1
|
Mohebbi A, Fathi AA, Afshar Mogaddam MR, Farajzadeh MA, Yaripour S, Fattahi N. Application of magnetic dispersive solid phase extraction combined with solidification of floating organic droplet-based dispersive liquid-liquid microextraction and GC-MS in the extraction and determination of polycyclic aromatic hydrocarbons in honey. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:175-187. [PMID: 38252747 DOI: 10.1080/19440049.2023.2301664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024]
Abstract
A magnetic dispersive solid phase extraction method combined with solidification of floating organic droplet-based dispersive liquid-liquid microextraction has been validated for the extraction of polycyclic aromatic hydrocarbons from honey samples. For this purpose, a carbonised cellulose-ferromagnetic nanocomposite was used as a sorbent through the magnetic dispersive solid phase extraction. For preparation of the sorbent, first, carbonised cellulose nanoparticles were created by treating cellulose filter paper with concentrated solution of sulfuric acid. Then, the prepared nanoparticles were loaded onto Fe3O4 nanoparticles through coprecipitation. In the extraction process, first, a few mg of the sorbent was added to the diluted honey solution and dispersed in it using vortex agitation. The particles were then separated and the adsorbed analytes were eluted with an organic solvent. The eluent was taken and after mixing with a water-immiscible extraction solvent was used in the following solidification of floating organic droplet-based dispersive liquid-liquid microextraction procedure. By performing the extraction process under the obtained optimum conditions, low limits of detection (0.08-0.17 ng g-1) and quantification (0.27-0.57 ng g-1), satisfactory precision (relative standard deviations ≤ 5.0%), and wide linear range (0.57-500 ng g-1) with great coefficients of determination (r2≥ 0.9986) were obtained.
Collapse
Affiliation(s)
- Ali Mohebbi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Akbar Fathi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
- Engineering Faculty, Near East University, Nicosia, Turkey
| | - Saeid Yaripour
- Department of Pharmaceutics, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Nazir Fattahi
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
Liu Y, Liu H, Guo S, Zhao Y, Qi J, Zhang R, Ren J, Cheng H, Zong M, Wu X, Li B. A review of carbon nanomaterials/bacterial cellulose composites for nanomedicine applications. Carbohydr Polym 2024; 323:121445. [PMID: 37940307 DOI: 10.1016/j.carbpol.2023.121445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 11/10/2023]
Abstract
Carbon nanomaterials (CNMs) mainly include fullerene, carbon nanotubes, graphene, carbon quantum dots, nanodiamonds, and their derivatives. As a new type of material in the field of nanomaterials, it has outstanding physical and chemical properties, such as minor size effects, substantial specific surface area, extremely high reaction activity, biocompatibility, and chemical stability, which have attracted widespread attention in the medical community in the past decade. However, the single use of carbon nanomaterials has problems such as self-aggregation and poor water solubility. Researchers have recently combined them with bacterial cellulose to form a new intelligent composite material to improve the defects of carbon nanomaterials. This composite material has been widely synthesized and used in targeted drug delivery, biosensors, antibacterial dressings, tissue engineering scaffolds, and other nanomedicine fields. This paper mainly reviews the research progress of carbon nanomaterials based on bacterial cellulose in nanomedicine. In addition, the potential cytotoxicity of these composite materials and their components in vitro and in vivo was discussed, as well as the challenges and gaps that need to be addressed in future clinical applications.
Collapse
Affiliation(s)
- Yingyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Haiyan Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Susu Guo
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Yifan Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Jin Qi
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Ran Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Jianing Ren
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Huaiyi Cheng
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Mingrui Zong
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Xiuping Wu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China.
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China.
| |
Collapse
|
3
|
Verma J, Warsame C, Seenivasagam RK, Katiyar NK, Aleem E, Goel S. Nanoparticle-mediated cancer cell therapy: basic science to clinical applications. Cancer Metastasis Rev 2023; 42:601-627. [PMID: 36826760 PMCID: PMC10584728 DOI: 10.1007/s10555-023-10086-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/16/2023] [Indexed: 02/25/2023]
Abstract
Every sixth person in the world dies due to cancer, making it the second leading severe cause of death after cardiovascular diseases. According to WHO, cancer claimed nearly 10 million deaths in 2020. The most common types of cancers reported have been breast (lung, colon and rectum, prostate cases), skin (non-melanoma) and stomach. In addition to surgery, the most widely used traditional types of anti-cancer treatment are radio- and chemotherapy. However, these do not distinguish between normal and malignant cells. Additional treatment methods have evolved over time for early detection and targeted therapy of cancer. However, each method has its limitations and the associated treatment costs are quite high with adverse effects on the quality of life of patients. Use of individual atoms or a cluster of atoms (nanoparticles) can cause a paradigm shift by virtue of providing point of sight sensing and diagnosis of cancer. Nanoparticles (1-100 nm in size) are 1000 times smaller in size than the human cell and endowed with safer relocation capability to attack mechanically and chemically at a precise location which is one avenue that can be used to destroy cancer cells precisely. This review summarises the extant understanding and the work done in this area to pave the way for physicians to accelerate the use of hybrid mode of treatments by leveraging the use of various nanoparticles.
