1
|
Ren M, Abdullah SW, Pei C, Guo H, Sun S. Use of virus-like particles and nanoparticle-based vaccines for combating picornavirus infections. Vet Res 2024; 55:128. [PMID: 39350170 PMCID: PMC11443892 DOI: 10.1186/s13567-024-01383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/15/2024] [Indexed: 10/04/2024] Open
Abstract
Picornaviridae are non-enveloped ssRNA viruses that cause diseases such as poliomyelitis, hand-foot-and-mouth disease (HFMD), hepatitis A, encephalitis, myocarditis, and foot-and-mouth disease (FMD). Virus-like particles (VLPs) vaccines mainly comprise particles formed through the self-assembly of viral capsid proteins (for enveloped viruses, envelope proteins are also an option). They do not contain the viral genome. On the other hand, the nanoparticles vaccine (NPs) is mainly composed of self-assembling biological proteins or nanomaterials, with viral antigens displayed on the surface. The presentation of viral antigens on these particles in a repetitive array can elicit a strong immune response in animals. VLPs and NPs can be powerful platforms for multivalent antigen presentation. This review summarises the development of virus-like particle vaccines (VLPs) and nanoparticle vaccines (NPs) against picornaviruses. By detailing the progress made in the fight against various picornaviruses such as poliovirus (PV), foot-and-mouth disease virus (FMDV), enterovirus (EV), Senecavirus A (SVA), and encephalomyocarditis virus (EMCV), we in turn highlight the significant strides made in vaccine technology. These advancements include diverse construction methods, expression systems, elicited immune responses, and the use of various adjuvants. We see promising prospects for the continued development and optimisation of VLPs and NPs vaccines. Future research should focus on enhancing these vaccines' immunogenicity, stability, and delivery methods. Moreover, expanding our understanding of the interplay between these vaccines and the immune system will be crucial. We hope these insights will inspire and guide fellow researchers in the ongoing quest to combat picornavirus infections more effectively.
Collapse
Affiliation(s)
- Mei Ren
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gembloux Agro-Biotech, University of Liege, Gembloux, Belgium
| | - Sahibzada Waheed Abdullah
- Livestock and dairy development department peshawar, Government of Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Chenchen Pei
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, CollegeofVeterinaryMedicine, Lanzhou UniversityLanzhou Veterinary Research InstituteChinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Letafati A, Taghiabadi Z, Roushanzamir M, Memarpour B, Seyedi S, Farahani AV, Norouzi M, Karamian S, Zebardast A, Mehrabinia M, Ardekani OS, Fallah T, Khazry F, Daneshvar SF, Norouzi M. From discovery to treatment: tracing the path of hepatitis E virus. Virol J 2024; 21:194. [PMID: 39180020 PMCID: PMC11342613 DOI: 10.1186/s12985-024-02470-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024] Open
Abstract
The hepatitis E virus (HEV) is a major cause of acute viral hepatitis worldwide. HEV is classified into eight genotypes, labeled HEV-1 through HEV-8. Genotypes 1 and 2 exclusively infect humans, while genotypes 3, 4, and 7 can infect both humans and animals. In contrast, genotypes 5, 6, and 8 are restricted to infecting animals. While most individuals with a strong immune system experience a self-limiting infection, those who are immunosuppressed may develop chronic hepatitis. Pregnant women are particularly vulnerable to severe illness and mortality due to HEV infection. In addition to liver-related complications, HEV can also cause extrahepatic manifestations, including neurological disorders. The immune response is vital in determining the outcome of HEV infection. Deficiencies in T cells, NK cells, and antibody responses are linked to poor prognosis. Interestingly, HEV itself contains microRNAs that regulate its replication and modify the host's antiviral response. Diagnosis of HEV infection involves the detection of HEV RNA and anti-HEV IgM/IgG antibodies. Supportive care is the mainstay of treatment for acute infection, while chronic HEV infection may be cleared with the use of ribavirin and pegylated interferon. Prevention remains the best approach against HEV, focusing on sanitation infrastructure improvements and vaccination, with one vaccine already licensed in China. This comprehensive review provides insights into the spread, genotypes, prevalence, and clinical effects of HEV. Furthermore, it emphasizes the need for further research and attention to HEV, particularly in cases of acute hepatitis, especially among solid-organ transplant recipients.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
| | - Zahra Taghiabadi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mahshid Roushanzamir
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
- Department of Pharmacological and Biomolecular Science, University of Milan, Milan, Italy
| | - Bahar Memarpour
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
- Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Saba Seyedi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | | | - Masoomeh Norouzi
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Saeideh Karamian
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Arghavan Zebardast
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Marzieh Mehrabinia
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Tina Fallah
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Fatemeh Khazry
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Samin Fathi Daneshvar
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Norouzi
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
3
|
