1
|
Mary Vaishali P, Boopathy N. Pylore Krishnaier Rajagopalan: Pioneer in Kyasanur Forest Disease Research and His Contributions to Zoonotic Disease Studies. Cureus 2024; 16:e68831. [PMID: 39376857 PMCID: PMC11456372 DOI: 10.7759/cureus.68831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
Pylore Krishnaier Rajagopalan was a distinguished public health expert who made significant breakthroughs in the research of Kyasanur forest disease (KFD), a prevalent tick-borne viral ailment in South India. His extensive research on KFD provided vital insights into the impact of the disease on public health and considerably advanced our knowledge of it. Rajagopalan's work also encompasses the study of zoonotic diseases, where he made substantial contributions to our understanding of their epidemiology and control. His research on KFD was instrumental in comprehending the disease transmission dynamics, clinical manifestations, and control strategies, resulting in improved management practices in regions where the disease is endemic. Rajagopalan's contributions have had a long-lasting impact on public health practices, as his work has influenced both scientific research and public health policies. The enduring effects of his work can be observed in the enhanced disease surveillance, outbreak response, and comprehension of zoonotic disease dynamics, which will continue to inform contemporary public health practices.
Collapse
Affiliation(s)
- Pooja Mary Vaishali
- Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Nisha Boopathy
- Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
2
|
Sebastian AP, Varma M, Gupta N. Kyasanur forest disease in India: a case report. J Travel Med 2024; 31:taae071. [PMID: 38753838 DOI: 10.1093/jtm/taae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
The presence of bleeding manifestations, generalized erythema, palatal petechiae, conjunctival congestion, haemoconcentration, leucopenia, thrombocytopenia, raised transaminases and coagulopathy in a patient with a history of residence or travel to endemic regions in South India should alert the travel medicine practitioner to the possibility of Kyasanur forest disease.
Collapse
Affiliation(s)
- Anjely P Sebastian
- Department of Infectious Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Madhavnagar, Manipal 576104, India
| | - Muralidhar Varma
- Department of Infectious Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Madhavnagar, Manipal 576104, India
| | - Nitin Gupta
- Department of Infectious Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Madhavnagar, Manipal 576104, India
| |
Collapse
|
3
|
Perumalsamy N, Sharma R, Subramanian M, Nagarajan SA. Hard Ticks as Vectors: The Emerging Threat of Tick-Borne Diseases in India. Pathogens 2024; 13:556. [PMID: 39057783 PMCID: PMC11279560 DOI: 10.3390/pathogens13070556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 07/28/2024] Open
Abstract
Hard ticks (Ixodidae) play a critical role in transmitting various tick-borne diseases (TBDs), posing significant global threats to human and animal health. Climatic factors influence the abundance, diversity, and vectorial capacity of tick vectors. It is imperative to have a comprehensive understanding of hard ticks, pathogens, eco-epidemiology, and the impact of climatic changes on the transmission dynamics of TBDs. The distribution and life cycle patterns of hard ticks are influenced by diverse ecological factors that, in turn, can be impacted by changes in climate, leading to the expansion of the tick vector's range and geographical distribution. Vector competence, a pivotal aspect of vectorial capacity, involves the tick's ability to acquire, maintain, and transmit pathogens. Hard ticks, by efficiently feeding on diverse hosts and manipulating their immunity through their saliva, emerge as competent vectors for various pathogens, such as viruses, parasites and bacteria. This ability significantly influences the success of pathogen transmission. Further exploration of genetic diversity, population structure, and hybrid tick vectors is crucial, as they play a substantial role in influencing vector competence and complicating the dynamics of TBDs. This comprehensive review deals with important TBDs in India and delves into a profound understanding of hard ticks as vectors, their biology, and the factors influencing their vector competence. Given that TBDs continue to pose a substantial threat to global health, the review emphasizes the urgency of investigating tick control strategies and advancing vaccine development. Special attention is given to the pivotal role of population genetics in comprehending the genetic diversity of tick populations and providing essential insights into their adaptability to environmental changes.
