1
|
Cernuschi T, Malvolti S, Hall S, Debruyne L, Bak Pedersen H, Rees H, Cooke E. The quest for more effective vaccine markets - Opportunities, challenges, and what has changed with the SARS-CoV-2 pandemic. Vaccine 2024; 42 Suppl 1:S64-S72. [PMID: 38103962 PMCID: PMC9585501 DOI: 10.1016/j.vaccine.2022.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 03/28/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022]
Abstract
The past two decades have seen important progress in access to timely, reliable, affordable, and quality-assured supplies of vaccines of global public health importance. The new vaccines developed are powerful tools to fight killers such as pneumonia, diarrhea, and cervical cancer. Global and regional financing and pooled procurement haveshortened the lag between access in high- andlower-income countries. The COVID-19 pandemic has shown that by addressing shortcomings and seizing opportunities, we can do even more. In response to COVID-19, vaccine development and access shifted from a sequential, risk-averse paradigm to a rapid approach with maximum compression of time to market while ensuring quality. Vast public investments and innovative technologies were key facilitators. The pandemic has shown that governments play a crucial role in investing in new vaccines and manufacturing capacity and sharing risks with industry. Despite impressive progress, equity in access remains elusive with important moral, economic, and health-related consequences. Global leaders are working on a new International Treaty for Pandemic Prevention, Preparedness, and Response. To apply the lessons of COVID-19, that treaty should include a new paradigm for access to vaccines in which governments agree to:This would ensure that COVID-19 catalyzes a shift toward greater access for all under Immunization Agenda 2030.
Collapse
Affiliation(s)
- Tania Cernuschi
- Department of Immunization, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland.
| | | | - Shanelle Hall
- The Yellow House, Seattle, WA, USA; The Yellow House, Copenhagen, Denmark
| | - Luc Debruyne
- Access-to-Medicines Research Center, KU Leuven, Leuven, Belgium
| | | | - Helen Rees
- Wits Reproductive Health and HIV Institute, University of the Witwatersrand, Johannesburg, South Africa; Chairperson of the South African Health Products Regulatory Authority Board, South Africa
| | - Emer Cooke
- European Medicines Agency, Amsterdam, North Holland, Netherlands
| |
Collapse
|
2
|
Sarkar ER, Sikder S, Giacomin P, Loukas A. Hookworm vaccines: current and future directions. Expert Rev Vaccines 2024; 23:1029-1040. [PMID: 39350544 DOI: 10.1080/14760584.2024.2410893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024]
Abstract
INTRODUCTION Hookworms infect about half a billion people worldwide and are responsible for the loss of more than two billion disability-adjusted life years. Mass drug administration (MDA) is the most popular preventive approach, but it does not prevent reinfection. An effective vaccine would be a major public health tool in hookworm-endemic areas. AREAS COVERED We highlight recent human studies where vaccination with irradiated larvae and repeated rounds of infection-treatment have induced partial protection. These studies have emphasized the importance of targeting the infective larvae to generate immunity to prevent adult worms from maturing in the gut. We summarize the current status of human and animal model vaccine trials. EXPERT OPINION Hookworm infection is endemic in resource-poor developing regions where polyparasitism is common, and vaccine cold chain logistics are complex. Humans do not develop sterile immunity to hookworms, and the elderly are frequently overlooked in MDA campaigns. For all these reasons, a vaccine is essential to create long-lasting protection. The lack of a robust animal model to mimic human hookworm infections is a barrier to the discovery and development of a vaccine, however, there have been major recent advances in human challenge studies which will accelerate the process.