Martinez FG, Zielke RA, Fougeroux CE, Li L, Sander AF, Sikora AE. Development of a Tag/Catcher-mediated capsid virus-like particle vaccine presenting the conserved Neisseria gonorrhoeae SliC antigen that blocks human lysozyme. Infect Immun 2023; 91:e0024523. [PMID: 37916806 PMCID: PMC10715030 DOI: 10.1128/iai.00245-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Virus-like particles (VLPs) are promising nanotools for the development of subunit vaccines due to high immunogenicity and safety. Herein, we explored the versatile and effective Tag/Catcher-AP205 capsid VLP (cVLP) vaccine platform to address the urgent need for the development of an effective and safe vaccine against gonorrhea. The benefits of this clinically validated cVLP platform include its ability to facilitate unidirectional, high-density display of complex/full-length antigens through an effective split-protein Tag/Catcher conjugation system. To assess this modular approach for making cVLP vaccines, we used a conserved surface lipoprotein, SliC, that contributes to the Neisseria gonorrhoeae defense against human lysozyme, as a model antigen. This protein was genetically fused at the N- or C-terminus to the small peptide Tag enabling their conjugation to AP205 cVLP, displaying the complementary Catcher. We determined that SliC with the N-terminal SpyTag, N-SliC, retained lysozyme-blocking activity and could be displayed at high density on cVLPs without causing aggregation. In mice, the N-SliC-VLP vaccines, adjuvanted with AddaVax or CpG, induced significantly higher antibody titers compared to controls. In contrast, similar vaccine formulations containing monomeric SliC were non-immunogenic. Accordingly, sera from N-SliC-VLP-immunized mice also had significantly higher human complement-dependent serum bactericidal activity. Furthermore, the N-SliC-VLP vaccines administered subcutaneously with an intranasal boost elicited systemic and vaginal IgG and IgA, whereas subcutaneous delivery alone failed to induce vaginal IgA. The N-SliC-VLP with CpG (10 µg/dose) induced the most significant increase in total serum IgG and IgG3 titers, vaginal IgG and IgA, and bactericidal antibodies.
Collapse
Affiliation(s)
- Fabian G. Martinez
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Ryszard A. Zielke
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | | | - Lixin Li
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Adam F. Sander
- AdaptVac Aps, Hørsholm, Denmark
- Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
- Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Aleksandra E. Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| |
Collapse
|
4
|
Reginald K, Chew FT. Current practices and future trends in cockroach allergen immunotherapy. Mol Immunol 2023; 161:11-24. [PMID: 37480600 DOI: 10.1016/j.molimm.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/24/2023]
Abstract
PURPOSE OF REVIEW This review evaluates the current modes of allergen-specific immunotherapy for cockroach allergens, in terms of clinical outcomes and explores future trends in the research and development needed for a more targeted cockroach immunotherapy approach with the best efficacy and minimum adverse effects. SUMMARY Cockroach allergy is an important risk factor for allergic rhinitis in the tropics, that disproportionately affects children and young adults and those living in poor socio-economic environments. Immunotherapy would provide long-lasting improvement in quality of life, with reduced medication intake. However, the present treatment regime is long and has a risk of adverse effects. In addition, cockroach does not seem to have an immuno-dominant allergen, that has been traditionally used to treat allergies from other sources. Future trends of cockroach immunotherapy involve precision diagnosis, to correctly identify the offending allergen. Next, precision immunotherapy with standardized allergens, which have been processed in a way that maintains an immunological response without allergic reactions. This approach can be coupled with modern adjuvants and delivery systems that promote a Th1/Treg environment, thereby modulating the immune response away from the allergenic response.
Collapse
Affiliation(s)
- Kavita Reginald
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Selangor, Malaysia.
| | - Fook Tim Chew
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543, Singapore
| |
Collapse
|
5
|
van der Meulen K, Smets G, Rüdelsheim P. Viral Replicon Systems and Their Biosafety Aspects. APPLIED BIOSAFETY 2023; 28:102-122. [PMID: 37342518 PMCID: PMC10278005 DOI: 10.1089/apb.2022.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Introduction Viral RNA replicons are self-amplifying RNA molecules generated by deleting genetic information of one or multiple structural proteins of wild-type viruses. Remaining viral RNA is used as such (naked replicon) or packaged into a viral replicon particle (VRP), whereby missing genes or proteins are supplied via production cells. Since replicons mostly originate from pathogenic wild-type viruses, careful risk consideration is crucial. Methods A literature review was performed compiling information on potential biosafety risks of replicons originating from positive- and negative-sense single-stranded RNA viruses (except retroviruses). Results For naked replicons, risk considerations included genome integration, persistence in host cells, generation of virus-like vesicles, and off-target effects. For VRP, the main risk consideration was formation of primary replication competent virus (RCV) as a result of recombination or complementation. To limit the risks, mostly measures aiming at reducing the likelihood of RCV formation have been described. Also, modifying viral proteins in such a way that they do not exhibit hazardous characteristics in the unlikely event of RCV formation has been reported. Discussion and Conclusion Despite multiple approaches developed to reduce the likelihood of RCV formation, scientific uncertainty remains on the actual contribution of the measures and on limitations to test their effectiveness. In contrast, even though effectiveness of each individual measure is unclear, using multiple measures on different aspects of the system may create a solid barrier. Risk considerations identified in the current study can also be used to support risk group assignment of replicon constructs based on a purely synthetic design.