Collapse
Affiliation(s)
| | | | | | - Shriram Ananganallur Nagarajan
- Division of Vector Biology and Control, Indian Council of Medical Research—Vector Control Research Centre (ICMR-VCRC), Puducherry 605006, India; (N.P.); (R.S.); (M.S.)
| |
Collapse
|
4
|
N S, Kandi V, G SR, Ca J, A H, As A, Kapil C, Palacholla PS. Kyasanur Forest Disease: A Comprehensive Review. Cureus 2024; 16:e65228. [PMID: 39184677 PMCID: PMC11343324 DOI: 10.7759/cureus.65228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Vector-borne microbial diseases are ubiquitous, and their management remains elusive. Such diseases with zoonotic potential result in public health challenges requiring additional control and preventive measures. Despite their cosmopolitan presence, vector-borne infections are neglected due to their endemicity in specified geographical regions. The Kyasanur forest disease (KFD) caused by the Kyasanur forest disease virus (KFDV) is among such diseases transmitted through ticks and localized to India. Despite its prevalence, high transmissibility, and potential to cause fatalities, KFDV has not been given the deserved attention by the governments. Further, KFDV circulates in the rural and wild geographical areas threatening infections to people living in these areas with limited access to medical and healthcare. Therefore, physicians, healthcare workers, and the general population need to understand the KFDV and its ecology, epidemiology, transmission, pathogenesis, laboratory diagnosis, and control and prevention as described comprehensively in this review.
Collapse
Affiliation(s)
- Srilekha N
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Venkataramana Kandi
- Clinical Microbiology, Prathima Institute of Medical Sciences, Karimnagar, IND
| | - Sri Ram G
- General Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Jayashankar Ca
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Harshitha A
- General Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Akshay As
- General Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Challa Kapil
- General Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| | - Pratyusha S Palacholla
- Internal Medicine, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, IND
| |
Collapse
|
5
|
Sidhik S, Santhosh S, Rathinam B. Knowledge, Attitudes, and Practices Regarding Ticks, Tick-Borne Diseases, and Ethnomedicine Among an at-Risk Population in Kerala. Vector Borne Zoonotic Dis 2024; 24:86-94. [PMID: 37844113 DOI: 10.1089/vbz.2023.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Tick and tick-borne diseases (TBDs) are increasing annually, and the study of ticks has gained importance after the outbreak of Kyasanur Forest disease (KFD) in the South Western Ghats of India. Wayanad district of Kerala, with the highest tribal population in South India, is a KFD endemic state, owing to the lack of knowledge, attitude, and practice studies on TBDs and ethnomedicines against ticks. This study was carried out to assess their baseline knowledge, attitude, and ethnomedicinal practice against ticks. A structured questionnaire was used to conduct a survey of 499 tribal members living in forest fringe areas. Logistic regression analysis was performed to identify the factors that influence the knowledge, attitude, and practice of tribes on TBDs. More than 70% of the population visit the forests on a regular basis, with 65.7% of the population regularly exposed to tick bites; however, only 47.7% were aware of TBDs. About 47.4% of the respondents took precautions like therapeutics and natural remedies to avoid tick bites. Ten species of medicinal plant belonging to eight different families have been identified from the survey. The tribal population use these plants to repel ticks as well as treat tick bites. From the study, we concluded that the limited in-depth knowledge displayed by the tribes can be strengthened by conducting community programs such as awareness classes on TBD and its control measures. The ethnobotanicals identified can be used to formulate novel tick repellents in the future.
