1
|
Tang W, Zhou W, Ji M, Yang X. Role of STING in the treatment of non-small cell lung cancer. Cell Commun Signal 2024; 22:202. [PMID: 38566036 PMCID: PMC10986073 DOI: 10.1186/s12964-024-01586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a prevalent form of lung cancer. Patients with advanced NSCLC are currently being treated with various therapies, including traditional radiotherapy, chemotherapy, molecular targeted therapies and immunotherapy. However, a considerable proportion of advance patients who cannot benefit from them. Consequently, it is essential to identify a novel research target that offers an encouraging perspective. The stimulator of interferon genes (STING) has emerged as such a target. At present, it is confirmed that activating STING in NSCLC tumor cells can impede the proliferation and metastasis of dormant tumor cells. This review focuses on the role of STING in NSCLC treatment and the factors influencing its activation. Additionally, it explores the correlation between STING activation and diverse therapy modalities for NSCLC, such as radiotherapy, chemotherapy, molecular targeted therapies and immunotherapy. Furthermore, it proposes the prospect of innovative therapy methods involving nanoparticles, with the aim of using the features of STING to develop more strategies for NSCLC therapy.
Collapse
Affiliation(s)
- Wenhua Tang
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Wenjie Zhou
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Mei Ji
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Xin Yang
- Departments of Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| |
Collapse
|
2
|
Morello S, Cicala C. Ecto-5'-nucleotidase (CD73): an emerging role as prognostic factor in allergic sensitization. Inflamm Res 2024; 73:111-115. [PMID: 38087076 DOI: 10.1007/s00011-023-01820-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 01/10/2024] Open
Abstract
Over the years, the importance of the epithelium in the assessment of allergic sensitization and development of allergic diseases has increased. Sensitization to allergens appears to be influenced by genetic and external environmental factors. However, not all subjects exposed to environmental factors that damage epithelial cells suffer from allergic diseases. On this basis, identifying the signaling pathways that characterize the different phenotypes and endotypes of allergy is of high priority for a successful personalized therapy. Ecto-5'-nucleotidase/CD73 is a membrane-bound enzyme responsible for extracellular adenosine accumulation from AMP derived, in turn, from the hydrolysis of extracellular ATP. Current knowledge suggests that CD73 expression and enzymatic activity at epithelial barriers would be of fundamental importance to control the first defense against allergens, by preserving both physical and immunological epithelial barrier functions. Here, we highlight evidence for a crucial role of CD73 in features of allergic sensitization and the potential of this enzyme as prognostic marker and target of therapeutic intervention.
Collapse
Affiliation(s)
- Silvana Morello
- Department of Pharmacy, University of Salerno, 84084, Fisciano, Italy.
| | - Carla Cicala
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131, Naples, Italy.
| |
Collapse
|
3
|
Channar PA, Bano S, Hassan S, Perveen F, Saeed A, Mahesar PA, Khan IA, Iqbal J. Appraisal of novel azomethine-thioxoimidazolidinone conjugates as ecto-5'-nucleotidase inhibitors: synthesis and molecular docking studies. RSC Adv 2022; 12:17596-17606. [PMID: 35765454 PMCID: PMC9194930 DOI: 10.1039/d2ra02675a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/07/2022] [Indexed: 12/21/2022] Open
Abstract
