1
|
Kumar U. Somatostatin and Somatostatin Receptors in Tumour Biology. Int J Mol Sci 2023; 25:436. [PMID: 38203605 PMCID: PMC10779198 DOI: 10.3390/ijms25010436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Somatostatin (SST), a growth hormone inhibitory peptide, is expressed in endocrine and non-endocrine tissues, immune cells and the central nervous system (CNS). Post-release from secretory or immune cells, the first most appreciated role that SST exhibits is the antiproliferative effect in target tissue that served as a potential therapeutic intervention in various tumours of different origins. The SST-mediated in vivo and/or in vitro antiproliferative effect in the tumour is considered direct via activation of five different somatostatin receptor subtypes (SSTR1-5), which are well expressed in most tumours and often more than one receptor in a single cell. Second, the indirect effect is associated with the regulation of growth factors. SSTR subtypes are crucial in tumour diagnosis and prognosis. In this review, with the recent development of new SST analogues and receptor-specific agonists with emerging functional consequences of signaling pathways are promising therapeutic avenues in tumours of different origins that are discussed.
Collapse
Affiliation(s)
- Ujendra Kumar
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
2
|
Fan M, Huang Y, Zhu X, Zheng J, Du M. Octreotide and Octreotide-derived delivery systems. J Drug Target 2023; 31:569-584. [PMID: 37211679 DOI: 10.1080/1061186x.2023.2216895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/01/2023] [Accepted: 04/29/2023] [Indexed: 05/23/2023]
Abstract
Pharmaceutical peptide Octreotide is a somatostatin analog with targeting and therapeutic abilities. Over the last decades, Octreotide has been developed and approved to treat acromegaly and neuroendocrine tumours, and Octreotide-based radioactive conjugates have been leveraged clinically to detect small neuroendocrine tumour sites. Meanwhile, variety of Octreotide-derived delivery strategies have been proposed and explored for tumour targeted therapeutics or diagnostics in preclinical or clinical settings. In this review, we especially focus on the preclinical development and applications of Octreotide-derived drug delivery systems, diagnostic nanosystems, therapeutic nanosystems and multifunctional nanosystems, we also briefly discuss challenges and prospects of these Octreotide-derived delivery systems.
Collapse
Affiliation(s)
- Mingliang Fan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yue Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xinlin Zhu
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jiayu Zheng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Mingwei Du
- Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai, China
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| |
Collapse
|
3
|
Nel J, Elkhoury K, Velot É, Bianchi A, Acherar S, Francius G, Tamayol A, Grandemange S, Arab-Tehrany E. Functionalized liposomes for targeted breast cancer drug delivery. Bioact Mater 2023; 24:401-437. [PMID: 36632508 PMCID: PMC9812688 DOI: 10.1016/j.bioactmat.2022.12.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
Despite the exceptional progress in breast cancer pathogenesis, prognosis, diagnosis, and treatment strategies, it remains a prominent cause of female mortality worldwide. Additionally, although chemotherapies are effective, they are associated with critical limitations, most notably their lack of specificity resulting in systemic toxicity and the eventual development of multi-drug resistance (MDR) cancer cells. Liposomes have proven to be an invaluable drug delivery system but of the multitudes of liposomal systems developed every year only a few have been approved for clinical use, none of which employ active targeting. In this review, we summarize the most recent strategies in development for actively targeted liposomal drug delivery systems for surface, transmembrane and internal cell receptors, enzymes, direct cell targeting and dual-targeting of breast cancer and breast cancer-associated cells, e.g., cancer stem cells, cells associated with the tumor microenvironment, etc.
Collapse
Affiliation(s)
- Janske Nel
- Université de Lorraine, LIBio, F-54000, Nancy, France
| | | | - Émilie Velot
- Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France
| | - Arnaud Bianchi
- Université de Lorraine, CNRS, IMoPA, F-54000, Nancy, France
| | - Samir Acherar
- Université de Lorraine, CNRS, LCPM, F-54000, Nancy, France
| | | | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | | | | |
Collapse
|
4
|
Rafik ST, Vaidya JS, MacRobert AJ, Yaghini E. Organic Nanodelivery Systems as a New Platform in the Management of Breast Cancer: A Comprehensive Review from Preclinical to Clinical Studies. J Clin Med 2023; 12:jcm12072648. [PMID: 37048731 PMCID: PMC10095028 DOI: 10.3390/jcm12072648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Breast cancer accounts for approximately 25% of cancer cases and 16.5% of cancer deaths in women, and the World Health Organization predicts that the number of new cases will increase by almost 70% over the next two decades, mainly due to an ageing population. Effective diagnostic and treatment strategies are, therefore, urgently required for improving cure rates among patients since current therapeutic modalities have many limitations and side effects. Nanomedicine is evolving as a promising approach for cancer management, including breast cancer, and various types of organic and inorganic nanomaterials have been investigated for their role in breast cancer diagnosis and treatment. Following an overview on breast cancer characteristics and pathogenesis and challenges of the current treatment strategies, the therapeutic potential of biocompatible organic-based nanoparticles such as liposomes and polymeric micelles that have been tested in breast cancer models are reviewed. The efficacies of different drug delivery and targeting strategies are documented, ranging from synthetic to cell-derived nanoformulations together with a summary of the interaction of nanoparticles with externally applied energy such as radiotherapy. The clinical translation of nanoformulations for breast cancer treatment is summarized including those undergoing clinical trials.