Collapse
Affiliation(s)
- Jaya Verma
- School of Engineering, London South Bank University, London, SE10AA UK
| | - Caaisha Warsame
- School of Engineering, London South Bank University, London, SE10AA UK
| | | | | | - Eiman Aleem
- School of Applied Sciences, Division of Human Sciences, Cancer Biology and Therapy Research Group, London South Bank University, London, SE10AA UK
| | - Saurav Goel
- School of Engineering, London South Bank University, London, SE10AA UK
- Department of Mechanical Engineering, University of Petroleum and Energy Studies, Dehradun, 248007 India
| |
Collapse
|
4
|
Mohammad Aminzadeh F, Zeynizadeh B. Immobilized nickel boride nanoparticles on magnetic functionalized multi-walled carbon nanotubes: a new nanocomposite for the efficient one-pot synthesis of 1,4-benzodiazepines. NANOSCALE ADVANCES 2023; 5:4499-4520. [PMID: 37638163 PMCID: PMC10448344 DOI: 10.1039/d3na00415e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/22/2023] [Indexed: 08/29/2023]
Abstract
In this study, a new magnetic nanocomposite consisting of Ni2B nanoparticles anchored on magnetic functionalized multi-walled carbon nanotubes (Fe3O4/f-MWCNT/Ni2B) was synthesized and characterized using various techniques such as FT-IR, XRD, FESEM, SEM-based EDX, SEM-based elemental mapping, HRTEM, DLS, SAED, XPS, BET, TGA, and VSM. The as-prepared magnetic nanocomposite was successfully employed for the preparation of bioactive 1,4-benzodiazepines from the three-component reaction of o-phenylenediamine (1), dimedone (2), and different aldehydes (3), in polyethylene glycol 400 (PEG-400) as a solvent at 60 °C. The obtained results demonstrated that the current one-pot three-component protocol offers many advantages, such as good-to-excellent yields within acceptable reaction times, favorable TONs and TOFs, eco-friendliness of the procedure, easy preparation of the nanocomposite, mild reaction conditions, a broad range of products, excellent catalytic activity, green solvent, and reusability of the nanocomposite.
Collapse
|
5
|
Wang X, Gong Z, Wang T, Law J, Chen X, Wanggou S, Wang J, Ying B, Francisco M, Dong W, Xiong Y, Fan JJ, MacLeod G, Angers S, Li X, Dirks PB, Liu X, Huang X, Sun Y. Mechanical nanosurgery of chemoresistant glioblastoma using magnetically controlled carbon nanotubes. SCIENCE ADVANCES 2023; 9:eade5321. [PMID: 36989359 PMCID: PMC10058241 DOI: 10.1126/sciadv.ade5321] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain cancer. Despite multimodal treatment including surgery, radiotherapy, and chemotherapy, median patient survival has remained at ~15 months for decades. This situation demands an outside-the-box treatment approach. Using magnetic carbon nanotubes (mCNTs) and precision magnetic field control, we report a mechanical approach to treat chemoresistant GBM. We show that GBM cells internalize mCNTs, the mobilization of which by rotating magnetic field results in cell death. Spatiotemporally controlled mobilization of intratumorally delivered mCNTs suppresses GBM growth in vivo. Functionalization of mCNTs with anti-CD44 antibody, which recognizes GBM cell surface-enriched antigen CD44, increases mCNT recognition of cancer cells, prolongs mCNT enrichment within the tumor, and enhances therapeutic efficacy. Using mouse models of GBM with upfront or therapy-induced resistance to temozolomide, we show that mCNT treatment is effective in treating chemoresistant GBM. Together, we establish mCNT-based mechanical nanosurgery as a treatment option for GBM.
Collapse
Affiliation(s)
- Xian Wang
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Zheyuan Gong
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Tiancong Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Junhui Law
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Xin Chen
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Siyi Wanggou
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jintian Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Binbin Ying
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Michelle Francisco
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Weifan Dong
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Yi Xiong
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jerry J. Fan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Graham MacLeod
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Stephane Angers
- Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Peter B. Dirks
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Xi Huang
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Corresponding author. (X.H.); (Y.S.)
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Corresponding author. (X.H.); (Y.S.)
| |
Collapse
|
6
|
Zhai Y, Bao Y, Ning T, Chen P, Di S, Zhu S. Room temperature fabrication of magnetic covalent organic frameworks for efficient enrichment of parabens in water. J Chromatogr A 2023; 1692:463850. [PMID: 36773400 DOI: 10.1016/j.chroma.2023.463850] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
A novel 4 + 2 covalent magnetic organic framework (COF) with core-shell structure was synthesized for the first time with N, N, N', N'-Tetrakis (4-aminophenyl)-1, 4- benzenediamine (TPDA) and 2, 6-Pyridinedicarboxaldehyde (PCBA) at room temperature. The synthesized magnetic TPDA-PCBA-COF has a large specific surface area and superparamagnetism, which makes it an ideal sorbent for trace analytes enrichment. To this end, we combined it with magnetic solid phase extraction (MSPE) to enrich trace parabens in environmental water. The parameters affecting the enrichment efficiency of magnetic solid phase extraction, such as the amount of Fe3O4@TPDA-PCBA-COF, extraction time, pH of samples, salt concentration, desorption solvent volume and desorption time, were optimized. A simple method for extraction and determination of parabens in water samples by MSPE combined with high performance liquid chromatography (HPLC) was established under optimized conditions. The validation results revealed that the linear ranges were at 1.0-5.0 × 102 ng mL-1 with R value between 0.9915 and 0.9999, the spiked recoveries were in the range of 82.8% to 99.9% and RSDs were lower than 10%. The method was further applied to the determination of parabens in water samples, with recoveries in the range of 82.2% to 110.0% and RSDs ≤ 7.7%. These results suggest that the magnetic TPDA-PCBA-COF could be used as a promising adsorbent for efficient extraction and quantitation of parabens in environmental water samples.
Collapse
Affiliation(s)
- Yixin Zhai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Yue Bao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Tao Ning
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Pin Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
7
|
Zhang S, Ange KU, Ali N, Yang Y, Khan A, Ali F, Sajid M, Tian CT, Bilal M. Analytical perspective and environmental remediation potentials of magnetic composite nanosorbents. CHEMOSPHERE 2022; 304:135312. [PMID: 35709848 DOI: 10.1016/j.chemosphere.2022.135312] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The synthesis and application of magnetic nanosorbents to remove emerging pollutants have been considered the best environmental remediation and sustainability option. Incorporating magnetism shortens the treatment time and allows the sorbent to be recovered quickly using external magnetic with many cycles. The implementation of magnetic solid-phase extraction (MSPE) using magnetic materials of different shapes, sizes, and surface morphology can be a valuable tool in applying materials to prepare analytical samples. In MSPE applications, materials with strong magnetic domain can be used as precursors for constructing magnetic composite as a promising sorbent. This article focuses on the most recent and exceptional applications of magnetic adsorbents for preconcentration and removal purposes. Magnetic adsorbents, such as nanoparticles (NPs), foam, sponges, nanocomposites, hydrogels, and beads with multifunctional attributes have been comprehensively studied in terms of preparation procedures, limitations, advantages, and interactions between pollutants and magnetic composites. The role of magnetic sorbents in sample preparation methods, such as simple solid-phase extraction and microextraction, as well as sorptive extraction using a stir bar, was also examined. The use of magnetic adsorbents with analytical techniques, such as solid-phase extraction and solid-phase microextraction improves the method for preparing samples concerning the influential role of magnetic adsorbents. Towards the end, promising features and future outlook are also directed.