Purinergic signaling is regulated by a group of extracellular enzymes called ectonucleotidases. One of its members i.e., ecto-5′-nucleotidase (h-e5′NT) is involved in the final step of the enzymatic hydrolysis cascade that is the conversion of adenosine monophosphate (AMP) to adenosine and therefore, involves the regulation of adenosine level in extracellular space. The overexpression of h-e5′NT has been observed in various pathological conditions such as hypoxia, inflammation and cancers, and led to various complications. Hence, the identification of a potent as well as selective inhibitor of h-e5′NT is of greater importance in therapeutic treatment of various diseases. Azomethine-thioxoimidazolidinone derivatives were studied for their inhibition potential against e5′NT enzyme along with cytotoxic potential against cancer cell lines possessing overexpression of e5′NT enzyme. The derivative (E)-3-((4-((3-methoxybenzyl)oxy)benzylidene)amino)-2-thioxoimidazolidin-4-one (4g) displayed selective and significant inhibition towards h-e5′NT with an IC50 value of 0.23 ± 0.08 μM. While two other derivatives i.e., (E)-3-(((5-bromothiophen-2-yl)methylene)amino)-2-thioxoimidazolidin-4-one (4b) and 2-thioxo-3-((3,4,5-trimethoxybenzylidene)amino)imidazolidin-4-one (4e), exhibited non-selective potent inhibitory behavior against both human and rat enzymes. Moreover, these derivatives (4b, 4e and 4g) were further investigated for their effect on the expression of h-e5′NT using quantitative real time polymerase chain reaction. Additionally, molecular docking and DFT studies were also performed to determine the putative binding mode of potent inhibitors within the enzyme active site. HOMO, LUMO, ΔE, and molecular electrostatic potential maps were computed by DFT and the charge transfer regions within the molecules were identified to find out the regions for electrophilic and nucleophilic attack. Azomethine–thioxoimidazolidinone conjugates as ecto-5′-nucleotidase inhibitors.![]()
Collapse
Affiliation(s)
- Pervaiz Ali Channar
- Department of Chemistry, Quaid-I-Azam University Islamabad 45320 Pakistan .,Department of Basic Sciences, Mathematics and Humanities, Dawood University of Engineering and Technology Karachi 74800 Pakistan
| | - Sehrish Bano
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus Abbottabad-22060 Pakistan
| | - Sidra Hassan
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus Abbottabad-22060 Pakistan
| | - Fouzia Perveen
- Research Center for Modeling and Simulations, National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University Islamabad 45320 Pakistan
| | - Parvez Ali Mahesar
- Institute of Chemistry, Shah Abdul Latif University Khairpur 66020 Pakistan
| | - Imtiaz Ali Khan
- Department of Entomology, Agricultural University Peshawar 25130 Khyber Pakhtunkhwa Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus Abbottabad-22060 Pakistan
| |
Collapse
|
4
|
Koszalka P, Kutryb-Zajac B, Mierzejewska P, Tomczyk M, Wietrzyk J, Serafin PK, Smolenski RT, Slominska EM. 4-Pyridone-3-carboxamide-1-β-D-ribonucleoside (4PYR)—A Novel Oncometabolite Modulating Cancer-Endothelial Interactions in Breast Cancer Metastasis. Int J Mol Sci 2022; 23:ijms23105774. [PMID: 35628582 PMCID: PMC9145394 DOI: 10.3390/ijms23105774] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
The accumulation of specific metabolic intermediates is known to promote cancer progression. We analyzed the role of 4-pyridone-3-carboxamide-1-β-D-ribonucleoside (4PYR), a nucleotide metabolite that accumulates in the blood of cancer patients, using the 4T1 murine in vivo breast cancer model, and cultured cancer (4T1) and endothelial cells (ECs) for in vitro studies. In vivo studies demonstrated that 4PYR facilitated lung metastasis without affecting primary tumor growth. In vitro studies demonstrated that 4PYR affected extracellular adenine nucleotide metabolism and the intracellular energy status in ECs, shifting catabolite patterns toward the accumulation of extracellular inosine, and leading to the increased permeability of lung ECs. These changes prevailed over the direct effect of 4PYR on 4T1 cells that reduced their invasive potential through 4PYR-induced modulation of the CD73-adenosine axis. We conclude that 4PYR is an oncometabolite that affects later stages of the metastatic cascade by acting specifically through the regulation of EC permeability and metabolic controls of inflammation.