Collapse
Affiliation(s)
- Salma T. Rafik
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London (UCL), London W1W 7TY, UK
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria 21516, Egypt
| | - Jayant S. Vaidya
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London (UCL), London W1W 7TY, UK
| | - Alexander J. MacRobert
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London (UCL), London W1W 7TY, UK
| | - Elnaz Yaghini
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London (UCL), London W1W 7TY, UK
| |
Collapse
|
5
|
Moudgil A, Salve R, Gajbhiye V, Chaudhari BP. Challenges and emerging strategies for next generation liposomal based drug delivery: An account of the breast cancer conundrum. Chem Phys Lipids 2023; 250:105258. [PMID: 36375540 DOI: 10.1016/j.chemphyslip.2022.105258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
The global cancer burden is witnessing an upsurge with breast cancer surpassing other cancers worldwide. Furthermore, an escalation in the breast cancer caseload is also expected in the coming years. The conventional therapeutic regimens practiced routinely are associated with many drawbacks to which nanotechnological interventions offer a great advantage. But how eminent could liposomes and their advantages be in superseding these existing therapeutic modalities? A solution is reflected in this review that draws attention to a decade-long journey embarked upon by researchers in this wake. This text is a comprehensive discussion of liposomes, the front runners of the drug delivery systems, and their active and passive targeting approaches for breast cancer management. Active targeting has been studied over the decade by many receptors overexpressed on the breast cancer cells and passive targeting with many drug combinations. The results converge on the fact that the actively targeted formulations exhibit a superior efficacy over their non-targeted counterparts and the all liposomal formulations are efficacious over the free drugs. This undoubtedly underlines the dominion of liposomal formulations over conventional chemotherapy. These investigations have led to the development of different liposomal formulations with active and passive targeting capacities that could be explored in depth. Acknowledging and getting a deeper insight into the liposomal evolution through time also unveiled many imperfections and unchartered territories that can be explored to deliver dexterous liposomal formulations against breast cancer and more in the clinical trial pipeline.
Collapse
Affiliation(s)
- Aliesha Moudgil
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pashan, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Rajesh Salve
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India.
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India.
| | - Bhushan P Chaudhari
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pashan, Pune 411008, India.
| |
Collapse
|
6
|
Wong KH, Yang D, Chen S, He C, Chen M. Development of Nanoscale Drug Delivery Systems of Dihydroartemisinin for Cancer Therapy: A Review. Asian J Pharm Sci 2022; 17:475-490. [PMID: 36105316 PMCID: PMC9459003 DOI: 10.1016/j.ajps.2022.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/20/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022] Open
|
7
|
Zhou X, Suo F, Haslinger K, Quax WJ. Artemisinin-Type Drugs in Tumor Cell Death: Mechanisms, Combination Treatment with Biologics and Nanoparticle Delivery. Pharmaceutics 2022; 14:395. [PMID: 35214127 PMCID: PMC8875250 DOI: 10.3390/pharmaceutics14020395] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Artemisinin, the most famous anti-malaria drug initially extracted from Artemisia annua L., also exhibits anti-tumor properties in vivo and in vitro. To improve its solubility and bioavailability, multiple derivatives have been synthesized. However, to reveal the anti-tumor mechanism and improve the efficacy of these artemisinin-type drugs, studies have been conducted in recent years. In this review, we first provide an overview of the effect of artemisinin-type drugs on the regulated cell death pathways, which may uncover novel therapeutic approaches. Then, to overcome the shortcomings of artemisinin-type drugs, we summarize the recent advances in two different therapeutic approaches, namely the combination therapy with biologics influencing regulated cell death, and the use of nanocarriers as drug delivery systems. For the former approach, we discuss the superiority of combination treatments compared to monotherapy in tumor cells based on their effects on regulated cell death. For the latter approach, we give a systematic overview of nanocarrier design principles used to deliver artemisinin-type drugs, including inorganic-based nanoparticles, liposomes, micelles, polymer-based nanoparticles, carbon-based nanoparticles, nanostructured lipid carriers and niosomes. Both approaches have yielded promising findings in vitro and in vivo, providing a strong scientific basis for further study and upcoming clinical trials.
Collapse
Affiliation(s)
| | | | - Kristina Haslinger
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (X.Z.); (F.S.)
| | - Wim J. Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (X.Z.); (F.S.)
| |
Collapse
|
8
|
Artemisinin and Derivatives-Based Hybrid Compounds: Promising Therapeutics for the Treatment of Cancer and Malaria. Molecules 2021; 26:molecules26247521. [PMID: 34946603 PMCID: PMC8707619 DOI: 10.3390/molecules26247521] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 01/12/2023] Open
Abstract
Cancer and malaria are major health conditions around the world despite many strategies and therapeutics available for their treatment. The most used strategy for the treatment of these diseases is the administration of therapeutic drugs, which suffer from several shortcomings. Some of the pharmacological limitations associated with these drugs are multi-drug resistance, drug toxicity, poor biocompatibility and bioavailability, and poor water solubility. The currently ongoing preclinical studies have demonstrated that combination therapy is a potent approach that can overcome some of the aforementioned limitations. Artemisinin and its derivatives have been reported to exhibit potent efficacy as anticancer and antimalarial agents. This review reports hybrid compounds containing artemisinin scaffolds and their derivatives with promising therapeutic effects for the treatment of cancer and malaria.