Collapse
Affiliation(s)
- Eti R Sarkar
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Queensland, Australia
| | - Suchandan Sikder
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Paul Giacomin
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| |
Collapse
|
3
|
Miles S, Dematteis S, Mourglia-Ettlin G. Experimental cystic echinococcosis as a proof of concept for the development of peptide-based vaccines following a novel rational workflow. Biologicals 2023; 82:101684. [PMID: 37201271 DOI: 10.1016/j.biologicals.2023.101684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 03/14/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023] Open
Abstract
Vaccines are among the most important advances in medicine throughout the human history. However, conventional vaccines exhibit several drawbacks in terms of design and production costs. Peptide-based vaccines are attractive alternatives, since they can be designed mainly in silico, can be produced cheaply and safely, and are able to induce immune responses exclusively towards protective epitopes. Yet, a proper peptide design is needed, not only to generate peptide-specific immune responses, but also for them to recognize the native protein in the occurrence of a natural infection. Herein, we propose a rational workflow for developing peptide-based vaccines including novel steps that assure the cross-recognition of native proteins. In this regard, we increased the probability of generating efficient antibodies through the selection of linear B-cell epitopes free of post-translational modifications followed by analyzing the 3D-structure similarity between the peptide in-solution vs. within its parental native protein. As a proof of concept, this workflow was applied to a set of seven previously suggested potential protective antigens against the infection by Echinococcus granulosus sensu lato. Finally, two peptides were obtained showing the capacity to induce specific antibodies able to exert anti-parasite activities in different in vitro settings, as well as to provide significant protection in the murine model of secondary echinococcosis.
Collapse
Affiliation(s)
- Sebastian Miles
- Area Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay; Graduate Program in Chemistry, Facultad de Química, Universidad de la Republica, Uruguay
| | - Sylvia Dematteis
- Area Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay
| | - Gustavo Mourglia-Ettlin
- Area Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay.
| |
Collapse
|
4
|
Euliano EM, Sklavounos AA, Wheeler AR, McHugh KJ. Translating diagnostics and drug delivery technologies to low-resource settings. Sci Transl Med 2022; 14:eabm1732. [PMID: 36223447 PMCID: PMC9716722 DOI: 10.1126/scitranslmed.abm1732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Diagnostics and drug delivery technologies engineered for low-resource settings aim to meet their technical design specifications using strategies that are compatible with limited equipment, infrastructure, and operator training. Despite many preclinical successes, very few of these devices have been translated to the clinic. Here, we identify factors that contribute to the clinical success of diagnostics and drug delivery systems for low-resource settings, including the need to engage key stakeholders at an early stage, and provide recommendations for the clinical translation of future medical technologies.
Collapse
Affiliation(s)
- Erin M. Euliano
- Department of Bioengineering, Rice University; Houston, Texas 77005, USA
| | - Alexandros A. Sklavounos
- Department of Chemistry, University of Toronto; Toronto, Ontario M5S 3H6, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto; Toronto, Ontario M5S 3E1, Canada
| | - Aaron R. Wheeler
- Department of Chemistry, University of Toronto; Toronto, Ontario M5S 3H6, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto; Toronto, Ontario M5S 3E1, Canada
- Institute of Biomedical Engineering, University of Toronto; Toronto, Ontario M5S 3G9, Canada
| | - Kevin J. McHugh
- Department of Bioengineering, Rice University; Houston, Texas 77005, USA
| |
Collapse
|
5
|
Ramos-Vega A, Angulo C, Bañuelos-Hernández B, Monreal-Escalante E. Microalgae-made vaccines against infectious diseases. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Celis-Giraldo CT, López-Abán J, Muro A, Patarroyo MA, Manzano-Román R. Nanovaccines against Animal Pathogens: The Latest Findings. Vaccines (Basel) 2021; 9:vaccines9090988. [PMID: 34579225 PMCID: PMC8472905 DOI: 10.3390/vaccines9090988] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
Nowadays, safe and efficacious vaccines represent powerful and cost-effective tools for global health and economic growth. In the veterinary field, these are undoubtedly key tools for improving productivity and fighting zoonoses. However, cases of persistent infections, rapidly evolving pathogens having high variability or emerging/re-emerging pathogens for which no effective vaccines have been developed point out the continuing need for new vaccine alternatives to control outbreaks. Most licensed vaccines have been successfully used for many years now; however, they have intrinsic limitations, such as variable efficacy, adverse effects, and some shortcomings. More effective adjuvants and novel delivery systems may foster real vaccine effectiveness and timely implementation. Emerging vaccine technologies involving nanoparticles such as self-assembling proteins, virus-like particles, liposomes, virosomes, and polymeric nanoparticles offer novel, safe, and high-potential approaches to address many vaccine development-related challenges. Nanotechnology is accelerating the evolution of vaccines because nanomaterials having encapsulation ability and very advantageous properties due to their size and surface area serve as effective vehicles for antigen delivery and immunostimulatory agents. This review discusses the requirements for an effective, broad-coverage-elicited immune response, the main nanoplatforms for producing it, and the latest nanovaccine applications for fighting animal pathogens.
