- IMPACTCenter of Interventional Medicine for Precision and Advanced Cellular TherapySantiagoChile
- School of Medicine, Faculty of MedicineUniversidad de Los AndesSantiagoChile
- Cells for CellsSantiagoChile
| |
Collapse
|
28
|
Sun W, Dai L, Cao Y, Pan P, Zhi L, Wang X, Yuan X, Gao Z, Guo S, Liu G, Yin J, Xie L, Wang L, Wang Y, Li W, Li H, Jia Y. Monocytes reprogrammed by tumor microparticle vaccine inhibit tumorigenesis and tumor development. Cancer Nanotechnol 2023; 14:34. [PMID: 37089435 PMCID: PMC10106871 DOI: 10.1186/s12645-023-00190-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/06/2023] [Indexed: 04/25/2023] Open
Abstract
Tumor microparticles (T-MPs) are considered as a tumor vaccine candidate. Although some studies have analyzed the mechanism of T-MPs as tumor vaccine, we still lack understanding of how T-MPs stimulate a strong anti-tumor immune response. Here, we show that T-MPs induce macrophages to release a key chemotactic factor CCL2, which attracts monocytes to the vaccine injection site and enhances endocytosis of antigen. Monocytes subsequently enter the draining lymph node, and differentiate into monocyte-derived DCs (moDCs), which present tumor antigens to T lymphocytes and deliver a potent anti-tumor immune response. Mechanically, T-MPs activate the cGAS-STING signaling through DNA fragments, and then induce monocytes to upregulate the expression of IRF4, which is a key factor for monocyte differentiation into moDCs. More importantly, monocytes that have endocytosed T-MPs acquire the ability to treat tumors. Collectively, this work might provide novel vaccination strategy for the development of tumor vaccines and facilitate the application of T-MPs for clinic oncotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12645-023-00190-x.
Collapse
Affiliation(s)
- Weiwei Sun
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003 China
| | - Lili Dai
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003 China
| | - Yuqing Cao
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003 China
| | - Pengtao Pan
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003 China
| | - Lijuan Zhi
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003 China
| | - Xinke Wang
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003 China
| | - Xinzhong Yuan
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003 China
| | - Zi Gao
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003 China
| | - Sheng Guo
- Department of Immunology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Guoyan Liu
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003 China
| | - Junlei Yin
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003 China
| | - Liangliang Xie
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003 China
| | - Liping Wang
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003 China
| | - Yanling Wang
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003 China
| | - Wensheng Li
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003 China
| | - Hong Li
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003 China
| | - Yunjie Jia
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003 China
| |
Collapse
|
29
|
Zhang S, Chen L, Zong Y, Li Q, Zhu K, Li Z, Meng R. Research progress of tumor-derived extracellular vesicles in the treatment of malignant pleural effusion. Cancer Med 2023; 12:983-994. [PMID: 35861052 PMCID: PMC9883446 DOI: 10.1002/cam4.5005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/11/2022] [Accepted: 06/19/2022] [Indexed: 02/02/2023] Open
Abstract
Vesicles, also known as "microparticles", are vesicle-like structures that are released outside the cell in a "sprouting" manner when the cytoskeleton is changed during cell activation or apoptosis, with a diameter of about 100-1000 nm, and are carriers of material information exchange between cells. Tumor-derived extracellular vesicles can effectively deliver drugs to the nucleus of tumor stem cells, thus effectively killing them without toxic side effects. The underlying mechanism involves the soft nature of tumor stem cells that allows better uptake of vesicles, and the entry of drug-carrying vesicles into lysosomes and facilitation of lysosomal movement toward the nucleus to deliver drugs to the nucleus. Drug-loaded vesicles have unique advantages, such as low immunogenicity, homing targeting ability, and the ability to break through the physiological barrier to tumor therapy. Tumor-derived drug-delivery vesicles have entered clinical trials for the treatment of malignant pleural effusions. In this review, we summarized the progress of basic and clinical research on tumor cell-derived drug-loaded vesicles for the treatment of malignant pleural effusion in recent years.
Collapse
Affiliation(s)
- Sijia Zhang
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Leichong Chen
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yan Zong
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qianwen Li
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Kuikui Zhu
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhenyu Li
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
30
|
Yong T, Wei Z, Gan L, Yang X. Extracellular-Vesicle-Based Drug Delivery Systems for Enhanced Antitumor Therapies through Modulating the Cancer-Immunity Cycle. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201054. [PMID: 35726204 DOI: 10.1002/adma.202201054] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Although immunotherapy harnessing activity of the immune system against tumors has made great progress, the treatment efficacy remains limited in most cancers. Current anticancer immunotherapy is primarily based on T-cell-mediated cellular immunity, which highly relies on efficiency of triggering the cancer-immunity cycle, namely, tumor antigen release, antigen presentation by antigen presenting cells, T cell activation, recruitment and infiltration of T cells into tumors, and recognition and killing of tumor cells by T cells. Unfortunately, these immunotherapies are restricted by inefficient drug delivery and acting on only a single step of the cancer-immunity cycle. Due to high biocompatibility, low immunogenicity, intrinsic cell targeting, and easy chemical and genetic manipulation, extracellular vesicle (EV)-based drug delivery systems are widely used to amplify anticancer immune responses by serving as an integrated platform for multiple drugs or therapeutic strategies to synergistically activate several steps of cancer-immunity cycle. This review summarizes various mechanisms related to affecting cancer-immunity cycle disorders. Meanwhile, preparation and application of EV-based drug delivery systems in modulating cancer-immunity cycle are introduced, especially in the improvement of T cell recruitment and infiltration into tumors. Finally, opportunities and challenges of EV-based drug delivery systems in translational clinical applications are briefly discussed.
