1
|
Santos SN, Craveiro N, da Silva FF, Júnior SA, Pacheco JGA, Arcanjo AP, Benvenuto Ribeiro W, Cavalcante YSS, Rosa Filho JS. Reefs of Brachidontes exustus and Petaloconchus spp. as traps and sink for microplastics in tropical coastal areas. MARINE POLLUTION BULLETIN 2025; 214:117706. [PMID: 39987758 DOI: 10.1016/j.marpolbul.2025.117706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/25/2025]
Abstract
Microplastics (MPs) are emerging contaminants in marine environments. This study quantified, chemically identified, and described MPs in reefs of Brachidontes exustus and Petaloconchus spp. on the tropical coast of Brazil. Samples were collected in reefs of northeastern Brazil in the dry (February) and rainy (July) seasons of 2023. MPs were classified (shape and color), measured, and counted. MPs were present in all samples. Most MPs were transparent fibers, with more particles in Brachidontes reefs and during the rainy season. MPs were mainly polystyrene, polypropylene, polyester, and polyamide. The characteristics of reefs and seasonal changes in rainfall are the main drivers of the accumulation of MPs, and the shape and chemical composition of particles reveal that their principal source is probably the textile and apparel industry. The trapping of MPs in Petaloconhus spp. and Brachidontes exustus reefs reveals that biogenic reefs may be a sink for microplastics in tropical coastal areas.
Collapse
Affiliation(s)
- Suelen N Santos
- Laboratório de Bentos, DOCEAN, Universidade Federal de Pernambuco, Av. Prof. Mores, Rego, 1235, CEP 50670-901 Recife, PE, Brazil.
| | - Nykon Craveiro
- Laboratório de Bentos, DOCEAN, Universidade Federal de Pernambuco, Av. Prof. Mores, Rego, 1235, CEP 50670-901 Recife, PE, Brazil
| | - Fausthon Fred da Silva
- Laboratório de Compostos de Coordenação e Química de Superfície, DQ, Universidade Federal da Paraíba, Campus I Lot. Cidade Universitaria, CEP 58051-900, João Pessoa, PB, Brazil
| | - Severino Alves Júnior
- Laboratório de Terras Raras, DQF, Universidade Federal de Pernambuco, Av. Prof. Mores, Rego, 1235, CEP 50670-901 Recife, PE, Brazil
| | - José Geraldo A Pacheco
- Laboratório de Refino e Tecnologias Limpas, LITPEG, Universidade Federal de Pernambuco, Av. Prof. Mores, Rego, 1235, CEP 50670-901 Recife, PE, Brazil
| | - Ana P Arcanjo
- Laboratório de Refino e Tecnologias Limpas, LITPEG, Universidade Federal de Pernambuco, Av. Prof. Mores, Rego, 1235, CEP 50670-901 Recife, PE, Brazil
| | - Wendell Benvenuto Ribeiro
- Laboratório de Bentos, DOCEAN, Universidade Federal de Pernambuco, Av. Prof. Mores, Rego, 1235, CEP 50670-901 Recife, PE, Brazil
| | - Yasmim Samara S Cavalcante
- Laboratório de Bentos, DOCEAN, Universidade Federal de Pernambuco, Av. Prof. Mores, Rego, 1235, CEP 50670-901 Recife, PE, Brazil
| | - José S Rosa Filho
- Laboratório de Bentos, DOCEAN, Universidade Federal de Pernambuco, Av. Prof. Mores, Rego, 1235, CEP 50670-901 Recife, PE, Brazil.