Collapse
Affiliation(s)
- Carmen Teresa Celis-Giraldo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia;
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia
| | - Julio López-Abán
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia;
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Health Sciences Division, Main Campus, Universidad Santo Tomás, Bogotá 110231, Colombia
- Correspondence: (M.A.P.); (R.M.-R.)
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
- Correspondence: (M.A.P.); (R.M.-R.)
| |
Collapse
|
7
|
Malvolti S, Malhame M, Mantel CF, Le Rutte EA, Kaye PM. Human leishmaniasis vaccines: Use cases, target population and potential global demand. PLoS Negl Trop Dis 2021; 15:e0009742. [PMID: 34547025 PMCID: PMC8486101 DOI: 10.1371/journal.pntd.0009742] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/01/2021] [Accepted: 08/18/2021] [Indexed: 11/18/2022] Open
Abstract
The development of vaccines against one or all forms of human leishmaniasis remains hampered by a paucity of investment, at least in part resulting from the lack of well-evidenced and agreed estimates of vaccine demand. Starting from the definition of 4 main use cases (prevention of visceral leishmaniasis, prevention of cutaneous leishmaniasis, prevention of post-kala-azar dermal leishmaniasis and treatment of post-kala-azar dermal leishmaniasis), we have estimated the size of each target population, focusing on those endemic countries where incidence levels are sufficiently high to justify decisions to adopt a vaccine. We assumed a dual vaccine delivery strategy, including a wide age-range catch-up campaign before the start of routine immunisation. Vaccine characteristics and delivery parameters reflective of a target product profile and the likely duration of the clinical development effort were considered in forecasting the demand for each of the four indications. Over a period of 10 years, this demand is forecasted to range from 300-830 million doses for a vaccine preventing visceral leishmaniasis and 557-1400 million doses for a vaccine preventing cutaneous leishmaniasis under the different scenarios we simulated. In a scenario with an effective prophylactic visceral leishmaniasis vaccine, demand for use to prevent or treat post-kala-azar dermal leishmaniasis would be more limited (over the 10 years ~160,000 doses for prevention and ~7,000 doses for treatment). Demand would rise to exceed 330,000 doses, however, in the absence of an effective vaccine for visceral leishmaniasis. Because of the sizeable demand and potential for public health impact, a single-indication prophylactic vaccine for visceral or cutaneous leishmaniasis, and even more so a cross-protective prophylactic vaccine could attract the interest of commercial developers. Continuous refinement of these first-of-their kind estimates and confirmation of country willingness and ability to pay will be paramount to inform the decisions of policy makers and developers in relation to a leishmaniasis vaccine. Positive decisions can provide a much-needed contribution towards the achievement of global leishmaniasis control.
Collapse
Affiliation(s)
| | | | | | - Epke A. Le Rutte
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland; Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Paul M. Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, Heslington, York, United Kingdom
| |
Collapse
|
8
|
Hayon J, Weatherhead J, Hotez PJ, Bottazzi ME, Zhan B. Advances in vaccine development for human trichuriasis. Parasitology 2021; 148:1-12. [PMID: 33757603 DOI: 10.1017/s0031182021000500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Trichuriasis known as whipworm infection caused by Trichuris trichiura, is a highly prevalent soil-transmitted helminthiasis in low- and middle-income countries located in tropical and subtropical areas and affecting approximately 360 million people. Children typically harbour the largest burden of T. trichiura and they are usually co-infected with other soil-transmitted helminth (STH), including Ascaris lumbricoides and hookworm. The consequences of trichuriasis, such as malnutrition and physical and cognitive growth restriction, lead to a massive health burden in endemic regions. Despite the implementation of mass drug administration of anthelminthic treatment to school-age children, T. trichiura infection remains challenging to control due to the low efficacy of current drugs as well as high rates of post-treatment re-infection. Thus, the development of a vaccine that would induce protective immunity and reduce infection rate or community faecal egg output is essential. Hurdles for human whipworm vaccine development include the lack of suitable vaccine antigen targets and animal models for human T. trichiura infection. Instead, rodent whipworm T. muris infected mouse models serve as a major surrogate for testing immunogenicity and efficacy of vaccine candidates. In this review, we summarize recent advances in animal models for T. trichiura antigen discovery and testing of vaccine candidates, while providing an overall view of the current status of T. trichiura vaccine development.