Collapse
Affiliation(s)
- Patrycja Koszalka
- Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdansk, 80-210 Gdansk, Poland;
- Correspondence: (P.K.); (E.M.S.); Tel.: +48-58-349-1410 (P.K.); +48-58-349-1006 (E.M.S.)
| | - Barbara Kutryb-Zajac
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (B.K.-Z.); (P.M.); (M.T.); (R.T.S.)
| | - Paulina Mierzejewska
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (B.K.-Z.); (P.M.); (M.T.); (R.T.S.)
| | - Marta Tomczyk
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (B.K.-Z.); (P.M.); (M.T.); (R.T.S.)
| | - Joanna Wietrzyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| | - Pawel K. Serafin
- Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (B.K.-Z.); (P.M.); (M.T.); (R.T.S.)
| | - Ewa M. Slominska
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland; (B.K.-Z.); (P.M.); (M.T.); (R.T.S.)
- Correspondence: (P.K.); (E.M.S.); Tel.: +48-58-349-1410 (P.K.); +48-58-349-1006 (E.M.S.)
| |
Collapse
|
5
|
Kotulová J, Hajdúch M, Džubák P. Current Adenosinergic Therapies: What Do Cancer Cells Stand to Gain and Lose? Int J Mol Sci 2021; 22:12569. [PMID: 34830449 PMCID: PMC8617980 DOI: 10.3390/ijms222212569] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
A key objective in immuno-oncology is to reactivate the dormant immune system and increase tumour immunogenicity. Adenosine is an omnipresent purine that is formed in response to stress stimuli in order to restore physiological balance, mainly via anti-inflammatory, tissue-protective, and anti-nociceptive mechanisms. Adenosine overproduction occurs in all stages of tumorigenesis, from the initial inflammation/local tissue damage to the precancerous niche and the developed tumour, making the adenosinergic pathway an attractive but challenging therapeutic target. Many current efforts in immuno-oncology are focused on restoring immunosurveillance, largely by blocking adenosine-producing enzymes in the tumour microenvironment (TME) and adenosine receptors on immune cells either alone or combined with chemotherapy and/or immunotherapy. However, the effects of adenosinergic immunotherapy are not restricted to immune cells; other cells in the TME including cancer and stromal cells are also affected. Here we summarise recent advancements in the understanding of the tumour adenosinergic system and highlight the impact of current and prospective immunomodulatory therapies on other cell types within the TME, focusing on adenosine receptors in tumour cells. In addition, we evaluate the structure- and context-related limitations of targeting this pathway and highlight avenues that could possibly be exploited in future adenosinergic therapies.
Collapse
Affiliation(s)
| | | | - Petr Džubák
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic; (J.K.); (M.H.)
| |
Collapse
|
6
|
Alcedo KP, Bowser JL, Snider NT. The elegant complexity of mammalian ecto-5'-nucleotidase (CD73). Trends Cell Biol 2021; 31:829-842. [PMID: 34116887 PMCID: PMC8448938 DOI: 10.1016/j.tcb.2021.05.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022]
Abstract
Purinergic signaling is a fundamental mechanism used by all cells to control their internal activities and interact with the environment. A key component of the purinergic system, the enzyme ecto-5'-nucleotidase (CD73) catalyzes the last step in the extracellular metabolism of ATP to form adenosine. Efforts to harness the therapeutic potential of endogenous adenosine in cancer have culminated in the ongoing clinical development of multiple CD73-targeting antibodies and small-molecule inhibitors. However, recent studies are painting an increasingly complex picture of CD73 mRNA and protein regulation and function in cellular homeostasis, physiological adaptation, and disease development. This review discusses the latest conceptual and methodological advances that are helping to unravel the complexity of this important enzyme that was identified nearly 90 years ago.