Collapse
|
6
|
Liu Y, Han X, Qiao Y, Wang T, Yao L. Porcine Deltacoronavirus-like Particles Produced by a Single Recombinant Baculovirus Elicit Virus-Specific Immune Responses in Mice. Viruses 2023; 15:v15051095. [PMID: 37243181 DOI: 10.3390/v15051095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) causes diarrhea and vomiting in neonatal piglets worldwide and has the potential for cross-species transmission. Therefore, virus-like particles (VLPs) are promising vaccine candidates because of their safety and strong immunogenicity. To the best of our knowledge, the present study reported for the first time the generation of PDCoV VLPs using a baculovirus expression vector system, and electron micrograph analyses revealed that PDCoV VLPs appeared as spherical particles with a diameter similar to that of the native virions. Furthermore, PDCoV VLPs effectively induced mice to produce PDCoV-specific IgG and neutralizing antibodies. In addition, VLPs could stimulate mouse splenocytes to produce high levels of cytokines IL-4 and IFN-γ. Moreover, the combination of PDCoV VLPs and Freund's adjuvant could improve the level of the immune response. Together, these data showed that PDCoV VLPs could effectively elicit humoral and cellular immunity in mice, laying a solid foundation for developing VLP-based vaccines to prevent PDCoV infections.
Collapse
Affiliation(s)
- Yangkun Liu
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xueying Han
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
| | - Yaqi Qiao
- College of Veterinary Medicine and Engineering, Nanyang Vocational College of Agriculture, Nanyang 473061, China
| | - Tiejun Wang
- College of Veterinary Medicine and Engineering, Nanyang Vocational College of Agriculture, Nanyang 473061, China
| | - Lunguang Yao
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
7
|
Cao YF, Zhou YF, Zhao DY, Chang JL, Tang JG, Chang DY, Zhang XM, Wang XP. Expression and immunogenicity of hepatitis E virus-like particles based on recombinant truncated ORF2 capsid protein. Protein Expr Purif 2023; 203:106214. [PMID: 36526214 DOI: 10.1016/j.pep.2022.106214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Hepatitis E is an emerging zoonotic disease, posing a severe threat to public health in the world. Since there are no specific treatments available for HEV infection, it is crucial to develop vaccine to prevent this infection. In this study, the truncated ORF2 encoded protein of 439aa∼617aa (HEV3-179) from HEV CCJD-517 isolates was expressed as VLPs in E. coli with diameters of approximate 20 nm. HEV3-179 protein was immunized with mice, and the results showed that a higher titre of antibody was induced in NIH mice in comparison with that of KM mice (P < 0.01) and BALB/c mice (P < 0.01). The induced antibody titer is much higher in subcutaneous immunization mice than that in the mice inoculated via abdominal immunization (P < 0.05) and muscles immunization (P < 0.01). Mice immunized with 12 μg and 6 μg candidate vaccine induced higher level of antibody titer than that of 3 μg dosage group (P < 0.01, P < 0.05). Antibody change curve showed that HEV IgG antibody titer increased from 14 days post immunization (dpi) to 1:262144 and reached the peak level on 42 dpi before gradually retreated with the same level antibody titer with 1:131072 until 84 dpi. Mice inoculated with HEV3-179 produced higher titer of cytokines than the mock group, and the concentration of IL-1β (P < 0.01) and IFN-γ (P < 0.01) further increased after stimulated by candidate vaccine. The result indicated that HEV3-179 possesses good immunogenicity, which could be used as a potential candidate for future HEV vaccine development.
Collapse
Affiliation(s)
- Yu-Feng Cao
- College of Veterinary Medicine, Jilin University, 5333 Xian Road, Changchun, 130062, Jilin, China; Changchun Institute of Biological Products Co. Ltd., 1616 Chuangxin Road, Changchun, 130012, Jilin, China; Immune-Path Biotechnology (Suzhou) Co., Ltd, Suzhou, 215000, PR China
| | - Yong-Fei Zhou
- Changchun Institute of Biological Products Co. Ltd., 1616 Chuangxin Road, Changchun, 130012, Jilin, China; School of Life Sciences, Jilin University, Changchun, 130012, Jilin, China
| | - Dan-Ying Zhao
- Changchun Institute of Biological Products Co. Ltd., 1616 Chuangxin Road, Changchun, 130012, Jilin, China
| | - Jun-Liang Chang
- Changchun Institute of Biological Products Co. Ltd., 1616 Chuangxin Road, Changchun, 130012, Jilin, China
| | - Jian-Guang Tang
- Changchun Institute of Biological Products Co. Ltd., 1616 Chuangxin Road, Changchun, 130012, Jilin, China
| | - Dong-Ying Chang
- Changchun Institute of Biological Products Co. Ltd., 1616 Chuangxin Road, Changchun, 130012, Jilin, China
| | - Xue-Mei Zhang
- Changchun Institute of Biological Products Co. Ltd., 1616 Chuangxin Road, Changchun, 130012, Jilin, China.
| | - Xin-Ping Wang
- College of Veterinary Medicine, Jilin University, 5333 Xian Road, Changchun, 130062, Jilin, China; Key Laboratory for Zoonosis, Ministry of Education, Institute for Zoonosis of Jilin University, Changchun, 130062, Jilin, China.