Collapse
Affiliation(s)
- Jesica Hayon
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Jill Weatherhead
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Peter J Hotez
- Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX77030, USA
| | - Maria Elena Bottazzi
- Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX77030, USA
| | - Bin Zhan
- Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX77030, USA
| |
Collapse
|
9
|
Zawawi A, Else KJ. Soil-Transmitted Helminth Vaccines: Are We Getting Closer? Front Immunol 2020; 11:576748. [PMID: 33133094 PMCID: PMC7565266 DOI: 10.3389/fimmu.2020.576748] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/02/2020] [Indexed: 01/07/2023] Open
Abstract
Parasitic helminths infect over one-fourth of the human population resulting in significant morbidity, and in some cases, death in endemic countries. Despite mass drug administration (MDA) to school-aged children and other control measures, helminth infections are spreading into new areas. Thus, there is a strong rationale for developing anthelminthic vaccines as cost-effective, long-term immunological control strategies, which, unlike MDA, are not haunted by the threat of emerging drug-resistant helminths nor limited by reinfection risk. Advances in vaccinology, immunology, and immunomics include the development of new tools that improve the safety, immunogenicity, and efficacy of vaccines; and some of these tools have been used in the development of helminth vaccines. The development of anthelminthic vaccines is fraught with difficulty. Multiple lifecycle stages exist each presenting stage-specific antigens. Further, helminth parasites are notorious for their ability to dampen down and regulate host immunity. One of the first significant challenges in developing any vaccine is identifying suitable candidate protective antigens. This review explores our current knowledge in lead antigen identification and reports on recent pre-clinical and clinical trials in the context of the soil-transmitted helminths Trichuris, the hookworms and Ascaris. Ultimately, a multivalent anthelminthic vaccine could become an essential tool for achieving the medium-to long-term goal of controlling, or even eliminating helminth infections.
Collapse
Affiliation(s)
- Ayat Zawawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia,*Correspondence: Ayat Zawawi
| | - Kathryn J. Else
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine, and Health, School of Biological Sciences, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom,Kathryn J. Else
| |
Collapse
|
10
|
Abstract
The number of global COVID19 cases has just exceeded 15 million, and there is mounting evidence for a devastating economic impact from this illness. Although COVID19 affected primarily China, Europe, and North America during the first half of 2020, now this disease is accelerating in the resource-poor nations of the Global South. Across Latin America, South Asia, and Africa, COVID19 is expected to push up to 100 million people into extreme poverty, eroding many of the economic gains achieved over the last five years. COVID19 vaccines will be required to help control the pandemic, especially in low- and middle-income nations. These will have important health benefits, but might also prevent further economic devastation. The term “antipoverty vaccines” has been used to refer to vaccines to prevent neglected tropical diseases that affect worker productivity, child development, and the health of girls and women. COVID19 vaccines could also become important antipoverty technologies provided we find ways to scale and distribute them as affordable vaccines. Two vaccines now being accelerated for global health include whole inactivated virus and recombinant protein vaccines. These might become essential tools for combating global poverty.
Collapse
Affiliation(s)
- Peter J. Hotez
- Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, USA
- Department of Biology, Baylor University, Waco, Texas, USA
- Hagler Institute for Advanced Studies at Texas A&M University, College Station, Texas, USA
- Scowcroft Institute of International Studies, Bush School of Government and Public Service, Texas A&M University, College Station, Texas, USA
- James A Baker III Institute of Public Policy, Rice University, Houston, Texas, USA
| |
Collapse
|
11
|
Versteeg L, Almutairi MM, Hotez PJ, Pollet J. Enlisting the mRNA Vaccine Platform to Combat Parasitic Infections. Vaccines (Basel) 2019; 7:E122. [PMID: 31547081 PMCID: PMC6963228 DOI: 10.3390/vaccines7040122] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 12/27/2022] Open
Abstract
Despite medical progress, more than a billion people still suffer daily from parasitic infections. Vaccination is recognized as one of the most sustainable options to control parasitic diseases. However, the development of protective and therapeutic vaccines against tropical parasites has proven to be exceptionally challenging for both scientific and economic reasons. For certain parasitic diseases, traditional vaccine platforms are not well-suited, due to the complexity of the parasite life cycles and the parasite's ability to evade the human immune system. An effective anti-parasite vaccine platform needs to have the ability to develop and test novel candidate antigens fast and at high-throughput; it further needs to allow for multivalent combinations and must evoke a strong and well-defined immune response. Anti-parasitic vaccines need to be safe and economically attractive, especially in the world's low- and middle-income countries. This review evaluates the potential of in vitro transcribed mRNA vaccines as a new class of preventive and therapeutic vaccine technologies for parasitic infections.