| |
Collapse
|
2
|
Wang Q, Yang X, Chen C, Xing Y, Chitakwa N, Jiang J, Wei H, Ding X, Wu D. Sex-specific effects of aged polystyrene microplastics on hepatic AMPK pathway activation and lipid droplet accumulation in MAFLD mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117963. [PMID: 40058092 DOI: 10.1016/j.ecoenv.2025.117963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/16/2025] [Accepted: 02/23/2025] [Indexed: 03/17/2025]
Abstract
Microplastics (MPs) are environmental pollutants attracting widespread attention due to their environmental omnipresence and potential health effects. MPs undergo ageing in the environment and our previous research found that aged Polystyrene microplastics (PS-MPs) affected lipid metabolism in healthy female mice, but not males. In this study, we examined the effects of aged PS-MP exposure on lipid metabolism in mice with Metabolic Associated Fatty Liver Disease (MAFLD). 14 female and 14 male mice were furnished with a high-fat diet (HFD) for eight weeks to create MAFLD model mice. They were then orally administered aged PS-MPs for four weeks, and changes in the AMP-activated protein kinase signalling pathway were examined in order to determine PS-MP's effect on hepatic metabolism. The outcomes showed that though serum estradiol, inflammatory gene expression and ROS levels increased significantly in both male and female HFD-aged PS-MP groups, hepatic steatosis was attenuated only in the female group. Furthermore, serum ERα, ERβ, AMPKα, acetyl-CoA carboxylase, sterol regulatory element binding protein-1c, and Fas expressions were significantly increased in the MAFLD mice groups compared to the control group. Combining serum E2 levels, AMPK pathway changes, oxidative stress markers, and inflammatory gene levels, aged PS-MPs may stimulate E2 production and mobilize the liver AMPK signalling pathway of both male and female MAFLD mice. However, lipid metabolism is only affected in female MAFLD mice, suggesting other possible mechanisms besides the AMPK pathway may be at play. These results provide a new perspective on the potential health effects of MP exposure in individuals with metabolic disorders such as MAFLD.
Collapse
Affiliation(s)
- Qing Wang
- Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaona Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Disease Prevention and Control Center of Linping District, Hangzhou 311100, China
| | - Chuan Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ying Xing
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Natasha Chitakwa
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jing Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongcheng Wei
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinliang Ding
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China.
| | - Di Wu
- Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
3
|
Nehmeh B, Haydous F, Ali H, Hdaifi A, Abdlwahab B, Orm MB, Abrahamian Z, Akoury E. Emerging contaminants in the Mediterranean Sea endangering Lebanon's Palm Islands Natural Reserve. RSC Adv 2025; 15:2034-2044. [PMID: 39845109 PMCID: PMC11751702 DOI: 10.1039/d4ra09017a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
The Mediterranean Sea is an intercontinental marine environment renowned for its biodiversity and ecological significance. However, it is also one of the most polluted seas globally with significant levels of microplastics and heavy metals among other emerging contaminants. In Lebanon, inadequate waste management infrastructure and unregulated industrial discharges have exacerbated water quality deterioration by introducing these complex contaminants into surface and seawater. The Palm Islands Natural Reserve in Lebanon is a UNESCO-designated marine protected area and home to endangered species. However, the reserve faces significant threats from pollution, including heavy metals and microplastics, exacerbated by nearby Tripoli's escalating contamination. Plasticisers, particularly phthalates, are recognized for their hormone-disrupting effects, and heavy metals like cadmium, lead, and arsenic pose severe eco-toxicological risks. This study investigates the levels of heavy metals and phthalates in water and sediments from the Palm Islands. Samples were collected from different locations within the reserve, and heavy metals and phthalates were detected, including chromium (13.58 to 19.28 μg L-1), arsenic (2.05 to 5.04 μg L-1), cadmium (1.27 to 3.04 μg L-1), and lead (0.92 to 2.88 μg L-1). Cadmium levels exceeded the permissible limits set by environmental regulatory bodies, highlighting an urgent pollution problem. Phthalates, including DEP and DEHP, were also detected in concentrations of 7.12-10.25 μg L-1 for DEP and 38.47-56.12 μg L-1 for DEHP raising concerns over their potential eco-toxicological impact on marine species. Our research underscores the need for comprehensive environmental monitoring, better waste management infrastructure, and stricter regulatory measures to address pollution in Lebanon's coastal ecosystems.