Collapse
Affiliation(s)
- Sahina Sidhik
- Department of Medical Entomology and Zoology, National Institute of Virology, Alappuzha, Kerala, India
| | - Sithalakshmi Santhosh
- Department of Medical Entomology and Zoology, National Institute of Virology, Alappuzha, Kerala, India
| | - Balasubramanian Rathinam
- Department of Medical Entomology and Zoology, National Institute of Virology, Alappuzha, Kerala, India
| |
Collapse
|
6
|
Yadav P, Dhankher S, Sharma S. Simplified visual detection of Kyasanur Forest Disease virus employing Reverse Transcriptase-Polymerase Spiral Reaction (RT-PSR). Virus Res 2023; 335:199180. [PMID: 37482135 PMCID: PMC10412856 DOI: 10.1016/j.virusres.2023.199180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Among recently prevalent tick-borne infections in India, Kyasanur Forest Virus Disease (KFD) is an important public health concern. During last decade the emergence of cases apart from endemic zone raised concern about case positivity. Early diagnosis is therefore very important in disease management and primary containment. This study, aimed to develop a simplified viral RNA extraction in combination to dry down format of novel isothermal assay for (Reverse Transcription- Polymerase Spiral reaction) specific and rapid identification of Kyasanur Forest Disease Virus targeting viral envelope gene. The one step method was optimized by magnetic bead based viral RNA extraction followed by isothermal RT-PSR assay in heat bath at 63⁰C for 60 minutes. Further, visual results interpretation was done by color change of Hydroxy Naphthol Blue dye. The detection limit of the assay was found 10 RNA copies/rxn with comparable to silica column based viral RNA combined real time qPCR. No cross reactivity was observed with other closely related flaviviruses. The assay was evaluated with clinical samples has shown >99% concordance between two methods. This is the first report of sample extraction coupled isothermal detection of KFD in a simplified manner without a need of any hi-end equipment. The assay developed here has potential to use as an alternate for field-based detection in resource limited settings for KFD.
Collapse
Affiliation(s)
- Pooja Yadav
- Virology Division, Defence Research Development Establishment, Jhansi Road, Gwalior, 474002, India
| | - Suman Dhankher
- Virology Division, Defence Research Development Establishment, Jhansi Road, Gwalior, 474002, India
| | - Shashi Sharma
- Virology Division, Defence Research Development Establishment, Jhansi Road, Gwalior, 474002, India.
| |
Collapse
|
7
|
Bhatia B, Tang-Huau TL, Feldmann F, Hanley PW, Rosenke R, Shaia C, Marzi A, Feldmann H. Single-dose VSV-based vaccine protects against Kyasanur Forest disease in nonhuman primates. SCIENCE ADVANCES 2023; 9:eadj1428. [PMID: 37672587 PMCID: PMC10482351 DOI: 10.1126/sciadv.adj1428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023]
Abstract
Kyasanur Forest disease virus (KFDV) is an endemic arbovirus in western India mainly transmitted by hard ticks of the genus Haemaphysalis. KFDV causes Kyasanur Forest disease (KFD), a syndrome including fever, gastrointestinal symptoms, and hemorrhages. There are no approved treatments, and the efficacy of the only vaccine licensed in India has recently been questioned. Here, we studied the protective efficacy of a vesicular stomatitis virus (VSV)-based vaccine expressing the KFDV precursor membrane and envelope proteins (VSV-KFDV) in pigtailed macaques. VSV-KFDV vaccination was found to be safe and elicited strong humoral and cellular immune responses. A single-dose vaccination reduced KFDV loads and pathology and protected macaques from KFD-like disease. Furthermore, VSV-KFDV elicited cross-reactive neutralizing immune responses to Alkhurma hemorrhagic fever virus, a KFDV variant found in Saudi Arabia.