Collapse
Affiliation(s)
- Tuying Yong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhaohan Wei
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
31
|
Mekers VE, Kho VM, Ansems M, Adema GJ. cGAS/cGAMP/STING signal propagation in the tumor microenvironment: key role for myeloid cells in antitumor immunity. Radiother Oncol 2022; 174:158-167. [PMID: 35870728 DOI: 10.1016/j.radonc.2022.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 12/19/2022]
Abstract
Cyclic GMP-AMP synthase (cGAS), second messenger 2'3'-cyclic GMP-AMP (cGAMP) and stimulator of interferon genes (STING) are fundamental for sensing cytoplasmic double stranded DNA. Radiotherapy treatment induces large amounts of nuclear and mitochondrial DNA damage and results in the presence of DNA fragments in the cytoplasm, activating the cGAS/STING pathway. Triggering of the cGAS/STING pathway in the tumor microenvironment (TME) results in the production of type I interferons (IFNs). Type I IFNs are crucial for an effective antitumor defense, with myeloid cells as key players. Many questions remain on how these myeloid cells are activated and in which cells (tumor versus myeloid) in the TME the signaling pathway is initiated. The significance of cGAS/STING signaling in the onco-immunology field is being recognized, emphasized by the frequent occurrence of mutations in or silencing of genes in this pathway. We here review several mechanisms of cGAS/STING signal propagation in the TME, focusing on tumor cells and myeloid cells. Cell-cell contact-dependent interactions facilitate the transfer of tumor-derived DNA and cGAMP. Alternatively, transport routes via the extracellular space such as extracellular vesicles, and channel-mediated cGAMP transfer to and from the extracellular space contribute to propagation of cGAS/STING signal mediators DNA and cGAMP. Finally, we discuss regulation of extracellular cGAMP. Altogether, we provide a comprehensive overview of cGAS/cGAMP/STING signal propagation from tumor to myeloid cells in the TME, revealing novel targets for combinatorial treatment approaches with conventional anticancer therapies like radiotherapy.
Collapse
Affiliation(s)
- Vera E Mekers
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
| | - Vera M Kho
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
| | - Marleen Ansems
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
32
|
Wang Z, Li S, Huang B. Alveolar macrophages: Achilles' heel of SARS-CoV-2 infection. Signal Transduct Target Ther 2022; 7:242. [PMID: 35853858 PMCID: PMC9295089 DOI: 10.1038/s41392-022-01106-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/11/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused more than 6.3 million deaths to date. Despite great efforts to curb the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), vaccines and neutralizing antibodies are in the gloom due to persistent viral mutations and antiviral compounds face challenges of specificity and safety. In addition, vaccines are unable to treat already-infected individuals, and antiviral drugs cannot be used prophylactically. Therefore, exploration of unconventional strategies to curb the current pandemic is highly urgent. Alveolar macrophages (AMs) residing on the surface of alveoli are the first immune cells that dispose of alveoli-invading viruses. Our findings demonstrate that M1 AMs have an acidic endosomal pH, thus favoring SARS-CoV-2 to leave endosomes and release into the cytosol where the virus initiates replication; in contrast, M2 AMs have an increased endosomal pH, which dampens the viral escape and facilitates delivery of the virus for lysosomal degradation. In this review, we propose that AMs are the Achilles’ heel of SARS-CoV-2 infection and that modulation of the endosomal pH of AMs has the potential to eliminate invaded SARS-CoV-2; the same strategy might also be suitable for other lethal respiratory viruses.
Collapse
Affiliation(s)
- Zhenfeng Wang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, 100005, Beijing, China
| | - Shunshun Li
- Department of Immunology, Basic Medicine College, China Medical University, 110122, Shenyang, Liaoning, China
| | - Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, 100005, Beijing, China. .,Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, 430030, Wuhan, China.