Collapse
Affiliation(s)
- Bilal Nehmeh
- Department of Physical Sciences, School of Arts and Sciences, Lebanese American University Beirut 1102-2801 Lebanon +961 1 786456, ext. 3950
| | - Fatima Haydous
- Department of Physical Sciences, School of Arts and Sciences, Lebanese American University Beirut 1102-2801 Lebanon +961 1 786456, ext. 3950
| | - Hiba Ali
- Department of Physical Sciences, School of Arts and Sciences, Lebanese American University Beirut 1102-2801 Lebanon +961 1 786456, ext. 3950
- Université Lille Nord de France, USTL Cite Scientifique 59652 Villeneuve d'Ascq Cedex France
| | - Adonis Hdaifi
- Department of Physical Sciences, School of Arts and Sciences, Lebanese American University Beirut 1102-2801 Lebanon +961 1 786456, ext. 3950
| | - Bayan Abdlwahab
- Department of Physical Sciences, School of Arts and Sciences, Lebanese American University Beirut 1102-2801 Lebanon +961 1 786456, ext. 3950
| | - Mariam Bou Orm
- Department of Physical Sciences, School of Arts and Sciences, Lebanese American University Beirut 1102-2801 Lebanon +961 1 786456, ext. 3950
| | - Zohrab Abrahamian
- Department of Physical Sciences, School of Arts and Sciences, Lebanese American University Beirut 1102-2801 Lebanon +961 1 786456, ext. 3950
- US-Middle East Partnership Initiative (MEPI) Tomorrow's Leaders Program USA
| | - Elias Akoury
- Department of Physical Sciences, School of Arts and Sciences, Lebanese American University Beirut 1102-2801 Lebanon +961 1 786456, ext. 3950
| |
Collapse
|
4
|
Costa TB, Matias PMC, Sharma M, Murtinho D, Rosa DS, Valente AJM. Recent Advances on Starch-Based Adsorbents for Heavy Metal and Emerging Pollutant Remediation. Polymers (Basel) 2024; 17:15. [PMID: 39795417 PMCID: PMC11723384 DOI: 10.3390/polym17010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Starch is one of the most abundant polysaccharides in nature and has a high potential for application in several fields, including effluent treatment as an adsorbent. Starch has a unique structure, with zones of different crystallinity and a glycosidic structure containing hydroxyl groups. This configuration allows a wide range of interactions with pollutants of different degrees of hydrophilicity, which includes from hydrogen bonding to hydrophobic interactions. This review article aims to survey the use of starch in the synthesis of diverse adsorbents, in forms from nanoparticles to blends, and evaluates their performance in terms of amount of pollutant adsorbed and removal efficiency. A critical analysis of the materials developed, and the results obtained is also presented. Finally, the review provides an outlook on how this polysaccharide can be used more effectively and efficiently in remediation efforts in the near future.
Collapse
Affiliation(s)
- Talles B. Costa
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (T.B.C.); (P.M.C.M.); (D.M.)
- Engineering, Modeling, and Applied Social Sciences Center (CECS), Federal University of ABC, Santo André 09280-560, SP, Brazil;
| | - Pedro M. C. Matias
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (T.B.C.); (P.M.C.M.); (D.M.)
| | - Mohit Sharma
- CERES, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal;
| | - Dina Murtinho
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (T.B.C.); (P.M.C.M.); (D.M.)
| | - Derval S. Rosa
- Engineering, Modeling, and Applied Social Sciences Center (CECS), Federal University of ABC, Santo André 09280-560, SP, Brazil;
| | - Artur J. M. Valente
- CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; (T.B.C.); (P.M.C.M.); (D.M.)
| |
Collapse
|
5
|
Ridall A, Maciute A, Nascimento FJA, Bonaglia S, Ingels J. Microplastic-induced shifts in bioturbation and oxygen penetration depth in subtidal sediments. MARINE POLLUTION BULLETIN 2024; 209:117074. [PMID: 39413475 DOI: 10.1016/j.marpolbul.2024.117074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024]
Abstract
Interstitial meiofauna, organisms smaller than 500 μm that live between sediment grains, are the most abundant animals on Earth. They play crucial roles in biogeochemical cycles, but their responses to microplastics (MPs) remain understudied. Due to their size, meiofauna may be particularly vulnerable to MPs. We quantified how realistic levels of MP contamination affect bioturbation, oxygen penetration depth (OPD), and diffusive oxygen uptake (DOU) in sediment mesocosms over thirteen days. Bioturbation depth and OPD increased, while DOU decreased across all treatments. However, sediments containing MPs had lower bioturbation depth and slightly higher OPD compared to controls. The reduction in bioturbation was likely due to meiofauna stress, while the highest MP contamination caused increased bioturbation depth, likely due to evasion responses. Increased OPD over time was likely due to reduced labile organic matter. This study highlights how bioturbation, OPD, and DOU shift with MP pollution, confirming MPs' impacts on ecosystem functions.