Collapse
Affiliation(s)
- Leroy Versteeg
- Departments of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, BCM113, Houston, TX 77030, USA.
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX 77030, USA.
- Cell Biology and Immunology Group, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands.
| | - Mashal M Almutairi
- Prince Naif Health Research Center, King Saud University, Riyadh 11451, Saudi Arabia.
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
- Vaccines and Biologics Research Unit, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX 77030, USA.
- Departments of Pediatrics and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, BCM113, Houston, TX 77030, USA.
- Hagler Institute for Advanced Study at Texas A&M University, College Station, TX 77843, USA.
- Department of Biology, Baylor University, Waco, TX 76798, USA.
| | - Jeroen Pollet
- Departments of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, One Baylor Plaza, BCM113, Houston, TX 77030, USA.
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, 1102 Bates Street, Houston, TX 77030, USA.
| |
Collapse
|
12
|
McFarlane E, Mokgethi T, Kaye PM, Hurdayal R, Brombacher F, Alexander J, Carter KC. IL-4 Mediated Resistance of BALB/c Mice to Visceral Leishmaniasis Is Independent of IL-4Rα Signaling via T Cells. Front Immunol 2019; 10:1957. [PMID: 31475014 PMCID: PMC6707061 DOI: 10.3389/fimmu.2019.01957] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/02/2019] [Indexed: 01/10/2023] Open
Abstract
Previous studies infecting global IL-4Rα−/−, IL-4−/−, and IL-13−/−mice on a BALB/c background with the visceralizing parasite Leishmania donovani have shown that the T helper 2 cytokines, IL-4, and IL-13, play influential but not completely overlapping roles in controlling primary infection. Subsequently, using macrophage/neutrophil-specific IL-4Rα deficient BALB/c mice, we demonstrated that macrophage/neutrophil unresponsiveness to IL-4 and IL-13 did not have a detrimental effect during L. donovani infection. Here we expand on these findings and show that CD4+ T cell-(Lckcre), as well as pan T cell-(iLckcre) specific IL-4Rα deficient mice, on a BALB/c background, unlike global IL-4Rα deficient mice, are also not adversely affected in terms of resistance to primary infection with L. donovani. Our analysis suggested only a transient and tissue specific impact on disease course due to lack of IL-4Rα on T cells, limited to a reduced hepatic parasite burden at day 30 post-infection. Consequently, the protective role(s) demonstrated for IL-4 and IL-13 during L. donovani infection are mediated by IL-4Rα-responsive cell(s) other than macrophages, neutrophils and T cells.
Collapse
Affiliation(s)
- Emma McFarlane
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Thabang Mokgethi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Paul M Kaye
- Department of Biology, Centre for Immunology and Infection, Hull York Medical School, University of York, York, United Kingdom
| | - Ramona Hurdayal
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), South African Medical Research Council (SAMRC) on Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa.,Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa.,Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), South African Medical Research Council (SAMRC) on Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa.,Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - James Alexander
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Katharine C Carter
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
13
|
DR Congo and Nigeria: New neglected tropical disease threats and solutions for the bottom 40. PLoS Negl Trop Dis 2019; 13:e0007145. [PMID: 31393879 PMCID: PMC6687097 DOI: 10.1371/journal.pntd.0007145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
14
|
Bottazzi ME, Hotez PJ. "Running the Gauntlet": Formidable challenges in advancing neglected tropical diseases vaccines from development through licensure, and a "Call to Action". Hum Vaccin Immunother 2019; 15:2235-2242. [PMID: 31180271 PMCID: PMC6816440 DOI: 10.1080/21645515.2019.1629254] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Translational science for new biotechnologies (e.g. drugs, vaccines, devices, or diagnostics) depend on the development of a robust ‘business case’. This is driven by complex scientific, technical, logistical, financial and operational elements to determine the feasibility and probability of traversing the “valleys of death” leading to licensure. The potential results in terms of profitability and financial realization, called ‘product value proposition’ play a crucial role in establishing incentives for investment during and after development. With this review, our goal is to summarize the challenges in taking vaccines against neglected tropical diseases (NTDs) from development through licensure and provide a perspective that these vaccines can have measurable public health and economic profitability and market success. Understanding these processes and its challenges would open the opportunity to accelerate and advance these essential NTD vaccines through the last mile towards licensure and for the delivery to afflicted populations in low- and middle-income countries.