Collapse
|
9
|
Biomembrane-based nanostructures for cancer targeting and therapy: From synthetic liposomes to natural biomembranes and membrane-vesicles. Adv Drug Deliv Rev 2021; 178:113974. [PMID: 34530015 DOI: 10.1016/j.addr.2021.113974] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/29/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022]
Abstract
The translational success of liposomes in chemotherapeutics has already demonstrated the great potential of biomembrane-based nanostructure in effective drug delivery. Meanwhile, increasing efforts are being dedicated to the application of naturally derived lipid membranes, including cellular membranes and extracellular vesicles in anti-cancer therapies. While synthetic liposomes support superior multifunctional flexibility, natural biomembrane materials possess interesting biomimetic properties and can also be further engineered for intelligent design. Despite being remarkably different from each other in production and composition, the phospholipid bilayer structure in common allows liposomes, cell membrane-derived nanomaterials, and extracellular vesicles to be modified, functionalized, and exploited in many similar manners against challenges posed by tumor-targeted drug delivery. This review will summarize the recent advancements in engineering the membrane-derived nanostructures with "intelligent" modules to respond, regulate, and target tumor cells and the microenvironment to fight against malignancy. We will also discuss perspectives of combining engineered functionalities with naturally occurring activity for enhanced cancer therapy.
Collapse
|
10
|
Yu R, Jin G, Fujimoto M. Dihydroartemisinin: A Potential Drug for the Treatment of Malignancies and Inflammatory Diseases. Front Oncol 2021; 11:722331. [PMID: 34692496 PMCID: PMC8529146 DOI: 10.3389/fonc.2021.722331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Dihydroartemisinin (DHA) has been globally recognized for its efficacy and safety in the clinical treatment of malaria for decades. Recently, it has been found that DHA inhibits malignant tumor growth and regulates immune system function in addition to anti-malaria. In parasites and tumors, DHA causes severe oxidative stress by inducing excessive reactive oxygen species production. DHA also kills tumor cells by inducing programmed cell death, blocking cell cycle and enhancing anti-tumor immunity. In addition, DHA inhibits inflammation by reducing the inflammatory cells infiltration and suppressing the production of pro-inflammatory cytokines. Further, genomics, proteomics, metabolomics and network pharmacology of DHA therapy provide the basis for elucidating the pharmacological effects of DHA. This review provides a summary of the recent research progress of DHA in anti-tumor, inhibition of inflammatory diseases and the relevant pharmacological mechanisms. With further research of DHA, it is likely that DHA will become an alternative therapy in the clinical treatment of malignant tumors and inflammatory diseases.
Collapse
Affiliation(s)
- Ran Yu
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Guihua Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Manabu Fujimoto
- Department of Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Laboratory of Cutaneous Immunology, Osaka University Immunology Frontier Research Center, Osaka, Japan
| |
Collapse
|
11
|
Wang HS, Xia X, Wang Y, Lyu W, Sang M, Gu C, Liu W, Zheng F. Anti-cancer adjuvant drug screening via epithelial-mesenchymal transition-related aptamer probe. Anal Bioanal Chem 2021; 413:6951-6962. [PMID: 34676432 DOI: 10.1007/s00216-021-03669-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is implicated in the pathological processes of cancer metastasis and drug resistance. Anti-cancer drugs may also potentially lead to EMT, resulting in their reduced therapeutic effect. Therefore, the combination of these anti-cancer drugs with anti-EMT agents has been promoted in clinic. Screening anti-EMT drugs and evaluation of EMT process are highly dependent on EMT biomarkers on cell membrane. At present, the detection of EMT biomarker is mainly by Western blot method, which is time-consuming and complicated. In this work, for effectively screening anti-EMT drugs by evaluation of the EMT process, a type of aptamer probe based on aggregation-induced emission (AIE) was designed. The aptamer SYL3C was employed to target the EMT biomarker EpCAM on cell membrane. Two fluorophores, FAM and tetraphenylethene (TPE, an AIE dye), were modified at the two ends of SYL3C, respectively. This aptamer probe (TPE-SYL3C-FAM) can monitor the EpCAM expression, which can be recovered by anti-EMT drugs. By observation of the change in TPE emission intensity, the anti-EMT effect of drugs can be evaluated. The FAM emission was used as internal reference to reduce environmental interferences. This probe can be potentially used to screen anti-EMT agents as anti-cancer adjuvant drugs with high throughput.
Collapse
Affiliation(s)
- Huai-Song Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Xingya Xia
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Yingming Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Weiping Lyu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Mangmang Sang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Congcong Gu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, Jiangsu, 210009, People's Republic of China.
| | - Feng Zheng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, Jiangsu, 210009, People's Republic of China.