| |
Collapse
|
33
|
Zhai D, Huang J, Hu Y, Wan C, Sun Y, Meng J, Zi H, Lu L, He Q, Hu Y, Jin H, Yang K. Irradiated Tumor Cell-Derived Microparticles Prevent Lung Metastasis by Remodeling the Pulmonary Immune Microenvironment. Int J Radiat Oncol Biol Phys 2022; 114:502-515. [PMID: 35840114 DOI: 10.1016/j.ijrobp.2022.06.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 11/15/2022]
Abstract
PURPOSE The majority of cancer-related deaths are attributed to metastasis rather than localized primary tumor progression. However, the factors that regulate the pre-metastatic niche (PMN) and metastasis have not yet been clearly elucidated. We investigated the antimetastatic effects of irradiated tumor cell-derived microparticles (RT-MPs) and highlighted the role of innate immune cells in PMN formation. METHODS AND MATERIALS Mice were treated three times with isolated RT-MPs, followed by tumor cell injection via the tail vein. H&E staining was performed to assess the number of tumor nodules in the lungs, and in vivo luciferase-based noninvasive bioluminescence imaging was conducted to detected tumor burden. The mechanisms of RT-MPs mediated PMN formation was evaluated using flow cytometry, transwell assay, and RT-PCR. RESULTS RT-MPs inhibited tumor cell colonization in the lungs. Neutrophils phagocytosed RT-MPs and secreted CCL3 and CCL4, which induced monocytes chemotaxis and maturation into macrophages. RT-MPs promoted the transition of neutrophils and macrophages into antitumor phenotypes, hence inhibiting cancer cell colonization and proliferation. CONCLUSIONS RT-MPs inhibited PMN formation and lung metastasis in a neutrophil- and macrophage-dependent but T cell-independent manner.
Collapse
Affiliation(s)
- Danyi Zhai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingshu Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huaduan Zi
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lisen Lu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qianyuan He
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
34
|
Macrophages’ M1 or M2 by tumor microparticles: lysosome makes decision. Cell Mol Immunol 2022; 19:1196-1197. [PMID: 35773394 PMCID: PMC9508130 DOI: 10.1038/s41423-022-00892-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
|
35
|
Small tumour microparticle enhances drug delivery efficiency and therapeutic antitumour efficacy. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00125-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Targeted delivery of chemotherapeutic drugs to tumour cells is a major challenge for cancer chemotherapy. Recent studies show that tumour cell-derived microparticles can be used as vectors to package chemotherapeutic drugs, and selectively deliver drugs to tumour cells. Nevertheless, since the particle size range of microparticles is relatively wide, the sizes may exhibit different pharmacokinetic characteristics in the body, which will have a great impact on the application of drug-loaded microparticles. Here in this report, we compare the characteristics, distribution in vivo and antitumour efficacy of small microparticles (SMPs, ≤ 200 nm) and large microparticles (LMPs, > 200 nm) which loaded with methotrexate, in order to screen out more suitable carrier sizes.
Results
In vivo and in vitro studies have proved that the drug-loaded vesicles of SMPs (mainly 100–200 nm) are more reasonable, and the drug content and maintenance in tumour tissues. The time is significantly higher than that of LMPs (mainly 400–500 nm). At the same time, we found that SMPs can be better taken up and processed by DC cells to promote the proliferation of specific T cells. SMPs show obvious advantages in both drug delivery and immune activation, which is verified by the comparison of the efficacy of SMPs and LMPs in the treatment of solid tumours in mice.
Conclusions
The present data demonstrate that the SMPs had a higher cumulative concentration in tumour tissue, and the tumour suppressive effect was also significantly better than that of LMPs. It provides important process parameters for the drug-loaded vesicle delivery system. Future works will aim to expand production scale and improve the separation and purification process of the microparticles. Although the research and application of drug-loaded vesicles derived from tumour cells is still in its infancy, it has broad prospects for tumour therapy.
Collapse
|
36
|
Wu M, Liang Y, Zhang X. Changes in Pulmonary Microenvironment Aids Lung Metastasis of Breast Cancer. Front Oncol 2022; 12:860932. [PMID: 35719975 PMCID: PMC9204317 DOI: 10.3389/fonc.2022.860932] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer has become the most common malignant disease in the world according to the International Agency for Research on Cancer (IARC), and the most critical cause of death is distant metastasis. The lung is the extremely common visceral site for breast cancer metastasis. Lung metastasis of breast cancer is not only dependent on the invasive ability of the tumor itself, but also closely relates to the pulmonary microenvironment. In the progression of breast cancer, the formation of specific microenvironment in lungs can provide suitable conditions for the metastasis of breast cancer. Pulmonary inflammatory response, angiogenesis, extracellular matrix remodeling, some chemotherapeutic agents and so on all play important roles in the formation of the pulmonary microenvironment. This review highlights recent findings regarding the alterations of pulmonary microenvironment in lung metastasis of breast cancer, with a focus on various cells and acellular components.