| |
Collapse
|
8
|
Khanna D, Kar P. Can the diagnostics of hepatitis in pregnant patients be improved? Expert Rev Mol Diagn 2022; 22:1053-1055. [PMID: 36462167 DOI: 10.1080/14737159.2022.2153039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
9
|
Mohsen MO, Bachmann MF. Virus-like particle vaccinology, from bench to bedside. Cell Mol Immunol 2022; 19:993-1011. [PMID: 35962190 PMCID: PMC9371956 DOI: 10.1038/s41423-022-00897-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
Virus-like particles (VLPs) have become key tools in biology, medicine and even engineering. After their initial use to resolve viral structures at the atomic level, VLPs were rapidly harnessed to develop antiviral vaccines followed by their use as display platforms to generate any kind of vaccine. Most recently, VLPs have been employed as nanomachines to deliver pharmaceutically active products to specific sites and into specific cells in the body. Here, we focus on the use of VLPs for the development of vaccines with broad fields of indications ranging from classical vaccines against viruses to therapeutic vaccines against chronic inflammation, pain, allergy and cancer. In this review, we take a walk through time, starting with the latest developments in experimental preclinical VLP-based vaccines and ending with marketed vaccines, which earn billions of dollars every year, paving the way for the next wave of prophylactic and therapeutic vaccines already visible on the horizon.
Collapse
Affiliation(s)
- Mona O Mohsen
- Department of BioMedical Research, University of Bern, Bern, Switzerland.
- Department of Immunology RIA, University Hospital Bern, Bern, Switzerland.
- Saiba Biotech AG, Bahnhofstr. 13, CH-8808, Pfaeffikon, Switzerland.
| | - Martin F Bachmann
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Department of Immunology RIA, University Hospital Bern, Bern, Switzerland
- The Jenner Institute, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Behrendt P, Wedemeyer H. [Vaccines against hepatitis E virus: state of development]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2022; 65:192-201. [PMID: 35099576 PMCID: PMC8802100 DOI: 10.1007/s00103-022-03487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022]
Abstract
In Europa ist aktuell kein Impfstoff gegen das Hepatitis-E-Virus (HEV) zugelassen. Demgegenüber steht in China bereits seit 10 Jahren mit HEV-239 (Hecolin®, Xiamen Innovax Biotech Co., Xiamen, China) ein Vakzin gegen den HEV-Genotyp 4 zur Verfügung. Herausforderungen für die Entwicklung von Impfstoffen ergeben sich v. a. aus den Unterschieden zwischen den Genotypen bezüglich Verbreitung, Übertragungswege und Risikogruppen. Weitere Hindernisse sind die Umhüllung von HEV im Blut durch Wirtsmembranen, die Replikation in verschiedenen Organen außerhalb der Leber sowie schwächere Immunantworten in vulnerablen Gruppen. In diesem Artikel wird der aktuelle Stand der verfügbaren und in fortgeschrittener präklinischer Evaluation befindlichen Vakzine gegen HEV mit Fokus auf Strategien der Impfstoffentwicklung dargestellt. Herausforderungen und Limitationen werden beschrieben. Aktuelle Impfkandidaten fokussieren auf proteinbasierte Immunisierungen mit dem Ziel der Induktion von schützenden, neutralisierenden Antikörperantworten. Das Ziel der HEV-239-Zulassungsstudie mit mehr als 100.000 Studienteilnehmern war die Verhinderung von akuten symptomatischen Infektionen. Es ist jedoch unklar, inwieweit asymptomatische Infektionen durch das Vakzin verhindert wurden und ob es in Risikopatienten für einen komplizierten Verlauf, wie Patienten mit Leberzirrhose, Immunsupprimierten und Schwangeren, effektiv genug wirkt. Effiziente In-vitro-Modelle ermöglichen zunehmend die Entwicklung von monoklonalen neutralisierenden Antikörpern zur passiven Immunisierung oder Therapie. Zukünftige Vakzine sollten neben einem sehr guten Sicherheitsprofil eine eindeutige Protektion gegenüber allen Genotypen demonstrieren. Die Entwicklung einer effizienten passiven Immunisierungsstrategie, insbesondere für immunsupprimierte Personen, ist wünschenswert.
Collapse
Affiliation(s)
- Patrick Behrendt
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland
| | - Heiner Wedemeyer
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland.
| |
Collapse
|
11
|
Sintusek P, Thanapirom K, Komolmit P, Poovorawan Y. Eliminating viral hepatitis in children after liver transplants: How to reach the goal by 2030. World J Gastroenterol 2022; 28:290-309. [PMID: 35110951 PMCID: PMC8771616 DOI: 10.3748/wjg.v28.i3.290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/12/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
Viral hepatitis infections are a great burden in children who have received liver transplant. Hepatotropic viruses can cause liver inflammation that can develop into liver graft fibrosis and cirrhosis over the long term. Immunological reactions due to viral hepatitis infections are associated with or can mimic graft rejection, rendering the condition difficult to manage. Prevention strategies using vaccinations are agreeable to patients, safe, cost-effective and practical. Hence, strategies to eliminate viral hepatitis A and B focus mainly on immunization programmes for children who have received a liver transplant. Although a vaccine has been developed to prevent hepatitis C and E viruses, its use is not licensed worldwide. Consequently, eliminating hepatitis C and E viruses mainly involves early detection in children with suspected cases and effective treatment with antiviral therapy. Good hygiene and sanitation are also important to prevent hepatitis A and E infections. Donor blood products and liver grafts should be screened for hepatitis B, C and E in children who are undergoing liver transplantation. Future research on early detection of viral hepatitis infections should include molecular techniques for detecting hepatitis B and E. Moreover, novel antiviral drugs for eradicating viral hepatitis that are highly effective and safe are needed for children who have undergone liver transplantation.