Collapse
Affiliation(s)
- Karel P Alcedo
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica L Bowser
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Natasha T Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
7
|
Purinergic Signaling in the Hallmarks of Cancer. Cells 2020; 9:cells9071612. [PMID: 32635260 PMCID: PMC7407645 DOI: 10.3390/cells9071612] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is a complex expression of an altered state of cellular differentiation associated with severe clinical repercussions. The effort to characterize this pathological entity to understand its underlying mechanisms and visualize potential therapeutic strategies has been constant. In this context, some cellular (enhanced duplication, immunological evasion), metabolic (aerobic glycolysis, failure in DNA repair mechanisms) and physiological (circadian disruption) parameters have been considered as cancer hallmarks. The list of these hallmarks has been growing in recent years, since it has been demonstrated that various physiological systems misfunction in well-characterized ways upon the onset and establishment of the carcinogenic process. This is the case with the purinergic system, a signaling pathway formed by nucleotides/nucleosides (mainly adenosine triphosphate (ATP), adenosine (ADO) and uridine triphosphate (UTP)) with their corresponding membrane receptors and defined transduction mechanisms. The dynamic equilibrium between ATP and ADO, which is accomplished by the presence and regulation of a set of ectonucleotidases, defines the pro-carcinogenic or anti-cancerous final outline in tumors and cancer cell lines. So far, the purinergic system has been recognized as a potential therapeutic target in cancerous and tumoral ailments.
Collapse
|
8
|
Miyazaki M, Aoki M, Okado Y, Koga K, Hamasaki M, Nakagawa T, Sakata T, Nabeshima K. Highly expressed tumoral emmprin and stromal CD73 predict a poor prognosis for external auditory canal carcinoma. Cancer Sci 2020; 111:3045-3056. [PMID: 32473077 PMCID: PMC7419056 DOI: 10.1111/cas.14508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022] Open
Abstract
Squamous cell carcinoma of the external auditory canal (SCC-EAC) is rare and has a poor prognosis. The SCC-EAC cases with high-grade tumor budding (TB) or poorly differentiated clusters (PDCs) are associated with shorter survival than those with low-grade TB or PDCs. Extracellular matrix metalloproteinase inducer (emmprin) is a protein expressed in tumor cells that stimulates the production of MMP-2 by stromal fibroblasts to facilitate tumor invasion. Recently, we reported that emmprin forms a complex with CD73 to regulate MMP-2 production from fibroblasts in vitro. Here, we examined the association of emmprin and CD73 expression with TB or PDCs as well as with survival in 34 biopsy specimens of SCC-EAC patients. High tumoral emmprin expression was associated with high-grade TB, whereas high stromal CD73 expression was associated with high-grade PDCs. Furthermore, concurrent elevated expression of tumoral emmprin and stromal CD73 was determined to be an independent poor prognostic factor. In immunoprecipitation analyses, complex formation between emmprin and CD73 was demonstrated in vitro. Production of MMP-2 from fibroblasts was more abundant when cocultured with tumor cells than from fibroblasts cultured alone. Furthermore, MMP-2 production was reduced by the transfection of CD73 siRNA in fibroblasts cocultured with tumor cells. The colocalization of emmprin and CD73 was enhanced in not only the peripheral cells of the tumor cell clusters that interact with fibroblasts but also in the cells of intratumor clusters. Overall, this study provides novel insights into the roles of emmprin, CD73, and MMP-2 in tumor invasiveness.