Collapse
Affiliation(s)
- Meimei Wu
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| | - Yanfang Liang
- Department of Pathology, Dongguan Hospital Affiliated to Jinan University, Binhaiwan Central Hospital of Dongguan, Dongguan, China
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Jiangmen Central Hospital, Jiangmen, China.,Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China.,Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
37
|
Pretre V, Papadopoulos D, Regard J, Pelletier M, Woo J. Interleukin-1 (IL-1) and the inflammasome in cancer. Cytokine 2022; 153:155850. [PMID: 35279620 DOI: 10.1016/j.cyto.2022.155850] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/13/2022] [Accepted: 03/03/2022] [Indexed: 12/14/2022]
Abstract
Numerous preclinical and clinical studies have demonstrated the significant contribution of inflammation to the development and progression of various types of cancer. Inflammation in the tumor microenvironment mediates complex interactions between innate immunity, adaptive immunity, microbiomes and stroma, and ultimately alters the overall fitness of tumor cells at multiple stages of carcinogenesis. Malignancies are known to arise in areas of chronic inflammation and inflammation in the tumor microenvironment (often called tumor-promoting inflammation) is believed to allow cancer cells to evade immunosurveillance while promoting genetic instability, survival and progression. Among the strongest data suggesting a causal role for inflammation in cancer come from the recent CANTOS trial which demonstrated that interleukin-1β (IL-1β) inhibition with canakinumab leads to a significant, dose-dependent decrease in incident lung cancer. This observation has launched a series of additional clinical studies to understand the role of IL-1β and the inflammasome in cancer, and the clinical utility of IL-1β inhibition in different stages of lung cancer. In this article we will review recent data implicating IL-1β signaling and its upstream regulator NLRP3 in both solid tumor and hematologic malignancies. We will discuss the key preclinical observations and the current clinical landscape, and describe the pharmacologic tools which will be used to evaluate the effects of blocking tumor-promoting inflammation clinically.
Collapse
|
38
|
Hu Y, Sun Y, Wan C, Dai X, Wu S, Lo PC, Huang J, Lovell JF, Jin H, Yang K. Microparticles: biogenesis, characteristics and intervention therapy for cancers in preclinical and clinical research. J Nanobiotechnology 2022; 20:189. [PMID: 35418077 PMCID: PMC9006557 DOI: 10.1186/s12951-022-01358-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/08/2022] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs), spherical biological vesicles, mainly contain nucleic acids, proteins, lipids and metabolites for biological information transfer between cells. Microparticles (MPs), a subtype of EVs, directly emerge from plasma membranes, and have gained interest in recent years. Specific cell stimulation conditions, such as ultraviolet and X-rays irradiation, can induce the release of MPs, which are endowed with unique antitumor functionalities, either for therapeutic vaccines or as direct antitumor agents. Moreover, the size of MPs (100–1000 nm) and their spherical structures surrounded by a lipid bilayer membrane allow MPs to function as delivery vectors for bioactive antitumor compounds, with favorable phamacokinetic behavior, immunostimulatory activity and biological function, without inherent carrier-specific toxic side effects. In this review, the mechanisms underlying MP biogenesis, factors that influence MP production, properties of MP membranes, size, composition and isolation methods of MPs are discussed. Additionally, the applications and mechanisms of action of MPs, as well as the main hurdles for their applications in cancer management, are introduced.
Collapse
Affiliation(s)
- Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaomeng Dai
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shuhui Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong kong, China
| | - Jing Huang
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
39
|
Li J, Bakhoum SF. The pleiotropic roles of cGAS-STING signaling in the tumor microenvironment. J Mol Cell Biol 2022; 14:6552964. [PMID: 35325182 PMCID: PMC9354322 DOI: 10.1093/jmcb/mjac019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 02/24/2022] [Accepted: 03/18/2022] [Indexed: 12/05/2022] Open
Abstract
Cytosolic DNA is prevalent in cells constituting the tumor microenvironment (TME) and can activate the cyclic guanosine monophosphate–adenosine monophosphate synthase (cGAS)–stimulator of interferon genes (STING) innate immune pathway. The initiation, transmission, and execution of the cGAS–STING pathway can take place among different cell types within the TME and thus cGAS–STING may play opposing roles in driving tumor progression in addition to its tumor cell-intrinsic role. Herein, we review recent advances in the cGAS–STING field with a focus on its crosstalk with other signaling pathways in the TME. Future efforts to depict a more detailed picture of the roles of cGAS–STING signaling in the TME will help design a better cancer treatment regime by targeting the cGAS–STING pathway more precisely.
Collapse
Affiliation(s)
- Jun Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Samuel F Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
40
|
You JA, Gong Y, Wu Y, Jin L, Chi Q, Sun D. WGCNA, LASSO and SVM Algorithm Revealed RAC1 Correlated M0 Macrophage and the Risk Score to Predict the Survival of Hepatocellular Carcinoma Patients. Front Genet 2022; 12:730920. [PMID: 35493265 PMCID: PMC9044718 DOI: 10.3389/fgene.2021.730920] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
Background: RAC1 is involved in the progression of HCC as a regulator, but its prognostic performance and the imbalance of immune cell infiltration mediated by it are still unclear. We aim to explore the prognostic and immune properties of RAC1 in HCC. Methods: We separately downloaded the data related to HCC from the Cancer Genome Atlas (TCGA) and GEO database. CIBERSORT deconvolution algorithm, weighted gene co-expression network analysis (WGCNA) and LASSO algorithm participate in identifying IRGs and the construction of prognostic signatures. Results: The study discovered that RAC1 expression was linked to the severity of HCC lesions, and that its high expression was linked to a poor prognosis. Cox analysis confirmed that RAC1 is a clinically independent prognostic marker. M0, M1 and M2 macrophages’ abundance are significantly different in HCC. We found 828 IRGs related to macrophage infiltration, and established a novel 11-gene signature with excellent prognostic performance. RAC1-based risk score and M0 macrophage has a good ability to predict overall survival. Conclusion: The immune state of irregular macrophage infiltration may be one of the precursors to carcinogenesis. The RAC1 correlated with M0 macrophage and the risk score to show a good performance to predict the survival of HCC patients.