Collapse
Affiliation(s)
- Aaron Ridall
- Department of Biological Science, Florida State University, 319 Stadium Dr., Tallahassee, FL 32306, USA; Florida State University Coastal and Marine Laboratory, 3618 Coastal Highway 98, St Teresa, FL 32358, USA.
| | - Adele Maciute
- Department of Marine Science, University of Gothenburg, Gothenburg 41390, Sweden.
| | - Francisco J A Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm 10691, Sweden.
| | - Stefano Bonaglia
- Department of Marine Science, University of Gothenburg, Gothenburg 41390, Sweden.
| | - Jeroen Ingels
- Florida State University Coastal and Marine Laboratory, 3618 Coastal Highway 98, St Teresa, FL 32358, USA.
| |
Collapse
|
6
|
Nathanael RJ, Adyanis LN, Oginawati K. The last decade epidemiologic concern of drinking water contaminants of emerging concern (CECs) in Asian Countries: A scoping review. Heliyon 2024; 10:e39236. [PMID: 39640600 PMCID: PMC11620247 DOI: 10.1016/j.heliyon.2024.e39236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
With the rapid industrialization and urbanization in Asian countries, the challenge of rising emerging contaminants in the environment, including the water cycle, has become more pronounced. Consequently, the presence of CECs in drinking water systems is inevitable due to their ubiquitous nature in aquatic environments. This scoping review aims to identify epidemiological concerns regarding drinking water CECs in Asian countries over the past decade by describing the types of assessed CECs, their associated health effects, and identifying gaps and future research prospects through a summary of relevant studies. Searches were conducted on PubMed and Scopus up to February 29, 2024. Included were epidemiological studies from the past 10 years (since January 2014) in Asian countries that assessed emerging contaminants in drinking water through direct measurement or analysis as factors. From an initial pool of 3198 results, 15 relevant studies were selected. These studies assessed various types of CECs, including disinfection byproducts (n = 10), endocrine disruptors (n = 2), pesticides (n = 2), and a protozoan pathogen (n = 1). The meticulous assessment of CECs and associated health outcomes in Asian epidemiological studies over the past decade has been deemed inadequate to address the wide range of ubiquitous CECs in drinking water and their potential health effects that have not yet been addressed. While not the sole objective, the primary aim of epidemiological studies is to inform policy decisions and increase awareness among the public and policymakers. Therefore, researchers in Asian countries, particularly in environmental and public health fields, should prioritize the development of research in this area by exploring more CECs type and associated health outcomes.
Collapse
Affiliation(s)
- Rinaldy Jose Nathanael
- Environmental Engineering Program, Faculty of Science and Technology, Airlangga University, Surabaya, 60115, Indonesia
| | - Latonia Nur Adyanis
- Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, Taiwan, 320314
| | - Katharina Oginawati
- Environmental Management Technology Research Group, Department of Environmental Engineering, Faculty of Civil and Environmental Engineering, Bandung Institute of Technology, Bandung, 40132, Indonesia
| |
Collapse
|
7
|
Savuca A, Curpan AS, Hritcu LD, Buzenchi Proca TM, Balmus IM, Lungu PF, Jijie R, Nicoara MN, Ciobica AS, Solcan G, Solcan C. Do Microplastics Have Neurological Implications in Relation to Schizophrenia Zebrafish Models? A Brain Immunohistochemistry, Neurotoxicity Assessment, and Oxidative Stress Analysis. Int J Mol Sci 2024; 25:8331. [PMID: 39125900 PMCID: PMC11312823 DOI: 10.3390/ijms25158331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
The effects of exposure to environmental pollutants on neurological processes are of increasing concern due to their potential to induce oxidative stress and neurotoxicity. Considering that many industries are currently using different types of plastics as raw materials, packaging, or distribution pipes, microplastics (MPs) have become one of the biggest threats to the environment and human health. These consequences have led to the need to raise the awareness regarding MPs negative neurological effects and implication in neuropsychiatric pathologies, such as schizophrenia. The study aims to use three zebrafish models of schizophrenia obtained by exposure to ketamine (Ket), methionine (Met), and their combination to investigate the effects of MP exposure on various nervous system structures and the possible interactions with oxidative stress. The results showed that MPs can interact with ketamine and methionine, increasing the severity and frequency of optic tectum lesions, while co-exposure (MP+Met+Ket) resulted in attenuated effects. Regarding oxidative status, we found that all exposure formulations led to oxidative stress, changes in antioxidant defense mechanisms, or compensatory responses to oxidative damage. Met exposure induced structural changes such as necrosis and edema, while paradoxically activating periventricular cell proliferation. Taken together, these findings highlight the complex interplay between environmental pollutants and neurotoxicants in modulating neurotoxicity.