Collapse
Affiliation(s)
- Palittiya Sintusek
- The Thai Pediatric Gastroenterology, Hepatology and Immunology (TPGHAI) Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Gastroenterology, Department of Pediatrics, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kessarin Thanapirom
- Division of Gastroenterology, Department of Medicine, Liver Fibrosis and Cirrhosis Research Unit, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
- Center of Excellence in Liver Diseases, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piyawat Komolmit
- Division of Gastroenterology, Department of Medicine, Liver Fibrosis and Cirrhosis Research Unit, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
- Center of Excellence in Liver Diseases, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Gordeychuk I, Kyuregyan K, Kondrashova A, Bayurova E, Gulyaev S, Gulyaeva T, Potemkin I, Karlsen A, Isaeva O, Belyakova A, Lyashenko A, Sorokin A, Chumakov A, Morozov I, Isaguliants M, Ishmukhametov A, Mikhailov M. Immunization with recombinant ORF2 p551 protein protects common marmosets (Callithrix jacchus) against homologous and heterologous hepatitis E virus challenge. Vaccine 2022; 40:89-99. [PMID: 34836660 DOI: 10.1016/j.vaccine.2021.11.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 11/14/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hepatitis E virus (HEV) is a major causative agent of acute hepatitis worldwide, prompting continuous HEV vaccine efforts. Vaccine development is hampered by the lack of convenient animal models susceptible to infection with different HEV genotypes. We produced recombinant open reading frame 2 protein (pORF2; p551) of HEV genotype (GT) 3 and assessed its immunogenicity and protectivity against HEV challenge in common marmosets (Callithrix jacchus, CM). METHODS p551 with consensus sequence corresponding to amino acid residues 110-660 of HEV GT3 pORF2 was expressed in E. coli and purified by affinity chromatography. CMs were immunized intramuscularly with 20 μg of p551 VLPs with alum adjuvant (n = 4) or adjuvant alone (n = 2) at weeks 0, 3, 7 and 19. At week 27, p551-immunized and control animals were challenged with HEV GT1 or GT3 and thereafter longitudinally screened for markers of liver function, anti-HEV IgG and HEV RNA in feces and sera. RESULTS Purified p551 formed VLPs with particle size of 27.71 ± 2.42 nm. Two immunizations with p551 induced anti-HEV IgG mean titer of 1:1810. Immunized CMs challenged with homologous and heterologous HEV genotype did not develop HEV infection during the follow-up. Control CMs infected with both HEV GT1 and GT3 demonstrated signs of HEV infection with virus shedding and elevation of the levels of liver enzymes. High levels of anti-HEV IgG persisted in vaccinated CMs and control CMs that resolved HEV infection, for up to two years post challenge. CONCLUSIONS CMs are shown to be a convenient laboratory animal model susceptible to infection with HEV GT1 and GT3. Immunization with HEV GT3 ORF2/p551 triggers potent anti-HEV antibody response protecting CMs from homologous and heterologous HEV challenge. This advances p551 in VLPs as a prototype vaccine against HEV.
Collapse
Affiliation(s)
- Ilya Gordeychuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 127994, Russia.
| | - Karen Kyuregyan
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia; Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia.
| | - Alla Kondrashova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 127994, Russia
| | - Ekaterina Bayurova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Stanislav Gulyaev
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Tatiana Gulyaeva
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Ilya Potemkin
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia; Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia.
| | - Anastasia Karlsen
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia; Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia; N.F. Gamaleya Federal Research Center for Epidemiology & Microbiology, Moscow 123098, Russia
| | - Olga Isaeva
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia; Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia.
| | - Alla Belyakova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Anna Lyashenko
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Alexey Sorokin
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
| | - Alexey Chumakov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 127994, Russia
| | - Igor Morozov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Maria Isaguliants
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; N.F. Gamaleya Federal Research Center for Epidemiology & Microbiology, Moscow 123098, Russia; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| | - Aydar Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 127994, Russia.
| | - Mikhail Mikhailov
- I.I. Mechnikov Research Institute of Vaccines and Sera, Moscow 105064, Russia; Russian Medical Academy of Continuous Professional Education, Moscow 125993, Russia.