Collapse
Affiliation(s)
- Ji-An You
- College of Technology, Hubei Engineering University, Xiaogan, China
| | - Yuhan Gong
- Department of Geotechnical Engineering, Wuhan University of Technology, Wuhan, China
| | - Yongzhe Wu
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, China
| | - Libo Jin
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Qingjia Chi
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, China
- *Correspondence: Qingjia Chi, ; Da Sun,
| | - Da Sun
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
- *Correspondence: Qingjia Chi, ; Da Sun,
| |
Collapse
|
41
|
Tu S, Mao D, Shi M, Zhang H, Liu C, Li X, Zhao Y, Chen Y, Liu Y. Icaritin ameliorates extracellular microparticles‐induced inflammatory pre‐metastatic niche via modulating the
cGAS‐STING
signaling. Phytother Res 2022; 36:2127-2142. [PMID: 35257426 DOI: 10.1002/ptr.7433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/27/2021] [Accepted: 11/18/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Shumei Tu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing China
- Jiangsu Province Academy of Traditional Chinese Medicine Nanjing China
| | - Dengxuan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing China
- Jiangsu Province Academy of Traditional Chinese Medicine Nanjing China
| | - Mengxin Shi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing China
- Jiangsu Province Academy of Traditional Chinese Medicine Nanjing China
| | - Huangqin Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing China
- Jiangsu Province Academy of Traditional Chinese Medicine Nanjing China
| | - Congyan Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing China
- Jiangsu Province Academy of Traditional Chinese Medicine Nanjing China
| | - Xiaoqi Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing China
- Jiangsu Province Academy of Traditional Chinese Medicine Nanjing China
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine Nanjing China
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing China
- Jiangsu Province Academy of Traditional Chinese Medicine Nanjing China
| | - Yuping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing China
- Jiangsu Province Academy of Traditional Chinese Medicine Nanjing China
| |
Collapse
|
42
|
Jin Y, Kang Y, Wang M, Wu B, Su B, Yin H, Tang Y, Li Q, Wei W, Mei Q, Hu G, Lukacs-Kornek V, Li J, Wu K, Yuan X, Wang W. Targeting polarized phenotype of microglia via IL6/JAK2/STAT3 signaling to reduce NSCLC brain metastasis. Signal Transduct Target Ther 2022; 7:52. [PMID: 35194016 PMCID: PMC8864012 DOI: 10.1038/s41392-022-00872-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/27/2022] Open
Abstract
Tumor-associated macrophages have emerged as crucial factors for metastases. Microglia are indispensable components of the brain microenvironment and play vital roles in brain metastasis (BM). However, the underlying mechanism of how activated microglia promote brain metastasis of non-small cell lung cancer (NSCLC) remains elusive. Here, we purified cell lines with brain-metastatic tropism and employed a co-culture system to reveal their communication with microglia. By single-cell RNA-sequencing and transcriptome difference analysis, we identified IL6 as the key regulator in brain-metastatic cells (A549-F3) to induce anti-inflammatory microglia via JAK2/STAT3 signaling, which in turn promoted the colonization process in metastatic A549-F3 cells. In our clinical samples, patients with higher levels of IL6 in serum showed higher propensity for brain metastasis. Additionally, the TCGA (The Cancer Genome Atlas) data revealed that NSCLC patients with a lower level of IL6 had a longer overall survival time compared to those with a higher level of IL6. Overall, our data indicate that the targeting of IL6/JAK2/STAT3 signaling in activated microglia may be a promising new approach for inhibiting brain metastasis in NSCLC patients.
Collapse
Affiliation(s)
- Yu Jin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yalin Kang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Minghuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Bili Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Beibei Su
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Han Yin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yang Tang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Qianxia Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Wenjie Wei
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Qi Mei
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Guangyuan Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Veronika Lukacs-Kornek
- Institute of Experimental Immunology, University Clinic of Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Jian Li
- Institute of Experimental Immunology, University Clinic of Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Kongming Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
43
|
Wang Z, Lv J, Yu P, Qu Y, Zhou Y, Zhou L, Zhu Q, Li S, Song J, Deng W, Gao R, Liu Y, Liu J, Tong WM, Qin C, Huang B. SARS-CoV-2 treatment effects induced by ACE2-expressing microparticles are explained by the oxidized cholesterol-increased endosomal pH of alveolar macrophages. Cell Mol Immunol 2022; 19:210-221. [PMID: 34983944 PMCID: PMC8724656 DOI: 10.1038/s41423-021-00813-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/28/2021] [Indexed: 01/02/2023] Open
Abstract
Exploring the cross-talk between the immune system and advanced biomaterials to treat SARS-CoV-2 infection is a promising strategy. Here, we show that ACE2-overexpressing A549 cell-derived microparticles (AO-MPs) are a potential therapeutic agent against SARS-CoV-2 infection. Intranasally administered AO-MPs dexterously navigate the anatomical and biological features of the lungs to enter the alveoli and are taken up by alveolar macrophages (AMs). Then, AO-MPs increase the endosomal pH but decrease the lysosomal pH in AMs, thus escorting bound SARS-CoV-2 from phago-endosomes to lysosomes for degradation. This pH regulation is attributable to oxidized cholesterol, which is enriched in AO-MPs and translocated to endosomal membranes, thus interfering with proton pumps and impairing endosomal acidification. In addition to promoting viral degradation, AO-MPs also inhibit the proinflammatory phenotype of AMs, leading to increased treatment efficacy in a SARS-CoV-2-infected mouse model without side effects. These findings highlight the potential use of AO-MPs to treat SARS-CoV-2-infected patients and showcase the feasibility of MP therapies for combatting emerging respiratory viruses in the future.