Collapse
Affiliation(s)
- Shizhong Zhang
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Kunda Umuhoza Ange
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Yong Yang
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, PR China
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra, 21300, Pakistan
| | - Muhammad Sajid
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, 644000, Sichuan, China
| | - Chen Tian Tian
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, PR China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
8
|
Saito N, Haniu H, Aoki K, Nishimura N, Uemura T. Future Prospects for Clinical Applications of Nanocarbons Focusing on Carbon Nanotubes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201214. [PMID: 35754236 PMCID: PMC9404397 DOI: 10.1002/advs.202201214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Over the past 15 years, numerous studies have been conducted on the use of nanocarbons as biomaterials towards such applications as drug delivery systems, cancer therapy, and regenerative medicine. However, the clinical use of nanocarbons remains elusive, primarily due to short- and long-term safety concerns. It is essential that the biosafety of each therapeutic modality be demonstrated in logical and well-conducted experiments. Accordingly, the fundamental techniques for assessing nanocarbon biomaterial safety have become more advanced. Optimal controls are being established, nanocarbon dispersal techniques are being refined, the array of biokinetic evaluation methods has increased, and carcinogenicity examinations under strict conditions have been developed. The medical implementation of nanocarbons as a biomaterial is in sight. With a particular focus on carbon nanotubes, these perspectives aim to summarize the contributions to date on nanocarbon applications and biosafety, introduce the recent achievements in evaluation techniques, and clarify the future prospects and systematic introduction of carbon nanomaterials for clinical use through practical yet sophisticated assessment methods.
Collapse
Affiliation(s)
- Naoto Saito
- Institute for Biomedical SciencesInterdisciplinary Cluster for Cutting Edge ResearchShinshu University3‐1‐1 AsahiMatsumotoNagano390‐8621Japan
| | - Hisao Haniu
- Institute for Biomedical SciencesInterdisciplinary Cluster for Cutting Edge ResearchShinshu University3‐1‐1 AsahiMatsumotoNagano390‐8621Japan
| | - Kaoru Aoki
- Department of Applied Physical TherapyShinshu University School of Health Sciences3‐1‐1 AsahiMatsumotoNagano390‐8621Japan
| | - Naoyuki Nishimura
- Institute for Biomedical SciencesInterdisciplinary Cluster for Cutting Edge ResearchShinshu University3‐1‐1 AsahiMatsumotoNagano390‐8621Japan
| | - Takeshi Uemura
- Institute for Biomedical SciencesInterdisciplinary Cluster for Cutting Edge ResearchShinshu University3‐1‐1 AsahiMatsumotoNagano390‐8621Japan
- Division of Gene ResearchResearch Center for Supports to Advanced ScienceShinshu University3‐1‐1 AsahiMatsumotoNagano390‐8621Japan
| |
Collapse
|
9
|
Dlamini N, Mukaya HE, Nkazi D. Carbon-based nanomaterials production from environmental pollutant byproducts: A Review. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Shi S, Zhang C, Zhang D, He Y. 碳纳米管填充聚合物基导热复合材料的研究进展. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Guo J, Jiang H, Teng Y, Xiong Y, Chen Z, You L, Xiao D. Recent advances in magnetic carbon nanotubes: synthesis, challenges and highlighted applications. J Mater Chem B 2021; 9:9076-9099. [PMID: 34668920 DOI: 10.1039/d1tb01242h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Magnetic carbon nanotubes (MCNTs), consisting of carbon nanotubes (CNTs) and magnetic nanoparticles (MNPs), have enormous exploration and application potentials due to their superior physical and chemical properties, such as unique magnetism and high enrichment performance. This review concentrates on the rapid advances in the synthesis and application of magnetic carbon nanotubes. Great progress has been made in the preparation of MCNTs by developing methods including chemical vapor deposition, pyrolysis procedure, sol-gel process, template-based synthesis, filling process and hydrothermal/solvothermal method. Various applications of MCNTs as a mediator of the adsorbent in magnetic solid-phase extraction, sensors, antibacterial agents, and imaging system contrast agents, and in drug delivery and catalysis are discussed. In order to overcome the drawbacks of MCNTs, such as sidewall damage, lack of convincing quantitative characterization methods, toxicity and environmental impact, and deficiency of extraction performance, researchers proposed some solutions in recent years. We systematically review the latest advances in MCNTs and discuss the direction of future development.
Collapse
Affiliation(s)
- Jiabei Guo
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China.
| | - Hui Jiang
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China.
| | - Yan Teng
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China.
| | - Yue Xiong
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China.
| | - Zhuhui Chen
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China.
| | - Linjun You
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China.
| | - Deli Xiao
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China. .,Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, 24 Tongjia Lane, Nanjing 210009, China.,Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, 24 Tongjia Lane, Nanjing 210009, China
| |
Collapse
|
12
|
Mehmood A, Khan FSA, Mubarak NM, Mazari SA, Jatoi AS, Khalid M, Tan YH, Karri RR, Walvekar R, Abdullah EC, Nizamuddin S. Carbon and polymer-based magnetic nanocomposites for oil-spill remediation-a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54477-54496. [PMID: 34424475 DOI: 10.1007/s11356-021-16045-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Oil spills are a major contributor to water contamination, which sets off a significant impact on the environment, biodiversity, and economy. Efficient removal of oil spills is needed for the protection of marine species as well as the environment. Conventional approaches are not efficient enough for oil-water separation; therefore, effective strategies and efficient removal techniques (and materials) must be developed to restore the contaminated marine to its normal ecology. Several research studies have shown that nanotechnology provides efficient features to clean up these oil spills from the water using magnetic nanomaterials, particularly carbon/polymer-based magnetic nanocomposites. Surface modification of these nanomaterials via different techniques render them with salient innovative features. The present review discusses the advantages and limitations of conventional and advanced techniques for the oil spills removal from wastewater. Furthermore, the synthesis of magnetic nanocomposites, their utilization in oil-water separation, and adsorption mechanisms are discussed. Finally, the advancement and future perspectives of magnetic nanocomposites (particularly of carbon and polymer-based magnetic nanocomposites) in environmental remediation are presented.