Collapse
Affiliation(s)
- Masaru Miyazaki
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan.,Department of Otorhinolaryngology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| | - Mikiko Aoki
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| | - Yasuko Okado
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan.,Department of Otorhinolaryngology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| | - Kaori Koga
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| | - Makoto Hamasaki
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| | - Takashi Nakagawa
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshifumi Sakata
- Department of Otorhinolaryngology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| | - Kazuki Nabeshima
- Department of Pathology, Fukuoka University Hospital and School of Medicine, Fukuoka, Japan
| |
Collapse
|
9
|
Harvey JB, Phan LH, Villarreal OE, Bowser JL. CD73's Potential as an Immunotherapy Target in Gastrointestinal Cancers. Front Immunol 2020; 11:508. [PMID: 32351498 PMCID: PMC7174602 DOI: 10.3389/fimmu.2020.00508] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
CD73, a cell surface 5'nucleotidase that generates adenosine, has emerged as an attractive therapeutic target for reprogramming cancer cells and the tumor microenvironment to dampen antitumor immune cell evasion. Decades of studies have paved the way for these findings, starting with the discovery of adenosine signaling, particularly adenosine A2A receptor (A2AR) signaling, as a potent suppressor of tissue-devastating immune cell responses, and evolving with studies focusing on CD73 in breast cancer, melanoma, and non-small cell lung cancer. Gastrointestinal (GI) cancers are a major cause of cancer-related deaths. Evidence is mounting that shows promise for improving patient outcomes through incorporation of immunomodulatory strategies as single agents or in combination with current treatment options. Recently, several immune checkpoint inhibitors received FDA approval for use in GI cancers; however, clinical benefit is limited. Investigating molecular mechanisms promoting immunosuppression, such as CD73, in GI cancers can aid in current efforts to extend the efficacy of immunotherapy to more patients. In this review, we discuss current clinical and basic research studies on CD73 in GI cancers, including gastric, liver, pancreatic, and colorectal cancer, with special focus on the potential of CD73 as an immunotherapy target in these cancers. We also present a summary of current clinical studies targeting CD73 and/or A2AR and combination of these therapies with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Jerry B. Harvey
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Luan H. Phan
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Oscar E. Villarreal
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jessica L. Bowser
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
10
|
Boison D, Yegutkin GG. Adenosine Metabolism: Emerging Concepts for Cancer Therapy. Cancer Cell 2019; 36:582-596. [PMID: 31821783 PMCID: PMC7224341 DOI: 10.1016/j.ccell.2019.10.007] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/23/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022]
Abstract
Adenosine is a key metabolic and immune-checkpoint regulator implicated in the tumor escape from the host immune system. Major gaps in knowledge that impede the development of effective adenosine-based therapeutics include: (1) lack of consideration of redundant pathways controlling ATP and adenosine levels; (2) lack of distinction between receptor-dependent and -independent effects of adenosine, and (3) focus on extracellular adenosine without consideration of intracellular metabolism and compartmentalization. In light of current clinical trials, we provide an overview of adenosine metabolism and point out the need for a more careful evaluation of the entire purinome in emerging cancer therapies.
Collapse
Affiliation(s)
- Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson & New Jersey Medical Schools, Rutgers University, Piscataway, NJ 08854, USA; Rutgers Brain Health Institute, Piscataway, NJ 08854, USA.
| | - Gennady G Yegutkin
- MediCity Research Laboratory, University of Turku, Tykistökatu 6A, Turku, 20520, Finland.
| |
Collapse
|
11
|
Koivisto MK, Tervahartiala M, Kenessey I, Jalkanen S, Boström PJ, Salmi M. Cell-type-specific CD73 expression is an independent prognostic factor in bladder cancer. Carcinogenesis 2019; 40:84-92. [PMID: 30395172 DOI: 10.1093/carcin/bgy154] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 10/04/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022] Open
Abstract
CD73 is an adenosine-producing cell surface enzyme, which exerts strong anti-inflammatory and migration modulating effects in many cell types. We evaluated the potential of CD73 as a biomarker in predicting the outcome of bladder carcinoma. CD73 expression in tumor and stromal cells was analyzed using immunohistochemistry in 270 bladder cancer (BC) patients [166 non-muscle-invasive BC (NMIBC) and 104 muscle-invasive BC (MIBC) tumors]. The correlations of CD73 with clinical and pathological characteristics were evaluated with Pearson's and Fischer's tests. The Kaplan-Meier method and Cox proportional hazards regression models were used to analyze the association between CD73 expression and outcome. CD73 expression showed substantial variation in basal and suprabasal layers of the cancerous epithelium, stromal fibroblasts, endothelial cells and lymphocytes in different tumor specimens. In log-rank analyses, CD73 expression in cancer cells associated with better survival both in NMIBC and MIBC, whereas CD73 positivity in stromal fibroblasts associated with impaired survival in NMIBC. In multivariable models, CD73 negative epithelial cells in both BC types and CD73 negative endothelial cells in MIBC were independent factors predicting poor outcome. We conclude that in contrast to many other cancer types, high CD73 expression in BC predicts favorable prognosis.