Collapse
Affiliation(s)
- Zhenfeng Wang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Jiadi Lv
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Pin Yu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yajin Qu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yabo Zhou
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Li Zhou
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Qiangqiang Zhu
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Shunshun Li
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, CAMS and Peking Union Medical College, Beijing, China
| | - Wei Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Ran Gao
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yuying Liu
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Wei-Min Tong
- Department of Pathology, Institute of Basic Medical Sciences, CAMS and Peking Union Medical College, Beijing, China
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, CAMS and Comparative Medicine Center, Peking Union Medical College, Beijing, China.
| | - Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, 100005, China.
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China.
| |
Collapse
|
44
|
Ou L, Zhang A, Cheng Y, Chen Y. The cGAS-STING Pathway: A Promising Immunotherapy Target. Front Immunol 2021; 12:795048. [PMID: 34956229 PMCID: PMC8695770 DOI: 10.3389/fimmu.2021.795048] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/22/2021] [Indexed: 01/07/2023] Open
Abstract
With the continuous development of immunotherapy, researchers have paid more attention to the specific immune regulatory mechanisms of various immune responses in different diseases. As a novel and vital innate immune signal pathway, the cGAS-STING signal pathway activated by nucleic acid substances, interplays with other immune responses, by which it participates in regulating cancer, autoimmune and inflammatory diseases, microbial and parasitic infectious diseases, and other diseases. With the exception of its role in innate immunity, the growing list of researches demonstrated expanding roles of the cGAS-STING signal pathway in bridging the innate immunity (macrophage polarization) with the adaptive immunity (T lymphocytes differentiation). Macrophages and T lymphocytes are the most representative cells of innate immunity and adaptive immunity, respectively. Their polarization or differentiation are involved in the pathogenesis and progression of various diseases. Here we mainly summarized recent advanced discoveries of how the cGAS-STING signal pathway regulated macrophages polarization and T lymphocytes differentiation in various diseases and vaccine applications, providing a promising direction for the development and clinical application of immunotherapeutic strategies for related diseases.
Collapse
Affiliation(s)
- Liang Ou
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Ao Zhang
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Yuxing Cheng
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Ying Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
45
|
Li C, Qiu S, Jin K, Zheng X, Zhou X, Jin D, Xu B, Jin X. Tumor-derived microparticles promote the progression of triple-negative breast cancer via PD-L1-associated immune suppression. Cancer Lett 2021; 523:43-56. [PMID: 34601021 DOI: 10.1016/j.canlet.2021.09.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/01/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023]
Abstract
Membrane vesicles, including exosomes and microparticles (MPs), serve to package and transfer the cellular cargo during inter/extracellular communication, which is of great interest in cancer development, especially in the dissemination of signal transduction-associated traits from donor cells to recipient cells. Although increasing evidence suggests that microparticles (MPs) contribute to the development of cancer, their unique characteristics remain to be exploited. Here, we examined the secretion of MPs in tumor tissues from triple-negative breast cancer (TNBC) patients and found that the tumor cells could release MPs loaded with immune checkpoint molecular programmed cell death ligand 1 (PD-L1), especially in patients treated with traditional clinical interventions, such as chemotherapy and radiotherapy. These PD-L1-loading MPs contribute to the suppressive immune microenvironment, eventually resulting in the tumor progression in TNBC. Mechanically, we proved that PD-L1-loading MPs could suppress the activation and function of functional cluster of differentiation CD8+ T cells. Meanwhile, the PD-L1-loading MPs could mediate the differentiation of macrophages toward the immune-suppressive M2 phenotype via the activation of the TANK-binding kinase 1 (TBK1)/signal transducer and activator of transcription 6 (STAT6) signal and suppression of the serine-threonine kinase (AKT)/mammalian target of rapamycin (mTOR) signal. Given the increasing MP production induced by traditional clinical interventions, we further combined chemotherapy with the PD-L1 inhibitor atezolizumab (ATZ) to efficiently abrogate the immunosuppression caused by the PD-L1-loading MPs. Therefore, our study unveils the mechanism by which tumor cells systemically evade immune surveillance by releasing the PD-L1-loading MPs, and provides new insights into clinical TNBC immunotherapy.