| |
Collapse
|
12
|
Zhang Q, Jin L, Jin Q, Wei Q, Sun M, Yue Q, Liu H, Li F, Li H, Ren X, Jin G. Inhibitory Effect of Dihydroartemisinin on the Proliferation and Migration of Melanoma Cells and Experimental Lung Metastasis From Melanoma in Mice. Front Pharmacol 2021; 12:727275. [PMID: 34539408 PMCID: PMC8443781 DOI: 10.3389/fphar.2021.727275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/23/2021] [Indexed: 12/05/2022] Open
Abstract
Melanoma is aggressive and can metastasize in the early stage of tumor. It has been proved that dihydroartemisinin (DHA) positively affects the treatment of tumors and has no apparent toxic and side effects. Our previous research has shown that DHA can suppress the formation of melanoma. However, it remains poorly established how DHA impacts the invasion and metastasis of melanoma. In this study, B16F10 and A375 cell lines and metastatic tumor models will be used to investigate the effects of DHA. The present results demonstrated that DHA inhibited the proliferative capacity in A375 and B16F10 cells. As expected, the migration capacity of A375 and B16F10 cells was also reduced after DHA administration. DHA alleviated the severity and histopathological changes of melanoma in mice. DHA induced expansion of CD8+CTL in the tumor microenvironment. By contrast, DHA inhibited Treg cells infiltration into the tumor microenvironment. DHA enhanced apoptosis of melanoma by regulating FasL expression and Granzyme B secretion in CD8+CTLs. Moreover, DHA impacts STAT3-induced EMT and MMPS in tumor tissue. Furthermore, Metabolomics analysis indicated that PGD2 and EPA significantly increased after DHA administration. In conclusion, DHA inhibited the proliferation, migration and metastasis of melanoma in vitro and in vivo. These results have important implications for the potential use of DHA in the treatment of melanoma in humans.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Linbo Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Quanxin Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Qiang Wei
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Mingyuan Sun
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Qi Yue
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Huan Liu
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Fangfang Li
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Honghua Li
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Xiangshan Ren
- Department of Pathology and Physiology, Yanbian University Medical College, Yanji, China
| | - Guihua Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| |
Collapse
|
13
|
Zheng Y, Karnoub AE. Endocrine regulation of cancer stem cell compartments in breast tumors. Mol Cell Endocrinol 2021; 535:111374. [PMID: 34242715 DOI: 10.1016/j.mce.2021.111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 10/20/2022]
Abstract
Cancer cells within breast tumors exist within a hierarchy in which only a small and rare subset of cells is able to regenerate growths with the heterogeneity of the original tumor. These highly malignant cancer cells, which behave like stem cells for new cancers and are called "cancer stem cells" or CSCs, have also been shown to possess increased resistance to therapeutics, and represent the root cause underlying therapy failures, persistence of residual disease, and relapse. As >90% of cancer deaths are due to refractory tumors, identification of critical molecular drivers of the CSC-state would reveal vulnerabilities that can be leveraged in designing therapeutics that eradicate advanced disease and improve patient survival outcomes. An expanding and complex body of work has now described the exquisite susceptibility of CSC pools to the regulatory influences of local and systemic hormones. Indeed, breast CSCs express a plethora of hormonal receptors, which funnel hormonal influences over every aspect of breast neoplasia - be it tumor onset, growth, survival, invasion, metastasis, or therapy resistance - via directly impacting CSC behavior. This article is intended to shed light on this active area of investigation by attempting to provide a systematic and comprehensive overview of the available evidence directly linking hormones to breast CSC biology.
Collapse
Affiliation(s)
- Yurong Zheng
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Antoine E Karnoub
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Harvard Stem Cell Institute, Cambridge, MA, 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
14
|
Ma Y, Zhang P, Zhang Q, Wang X, Miao Q, Lyu X, Cui B, Ma H. Dihydroartemisinin suppresses proliferation, migration, the Wnt/β-catenin pathway and EMT via TNKS in gastric cancer. Oncol Lett 2021; 22:688. [PMID: 34457043 PMCID: PMC8358739 DOI: 10.3892/ol.2021.12949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 05/11/2021] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer is a common malignancy worldwide. However, the molecular mechanisms underlying this malignancy remain unclear and there are a lack of effective drugs. The present study aimed to investigate the antitumor effect of Dihydroartemisinin (DHA) or inhibition of Tankyrases (TNKS), and determine the underlying molecular mechanisms of gastric cancer. Immunohistochemistry and immunofluorescence analyses were performed to detect the expression levels of TNKS, epithelial-to-mesenchymal transition (EMT) and Wnt/β-catenin pathway-related proteins in gastric cancer tissues and adjacent normal tissues. The Cell Counting Kit-8 assay was performed to assess the viability of HGC-27 and AGS cells following treatment with different concentrations of HLY78 (a Wnt activator) or DHA. Following treatment with HLY78, DHA or small interfering (si)-TNKS1/si-TNKS2, colony formation and migratory abilities were assessed via the colony formation, wound healing and Transwell assays. Furthermore, western blot and immunofluorescence analyses were performed to detect the expression levels of TNKS, EMT- and Wnt/β-catenin-related proteins. The results demonstrated that the expression levels of TNKS, AXI2, β-catenin, N-cadherin and Vimentin were upregulated, whereas E-cadherin expression was downregulated in gastric cancer tissues compared with normal tissues. Furthermore, HLY78 and DHA suppressed the viability of HGC-27 and AGS cells, in a concentration-independent manner. Notably, TNKS knockdown or treatment with DHA suppressed colony formation, migration, TNKS expression, EMT and the Wnt/β-catenin pathway. Opposing effects were observed following treatment with HLY78, which were ameliorated following co-treatment with DHA. Taken together, these results suggest that DHA or inhibition of TNKS can suppress the proliferation and migration of gastric cancer cells, which is partly associated with inactivation of the Wnt/β-catenin pathway and EMT process.