Collapse
Affiliation(s)
- Ahsan Mehmood
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri, Sarawak, Malaysia
| | - Fahad Saleem Ahmed Khan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri, Sarawak, Malaysia
| | - Nabisab Mujawar Mubarak
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri, Sarawak, Malaysia.
| | - Shaukat Ali Mazari
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Abdul Sattar Jatoi
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Yie Hua Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri, Sarawak, Malaysia
| | - Rama Rao Karri
- Petroleum, and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei Darussalam
| | - Rashmi Walvekar
- School of Energy and Chemical Engineering, Department of Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor, Malaysia
| | - Ezzat Chan Abdullah
- Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia (UTM), Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | | |
Collapse
|
13
|
Faraji M, Shirani M, Rashidi-Nodeh H. The recent advances in magnetic sorbents and their applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116302] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
14
|
Khan FSA, Mubarak NM, Tan YH, Khalid M, Karri RR, Walvekar R, Abdullah EC, Nizamuddin S, Mazari SA. A comprehensive review on magnetic carbon nanotubes and carbon nanotube-based buckypaper for removal of heavy metals and dyes. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125375. [PMID: 33930951 DOI: 10.1016/j.jhazmat.2021.125375] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Industrial effluents contain several organic and inorganic contaminants. Among others, dyes and heavy metals introduce a serious threat to drinking waterbodies. These pollutants can be noxious or carcinogenic in nature, and harmful to humans and different aquatic species. Therefore, it is of high importance to remove heavy metals and dyes to reduce their environmental toxicity. This has led to an extensive research for the development of novel materials and techniques for the removal of heavy metals and dyes. One route to the removal of these pollutants is the utilization of magnetic carbon nanotubes (CNT) as adsorbents. Magnetic carbon nanotubes hold remarkable properties such as surface-volume ratio, higher surface area, convenient separation methods, etc. The suitable characteristics of magnetic carbon nanotubes have led them to an extensive search for their utilization in water purification. Along with magnetic carbon nanotubes, the buckypaper (BP) membranes are also favorable due to their unique strength, high porosity, and adsorption capability. However, BP membranes are mostly used for salt removal from the aqueous phase and limited literature shows their applications for removal of heavy metals and dyes. This study focuses on the existence of heavy metal ions and dyes in the aquatic environment, and methods for their removal. Various fabrication approaches for the development of magnetic-CNTs and CNT-based BP membranes are also discussed. With the remarkable separation performance and ultra-high-water flux, magnetic-CNTs, and CNT-based BP membranes have a great potential to be the leading technologies for water treatment in future.
Collapse
Affiliation(s)
- Fahad Saleem Ahmed Khan
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009 Miri, Sarawak, Malaysia
| | - Nabisab Mujawar Mubarak
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009 Miri, Sarawak, Malaysia.
| | - Yie Hua Tan
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009 Miri, Sarawak, Malaysia
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Science and Technology, Sunway University, No. 5, Jalan University, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| | - Rama Rao Karri
- Petroleum, and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Brunei Darussalam
| | - Rashmi Walvekar
- Department of Chemical Engineering, School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia
| | - Ezzat Chan Abdullah
- Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology (MJIIT) Universiti Teknologi Malaysia (UTM), Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| | | | - Shaukat Ali Mazari
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi 74800, Pakistan
| |
Collapse
|
15
|
Mehmood A, Khan FSA, Mubarak NM, Tan YH, Karri RR, Khalid M, Walvekar R, Abdullah EC, Nizamuddin S, Mazari SA. Magnetic nanocomposites for sustainable water purification-a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19563-19588. [PMID: 33651297 DOI: 10.1007/s11356-021-12589-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Numerous contaminants in huge amounts are discharged to the environment from various anthropogenic activities. Waterbodies are one of the major receivers of these contaminants. The contaminated water can pose serious threats to humans and animals, by distrubing the ecosystem. In treating the contaminated water, adsorption processes have attained significant maturity due to lower cost, easy operation and environmental friendliness. The adsorption process uses various adsorbent materials and some of emerging adsorbent materials include carbon- and polymer-based magnetic nanocomposites. These hybrid magnetic nanocomposites have attained extensive applications in water treatment technologies due to their magnetic properties as well as combination of unique characteristics of organic and inorganic elements. Carbon- and polymer-related magnetic nanocomposites are more adapted materials for the removal of various kinds of contaminants from waterbodies. These nanocomposites can be produced via different approaches such as filling, pulse-laser irradiation, ball milling, and electro-spinning. This comprehensive review is compiled by reviewing published work of last the latest recent 3 years. The review article extensively focuses on different approaches for producing various carbon- and polymer-based magnetic nanocomposites, their merits and demerits and applications for sustainable water purification. More specifically, use of carbon- and polymer-based magnetic nanocomposites for removal of heavy metal ions and dyes is discussed in detail, critically analyzed and compared with other technologies. In addition, commercial viability in terms of regeneration of adsorbents is also reviewed. Furthermore, the future challenges and prospects in employing magnetic nanocomposites for contaminant removal from various water sources are presented.