Collapse
Affiliation(s)
- Alexandra Savuca
- Doctoral School of Geosciences, Faculty of Geography and Geology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania;
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania; (A.-S.C.); (P.F.L.)
| | - Alexandrina-Stefania Curpan
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania; (A.-S.C.); (P.F.L.)
| | - Luminita Diana Hritcu
- Internal Medicine Clinic, University of Life Sciences “Ion Ionescu de la Brad”, Mihail Sadoveanu Street, No. 3, 700490 Iasi, Romania;
| | - Teodora Maria Buzenchi Proca
- Faculty of Veterinary Medicine, University of Life Sciences “Ion Ionescu de la Brad”, Mihail Sadoveanu Street, No. 3, 700490 Iasi, Romania; (T.M.B.P.); (G.S.); (C.S.)
| | - Ioana-Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania;
| | - Petru Fabian Lungu
- Doctoral School of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania; (A.-S.C.); (P.F.L.)
| | - Roxana Jijie
- Research Center on Advanced Materials and Technologies, Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania;
| | - Mircea Nicusor Nicoara
- Doctoral School of Geosciences, Faculty of Geography and Geology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania;
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania;
| | - Alin Stelian Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, 700505 Iași, Romania;
- Academy of Romanian Scientists, 3 Ilfov, 050044 Bucharest, Romania
- Center of Biomedical Research, Romanian Academy, Iasi Branch, Teodor Codrescu 2, 700481 Iasi, Romania
- Preclinical Department, Apollonia University, 700511 Iasi, Romania
| | - Gheorghe Solcan
- Faculty of Veterinary Medicine, University of Life Sciences “Ion Ionescu de la Brad”, Mihail Sadoveanu Street, No. 3, 700490 Iasi, Romania; (T.M.B.P.); (G.S.); (C.S.)
| | - Carmen Solcan
- Faculty of Veterinary Medicine, University of Life Sciences “Ion Ionescu de la Brad”, Mihail Sadoveanu Street, No. 3, 700490 Iasi, Romania; (T.M.B.P.); (G.S.); (C.S.)
| |
Collapse
|
8
|
Cao NDT, Vo DHT, Pham MDT, Nguyen VT, Nguyen TB, Le LT, Mukhtar H, Nguyen HV, Visvanathan C, Bui XT. Microplastics contamination in water supply system and treatment processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171793. [PMID: 38513854 DOI: 10.1016/j.scitotenv.2024.171793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/04/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Due to global demand, millions of tons of plastics have been widely consumed, resulting in the widespread entry of vast amounts of microplastic particles into the environment. The presence of microplastics (MPs) in water supplies, including bottled water, has undergone systematic review, assessing the potential impacts of MPs on humans through exposure assessment. The main challenges associated with current technologies lie in their ability to effectively treat and completely remove MPs from drinking and supply water. While the risks posed by MPs upon entering the human body have not yet been fully revealed, there is a predicted certainty of negative impacts. This review encompasses a range of current technologies, spanning from basic to advanced treatments and varying in scale. However, given the frequent detection of MPs in drinking and bottled water, it becomes imperative to implement comprehensive management strategies to address this issue effectively. Consequently, integrating current technologies with management options such as life-cycle assessment, circular economy principles, and machine learning is crucial to eliminating this pervasive problem.
Collapse
Affiliation(s)
- Ngoc-Dan-Thanh Cao
- Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Dieu-Hien Thi Vo
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam
| | - Mai-Duy-Thong Pham
- Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Van-Truc Nguyen
- Faculty of Environment, Saigon University, Ho Chi Minh City 700000, Viet Nam
| | - Thanh-Binh Nguyen
- College of Hydrosphere Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Road, Nanzih District, Kaohsiung City 81157, Taiwan
| | - Linh-Thy Le
- Department of Environmental Health, Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City (UMP HCMC), 217 Hong Bang street, District 5th, Ho Chi Minh City, Viet Nam
| | - Hussnain Mukhtar
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Huu-Viet Nguyen
- Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Chettiyappan Visvanathan
- Department of Civil and Environmental Engineering, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Xuan-Thanh Bui
- Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
9
|
Guerrieri N, Mazzini S, Borgonovo G. Food Plants and Environmental Contamination: An Update. TOXICS 2024; 12:365. [PMID: 38787144 PMCID: PMC11125986 DOI: 10.3390/toxics12050365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Food plants are the basis of human nutrition, but, in contaminated places, they can uptake contaminants. Environmental contamination and climate change can modify food quality; generally, they have a negative impact on and imply risks to human health. Heavy metals, like lead, arsenic, cadmium, and chromium, can be present at various environmental levels (soil, water, and atmosphere), and they are widely distributed in the world. Food plants can carry out heavy metal bioaccumulation, a defense pathway for plants, which is different for every plant species. Accumulation is frequent in the roots and the leaves, and heavy metals can be present in fruits and seeds; As and Cd are always present. In addition, other contaminants can bioaccumulate in food plants, including emerging contaminants, like persistent organic pollutants (POPs), pesticides, and microplastics. In food plants, these are present in the roots but also in the leaves and fruits, depending on their chemical structure. The literature published in recent years was examined to understand the distribution of contaminants among food plants. In the literature, old agronomical practices and new integrated technology to clean the water, control the soil, and monitor the crops have been proposed to mitigate contamination and produce high food quality and high food safety.