Collapse
Affiliation(s)
- Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA.,Department of Biology, Baylor University , Waco , TX , USA
| | - Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA.,Department of Biology, Baylor University , Waco , TX , USA.,James A. Baker III Institute of Public Policy, Rice University , Houston , TX , USA.,Scowcroft Institute for International Affairs, Bush School of Government and Public Policy, Texas A&M University , College Station , TX , USA
| |
Collapse
|
15
|
Rupprecht CE, Salahuddin N. Current status of human rabies prevention: remaining barriers to global biologics accessibility and disease elimination. Expert Rev Vaccines 2019; 18:629-640. [PMID: 31159618 DOI: 10.1080/14760584.2019.1627205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Rabies is a serious, neglected tropical disease. Zoonotic agents are RNA viruses (Genus Lyssavirus, Family Rhabdoviridae), global in distribution. As an acute, progressive, incurable encephalitis, rabies has the highest case fatality of any infectious disease. Warm-blooded vertebrates are susceptible hosts. Major mammalian reservoirs include mesocarnivores and bats. Given wildlife perpetuation, rabies is not eradicable, but is preventable and controllable, especially under newly available international guidelines. Areas covered: Literature review over the past 5 years reveals development of sensitive, specific diagnostic tests and safe and highly effective human and veterinary vaccines. Yet, tens of thousands of human fatalities occur annually, usually in Africa and Asia, primarily after canine exposure. Human and domestic animal vaccination, before or after exposure, is the single greatest preventative strategy following a rabid animal bite. Expert opinion: Significant progress occurred during the twenty-first century regarding vaccine development, doses, and schedules. Remaining barriers to widespread rabies vaccination include an inter-related set of economic, cultural, social, educational, ecological and technological factors. A basic understanding of local and regional root causes of cases historically allows for broader accessibility to vaccination in a trans-disciplinary fashion to meet the global elimination of human rabies caused via dogs (GEHRD) by 2030.
Collapse
Affiliation(s)
| | - Naseem Salahuddin
- b Infectious Disease Division, Department of Medicine , The Indus Hospital , Karachi , Pakistan
| |
Collapse
|
16
|
Hotez PJ. Science tikkun: A framework embracing the right of access to innovation and translational medicine on a global scale. PLoS Negl Trop Dis 2019; 13:e0007117. [PMID: 31170155 PMCID: PMC6553693 DOI: 10.1371/journal.pntd.0007117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Peter J. Hotez
- Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
- James A. Baker III Institute for Public Policy, Rice University, Houston, Texas, United States of America
- Scowcroft Institute of International Affairs, Bush School of Government and Public Service, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
17
|
Hotez PJ, Odom John AR, LaBeaud AD. Pediatric tropical medicine: The neglected diseases of children. PLoS Negl Trop Dis 2019; 13:e0007008. [PMID: 31071087 PMCID: PMC6508612 DOI: 10.1371/journal.pntd.0007008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Peter J. Hotez
- Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
- * E-mail: (PJH); (AROJ); (ADL)
| | - Audrey R. Odom John
- Departments of Pediatrics and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail: (PJH); (AROJ); (ADL)
| | - A. Desiree LaBeaud
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Stanford, California, United States of America
- * E-mail: (PJH); (AROJ); (ADL)
| |
Collapse
|
18
|
Betz CL. The Mix of Science, Community Beliefs and Health Practices Affecting Children: Part 1. J Pediatr Nurs 2019; 46:A7-A8. [PMID: 31079616 DOI: 10.1016/j.pedn.2019.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Hotez PJ. Immunizations and vaccines: a decade of successes and reversals, and a call for ‘vaccine diplomacy’. Int Health 2019; 11:331-333. [DOI: 10.1093/inthealth/ihz024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/14/2019] [Indexed: 12/22/2022] Open
Abstract
Abstract
Over the last decade we have seen extraordinary public health gains due to expansions in global vaccination programs led by United Nations (UN) agencies, including Gavi, the Vaccine Alliance, UNICEF and the WHO. These initiatives have reduced childhood deaths from measles, tetanus and other vaccine-preventable diseases by almost one half. There is additional excitement over the potential development and introduction of new vaccines to prevent highly lethal respiratory virus infections, as well as tuberculosis, malaria, HIV/AIDS and several neglected tropical diseases. However, these successes are under threat due to political instability, conflict and an accelerating antivaccine movement. New initiatives in vaccine diplomacy will be required to combat these challenges.