Collapse
Affiliation(s)
- Bharti Bhatia
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Tsing-Lee Tang-Huau
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Patrick W. Hanley
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| |
Collapse
|
8
|
Kandagalla S, Kumbar B, Novak J. Structural Modifications Introduced by NS2B Cofactor Binding to the NS3 Protease of the Kyasanur Forest Disease Virus. Int J Mol Sci 2023; 24:10907. [PMID: 37446083 DOI: 10.3390/ijms241310907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Kyasanur Forest Disease virus (KFDV), a neglected human pathogenic virus, is a Flavivirus that causes severe hemorrhagic fever in humans. KFDV is transmitted to humans by the bite of the hard tick (Haemaphysalis spinigera), which acts as a reservoir of KFDV. The recent expansion of the endemic area of KFDV is of concern and requires the development of new preventive measures against KFDV. Currently, there is no antiviral therapy against KFDV, and the existing vaccine has limited efficacy. To develop a new antiviral therapy against KFDV, we focused on the nonstructural proteins NS2B and NS3 of KFDV, which are responsible for serine protease activity. Viral proteases have shown to be suitable therapeutic targets in the development of antiviral drugs against many diseases. However, success has been limited in flaviviruses, mainly because of the important features of the active site, which is flat and highly charged. In this context, the present study focuses on the dynamics of NS2B and NS3 to identify potential allosteric sites in the NS2B/NS3 protease of KDFV. To our knowledge, there are no reports on the dynamics of NS2B and NS3 in KFDV, and the crystal structure of the NS2B/NS3 protease of KFDV has not yet been solved. Overall, we created the structure of the NS2B/NS3 protease of KFDV using AlphaFold and performed molecular dynamics simulations with and without NS2B cofactor to investigate structural rearrangements due to cofactor binding and to identify alternative allosteric sites. The identified allosteric site is promising due to its geometric and physicochemical properties and druggability and can be used for new drug development. The applicability of the proposed allosteric binding sites was verified for the best-hit molecules from the virtual screening and MD simulations.
Collapse
Affiliation(s)
- Shivananda Kandagalla
- Laboratory of Computational Modeling of Drugs, Higher Medical & Biological School, South Ural State University, 454080 Chelyabinsk, Russia
| | - Bhimanagoud Kumbar
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bengaluru 560064, Karnataka, India
| | - Jurica Novak
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
- Center for Artificial Intelligence and Cybersecurity, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
9
|
Pattnaik S, Agrawal R, Murmu J, Kanungo S, Pati S. Does the rise in cases of Kyasanur forest disease call for the implementation of One Health in India? IJID REGIONS 2023; 7:18-21. [PMID: 36941826 PMCID: PMC10024134 DOI: 10.1016/j.ijregi.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/14/2023]
Abstract
The viral hemorrhagic illness known as Kyasanur forest disease (KFD), also referred to as monkey fever, is transmitted by ticks. The etiological agent, which was formerly isolated from monkeys, is Kyasanur forest disease virus (KFDV), an RNA virus belonging to the family Flaviviridae. Since 1957, India has reported 400-500 cases annually, with a case fatality rate of 1-3%. Shiroma, Chikkamagalore, Uttara Kannada, Dakshina Kannada, and Udupi are the five regions in Karnataka, India where KFD is highly prevalent, with around 3263 notified cases reported between 2003 and 2012, of which 823 cases were laboratory confirmed. The symptoms of monkey fever can range from mild sickness to severe neurological sequelae. Currently, prophylaxis involves administration of formalin-inactivated tissue culture vaccine. Despite the continuing vaccination programs in endemic areas for KFD, new cases are being reported. The current availability and effectiveness of the vaccine are not enough to provide protective immunity and thus prevent new outbreaks. Our study examined the known literature, knowledge gaps, and host responses associated with KFD. There is a need for robust vector control, public awareness campaigns, mass vaccination programmes, a full understanding of the eco-epidemiological elements of the disease, and implementation of a One Health program. These could all support prevention and management protocols, and thus help to address the issue.
Collapse
|
10
|
Rajak A, Kumar JS, Dhankher S, Sandhya V, Kiran S, Golime R, Dash PK. Development and application of a recombinant Envelope Domain III protein based indirect human IgM ELISA for Kyasanur forest disease virus. Acta Trop 2022; 235:106623. [DOI: 10.1016/j.actatropica.2022.106623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/01/2022]
|
11
|
Harrison JJ, Hobson-Peters J, Bielefeldt-Ohmann H, Hall RA. Chimeric Vaccines Based on Novel Insect-Specific Flaviviruses. Vaccines (Basel) 2021; 9:1230. [PMID: 34835160 PMCID: PMC8623431 DOI: 10.3390/vaccines9111230] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
Vector-borne flaviviruses are responsible for nearly half a billion human infections worldwide each year, resulting in millions of cases of debilitating and severe diseases and approximately 115,000 deaths. While approved vaccines are available for some of these viruses, the ongoing efficacy, safety and supply of these vaccines are still a significant problem. New technologies that address these issues and ideally allow for the safe and economical manufacture of vaccines in resource-poor countries where flavivirus vaccines are in most demand are urgently required. Preferably a new vaccine platform would be broadly applicable to all flavivirus diseases and provide new candidate vaccines for those diseases not yet covered, as well as the flexibility to rapidly pivot to respond to newly emerged flavivirus diseases. Here, we review studies conducted on novel chimeric vaccines derived from insect-specific flaviviruses that provide a potentially safe and simple system to produce highly effective vaccines against a broad spectrum of flavivirus diseases.