| |
Collapse
|
13
|
Antigenic Characterization of ORF2 and ORF3 Proteins of Hepatitis E Virus (HEV). Viruses 2021; 13:v13071385. [PMID: 34372591 PMCID: PMC8310276 DOI: 10.3390/v13071385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
To evaluate the antigenic properties of Hepatitis E Virus (HEV) Open Reading Frame 2 and 3 (ORF2 and ORF3) codified proteins, we expressed different portions of ORF2 and the entire ORF3 in E. coli, a truncated ORF2, was also expressed in baculovirus. A panel of 37 monoclonal antibodies (MAbs) was raised against ORF2 (1-660 amino acids) and MAbs were mapped and characterized using the ORF2 expressed portions. Selected HEV positive and negative swine sera were used to evaluate ORF2 and ORF3 antigens' immunogenicity. The MAbs were clustered in six groups identifying six antigenic regions along the ORF2. Only MAbs binding to the sixth ORF2 antigenic region (394-608 aa) were found to compete with HEV positive sera and efficiently catch the recombinant antigen expressed in baculovirus. The ORF2 portion from 394-608 aa demonstrated to include most immunogenic epitopes with 85% of HEV positive swine sera reacting against the region from 461-544 aa. Only 5% of the selected HEV sera reacted against the ORF3 antigen.
Collapse
|
14
|
Velavan TP, Pallerla SR, Johne R, Todt D, Steinmann E, Schemmerer M, Wenzel JJ, Hofmann J, Shih JWK, Wedemeyer H, Bock CT. Hepatitis E: An update on One Health and clinical medicine. Liver Int 2021; 41:1462-1473. [PMID: 33960603 DOI: 10.1111/liv.14912] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 03/09/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
The hepatitis E virus (HEV) is one of the main causes of acute hepatitis and the de facto global burden is underestimated. HEV-related clinical complications are often undetected and are not considered in the differential diagnosis. Convincing findings from studies suggest that HEV is clinically relevant not only in developing countries but also in industrialized countries. Eight HEV genotypes (HEV-1 to HEV-8) with different human and animal hosts and other HEV-related viruses are in circulation. Transmission routes vary by genotype and location, with large waterborne outbreaks in developing countries and zoonotic food-borne infections in developed countries. An acute infection can be aggravated in pregnant women, organ transplant recipients, patients with pre-existing liver disease and immunosuppressed patients. HEV during pregnancy affects the fetus and newborn with an increased risk of vertical transmission, preterm and stillbirth, neonatal jaundice and miscarriage. Hepatitis E is associated with extrahepatic manifestations that include neurological disorders such as neuralgic amyotrophy, Guillain-Barré syndrome and encephalitis, renal injury and haematological disorders. The risk of transfusion-transmitted HEV is increasingly recognized in Western countries where the risk may be because of a zoonosis. RNA testing of blood components is essential to determine the risk of transfusion-transmitted HEV. There are currently no approved drugs or vaccines for HEV infections. This review focuses on updating the latest developments in zoonoses, screening and diagnostics, drugs in use and under development, and vaccines.
Collapse
Affiliation(s)
- Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam.,Faculty of Medicine, Duy Tan University, Da Nang, Vietnam
| | - Srinivas R Pallerla
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Vietnamese-German Center for Medical Research, VG-CARE, Hanoi, Vietnam
| | - Reimar Johne
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany.,European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Mathias Schemmerer
- Institute of Clinical Microbiology and Hygiene, National Consultant Laboratory for HAV and HEV, University Medical Center Regensburg, Regensburg, Germany
| | - Jürgen J Wenzel
- Institute of Clinical Microbiology and Hygiene, National Consultant Laboratory for HAV and HEV, University Medical Center Regensburg, Regensburg, Germany
| | - Jörg Hofmann
- Institute of Virology, Charité Universitätsmedizin Berlin, Labor Berlin-Charité-Vivantes GmbH, Berlin, Germany
| | | | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,German Center for Infection Research, Partner Hannover-Braunschweig, Braunschweig, Germany
| | - Claus-Thomas Bock
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
15
|
Terrault NA, Levy MT, Cheung KW, Jourdain G. Viral hepatitis and pregnancy. Nat Rev Gastroenterol Hepatol 2021; 18:117-130. [PMID: 33046891 DOI: 10.1038/s41575-020-00361-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
The management of viral hepatitis in the setting of pregnancy requires special consideration. There are five liver-specific viruses (hepatitis A, B, C, D, E), each with unique epidemiology, tendency to chronicity, risk of liver complications and response to antiviral therapies. In the setting of pregnancy, the liver health of the mother, the influence of pregnancy on the clinical course of the viral infection and the effect of the virus or liver disease on the developing infant must be considered. Although all hepatitis viruses can harm the mother and the child, the greatest risk to maternal health and subsequently the fetus is seen with acute hepatitis A virus or hepatitis E virus infection during pregnancy. By contrast, the primary risks for hepatitis B virus (HBV), hepatitis C virus (HCV) and hepatitis D virus are related to the severity of the underlying liver disease in the mother and the risk of mother-to-child transmission (MTCT) for HBV and HCV. The prevention of MTCT is key to reducing the global burden of chronic viral hepatitis, and prevention strategies must take into consideration local health-care and socioeconomic challenges. This Review presents the epidemiology of acute and chronic viral hepatitis infection in pregnancy, the effect of pregnancy on the course of viral infection and, conversely, the influence of the viral infection on maternal and infant outcomes, including MTCT.