Collapse
Affiliation(s)
- Nicoletta Guerrieri
- National Research Council, Water Research Institute, Largo Tonolli 50, I-28922 Verbania, Italy
| | - Stefania Mazzini
- DeFENS Department of Food, Environmental and Nutritional Sciences, via Celoria 2, I-20133 Milano, Italy; (S.M.)
| | - Gigliola Borgonovo
- DeFENS Department of Food, Environmental and Nutritional Sciences, via Celoria 2, I-20133 Milano, Italy; (S.M.)
| |
Collapse
|
10
|
Sun F, Feng T, Xu Y, Zeng X, Wu J, Wang-Pruski G, Zhang Z. Combined effects of micron-sized polyvinyl chloride particles and copper on seed germination of perilla. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:193. [PMID: 38696028 DOI: 10.1007/s10653-024-01976-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/02/2024] [Indexed: 06/17/2024]
Abstract
Microplastics (MPs) and copper (Cu) pollution coexist widely in cultivation environment. In this paper, polyvinyl chloride (PVC) were used to simulate the MPs exposure environment, and the combined effects of MPs + Cu on the germination of perilla seeds were analyzed. The results showed that low concentrations of Cu promoted seed germination, while medium to high concentrations exhibited inhibition and deteriorated the morphology of germinated seeds. The germination potential, germination index and vitality index of 8 mg • L-1 Cu treatment group with were 23.08%, 76.32% and 65.65%, respectively, of the control group. The addition of low concentration PVC increased the above indicators by 1.27, 1.15, and 1.35 times, respectively, while high concentration addition led to a decrease of 65.38%, 82.5%, and 66.44%, respectively. The addition of low concentration PVC reduced the amount of PVC attached to radicle. There was no significant change in germination rate. PVC treatment alone had no significant effect on germination. MPs + Cu inhibited seed germination, which was mainly reflected in the deterioration of seed morphology. Cu significantly enhanced antioxidant enzyme activity, increased reactive oxygen species (ROS) and MDA content. The addition of low concentration PVC enhanced SOD activity, reduced MDA and H2O2 content. The SOD activity of the Cu2+8 + PVC10 group was 4.05 and 1.35 times higher than that of the control group and Cu treatment group at their peak, respectively. At this time, the CAT activity of the Cu2+8 + PVC5000 group increased by 2.66 and 1.42 times, and the H2O2 content was 2.02 times higher than the control. Most of the above indicators reached their peak at 24 h. The activity of α-amylase was inhibited by different treatments, but β-amylase activity, starch and soluble sugar content did not change regularly. The research results can provide new ideas for evaluating the impact of MPs + Cu combined pollution on perilla and its potential ecological risk.
Collapse
Affiliation(s)
- Fenghang Sun
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, No.15 Shangxiadian Road, Cangshan District, Fuzhou City, 350002, Fujian Province, China
| | - Taojie Feng
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, No.15 Shangxiadian Road, Cangshan District, Fuzhou City, 350002, Fujian Province, China
- Fujian Yongan Vegetable Science and Technology Backyard, Sanming, 366000, China
| | - Yuxuan Xu
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, No.15 Shangxiadian Road, Cangshan District, Fuzhou City, 350002, Fujian Province, China
- Fujian Yongan Vegetable Science and Technology Backyard, Sanming, 366000, China
| | - Xiaolei Zeng
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, No.15 Shangxiadian Road, Cangshan District, Fuzhou City, 350002, Fujian Province, China
| | - Jinghua Wu
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, No.15 Shangxiadian Road, Cangshan District, Fuzhou City, 350002, Fujian Province, China.
| | - Gefu Wang-Pruski
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, No.15 Shangxiadian Road, Cangshan District, Fuzhou City, 350002, Fujian Province, China
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Zhizhong Zhang
- Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, No.15 Shangxiadian Road, Cangshan District, Fuzhou City, 350002, Fujian Province, China.
| |
Collapse
|