Collapse
Affiliation(s)
- Maarit K Koivisto
- MediCity Research Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Minna Tervahartiala
- MediCity Research Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - István Kenessey
- MediCity Research Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sirpa Jalkanen
- MediCity Research Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Peter J Boström
- Department of Urology, Turku University Hospital, Turku, Finland
| | - Marko Salmi
- MediCity Research Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
12
|
Alcedo KP, Guerrero A, Basrur V, Fu D, Richardson ML, McLane JS, Tsou C, Nesvizhskii AI, Welling TH, Lebrilla CB, Otey CA, Kim HJ, Omary MB, Snider NT. Tumor-Selective Altered Glycosylation and Functional Attenuation of CD73 in Human Hepatocellular Carcinoma. Hepatol Commun 2019; 3:1400-1414. [PMID: 31592495 PMCID: PMC6771166 DOI: 10.1002/hep4.1410] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/07/2019] [Indexed: 01/03/2023] Open
Abstract
CD73, a cell-surface N-linked glycoprotein that produces extracellular adenosine, is a novel target for cancer immunotherapy. Although anti-CD73 antibodies have entered clinical development, CD73 has both protumor and antitumor functions, depending on the target cell and tumor type. The aim of this study was to characterize CD73 regulation in human hepatocellular carcinoma (HCC). We examined CD73 expression, localization, and activity using molecular, biochemical, and cellular analyses on primary HCC surgical specimens, coupled with mechanistic studies in HCC cells. We analyzed CD73 glycan signatures and global alterations in transcripts encoding other N-linked glycoproteins by using mass spectrometry glycomics and RNA sequencing (RNAseq), respectively. CD73 was expressed on tumor hepatocytes where it exhibited abnormal N-linked glycosylation, independent of HCC etiology, tumor stage, or fibrosis presence. Aberrant glycosylation of tumor-associated CD73 resulted in a 3-fold decrease in 5'-nucleotidase activity (P < 0.0001). Biochemically, tumor-associated CD73 was deficient in hybrid and complex glycans specifically on residues N311 and N333 located in the C-terminal catalytic domain. Blocking N311/N333 glycosylation by site-directed mutagenesis produced CD73 with significantly decreased 5'-nucleotidase activity in vitro, similar to the primary tumors. Glycosylation-deficient CD73 partially colocalized with the Golgi structural protein GM130, which was strongly induced in HCC tumors. RNAseq analysis further revealed that N-linked glycoprotein-encoding genes represented the largest category of differentially expressed genes between HCC tumor and adjacent tissue. Conclusion: We provide the first detailed characterization of CD73 glycosylation in normal and tumor tissue, revealing a novel mechanism that leads to the functional suppression of CD73 in human HCC tumor cells. The present findings have translational implications for therapeutic candidate antibodies targeting cell-surface CD73 in solid tumors and small-molecule adenosine receptor agonists that are in clinical development for HCC.