Collapse
Affiliation(s)
- Yanmei Ma
- Department of Pathology, The First Hospital of Yulin, Yulin, Shaanxi 719000, P.R. China
| | - Peng Zhang
- Department of Pathology, The First Hospital of Yulin, Yulin, Shaanxi 719000, P.R. China
| | - Qilong Zhang
- Department of Geriatrics, The First Hospital of Yulin, Yulin, Shaanxi 719000, P.R. China
| | - Xiaofei Wang
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Qiong Miao
- Department of Orthopedics, The First Hospital of Yulin, Yulin, Shaanxi 719000, P.R. China
| | - Xiaolan Lyu
- Department of Pathology, The First Hospital of Yulin, Yulin, Shaanxi 719000, P.R. China
| | - Bo Cui
- Department of Pathology, The First Hospital of Yulin, Yulin, Shaanxi 719000, P.R. China
| | - Honghong Ma
- Department of Geriatrics, The First Hospital of Yulin, Yulin, Shaanxi 719000, P.R. China
| |
Collapse
|
15
|
Yang B, Song BP, Shankar S, Guller A, Deng W. Recent advances in liposome formulations for breast cancer therapeutics. Cell Mol Life Sci 2021; 78:5225-5243. [PMID: 33974093 PMCID: PMC11071878 DOI: 10.1007/s00018-021-03850-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/31/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022]
Abstract
Among many nanoparticle-based delivery platforms, liposomes have been particularly successful with many formulations passed into clinical applications. They are well-established and effective gene and/or drug delivery systems, widely used in cancer therapy including breast cancer. In this review we discuss liposome design with the targeting feature and triggering functions. We also summarise the recent progress (since 2014) in liposome-based therapeutics for breast cancer including chemotherapy and gene therapy. We finally identify some challenges on the liposome technology development for the future clinical translation.
Collapse
Affiliation(s)
- Biyao Yang
- ARC Centre of Excellence for Nanoscale Biophotonics, the Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Bo-Ping Song
- ARC Centre of Excellence for Nanoscale Biophotonics, the Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Mechatronic Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shaina Shankar
- ARC Centre of Excellence for Nanoscale Biophotonics, the Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Anna Guller
- ARC Centre of Excellence for Nanoscale Biophotonics, the Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia
| | - Wei Deng
- ARC Centre of Excellence for Nanoscale Biophotonics, the Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
16
|
Khongsti K, Pasupuleti BG, Das B, Bez G. 1,2,3-Triazole tethered 1,2,4‑trioxane trimer induces apoptosis in metastatic cancer cells and inhibits their proliferation, migration and invasion. Bioorg Chem 2021; 112:104952. [PMID: 33971565 DOI: 10.1016/j.bioorg.2021.104952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/24/2022]
Abstract
Artemisinin (ART) has been in use against different cancer cells and its derivatives and conjugates are more cytotoxic to iron-rich cancer cells. It is desirable to develop easily achievable synthetic 1,2,4-trioxanes having the same pharmacophore as that of ART. To explore more efficient compounds, a 1,2,3-triazole tethered 1,2,4‑trioxane trimer (4T) was synthesized and the anti-cancer effects of ART and 4T on MDA-MB-435 and MDA-MB-231 cells were investigated concerning regulation of osteopontin (OPN) expression, which is associated with cancer progression and malignancy. 1H NMR and 13C NMR, oxidative stress analysis, flow cytometry, western blot, Real-Time PCR, transfections, luciferase assay, cell viability, proliferation, migration and chemotactic invasion assays were used in this study. It was observed that the 4T induced apoptosis by inhibiting Bcl-2 (~0.6-fold) and cleavage of caspase-3 (intrinsic pathway) in these metastatic cancer cells, and also reduced colony formation, migration and invasion of these cancer cells. The treatment of 4T decreased the reduced glutathione level and increased the activities of glucose-6-phosphate dehydrogenase and glutathione reductase in the 4T treated cancer cells as compared to their respective controls. Further, the expression of OPN was diminished (~0.5-fold) by the 4T in these cell lines. It was also observed that the key mitogen-activated protein kinase pathway proteins, mitogen-activated protein kinase kinase1/2 (~1.8-fold) and extracellular signal-regulated kinase1/2 (~16-fold), were also activated following the treatment of the 4T. However, the phosphorylated c-Jun level, a component of activator protein-1, was significantly reduced in these cancer cells upon 4T treatment. Taken together, we hypothesize that 4T may be useful for controlling cancer progression and malignancy.
Collapse
Affiliation(s)
- Kitboklang Khongsti
- Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | | | - Bidyadhar Das
- Department of Zoology, North-Eastern Hill University, Shillong 793022, India.
| | - Ghanashyam Bez
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
17
|
Drug Resistance in Metastatic Breast Cancer: Tumor Targeted Nanomedicine to the Rescue. Int J Mol Sci 2021; 22:ijms22094673. [PMID: 33925129 PMCID: PMC8125767 DOI: 10.3390/ijms22094673] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer, specifically metastatic breast, is a leading cause of morbidity and mortality in women. This is mainly due to relapse and reoccurrence of tumor. The primary reason for cancer relapse is the development of multidrug resistance (MDR) hampering the treatment and prognosis. MDR can occur due to a multitude of molecular events, including increased expression of efflux transporters such as P-gp, BCRP, or MRP1; epithelial to mesenchymal transition; and resistance development in breast cancer stem cells. Excessive dose dumping in chemotherapy can cause intrinsic anti-cancer MDR to appear prior to chemotherapy and after the treatment. Hence, novel targeted nanomedicines encapsulating chemotherapeutics and gene therapy products may assist to overcome cancer drug resistance. Targeted nanomedicines offer innovative strategies to overcome the limitations of conventional chemotherapy while permitting enhanced selectivity to cancer cells. Targeted nanotheranostics permit targeted drug release, precise breast cancer diagnosis, and importantly, the ability to overcome MDR. The article discusses various nanomedicines designed to selectively target breast cancer, triple negative breast cancer, and breast cancer stem cells. In addition, the review discusses recent approaches, including combination nanoparticles (NPs), theranostic NPs, and stimuli sensitive or “smart” NPs. Recent innovations in microRNA NPs and personalized medicine NPs are also discussed. Future perspective research for complex targeted and multi-stage responsive nanomedicines for metastatic breast cancer is discussed.