Collapse
Affiliation(s)
- Peter J Hotez
- Departments of Pediatrics and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
- Department of Biology, Baylor University, 1301 S University Parks Dr, Waco, TX 76706, USA
| |
Collapse
|
20
|
Donadeu M, Nwankpa N, Abela-Ridder B, Dungu B. Strategies to increase adoption of animal vaccines by smallholder farmers with focus on neglected diseases and marginalized populations. PLoS Negl Trop Dis 2019; 13:e0006989. [PMID: 30730883 PMCID: PMC6366725 DOI: 10.1371/journal.pntd.0006989] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Most smallholder farmers (SHFs) and marginalized populations (MPs) in Africa, Asia, and Latin America depend on livestock for their livelihoods. However, significant numbers of these animals do not achieve their potential, die due to disease, or transmit zoonotic diseases. Existing vaccines could prevent and control some of these diseases, but frequently the vaccines do not reach SHFs, especially MPs, making it necessary for specific vaccine adoption strategies. Principal findings Several strategies that have the potential to increase the adoption of animal vaccines by SHFs and MPs have been identified depending on the type of vaccines involved. The strategies differed depending on whether the vaccines were aimed at diseases that cause economic losses, government-controlled diseases, or neglected diseases. The adoption of vaccines for neglected diseases presents a major challenge, because they are mostly for zoonotic diseases that produce few or no clinical signs in the animals, making it more difficult for the farmers to appreciate the value of the vaccines. Strategies can be aimed at increasing the availability of quality vaccines, so that they are produced in sufficient quantity, or aimed at increasing access and demand by SHFs and/or MPs. Some of the strategies to increase vaccine adoption might not provide a definite solution but might facilitate vaccine uptake by decreasing barriers. These strategies are varied and include technical considerations, policy components, involvement by the private sector (local and international), and innovation. Conclusions Several strategies with the potential to reduce livestock morbidity and mortality, or prevent zoonoses in SHFs communities and MPs through vaccination, require the involvement of donors and international organisations to stimulate and facilitate sustainable adoption. This is especially the case for neglected zoonotic diseases. Support for national and regional vaccine manufacturers is also required, especially for vaccines against diseases of interest only in the developing world and public goods.