Collapse
Affiliation(s)
- Ahsan Mehmood
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri, Sarawak, Malaysia
| | - Fahad Saleem Ahmed Khan
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri, Sarawak, Malaysia
| | - Nabisab Mujawar Mubarak
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri, Sarawak, Malaysia.
| | - Yie Hua Tan
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri, Sarawak, Malaysia
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Gadong, Brunei Darussalam
| | - Mohammad Khalid
- Graphene and Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Rashmi Walvekar
- Department of Chemical Engineering, School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor, Malaysia
| | - Ezzat Chan Abdullah
- Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology (MJIIT) Universiti Teknologi Malaysia (UTM), Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | | | - Shaukat Ali Mazari
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| |
Collapse
|
16
|
Barman K, Dutta P, Chowdhury D, Baruah PK. Green Biosynthesis of Copper Oxide Nanoparticles Using Waste Colocasia esculenta Leaves Extract and Their Application as Recyclable Catalyst Towards the Synthesis of 1,2,3-triazoles. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00826-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Gutiérrez-Serpa A, González-Martín R, Sajid M, Pino V. Greenness of magnetic nanomaterials in miniaturized extraction techniques: A review. Talanta 2020; 225:122053. [PMID: 33592775 DOI: 10.1016/j.talanta.2020.122053] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022]
Abstract
Green analytical chemistry principles should be followed, as much as possible, and particularly during the development of analytical sample preparation methods. In the past few years, outstanding materials such as ionic liquids, metal-organic frameworks, carbonaceous materials, molecularly imprinted materials, and many others, have been introduced in a wide variety of miniaturized techniques in order to reduce the amount of solvents and sorbents required during the analytical sample preparation step while pursuing more efficient extraction methods. Among them, magnetic nanomaterials (MNMs) have gained special attention due to their versatile properties. Mainly, their ability to be separated from the sample matrix using an external magnetic field (thus enormously simplifying the entire process) and their easy combination with other materials, which implies the inclusion of a countless number of different functionalities, highly specific in some cases. Therefore, MNMs can be used as sorbents or as magnetic support for other materials which do not have magnetic properties, the latter permiting their combination with novel materials. The greenness of these magnetic sorbents in miniaturized extractions techniques is generally demonstrated in terms of their ease of separation and amount of sorbent required, while the nature of the material itself is left unnoticed. However, the synthesis of MNMs is not always as green as their applications, and the resulting MNMs are not always as safe as desired. Is the analytical sample preparation field ready for using green magnetic nanomaterials? This review offers an overview, from a green analytical chemistry perspective, of the current state of the use of MNMs as sorbents in microextraction strategies, their preparation, and the analytical performance offered, together with a critical discussion on where efforts should go.
Collapse
Affiliation(s)
- Adrián Gutiérrez-Serpa
- Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206, Spain
| | - Raúl González-Martín
- Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206, Spain
| | - Muhammad Sajid
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Verónica Pino
- Departamento de Química, Unidad Departamental de Química Analítica, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna (ULL), La Laguna, Tenerife, 38206, Spain.
| |
Collapse
|
18
|
Khan FSA, Mubarak NM, Tan YH, Karri RR, Khalid M, Walvekar R, Abdullah EC, Mazari SA, Nizamuddin S. Magnetic nanoparticles incorporation into different substrates for dyes and heavy metals removal-A Review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43526-43541. [PMID: 32909134 DOI: 10.1007/s11356-020-10482-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Substantial discharge of hazardous substances, especially dyes and heavy metal ions to the environment, has become a global concern due to many industries neglecting the environmental protocols in waste management. A massive discharge of contaminantsfrom different anthropogenic activities, can pose alarming threats to living species and adverse effect to the ecosystem stability. In the process of treating the polluted water, various methods and materials are used. Hybrid nanocomposites have attained numerous interest due to the combination of remarkable features of the organic and inorganic elements in a single material. In this regards, carbon and polymer based nanocomposites have gained particular interest because of their tremendous magnetic properties and stability. These nanocomposites can be fabricated using several approaches that include filling, template, hydrothermal, pulsed-laser irradiation, electro-spinning, detonation induced reaction, pyrolysis, ball milling, melt-blending, and many more. Moreover, carbon-based and polymer-based magnetic nanocomposites have been utilized for an extensive number of applications such as removal of heavy metal and dye adsorbents, magnetic resonance imaging, and drug delivery. This review emphasized mainly on the production of magnetic carbon and polymer nanocomposites employing various approaches and their applications in water and wastewater treatment. Furthermore, the future opportunities and challenges in applying magnetic nanocomposites for heavy metal ion and dye removal from water and wastewater treatment plant.
Collapse
Affiliation(s)
- Fahad Saleem Ahmed Khan
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009, Sarawak, Malaysia
| | - Nabisab Mujawar Mubarak
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009, Sarawak, Malaysia.
| | - Yie Hua Tan
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009, Sarawak, Malaysia
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei Darussalam
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Science and Technology, Sunway University, No. 5, Jalan University, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Rashmi Walvekar
- Department of Chemical Engineering, School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor, Malaysia
| | - Ezzat Chan Abdullah
- Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia (UTM), Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Shaukat Ali Mazari
- Department of Chemical Engineering, Dawood University of Engineering and Technology, Karachi, 74800, Pakistan
| | | |
Collapse
|
19
|
Naud C, Thébault C, Carrière M, Hou Y, Morel R, Berger F, Diény B, Joisten H. Cancer treatment by magneto-mechanical effect of particles, a review. NANOSCALE ADVANCES 2020; 2:3632-3655. [PMID: 36132753 PMCID: PMC9419242 DOI: 10.1039/d0na00187b] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/19/2020] [Indexed: 05/19/2023]
Abstract
Cancer treatment by magneto-mechanical effect of particles (TMMEP) is a growing field of research. The principle of this technique is to apply a mechanical force on cancer cells in order to destroy them thanks to magnetic particles vibrations. For this purpose, magnetic particles are injected in the tumor or exposed to cancer cells and a low-frequency alternating magnetic field is applied. This therapeutic approach is quite new and a wide range of treatment parameters are explored to date, as described in the literature. This review explains the principle of the technique, summarizes the parameters used by the different groups and reports the main in vitro and in vivo results.