Collapse
|
18
|
Gote V, Pal D. Octreotide-Targeted Lcn2 siRNA PEGylated Liposomes as a Treatment for Metastatic Breast Cancer. Bioengineering (Basel) 2021; 8:bioengineering8040044. [PMID: 33916786 PMCID: PMC8067132 DOI: 10.3390/bioengineering8040044] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022] Open
Abstract
Lcn2 overexpression in metastatic breast cancer (MBC) can lead to cancer progression by inducing the epithelial-to-mesenchymal transition and enhancing tumor angiogenesis. In this study, we engineered a PEGylated liposomal system encapsulating lipocalin 2 (Lcn2) small interfering RNA (Lcn2 siRNA) for selective targeting MBC cell line MCF-7 and triple-negative breast cancer cell line MDA-MB-231. The PEGylated liposomes were decorated with octreotide (OCT) peptide. OCT is an octapeptide analog of somatostatin growth hormone, having affinity for somatostatin receptors, overexpressed on breast cancer cells. Optimized OCT-targeted Lcn2 siRNA encapsulated PEGylated liposomes (OCT-Lcn2-Lipo) had a mean size of 152.00 nm, PDI, 0.13, zeta potential 4.10 mV and entrapment and loading efficiencies of 69.5% and 7.8%, respectively. In vitro uptake and intracellular distribution of OCT-Lcn2-Lipo in MCF-7 and MDA-MB-231 and MCF-12A cells demonstrated higher uptake for the OCT-targeted liposomes at 6 h by flow cytometry and confocal microscopy. OCT-Lcn2-lipo could achieve approximately 55-60% silencing of Lcn2 mRNA in MCF-7 and MDA-MB-231 cells. OCT-Lcn2-Lipo also demonstrated in vitro anti-angiogenic effects in MCF-7 and MDA-MB-231 cells by reducing VEGF-A and reducing the endothelial cells (HUVEC) migration levels. This approach may be useful in inhibiting angiogenesis in MBC.
Collapse
|
19
|
Li Y, Zhou X, Liu J, Yuan X, He Q. Therapeutic Potentials and Mechanisms of Artemisinin and its Derivatives for Tumorigenesis and Metastasis. Anticancer Agents Med Chem 2021; 20:520-535. [PMID: 31958040 DOI: 10.2174/1871520620666200120100252] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/10/2019] [Accepted: 10/24/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Tumor recurrence and metastasis are still leading causes of cancer mortality worldwide. The influence of traditional treatment strategies against metastatic tumors may still be limited. To search for novel and powerful agents against tumors has become a major research focus. In this study, Artemisinin (ARM), a natural compound isolated from herbs, Artemisia annua L., proceeding from drug repurposing methods, attracts more attention due to its good efficacy and tolerance in antimalarial practices, as well as newly confirmed anticancer activity. METHODS We have searched and reviewed the literatures about ARM and its derivatives (ARMs) for cancer using keywords "artemisinin" until May 2019. RESULTS In preclinical studies, ARMs can induce cell cycle arrest and cell death by apoptosis etc., to inhibit the progression of tumors, and suppress EMT and angiogenesis to inhibit the metastasis of tumors. Notably, the complex relationships of ARMs and autophagy are worth exploring. Inspired by the limitations of its antimalarial applications and the mechanical studies of artemisinin and cancer, people are also committed to develop safer and more potent ARM-based modified compounds (ARMs) or combination therapy, such as artemisinin dimers/ trimers, artemisinin-derived hybrids. Some clinical trials support artemisinins as promising candidates for cancer therapy. CONCLUSION ARMs show potent therapeutic potentials against carcinoma including metastatic tumors. Novel compounds derived from artemisinin and relevant combination therapies are supposed to be promising treatment strategies for tumors, as the important future research directions.
Collapse
Affiliation(s)
- Yue Li
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiaoyan Zhou
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jiali Liu
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiaohong Yuan
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Qian He
- Department of Clinical Laboratories, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
20
|
Dai X, Zhang X, Chen W, Chen Y, Zhang Q, Mo S, Lu J. Dihydroartemisinin: A Potential Natural Anticancer Drug. Int J Biol Sci 2021; 17:603-622. [PMID: 33613116 PMCID: PMC7893584 DOI: 10.7150/ijbs.50364] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Dihydroartemisinin (DHA) is an active metabolite of artemisinin and its derivatives (ARTs), and it is an effective clinical drug widely used to treat malaria. Recently, the anticancer activity of DHA has attracted increasing attention. Nevertheless, there is no systematic summary on the anticancer effects of DHA. Notably, studies have shown that DHA exerts anticancer effects through various molecular mechanisms, such as inhibiting proliferation, inducing apoptosis, inhibiting tumor metastasis and angiogenesis, promoting immune function, inducing autophagy and endoplasmic reticulum (ER) stress. In this review, we comprehensively summarized the latest progress regarding the anticancer activities of DHA in cancer. Importantly, the underlying anticancer molecular mechanisms and pharmacological effects of DHA in vitro and in vivo are the focus of our attention. Interestingly, new methods to improve the solubility and bioavailability of DHA are discussed, which greatly enhance its anticancer efficacy. Remarkably, DHA has synergistic anti-tumor effects with a variety of clinical drugs, and preclinical and clinical studies provide stronger evidence of its anticancer potential. Moreover, this article also gives suggestions for further research on the anticancer effects of DHA. Thus, we hope to provide a strong theoretical support for DHA as an anticancer drug.