Collapse
Affiliation(s)
- Jessica J. Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (J.H.-P.); (H.B.-O.); (R.A.H.)
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (J.H.-P.); (H.B.-O.); (R.A.H.)
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (J.H.-P.); (H.B.-O.); (R.A.H.)
- School of Veterinary Science, University of Queensland, Gatton, QLD 4343, Australia
| | - Roy A. Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (J.H.-P.); (H.B.-O.); (R.A.H.)
| |
Collapse
|
12
|
Arumugam S, Varamballi P. In-silico design of envelope based multi-epitope vaccine candidate against Kyasanur forest disease virus. Sci Rep 2021; 11:17118. [PMID: 34429443 PMCID: PMC8384868 DOI: 10.1038/s41598-021-94488-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Kyasanur forest disease virus (KFDV) causing tick-borne hemorrhagic fever which was earlier endemic to western Ghats, southern India, it is now encroaching into new geographic regions, but there is no approved medicine or effective vaccine against this deadly disease. In this study, we did in-silico design of multi-epitope subunit vaccine for KFDV. B-cell and T-cell epitopes were predicted from conserved regions of KFDV envelope protein and two vaccine candidates (VC1 and VC2) were constructed, those were found to be non-allergic and possess good antigenic properties, also gives cross-protection against Alkhurma hemorrhagic fever virus. The 3D structures of vaccine candidates were built and validated. Docking analysis of vaccine candidates with toll-like receptor-2 (TLR-2) by Cluspro and PatchDock revealed strong affinity between VC1 and TLR2. Ligplot tool was identified the intermolecular hydrogen bonds between vaccine candidates and TLR-2, iMOD server confirmed the stability of the docking complexes. JCAT sever ensured cloning efficiency of both vaccine constructs and in-silico cloning into pET30a (+) vector by SnapGene showed successful translation of epitope region. IMMSIM server was identified increased immunological responses. Finally, multi-epitope vaccine candidates were designed and validated their efficiency, it may pave the way for up-coming vaccine and diagnostic kit development.
Collapse
Affiliation(s)
- Sathishkumar Arumugam
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Prasad Varamballi
- Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
13
|
Maslow JN. Challenges and solutions in the development of vaccines against emerging and neglected infectious diseases. Hum Vaccin Immunother 2019; 15:2230-2234. [PMID: 31644396 PMCID: PMC6816441 DOI: 10.1080/21645515.2019.1661209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Emerging and emergent infectious diseases (EIDs) represent a significant and growing cause of morbidity and mortality with increased potential for pandemics due to globalization and international trade. Challenges remain to the approach toward vaccine development for EIDs. This Special Feature explores areas related to vaccine development and testing, including unique challenges posed in the developing world. Vaccines against multiple pathogens spanning a number of viral families are explored with respect to past activities through to future commercialization. Cost drivers balanced against clinical need are discussed and unique challenges posed by rare diseases are considered.
Collapse
Affiliation(s)
- Joel N. Maslow
- Chief Medical Officer, Gene One Life Science, Inc., Seoul, Korea,Department of Medicine, Professor of Medicine, Morristown Medical Center, Morristown, NJ, USA,CONTACT Joel N. Maslow Chief Medical Officer, Gene One Life Science, Inc., Seoul, Korea; Professor of Medicine, Morristown Medical Center, Morristown, NJ, USA
| |
Collapse
|