Collapse
Affiliation(s)
- Norah A Terrault
- Keck School of Medicine, University of Southern California, Los Angeles, USA.
| | - Miriam T Levy
- Department of Gastroenterology and Liver, Liverpool Hospital, University of New South Wales, Sydney, New South Wales, Australia
| | - Ka Wang Cheung
- Department of Obstetrics and Gynaecology, Queen Mary Hospital, University of Hong Kong, Hong Kong, Hong Kong
| | - Gonzague Jourdain
- French National Research Institute for Sustainable Development (IRD), Marseille, France.,Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
16
|
Wang CR, Tsai HW. Human hepatitis viruses-associated cutaneous and systemic vasculitis. World J Gastroenterol 2021; 27:19-36. [PMID: 33505148 PMCID: PMC7789062 DOI: 10.3748/wjg.v27.i1.19] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/19/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023] Open
Abstract
Human hepatitis viruses (HHVs) include hepatitis A virus, hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis delta virus, and hepatitis E virus and can cause liver inflammation in their common human host. Usually, HHV is rapidly cleared by the immune system, following acute HHV invasion. The morbidities associated with hepatitis A virus and hepatitis E virus infection occur shortly after their intrusion, in the acute stage. Nevertheless, the viral infectious process can persist for a long period of time, especially in HBV and HCV infection, leading to chronic hepatitis and further progressing to hepatic cirrhosis and liver cancer. HHV infection brings about complications in other organs, and both acute and chronic hepatitis have been associated with clinical presentations outside the liver. Vascular involvement with cutaneous and systemic vasculitis is a well-known extrahepatic presentation; moreover, there is growing evidence for a possible causal relationship between viral pathogens and vasculitis. Except for hepatitis delta virus, other HHVs have participated in the etiopathogenesis of cutaneous and systemic vasculitis via different mechanisms, including direct viral invasion of vascular endothelial cells, immune complex-mediated vessel wall damage, and autoimmune responses with stimulation of autoreactive B-cells and impaired regulatory T-cells. Cryoglobulinemic vasculitis and polyarteritis nodosa are recognized for their association with chronic HHV infection. Although therapeutic guidelines for HHV-associated vasculitis have not yet been established, antiviral therapy should be initiated in HBV and HCV-related systemic vasculitis in addition to the use of corticosteroids. Plasma exchange and/or combined cyclophosphamide and corticosteroid therapy can be considered in patients with severe life-threatening vasculitis manifestations.
Collapse
Affiliation(s)
- Chrong-Reen Wang
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 70403, Taiwan
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng Kung University Hospital, Tainan 70403, Taiwan
| |
Collapse
|
17
|
Ngo DB, Chaibun T, Yin LS, Lertanantawong B, Surareungchai W. Electrochemical DNA detection of hepatitis E virus genotype 3 using PbS quantum dot labelling. Anal Bioanal Chem 2020; 413:1027-1037. [PMID: 33236225 DOI: 10.1007/s00216-020-03061-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/30/2022]
Abstract
The aim of this study was to develop a highly specific electrochemical DNA sensor using functionalized lead sulphide (PbS) quantum dots for hepatitis E virus genotype 3 (HEV3) DNA target detection. Functionalized-PbS quantum dots (QDs) were used as an electrochemical label for the detection of HEV3-DNA target by the technique of square wave anodic stripping voltammetry (SWASV). The functionalized-PbS quantum dots were characterized by UV-vis, FTIR, XRD, TEM and zeta potential techniques. As-prepared, functionalized-PbS quantum dots have an average size of 4.15 ± 1.35 nm. The detection platform exhibited LOD and LOQ values of 1.23 fM and 2.11 fM, respectively. HEV3-DNA target spiked serum is also reported.Graphical abstract.
Collapse
Affiliation(s)
- Duy Ba Ngo
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien-Chaitalay Road, Bangkok, 10150, Thailand
| | - Thanyarat Chaibun
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| | - Lee Su Yin
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Jalan, Bukit Air Nasi, 08100, Bedong, Kedah, Malaysia
| | - Benchaporn Lertanantawong
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Phutthamonthon, Nakhon Pathom, 73170, Thailand.
| | - Werasak Surareungchai
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkhuntien-Chaitalay Road, Bangkok, 10150, Thailand. .,Nanoscience and Nanotechnology Graduate Program, Faculty of Science, King Mongkut's University of Technology Thonburi, Pracha Uthit Rd, Bangkok, 10140, Thailand.
| |
Collapse
|
18
|
Mardanova ES, Takova KH, Toneva VT, Zahmanova GG, Tsybalova LM, Ravin NV. A plant-based transient expression system for the rapid production of highly immunogenic Hepatitis E virus-like particles. Biotechnol Lett 2020; 42:2441-2446. [PMID: 32875477 DOI: 10.1007/s10529-020-02995-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/25/2020] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Hepatitis E virus (HEV) infection is a major cause of acute hepatitis worldwide. The aim of the study is the development of plant expression system for the production of virus-like particles formed by HEV capsid and the characterization of their immunogenicity. RESULTS Open reading frame (ORF) 2 encodes the viral capsid protein and possesses candidate for vaccine production. In this study, we used truncated genotype 3 HEV ORF 2 consisting of aa residues 110 to 610. The recombinant protein was expressed in Nicotiana benthamiana plants using the self-replicating potato virus X-based vector pEff up to 10% of the soluble protein fraction. The yield of HEV 110-610 after purification was 150-200 µg per 1 g of green leaf biomass. The recombinant protein formed nanosized virus-like particles. The immunization of mice with plant-produced HEV 110-610 protein induced high levels of HEV-specific serum antibodies. CONCLUSIONS HEV ORF 2 (110-610 aa) can be used as candidate for the development of a plant-produced vaccine against Hepatitis E.