Collapse
Affiliation(s)
- Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Xiaoyan Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.,Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Wei Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.,Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Yihuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Qiushuang Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Saijun Mo
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.,Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.,Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| |
Collapse
|
21
|
Tang SY, Wei H, Yu CY. Peptide-functionalized delivery vehicles for enhanced cancer therapy. Int J Pharm 2021; 593:120141. [DOI: 10.1016/j.ijpharm.2020.120141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/17/2020] [Accepted: 11/28/2020] [Indexed: 02/08/2023]
|
22
|
Alavi M, Varma RS. Overview of novel strategies for the delivery of anthracyclines to cancer cells by liposomal and polymeric nanoformulations. Int J Biol Macromol 2020; 164:2197-2203. [PMID: 32763404 DOI: 10.1016/j.ijbiomac.2020.07.274] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/14/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023]
Abstract
Severe side effects and the rapid emergence of drug resistance in cancer cells are major problems in the chemotherapy utilizing anthracyclines, with a difference between cellular response at nano and micro scale levels. Understanding this situation is more complicated issue to attain efficient targeted formulations with low unexpected toxicity in patients. On nano-scale level, considering properties of nano-bio interaction in all relevant parts of the body may offer clue for suitable formulations. Four main strategies comprising PEGylation, surface charging, targeting, and stimuli responsiveness can be deployed to improve the liposomal and polymeric nanoformulations that can efficiently deliver common anthracyclines namely daunorubicin (DAU), doxorubicin (DOX), idarubicin (IDA), and epirubicin (EPI). Herein, the advances and challenges pertaining to the formulations of these anticancer drugs via liposomal and polymeric nanoformulations, are discussed.
Collapse
Affiliation(s)
- Mehran Alavi
- Nanobiotechnology Laboratory, Biology Department, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
23
|
Ahmad F, Sarder A, Gour R, Karna SKL, Arora P, Kartha KPR, Pokharel YR. Inhibition of prostate cancer cell line (PC-3) by anhydrodihydroartemisinin (ADHA) through caspase-dependent pathway. EXCLI JOURNAL 2020; 19:613-619. [PMID: 32483407 PMCID: PMC7257247 DOI: 10.17179/excli2020-1331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/30/2020] [Indexed: 11/10/2022]
Abstract
Cancer is a generic term for a large group of diseases characterized by the growth of abnormal cells, which is the second leading cause of death globally. To treat cancer, currently, a number of anticancer drugs belonging to various classes chemically are available. The discovery of artemisinin and its derivatives such as artesunate, arteether, and artemether became a milestone in the cure for malaria. Here, we report the anti-cancer property of anhydrodihydroartemisinin (ADHA) - a semisynthetic derivative of artemisinin against prostate cancer cell line PC-3. ADHA was found to be inhibiting growth of PC-3 cells. ADHA was also found to be inhibiting migration of PC-3 cells. At molecular level, ADHA was found to be inhibiting the expression of c-Jun, p-c-Jun, p-Akt and NF-κB and activated caspase 3 and 7. The results show that ADHA like few other artemisinin derivatives hold potential to be used as an anti-cancer agent against prostate cancer cells.
Collapse
Affiliation(s)
- Faiz Ahmad
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi-110021, India
| | - Amit Sarder
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi-110021, India
| | - Rajesh Gour
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab-160062, India
| | | | - Priya Arora
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi-110021, India
| | - K P Ravindranathan Kartha
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab-160062, India
| | - Yuba Raj Pokharel
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi-110021, India
| |
Collapse
|
24
|
Yao XM, Niu FJ, Kong L, Cai FY, Jing M, Fu M, Liu JJ, He SY, Zhang L, Liu XZ, Ju RJ, Li XT. GGP modified daunorubicin plus dioscin liposomes inhibit breast cancer by suppressing epithelial-mesenchymal transition. Drug Dev Ind Pharm 2020; 46:916-930. [PMID: 32362146 DOI: 10.1080/03639045.2020.1763397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumor invasion and metastasis are the nodus of anti-tumor. Epithelial cell-mesenchymal transition is widely regarded as one of the key steps in the invasion and metastasis of breast cancer. In this study, GGP modified daunorubicin plus dioscin liposomes are constructed and characterized. GGP modified daunorubicin plus dioscin liposome has suitable particle size, narrow PDI, zeta potential of about -5 mV, long cycle effect, and enhanced cell uptake due to surface modification of GGP making the liposome could enter the inside of the tumor to fully exert its anti-tumor effect. The results of in vitro experiments show that the liposome has superior killing effect on tumor cells and invasion. In vivo results indicate that the liposome prolongs the drug's prolonged time in the body and accumulates at the tumor site with little systemic toxicity. In short, the targeted liposome can effectively inhibit tumor invasion and may provide a new strategy for the treatment of invasive breast cancer.