Collapse
Affiliation(s)
- Meritxell Donadeu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria, Australia
- Initiative for Neglected Animal Diseases (INAND), Midrand, South Africa
- * E-mail:
| | - Nick Nwankpa
- African Union-Pan African Veterinary Vaccine Centre (AU-PANVAC), Debre Zeit, Ethiopia
| | - Bernadette Abela-Ridder
- Department of Control of Neglected Tropical Diseases, World Health Organization, Genève, Switzerland
| | - Baptiste Dungu
- Initiative for Neglected Animal Diseases (INAND), Midrand, South Africa
- Independent Consultant, Edinburgh, United Kingdom
| |
Collapse
|
21
|
Weber CJ, Hargan-Calvopiña J, Graef KM, Manner CK, Dent J. WIPO Re:Search-A Platform for Product-Centered Cross-Sector Partnerships for the Elimination of Schistosomiasis. Trop Med Infect Dis 2019; 4:E11. [PMID: 30634429 PMCID: PMC6473617 DOI: 10.3390/tropicalmed4010011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/26/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Schistosomiasis is an acute and chronic disease that affects over 200 million people worldwide, and with over 700 million people estimated to be at risk of contracting this disease, it is a pressing issue in global health. However, research and development (R&D) to develop new approaches to preventing, diagnosing, and treating schistosomiasis has been relatively limited. Praziquantel, a drug developed in the 1970s, is the only agent used in schistosomiasis mass drug administration (MDA) campaigns, indicating a critical need for a diversified therapeutic pipeline. Further, gaps in the vaccine and diagnostic pipelines demonstrate a need for early-stage innovation in all areas of schistosomiasis product R&D. As a platform for public-private partnerships (PPPs), the WIPO Re:Search consortium engages the private sector in early-stage R&D for neglected diseases by forging mutually beneficial collaborations and facilitating the sharing of intellectual property (IP) assets between the for-profit and academic/non-profit sectors. The Consortium connects people, resources, and ideas to fill gaps in neglected disease product development pipelines by leveraging the strengths of these two sectors. Using WIPO Re:Search as an example, this article highlights the opportunities for the PPP model to play a key role in the elimination of schistosomiasis.
Collapse
Affiliation(s)
- Callie J Weber
- BIO Ventures for Global Health, 2101 Fourth Avenue, Suite 1950, Seattle, WA 98121, USA.
| | | | - Katy M Graef
- BIO Ventures for Global Health, 2101 Fourth Avenue, Suite 1950, Seattle, WA 98121, USA.
| | - Cathyryne K Manner
- BIO Ventures for Global Health, 2101 Fourth Avenue, Suite 1950, Seattle, WA 98121, USA.
| | - Jennifer Dent
- BIO Ventures for Global Health, 2101 Fourth Avenue, Suite 1950, Seattle, WA 98121, USA.
| |
Collapse
|
22
|
Diemert DJ, Bottazzi ME, Plieskatt J, Hotez PJ, Bethony JM. Lessons along the Critical Path: Developing Vaccines against Human Helminths. Trends Parasitol 2018; 34:747-758. [PMID: 30064902 DOI: 10.1016/j.pt.2018.07.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/16/2022]
Abstract
Helminthic parasites are important targets for vaccine research as they infect an estimated 1 billion people worldwide. Despite significant progress in the discovery of defined antigens as candidates for vaccines, the potential of a helminth vaccine advancing to an investigational product to be tested in humans remains as challenging as it did 50 years ago. Candidate helminth vaccines must still advance along a 'critical path' of preclinical research, vaccine process development (which includes 'chemistry, manufacturing, and controls' or CMC), current good manufacturing practice (cGMP) production of the vaccine, and clinical trials. This path is highly targeted towards meeting the safety, immunogenicity, and efficacy criteria of regulatory bodies such as the US Food and Drug Administration (FDA). For nearly 20 years our product development partnership (PDP), the Texas Children's Hospital Center for Vaccine Development (TCH-CVD), has followed the critical paths of several novel subunit vaccines for the human hookworm Necator americanus and the intestinal trematode Schistosoma mansoni. Herein, we describe the critical lessons learned along this critical path.
Collapse
Affiliation(s)
- David J Diemert
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington DC, USA; Department of Medicine, The George Washington University, Washington DC, USA; Texas Children's Hospital Center for Vaccine Development - a Product Development Partnership, Houston, TX, USA
| | - Maria Elena Bottazzi
- Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA; Department of Biology, Baylor University, Waco, TX, USA; Texas Children's Hospital Center for Vaccine Development - a Product Development Partnership, Houston, TX, USA
| | - Jordan Plieskatt
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington DC, USA; Texas Children's Hospital Center for Vaccine Development - a Product Development Partnership, Houston, TX, USA
| | - Peter J Hotez
- Departments of Pediatrics and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA; Department of Biology, Baylor University, Waco, TX, USA; Texas Children's Hospital Center for Vaccine Development - a Product Development Partnership, Houston, TX, USA
| | - Jeffrey M Bethony
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington DC, USA; Texas Children's Hospital Center for Vaccine Development - a Product Development Partnership, Houston, TX, USA.
| |
Collapse
|