Collapse
Affiliation(s)
- Karel P. Alcedo
- Department of Cell Biology and PhysiologyUniversity of North Carolina at Chapel HillChapel HillNC
| | - Andres Guerrero
- Department of ChemistryUniversity of California DavisDavisCA
| | | | - Dong Fu
- Department of Cell Biology and PhysiologyUniversity of North Carolina at Chapel HillChapel HillNC
| | - Monea L. Richardson
- Department of Cell Biology and PhysiologyUniversity of North Carolina at Chapel HillChapel HillNC
| | - Joshua S. McLane
- Department of Cell Biology and PhysiologyUniversity of North Carolina at Chapel HillChapel HillNC
| | - Chih‐Chiang Tsou
- Department of Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMI
| | - Alexey I. Nesvizhskii
- Department of PathologyUniversity of MichiganAnn ArborMI
- Department of Computational Medicine and BioinformaticsUniversity of MichiganAnn ArborMI
| | - Theodore H. Welling
- Perlmutter Cancer Center and Department of SurgeryNew York University Langone HealthNew YorkNY
| | | | - Carol A. Otey
- Department of Cell Biology and PhysiologyUniversity of North Carolina at Chapel HillChapel HillNC
| | - Hong Jin Kim
- Department of SurgeryUniversity of North Carolina at Chapel HillChapel HillNC
| | - M. Bishr Omary
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMI
- Department of MedicineUniversity of MichiganAnn ArborMI
- Center for Advanced Biotechnology & MedicineRutgers UniversityPiscatawayNJ
- Rutgers Biomedical Health SciencesNewarkNJ
| | - Natasha T. Snider
- Department of Cell Biology and PhysiologyUniversity of North Carolina at Chapel HillChapel HillNC
| |
Collapse
|
13
|
Minor M, Alcedo KP, Battaglia RA, Snider NT. Cell type- and tissue-specific functions of ecto-5'-nucleotidase (CD73). Am J Physiol Cell Physiol 2019; 317:C1079-C1092. [PMID: 31461341 DOI: 10.1152/ajpcell.00285.2019] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ecto-5'-nucleotidase [cluster of differentiation 73 (CD73)] is a ubiquitously expressed glycosylphosphatidylinositol-anchored glycoprotein that converts extracellular adenosine 5'-monophosphate to adenosine. Anti-CD73 inhibitory antibodies are currently undergoing clinical testing for cancer immunotherapy. However, many protective physiological functions of CD73 need to be taken into account for new targeted therapies. This review examines CD73 functions in multiple organ systems and cell types, with a particular focus on novel findings from the last 5 years. Missense loss-of-function mutations in the CD73-encoding gene NT5E cause the rare disease "arterial calcifications due to deficiency of CD73." Aside from direct human disease involvement, cellular and animal model studies have revealed key functions of CD73 in tissue homeostasis and pathology across multiple organ systems. In the context of the central nervous system, CD73 is antinociceptive and protects against inflammatory damage, while also contributing to age-dependent decline in cortical plasticity. CD73 preserves barrier function in multiple tissues, a role that is most evident in the respiratory system, where it inhibits endothelial permeability in an adenosine-dependent manner. CD73 has important cardioprotective functions during myocardial infarction and heart failure. Under ischemia-reperfusion injury conditions, rapid and sustained induction of CD73 confers protection in the liver and kidney. In some cases, the mechanism by which CD73 mediates tissue injury is less clear. For example, CD73 has a promoting role in liver fibrosis but is protective in lung fibrosis. Future studies that integrate CD73 regulation and function at the cellular level with physiological responses will improve its utility as a disease target.
Collapse
Affiliation(s)
- Marquet Minor
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Karel P Alcedo
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rachel A Battaglia
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Natasha T Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
14
|
Caiazzo E, Morello S, Carnuccio R, Ialenti A, Cicala C. The Ecto-5'-Nucleotidase/CD73 Inhibitor, α,β-Methylene Adenosine 5'-Diphosphate, Exacerbates Carrageenan-Induced Pleurisy in Rat. Front Pharmacol 2019; 10:775. [PMID: 31354490 PMCID: PMC6637294 DOI: 10.3389/fphar.2019.00775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/17/2019] [Indexed: 11/17/2022] Open
Abstract
The ecto-5’-nucleotidase (ecto-5’NT/CD73) represents a crucial enzyme for endogenous adenosine generation. Several findings have shown that CD73 plays an important role in regulating vascular permeability and immune cell function. Adenosine 5’-(α,β-methylene)diphosphate (APCP) is a CD73 inhibitor, widely used as pharmacological tool to investigate the role of CD73/adenosine pathway in several in vitro and in vivo models, although it has been also shown to inhibit other ectoenzymes involved in adenosinergic pathway. Here, we evaluated the effect of APCP in the development of inflammation in carrageenan-induced pleurisy model. We found that treatment with APCP (400 µg/rat) significantly increased cell accumulation, exudate formation, and pro-inflammatory cytokine content into the pleural cavity in the acute phase (4 h) of inflammation, with no differences in the sub-acute phase (72 h) except for the regulation of monocyte chemotactic protein-1 levels. In addition, cells collected by pleural lavage fluids of APCP-treated rats, 4 h following carrageenan injection, showed increased ability to migrate in vitro, both in presence and in absence of N-formyl-L-methionyl-L-leucyl-L-phenylalanine as chemotactic stimulus, compared to cells obtained by control rats. Our results demonstrate that APCP exacerbates the early phase of carrageenan-induced pleurisy by controlling pleural effusion and polymorphonuclear migration in vivo and ex vivo. This effect is likely dependent upon CD73 inhibition, although an inhibitory effect of other ectoenzymes cannot be ruled out.