Collapse
Affiliation(s)
- Cong Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuannanli, Chaoyang District, 100021, Beijing, China
| | - Shi Qiu
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics and Center of Biomedical Big Data, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Kun Jin
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics and Center of Biomedical Big Data, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiaonan Zheng
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics and Center of Biomedical Big Data, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xianghong Zhou
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics and Center of Biomedical Big Data, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Di Jin
- Department of Urology, Institute of Urology, National Clinical Research Center for Geriatrics and Center of Biomedical Big Data, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuannanli, Chaoyang District, 100021, Beijing, China.
| | - Xun Jin
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
46
|
Shen M, Du Y, Ye Y. Tumor-associated macrophages, dendritic cells, and neutrophils: biological roles, crosstalk, and therapeutic relevance. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:222-243. [PMID: 37724296 PMCID: PMC10388790 DOI: 10.1515/mr-2021-0014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/03/2021] [Indexed: 09/20/2023]
Abstract
Tumor-associated myeloid cells constitute a series of plastic and heterogeneous cell populations within the tumor microenvironment (TME), and exhibit different phenotypes and functions in response to various microenvironmental signals. In light of promising preclinical data indicating that myeloid-based therapy can effectively suppress tumor growth, a series of novel immune-based therapies and approaches are currently undergoing clinical evaluation. A better understanding of the diversity and functional roles of different myeloid cell subtypes and of how they are associated with TME remodeling may help to improve cancer therapy. Herein, we focus on myeloid cells and discuss how tumor cells can simultaneously reprogram these cells through tumor-derived factors and metabolites. In addition, we discuss the interactions between myeloid cells and other cells in the TME that have the potential to directly or indirectly regulate tumor initiation, invasion, or angiogenesis. We further discuss the current and future potential applications of myeloid cells in the development of focused therapeutic strategies in cancer treatment.
Collapse
Affiliation(s)
- Mingyi Shen
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhua Du
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youqiong Ye
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
47
|
Zhou Y, Ye T, Ye C, Wan C, Yuan S, Liu Y, Li T, Jiang F, Lovell JF, Jin H, Chen J. Secretions from hypochlorous acid-treated tumor cells delivered in a melittin hydrogel potentiate cancer immunotherapy. Bioact Mater 2021; 9:541-553. [PMID: 34820587 PMCID: PMC8591392 DOI: 10.1016/j.bioactmat.2021.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/01/2021] [Accepted: 07/18/2021] [Indexed: 12/13/2022] Open
Abstract
Autologous tumor cells and cell-derived secretions (CDS) can induce antitumor immune responses. The conditions in which cells are cultured and treated impact CDS, and cellular insults alter their composition and function. In this study, we generated CDS from tumor cells exposed to normal culture conditions, hypoxia, cisplatin, radiotherapy, photodynamic therapy, or hypochlorous acid (HOCl). In vitro HOCl-CDS showed the strongest stimulatory effects on dendritic cells and macrophages compared to CDS generated by hypoxia, cisplatin, radiotherapy or photodynamic therapy. To improve HOCl-CDS activity at the tumor site, we loaded HOCl-CDS into a melittin-encapsulated hydrogel scaffold. When injected intratumorally, the HOCl-CDS hydrogel promoted tumor cell death, cytotoxic T lymphocyte infiltration, and tumor-associated macrophage reprogramming towards an M1 phenotype. The hydrogel inhibited tumor growth and prolonged the survival of mice bearing B16–F10 melanoma. Furthermore, hydrogel-delivered HOCl-CDS augmented the antitumor effects of immune checkpoint blockade. These results underscore the importance of the CDS generation method and delivery approach for improving cancer immunotherapy. HOCl-treated tumor cell-derived secretions (HOCl-CDS) is a robust immune-stimulator on dendritic cells and macrophages. A multifunctional HOCl-CDS hydrogel was developed by loading HOCl-CDS into a melittin-encapsulated hydrogel scaffold. HOCl-CDS hydrogel promoted tumor cell death, cytotoxic T lymphocyte infiltration and M1-TAM polarization in mice. HOCl-CDS hydrogel synergistically augmented the therapeutic effect of anti-PD-1 and further potentiated cancer immunotherapy.
Collapse
Affiliation(s)
- Yuhan Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Ting Ye
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Chengzhi Ye
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Siyue Yuan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Yushuai Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Tianyu Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Fagang Jiang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York. Buffalo, New York, 14260, USA
| | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Corresponding authors. Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China.
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
- Corresponding authors. Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China.
| |
Collapse
|
48
|
Lin W, Cai XD. Current Strategies for Cancer Cell-Derived Extracellular Vesicles for Cancer Therapy. Front Oncol 2021; 11:758884. [PMID: 34804956 PMCID: PMC8602829 DOI: 10.3389/fonc.2021.758884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer cell-derived extracellular vesicles (CEVs), a novel type of therapeutic agent in cancer treatment, can be prepared from the autocrine secretion of various cancer cells, the direct extraction of cancer cells and the combination of cancer cell-derived membranes with advanced materials. With various bioactive molecules, exosomes are produced by cells for intercellular communication. Although cancer cell-derived exosomes are known to inhibit tumor apoptosis and promote the progression of cancer, researchers have developed various innovative strategies to prepare anti-tumor vesicles from cancer cells. With current strategies for anti-tumor vesicles, four different kinds of CEVs are classified including irradiated CEVs, advanced materials combined CEVs, chemotherapeutic drugs loaded CEVs and genetically engineered CEVs. In this way, CEVs can not only be the carriers for anti-tumor drugs to the target tumor area but also act as immune-active agents. Problems raised in the strategies mainly concerned with the preparation, efficacy and application. In this review, we classified and summarized the current strategies for utilizing the anti-tumor potential of CEVs. Additionally, the challenges and the prospects of this novel agent have been discussed.