Collapse
Affiliation(s)
- Cécile Naud
- Univ. Grenoble Alpes, CEA, CNRS, Spintec 38000 Grenoble France
- BrainTech Lab, U1205, INSERM, Univ. Grenoble Alpes, CHU-Grenoble France
| | | | - Marie Carrière
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES 38000 Grenoble France
| | - Yanxia Hou
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES 38000 Grenoble France
| | - Robert Morel
- Univ. Grenoble Alpes, CEA, CNRS, Spintec 38000 Grenoble France
| | - François Berger
- BrainTech Lab, U1205, INSERM, Univ. Grenoble Alpes, CHU-Grenoble France
| | - Bernard Diény
- Univ. Grenoble Alpes, CEA, CNRS, Spintec 38000 Grenoble France
| | - Hélène Joisten
- Univ. Grenoble Alpes, CEA, CNRS, Spintec 38000 Grenoble France
- Univ. Grenoble Alpes, CEA, LETI 38000 Grenoble France
| |
Collapse
|
20
|
Magnetic carbon nanotubes: Carbide nucleated electrochemical growth of ferromagnetic CNTs from CO2. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101218] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Konarev DV, Kuzmin AV, Khasanov SS, Shestakov AF, Otsuka A, Yamochi H, Kitagawa H, Lyubovskaya RN. Decacyclene Radical Anions Showing Strong Low‐energy Intramolecular Absorption and Magnetic Coupling of Spins in a Hexagonal Network. Chem Asian J 2020; 15:2689-2695. [DOI: 10.1002/asia.202000615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 06/25/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Dmitri V. Konarev
- Institute of Problems of Chemical Physics RAS Chernogolovka, Moscow region 142432 Russia
| | - Aleksey V. Kuzmin
- Institute of Solid State Physics RAS Chernogolovka Moscow Region 142432 Russia
| | - Salavat S. Khasanov
- Institute of Solid State Physics RAS Chernogolovka Moscow Region 142432 Russia
| | - Alexander F. Shestakov
- Institute of Problems of Chemical Physics RAS Chernogolovka, Moscow region 142432 Russia
| | - Akihiro Otsuka
- Division of Chemistry, Graduate School of Science Kyoto University Sakyo-ku, Kyoto 606-8502 Japan
- Research Center for Low Temperature and Materials Sciences Kyoto University Sakyo-ku, Kyoto 606-8501 Japan
| | - Hideki Yamochi
- Division of Chemistry, Graduate School of Science Kyoto University Sakyo-ku, Kyoto 606-8502 Japan
- Research Center for Low Temperature and Materials Sciences Kyoto University Sakyo-ku, Kyoto 606-8501 Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science Kyoto University Sakyo-ku, Kyoto 606-8502 Japan
| | - Rimma N. Lyubovskaya
- Institute of Problems of Chemical Physics RAS Chernogolovka, Moscow region 142432 Russia
| |
Collapse
|
22
|
Saikia S, Bordoloi M, Sarmah R. Established and In-trial GPCR Families in Clinical Trials: A Review for Target Selection. Curr Drug Targets 2020; 20:522-539. [PMID: 30394207 DOI: 10.2174/1389450120666181105152439] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/28/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022]
Abstract
The largest family of drug targets in clinical trials constitute of GPCRs (G-protein coupled receptors) which accounts for about 34% of FDA (Food and Drug Administration) approved drugs acting on 108 unique GPCRs. Factors such as readily identifiable conserved motif in structures, 127 orphan GPCRs despite various de-orphaning techniques, directed functional antibodies for validation as drug targets, etc. has widened their therapeutic windows. The availability of 44 crystal structures of unique receptors, unexplored non-olfactory GPCRs (encoded by 50% of the human genome) and 205 ligand receptor complexes now present a strong foundation for structure-based drug discovery and design. The growing impact of polypharmacology for complex diseases like schizophrenia, cancer etc. warrants the need for novel targets and considering the undiscriminating and selectivity of GPCRs, they can fulfill this purpose. Again, natural genetic variations within the human genome sometimes delude the therapeutic expectations of some drugs, resulting in medication response differences and ADRs (adverse drug reactions). Around ~30 billion US dollars are dumped annually for poor accounting of ADRs in the US alone. To curb such undesirable reactions, the knowledge of established and currently in clinical trials GPCRs families can offer huge understanding towards the drug designing prospects including "off-target" effects reducing economical resource and time. The druggability of GPCR protein families and critical roles played by them in complex diseases are explained. Class A, class B1, class C and class F are generally established family and GPCRs in phase I (19%), phase II(29%), phase III(52%) studies are also reviewed. From the phase I studies, frizzled receptors accounted for the highest in trial targets, neuropeptides in phase II and melanocortin in phase III studies. Also, the bioapplications for nanoparticles along with future prospects for both nanomedicine and GPCR drug industry are discussed. Further, the use of computational techniques and methods employed for different target validations are also reviewed along with their future potential for the GPCR based drug discovery.
Collapse
Affiliation(s)
- Surovi Saikia
- Natural Products Chemistry Group, CSIR North East Institute of Science & Technology, Jorhat-785006, Assam, India
| | - Manobjyoti Bordoloi
- Natural Products Chemistry Group, CSIR North East Institute of Science & Technology, Jorhat-785006, Assam, India
| | - Rajeev Sarmah
- Allied Health Sciences, Assam Down Town University, Panikhaiti, Guwahati 781026, Assam, India
| |
Collapse
|
23
|
Akbarzadeh P, Koukabi N. Magnetic carbon nanotube as a highly stable support for the heterogenization of InCl
3
and its application in the synthesis of isochromeno[4,3‐
c
]pyrazole‐5(1
H
)‐one derivatives. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Parisa Akbarzadeh
- Department of ChemistrySemnan University P.O. Box 35195‐363 Semnan Iran
| | - Nadiya Koukabi
- Department of ChemistrySemnan University P.O. Box 35195‐363 Semnan Iran
| |
Collapse
|
24
|
Maciel EVS, de Toffoli AL, Neto ES, Nazario CED, Lanças FM. New materials in sample preparation: Recent advances and future trends. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115633] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Toxicity of carbon-based nanomaterials: Reviewing recent reports in medical and biological systems. Chem Biol Interact 2019; 307:206-222. [PMID: 31054282 DOI: 10.1016/j.cbi.2019.04.036] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 04/21/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
Application of nanomaterials in our daily life is increasing, day in day out and concerns have raised about their toxicity for human and other organisms. In this manner, carbon-based nanomaterials have been applied to different products due to their unique physicochemical, electrical, mechanical properties, and biological compatibility. But, there are several reports about the negative effects of these materials on biological systems and cellular compartments. This review article describes the various types of carbon-based nanomaterials and methods that use for determining these toxic effects that are reported recently in the papers. Then, extensively discussed the toxic effects of these materials on the human and other living organisms and also their toxicity routs including Neurotoxicity, Hepatotoxicity, Nephrotoxicity, Immunotoxicity, Cardiotoxicity, Genotoxicity and epigenetic toxicity, Dermatotoxicity, and Carcinogenicity.