Collapse
Affiliation(s)
- Elisabetta Caiazzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, SA, Italy
| | - Rosa Carnuccio
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Armando Ialenti
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Carla Cicala
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| |
Collapse
|
15
|
Bowser JL, Phan LH, Eltzschig HK. The Hypoxia-Adenosine Link during Intestinal Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:897-907. [PMID: 29358413 PMCID: PMC5784778 DOI: 10.4049/jimmunol.1701414] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022]
Abstract
Intestinal inflammation is a key element in inflammatory bowel disease and is related to a combination of factors, including genetics, mucosal barrier dysfunction, bacteria translocation, deleterious host-microbe interactions, and dysregulated immune responses. Over the past decade, it has been appreciated that these inflammatory lesions are associated with profound tissue hypoxia. Interestingly, an endogenous adaptive response under the control of hypoxia signaling is enhancement in adenosine signaling, which impacts these different endpoints, including promoting barrier function and encouraging anti-inflammatory activity. In this review, we discuss the hypoxia-adenosine link in inflammatory bowel disease, intestinal ischemia/reperfusion injury, and colon cancer. In addition, we provide a summary of clinical implications of hypoxia and adenosine signaling in intestinal inflammation and disease.
Collapse
Affiliation(s)
- Jessica L Bowser
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Luan H Phan
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Holger K Eltzschig
- Department of Anesthesiology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| |
Collapse
|
16
|
Bowser JL, Lee JW, Yuan X, Eltzschig HK. The hypoxia-adenosine link during inflammation. J Appl Physiol (1985) 2017; 123:1303-1320. [PMID: 28798196 DOI: 10.1152/japplphysiol.00101.2017] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/18/2017] [Accepted: 08/06/2017] [Indexed: 12/23/2022] Open
Abstract
Hypoxic tissue conditions occur during a number of inflammatory diseases and are associated with the breakdown of barriers and induction of proinflammatory responses. At the same time, hypoxia is also known to induce several adaptive and tissue-protective pathways that dampen inflammation and protect tissue integrity. Hypoxia-inducible factors (HIFs) that are stabilized during inflammatory or hypoxic conditions are at the center of mediating these responses. In the past decade, several genes regulating extracellular adenosine metabolism and signaling have been identified as being direct targets of HIFs. Here, we discuss the relationship between inflammation, hypoxia, and adenosine and that HIF-driven adenosine metabolism and signaling is essential in providing tissue protection during inflammatory conditions, including myocardial injury, inflammatory bowel disease, and acute lung injury. We also discuss how the hypoxia-adenosine link can be targeted therapeutically in patients as a future treatment approach for inflammatory diseases.
Collapse
Affiliation(s)
- Jessica L Bowser
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas
| | - Jae W Lee
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas
| | - Xiaoyi Yuan
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas
| | - Holger K Eltzschig
- Department of Anesthesiology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas
| |
Collapse
|