Collapse
Affiliation(s)
- Weijian Lin
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xing-Dong Cai
- Department of Respiratory, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
49
|
Zhu S, Li S, Yi M, Li N, Wu K. Roles of Microvesicles in Tumor Progression and Clinical Applications. Int J Nanomedicine 2021; 16:7071-7090. [PMID: 34703228 PMCID: PMC8536885 DOI: 10.2147/ijn.s325448] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022] Open
Abstract
Microvesicles are extracellular vesicles with diameter ranging from 100 to 1000 nm that are secreted by tumor cells or other cells in the tumor microenvironment. A growing number of studies demonstrate that tumor-derived microvesicles are involved in tumor initiation and progression, as well as drug resistance. In addition, tumor-derived microvesicles carry a variety of immunogenic molecules and inhibit tumor response to immunotherapy; therefore, they can be exploited for use in tumor vaccines. Moreover, because of their high stability, tumor-derived microvesicles extracted from body fluids can be used as biomarkers for cancer diagnosis or assessment of prognosis. Tumor-derived microvesicles can also be deployed to reverse drug resistance of tumor regenerative cells, or to deliver chemotherapeutic drugs and oncolytic adenovirus for the treatment of cancer patients. This review summarizes the general characteristics of tumor-derived microvesicles, focusing on their biological characteristics, their involvement in tumor progression, and their clinical applications.
Collapse
Affiliation(s)
- Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Shiyu Li
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ning Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.,Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, People's Republic of China
| |
Collapse
|
50
|
Sun M, Xiao Q, Wang X, Yang C, Chen C, Tian X, Wang S, Li H, Qiu S, Shu J, Shou Y, Liang Y, Xue T, Chen K. Tumor-associated macrophages modulate angiogenesis and tumor growth in a xenograft mouse model of multiple myeloma. Leuk Res 2021; 110:106709. [PMID: 34560409 DOI: 10.1016/j.leukres.2021.106709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 01/27/2023]
Abstract
Tumor-associated macrophages (TAMs) are closely associated with poor multiple myeloma (MM) prognosis. Therefore, in-depth understanding of the mechanism by which TAM supports MM progression may lead to its effective treatment. We used the MM nude mouse subcutaneous xenograft model to evaluate the efficacy of the macrophage-depleting agent clodronate liposome (Clo) against MM and elucidate the mode of action of this therapy. At the same time, observe whether the elimination of TAM in vivo while silencing the expression of VEGFA has the same effect as in vitro experiments. We also used Clo to eliminate macrophages and reinjected M1 or M2 TAM through mouse tail veins to investigate the effects of various macrophage subtypes on MM xenograft tumor growth. We applied qRT-PCR, immunohistochemistry, and enzyme-linked immunosorbent assay to quantify VEGFA, CD31, and CD163 expression in tumor tissues and sera. Removal of TAMs from the tumor microenvironment impeded tumor growth. The combination of Clo plus VEGFA siRNA had a stronger inhibitory effect on tumor growth than Clo alone, and M2 and M1 macrophages promoted and inhibited tumor growth, respectively. Macrophage depletion combined with cytokine blocking is a promising MM treatment. Targeted M2 macrophage elimination together with cytokine block may be more effective at inhibiting MM growth than either treatment alone. The results of the present study lay an empirical foundation for the development of novel therapeutic strategies for MM.
Collapse
Affiliation(s)
- Miaomiao Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, Henan, People's Republic of China; Henan Province Key Laboratory of Tumor Pathology, Department of Pathology of The First Affiliated Hospital of Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450003, Henan, People's Republic of China
| | - Qiankun Xiao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, Henan, People's Republic of China; School of Life Sciences, Zhengzhou University, No. 100 Kexue Da Dao, Zhengzhou, 450001, Henan, People's Republic of China; BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xiaoqian Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, Henan, People's Republic of China; BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Chenbo Yang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Chao Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xiangyu Tian
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Shuaiyuan Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Hui Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Sen Qiu
- People's Hospital of Zhengzhou, Henan University of Chinese Medicine, No. 33 Huanghe Road, Zhengzhou, 410105, Henan, People's Republic of China
| | - Jiao Shu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, Henan, People's Republic of China; Henan Province Key Laboratory of Tumor Pathology, Department of Pathology of The First Affiliated Hospital of Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450003, Henan, People's Republic of China
| | - Yuwei Shou
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Yinghao Liang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Tong Xue
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, Henan, People's Republic of China
| | - Kuisheng Chen
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Zhengzhou, 450052, Henan, People's Republic of China; Henan Province Key Laboratory of Tumor Pathology, Department of Pathology of The First Affiliated Hospital of Zhengzhou University, No. 40 Daxue Road, Zhengzhou, 450003, Henan, People's Republic of China.
| |
Collapse
|