Collapse
|
26
|
Nahle S, Safar R, Grandemange S, Foliguet B, Lovera-Leroux M, Doumandji Z, Le Faou A, Joubert O, Rihn B, Ferrari L. Single wall and multiwall carbon nanotubes induce different toxicological responses in rat alveolar macrophages. J Appl Toxicol 2019; 39:764-772. [PMID: 30605223 PMCID: PMC6590492 DOI: 10.1002/jat.3765] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 01/01/2023]
Abstract
Human exposure to airborne carbon nanotubes (CNT) is increasing because of their applications in different sectors; therefore, they constitute a biological hazard. Consequently, developing studies on CNT toxicity become a necessity. CNTs can have different properties in term of length, size and charge. Here, we compared the cellular effect of multiwall (MWCNTs) and single wall CNTs (SWCNTs). MWCNTs consist of multiple layers of graphene, while SWCNTs are monolayers. The effects of MWCNTs and SWCNTs were evaluated by the water-soluble tetrazolium salt cell proliferation assay on NR8383 cells, rat alveolar macrophage cell line (NR8383). After 24 hours of exposure, MWCNTs showed higher toxicity (50% inhibitory concentration [IC50 ] = 3.2 cm2 /cm2 ) than SWCNTs (IC50 = 44 cm2 /cm2 ). Only SWCNTs have induced NR8383 cells apoptosis as assayed by flow cytometry using the annexin V/IP staining test. The expression of genes involved in oxidative burst (Ncf1), inflammation (Nfκb, Tnf-α, Il-6 and Il-1β), mitochondrial damage (Opa) and apoptotic balance (Pdcd4, Bcl-2 and Casp-8) was determined. We found that MWCNT exposure predominantly induce inflammation, while SWCNTs induce apoptosis and impaired mitochondrial function. Our results clearly suggest that MWCNTs are ideal candidates for acute inflammation induction. In vivo studies are required to confirm this hypothesis. However, we conclude that toxicity of CNTs is dependent on their physical and chemical characteristics.
Collapse
Affiliation(s)
- Sara Nahle
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, F-54000, Nancy, France
| | - Ramia Safar
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, F-54000, Nancy, France
| | - Stéphanie Grandemange
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, F-54000, Nancy, France
| | - Bernard Foliguet
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, F-54000, Nancy, France
| | - Mélanie Lovera-Leroux
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, F-54000, Nancy, France
| | - Zahra Doumandji
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, F-54000, Nancy, France
| | - Alain Le Faou
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, F-54000, Nancy, France
| | - Olivier Joubert
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, F-54000, Nancy, France
| | - Bertrand Rihn
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, F-54000, Nancy, France
| | - Luc Ferrari
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, F-54000, Nancy, France
| |
Collapse
|
27
|
Kan H, Pan D, Castranova V. Engineered nanoparticle exposure and cardiovascular effects: the role of a neuronal-regulated pathway. Inhal Toxicol 2019; 30:335-342. [PMID: 30604639 DOI: 10.1080/08958378.2018.1535634] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human and animal studies have confirmed that inhalation of particles from ambient air or occupational settings not only causes pathophysiological changes in the respiratory system, but causes cardiovascular effects as well. At an equal mass lung burden, nanoparticles are more potent in causing systemic microvascular dysfunction than fine particles of similar composition. Thus, accumulated evidence from animal studies has led to heightened concerns about the potential short- and long-term deleterious effects of inhalation of engineered nanoparticles on the cardiovascular system. This review highlights the new observations from animal studies, which document the adverse effects of pulmonary exposure to engineered nanoparticles on the cardiovascular system and elucidate the potential mechanisms involved in regulation of cardiovascular function, in particular, how the neuronal system plays a role and reacts to pulmonary nanoparticle exposure based on both in vivo and in vitro studies. In addition, this review also discusses the possible influence of altered autonomic nervous activity on preexisting cardiovascular conditions. Whether engineered nanoparticle exposure serves as a risk factor in the development of cardiovascular diseases warrants further investigation.
Collapse
Affiliation(s)
- H Kan
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA.,b Department of Pharmaceutical Sciences , West Virginia University , Morgantown , WV , USA
| | - D Pan
- a Health Effects Laboratory Division , National Institute for Occupational Safety and Health , Morgantown , WV , USA
| | - V Castranova
- b Department of Pharmaceutical Sciences , West Virginia University , Morgantown , WV , USA
| |
Collapse
|
28
|
Sun Z, Lu F, Cheng J, Zhang M, Zhang Y, Xiong W, Zhao Y, Qu H. Haemostatic bioactivity of novel Schizonepetae Spica Carbonisata-derived carbon dots via platelet counts elevation. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S308-S317. [PMID: 30431371 DOI: 10.1080/21691401.2018.1492419] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Schizonepetae Spica Carbonisata (SSC) has pronounced haemostatic effects for hundreds of years and has been acknowledged in the 2015 Pharmacopoeia of the People's Republic of China (PPRC) as a haemostatic charcoal drug. However, after years of efforts, the underlying mechanism and the material basis is still less defined. In this research, we developed a novel CDs derived from SSC (SSC-CDs) with an average diameter of 1.29-6.87 nm and a quantum yield of 6.31%. SSC was prepared using a modified pyrolysis method and no further modification and external surface passivation agent is required. With abundant surface groups, SSC-CDs showed distinct solubility and bioactivity. In this study, we innovatively used the Deinagkistrodon acutus (D. acutus) venom model as well as the classical haemorrhagic animal model to evaluate the haemostatic bioactivity of SSC-CDs. The results indicated that SSC-CDs had outstanding haemostatic bioactivity and might inhibit the haemorrhagic activity via PLT elevation. According to the results of this study and our previous work, we discovered that CDs derived from different kinds of charcoal drugs presented similarities and differences in the structural feature, physicochemical property and bioactivity. In order to further explore the self-bioactivities, we first named this kind of CDs as "Chinese Medicine charcoal drug nanoparticles" (CMNP). These results may not only provide evidence for further researches of self-bioactivities of CDs but give new insights into potential biomedical and healthcare applications of CDs, therefore, make contributions to future drug discovery.