Collapse
Affiliation(s)
- Eugenia S Mardanova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Katerina H Takova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000, Plovdiv, Bulgaria
| | - Valentina T Toneva
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000, Plovdiv, Bulgaria
- Institute of Molecular Biology and Biotechnologies, 4000, Plovdiv, Bulgaria
| | - Gergana G Zahmanova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000, Plovdiv, Bulgaria
- Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Liudmila M Tsybalova
- Research Institute of Influenza, Russian Ministry of Health, St. Petersburg, 197376, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
19
|
Viral Hepatitis and Iron Dysregulation: Molecular Pathways and the Role of Lactoferrin. Molecules 2020; 25:molecules25081997. [PMID: 32344579 PMCID: PMC7221917 DOI: 10.3390/molecules25081997] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
The liver is a frontline immune site specifically designed to check and detect potential pathogens from the bloodstream to maintain a general state of immune hyporesponsiveness. One of the main functions of the liver is the regulation of iron homeostasis. The liver detects changes in systemic iron requirements and can regulate its concentration. Pathological states lead to the dysregulation of iron homeostasis which, in turn, can promote infectious and inflammatory processes. In this context, hepatic viruses deviate hepatocytes' iron metabolism in order to better replicate. Indeed, some viruses are able to alter the expression of iron-related proteins or exploit host receptors to enter inside host cells. Lactoferrin (Lf), a multifunctional iron-binding glycoprotein belonging to the innate immunity, is endowed with potent antiviral activity, mainly related to its ability to block viral entry into host cells by interacting with viral and/or cell surface receptors. Moreover, Lf can act as an iron scavenger by both direct iron-chelation or the modulation of the main iron-related proteins. In this review, the complex interplay between viral hepatitis, iron homeostasis, and inflammation as well as the role of Lf are outlined.
Collapse
|
20
|
Li Y, Huang X, Zhang Z, Li S, Zhang J, Xia N, Zhao Q. Prophylactic Hepatitis E Vaccines: Antigenic Analysis and Serological Evaluation. Viruses 2020; 12:v12010109. [PMID: 31963175 PMCID: PMC7020013 DOI: 10.3390/v12010109] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatitis E virus (HEV) infection causes sporadic outbreaks of acute hepatitis worldwide. HEV was previously considered to be restricted to resource-limited countries with poor sanitary conditions, but increasing evidence implies that HEV is also a public health problem in developed countries and regions. Fortunately, several vaccine candidates based on virus-like particles (VLPs) have progressed into the clinical development stage, and one of them has been approved in China. This review provides an overview of the current HEV vaccine pipeline and future development with the emphasis on defining the critical quality attributes for the well-characterized vaccines. The presence of clinically relevant epitopes on the VLP surface is critical for eliciting functional antibodies against HEV infection, which is the key to the mechanism of action of the prophylactic vaccines against viral infections. Therefore, the epitope-specific immunochemical assays based on monoclonal antibodies (mAbs) for HEV vaccine antigen are critical methods in the toolbox for epitope characterization and for in vitro potency assessment. Moreover, serological evaluation methods after immunization are also discussed as biomarkers for clinical performance. The vaccine efficacy surrogate assays are critical in the preclinical and clinical stages of VLP-based vaccine development.
Collapse
Affiliation(s)
- Yike Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China; (Y.L.); (X.H.); (Z.Z.); (S.L.); (J.Z.); (N.X.)
| | - Xiaofen Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China; (Y.L.); (X.H.); (Z.Z.); (S.L.); (J.Z.); (N.X.)
| | - Zhigang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China; (Y.L.); (X.H.); (Z.Z.); (S.L.); (J.Z.); (N.X.)
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China; (Y.L.); (X.H.); (Z.Z.); (S.L.); (J.Z.); (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China; (Y.L.); (X.H.); (Z.Z.); (S.L.); (J.Z.); (N.X.)
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China; (Y.L.); (X.H.); (Z.Z.); (S.L.); (J.Z.); (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China; (Y.L.); (X.H.); (Z.Z.); (S.L.); (J.Z.); (N.X.)
- Correspondence: ; Tel.: +86-59-2218-0936
| |
Collapse
|
21
|
Hepatitis E in Pregnant Women and the Potential Use of HEV Vaccine to Prevent Maternal Infection and Mortality. CURRENT TROPICAL MEDICINE REPORTS 2019. [DOI: 10.1007/s40475-019-00193-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|