Collapse
Affiliation(s)
- Ziwei Sun
- a School of Preclinical Medicine , Beijing University of Chinese Medicine , Beijing , China
| | - Fang Lu
- a School of Preclinical Medicine , Beijing University of Chinese Medicine , Beijing , China
| | - Jinjun Cheng
- a School of Preclinical Medicine , Beijing University of Chinese Medicine , Beijing , China
| | - Meiling Zhang
- a School of Preclinical Medicine , Beijing University of Chinese Medicine , Beijing , China
| | - Yue Zhang
- b School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Wei Xiong
- b School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Yan Zhao
- a School of Preclinical Medicine , Beijing University of Chinese Medicine , Beijing , China
| | - Huihua Qu
- c Center of Scientific Experiment, Beijing University of Chinese Medicine , Beijing , China
| |
Collapse
|
29
|
Use of Plasma-Synthesized Nano-Catalysts for CO Hydrogenation in Low-Temperature Fischer⁻Tropsch Synthesis: Effect of Catalyst Pre-Treatment. NANOMATERIALS 2018; 8:nano8100822. [PMID: 30322025 PMCID: PMC6215254 DOI: 10.3390/nano8100822] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/20/2018] [Accepted: 10/04/2018] [Indexed: 12/12/2022]
Abstract
A study was done on the effect of temperature and catalyst pre-treatment on CO hydrogenation over plasma-synthesized catalysts during the Fischer–Tropsch synthesis (FTS). Nanometric Co/C, Fe/C, and 50%Co-50%Fe/C catalysts with BET specific surface area of ~80 m2 g–1 were tested at a 2 MPa pressure and a gas hourly space velocity (GHSV) of 2000 cm3 h−1 g−1 of a catalyst (at STP) in hydrogen-rich FTS feed gas (H2:CO = 2.2). After pre-treatment in both H2 and CO, transmission electron microscopy (TEM) showed that the used catalysts shifted from a mono-modal particle-size distribution (mean ~11 nm) to a multi-modal distribution with a substantial increase in the smaller nanoparticles (~5 nm), which was statistically significant. Further characterization was conducted by scanning electron microscopy (SEM with EDX elemental mapping), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The average CO conversion at 500 K was 18% (Co/C), 17% (Fe/C), and 16% (Co-Fe/C); 46%, 37%, and 57% at 520 K; and 85%, 86% and 71% at 540 K respectively. The selectivity of Co/C for C5+ was ~98% with 8% gasoline, 61%, diesel and 28% wax (fractions) at 500 K; 22% gasoline, 50% diesel, and 19% wax at 520 K; and 24% gasoline, 34% diesel, and 11% wax at 540 K, besides CO2 and CH4 as by-products. Fe-containing catalysts manifested similar trends, with a poor conformity to the Anderson–Schulz–Flory (ASF) product distribution.
Collapse
|
30
|
Kaboudin B, Saghatchi F, Kazemi F, Akbari-Birgani S. A Novel Magnetic Carbon Nanotubes Functionalized with Pyridine Groups: Synthesis, Characterization and Their Application as an Efficient Carrier for Plasmid DNA and Aptamer. ChemistrySelect 2018. [DOI: 10.1002/slct.201800708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Babak Kaboudin
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang; Zanjan 45137-66731 Iran
- Center for Research in Basic Sciences and Contemporary Technologies
| | - Fatemeh Saghatchi
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang; Zanjan 45137-66731 Iran
| | - Foad Kazemi
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang; Zanjan 45137-66731 Iran
| | - Shiva Akbari-Birgani
- Center for Research in Basic Sciences and Contemporary Technologies
- Faculty of Biological Sciences; Institute for Advanced Studies in Basic Sciences (IASBS), GavaZang; Zanjan 45137-66731 Iran
| |
Collapse
|
31
|
Kafshdooz L, Pourfathi H, Akbarzadeh A, Kafshdooz T, Razban Z, Sheervalilou R, Ebrahimi Sadr N, Khalilov R, Saghfi S, Kavetskyy T, Mammadova L, Mehrizadeh M, Ghasemali S. The role of microRNAs and nanoparticles in ovarian cancer: a review. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:241-247. [DOI: 10.1080/21691401.2018.1454931] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Leila Kafshdooz
- Department of Medical Genetics, Women’s Reproductive Health Research Center, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hojjat Pourfathi
- Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Tuberculosis and Lung Disease Research Center of Tabriz, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Taiebeh Kafshdooz
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohre Razban
- Department of Medical Genetics, Women’s Reproductive Health Research Center, Tabriz, Iran
| | | | | | - Rovshan Khalilov
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych Ukraine & Baku, Azerbaijan
- Department of Plant Physiology, Faculty of Biology, Baku State University, Baku, Azerbaijan
| | - Siamak Saghfi
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych Ukraine & Baku, Azerbaijan
- Department of Plant Physiology, Faculty of Biology, Baku State University, Baku, Azerbaijan
| | - Taras Kavetskyy
- Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych Ukraine & Baku, Azerbaijan
- The John Paul II Catholic University of Lublin, Lublin, Poland
- Drohobych Ivan Franko State Pedagogical University, Drohobych, Ukraine
| | - Lala Mammadova
- Department of Biophysics and Molecular Biology, Baku State University, Baku, Azerbaijan
| | - Masoud Mehrizadeh
- Department of Petroleum Engineering, School of Engineering and Applied Sciences, Khazar University, Baku, Azerbaijan
| | - Samaneh Ghasemali
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|