Collapse
Affiliation(s)
- Xue-Min Yao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Feng-Ju Niu
- Health Protection Center, Affiliated Hospital of Shandong Academy of Traditional Chinese Medicine, Jinan, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Fu-Yi Cai
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Ming Jing
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Min Fu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Jing-Jing Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Si-Yu He
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Lu Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xin-Ze Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Rui-Jun Ju
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| |
Collapse
|
25
|
Fan X, Xu H, Zhao F, Song J, Jin Y, Zhang C, Wu G. Lipid-mimicking peptide decorates erythrocyte membrane for active delivery to engrafted MDA-MB-231 breast tumour. Eur J Pharm Biopharm 2020; 152:72-84. [PMID: 32376370 DOI: 10.1016/j.ejpb.2020.04.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 04/21/2020] [Accepted: 04/29/2020] [Indexed: 01/04/2023]
Abstract
Decorating the membrane surface of vesicle carriers with proteins for targeted delivery has been achieved mainly by chemical methods. In this study, we report the rational design of a lipid-mimicking peptide for biomembrane decoration without chemical conjugation. A peptide Pm45 consisting of a hydrophobic helical tail and an anionic headgroup linked with an integrin-targeting RGD moiety was manually designed. Pm45 was synthesized and characterized, which confirmed an alpha-helix at the C-terminal. Pm45 spontaneously intercalated into the lipid bilayer as illustrated by quartz crystal of microbalance with dissipation (QCM-D), a calcein leakage assay, and TEM. The intercalation was accomplished within 10 min, and the ITC results indicated that the affinity of Pm45 binding with lipids was ~100-fold greater than that of the naturally occurring cell-penetrating peptide Ib-AMP4. In vitro cellular experiments indicated that the Pm45-decorated erythrocyte vesicles specifically bound and killed integrin αvβ3-expressing MDA-MB-231 breast cancer cells. The targeting potential of Pm45-decorated erythrocyte vesicles was further evaluated in an MDA-MB-231 xenograft nude mouse model. The in vivo therapeutic effects indicated that the targeting vesicles significantly improved the therapeutic effect of encapsulated doxorubicin (DOX) compared with that of DOX or non-targeting vesicles. NIRF imaging implied that the targeting vesicles improved the pharmacokinetics of DOX in vivo and concentrated DOX in the tumour tissue at levels >50% higher than those achieved by non-targeting liposomes. This study reports a new method for liposome decoration as an alternative to chemical conjugation.
Collapse
Affiliation(s)
- Xiaobo Fan
- Diagnostics Department, Medical School, Southeast University, China
| | - Hongbo Xu
- Diagnostics Department, Medical School, Southeast University, China
| | - Fengfeng Zhao
- Center for Clinical Laboratory Medicine of Zhongda Hospital, Southeast University, China
| | - Junlong Song
- Jiangsu Provincial Key Laboratory of Pulp and Paper Science & Technology, Nanjing Forestry University, China
| | - Yongcan Jin
- Jiangsu Provincial Key Laboratory of Pulp and Paper Science & Technology, Nanjing Forestry University, China
| | - Chen Zhang
- Center for Clinical Laboratory Medicine of Zhongda Hospital, Southeast University, China
| | - Guoqiu Wu
- Center for Clinical Laboratory Medicine of Zhongda Hospital, Southeast University, China.
| |
Collapse
|
26
|
Li XT, Jing M, Cai FY, Yao XM, Kong L, Wang XB. Enhanced antitumour efficiency of R 8GD-modified epirubicin plus tetrandrine liposomes in treatment of gastric cancer via inhibiting tumour metastasis. J Liposome Res 2020; 31:145-157. [PMID: 32223361 DOI: 10.1080/08982104.2020.1748647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Tumour metastasis is a major cause of cancer treatment failure and death, and chemotherapy efficiency for gastric cancer patients is usually unsatisfactory due to tumour cell metastasis, poor targeting and serious adverse reactions. In this study, a kind of R8GD-modified epirubicin plus tetrandrine liposomes was prepared to enhance the antitumor efficiency via killing tumour cells, destroying tumour metastasis and inhibiting energy supply for tumour cells. In order to investigate the antitumour efficiency of the targeting liposomes, morphology observation, intracellular uptake, cytotoxic effects, and inhibition on tumour metastasis and energy supply were carried out in vitro, and tumour-bearing mice models were established to investigate the antitumour efficiency in vivo. In vitro results showed that R8GD-modified epirubicin plus tetrandrine liposomes with ideal physicochemical properties could kill the most tumour cells, inhibit tumour metastasis and cut-off energy supply for tumour cells. In vivo results exhibited that R8GD-modified epirubicin plus tetrandrine liposomes could enhance the accumulation in tumour site and display an obvious antitumor efficiency. Therefore, R8GD-modified epirubicin plus tetrandrine liposomes could be used as a potential therapy for treatment of gastric cancer.
Collapse
Affiliation(s)
- Xue-Tao Li
- Department of Pharmacy, Chinese People's Liberation Army Logistics Support Force No. 967 Hospital, Dalian, China.,School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Ming Jing
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Fu-Yi Cai
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xue-Min Yao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xiao-Bo Wang
- Department of Pharmacy, Chinese People's Liberation Army Logistics Support Force No. 967 Hospital, Dalian, China
| |
Collapse
|
27
|
Kong L, Cai FY, Yao XM, Jing M, Fu M, Liu JJ, He SY, Zhang L, Liu XZ, Ju RJ, Li XT. RPV-modified epirubicin and dioscin co-delivery liposomes suppress non-small cell lung cancer growth by limiting nutrition supply. Cancer Sci 2020; 111:621-636. [PMID: 31777993 PMCID: PMC7004549 DOI: 10.1111/cas.14256] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 12/16/2022] Open
Abstract
Chemotherapy for non‐small cell lung cancer (NSCLC) is far from satisfactory, mainly due to poor targeting of antitumor drugs and self‐adaptations of the tumors. Angiogenesis, vasculogenic mimicry (VM) channels, migration, and invasion are the main ways for tumors to obtain nutrition. Herein, RPV‐modified epirubicin and dioscin co‐delivery liposomes were successfully prepared. These liposomes showed ideal physicochemical properties, enhanced tumor targeting and accumulation in tumor sites, and inhibited VM channel formation, tumor angiogenesis, migration and invasion. The liposomes also downregulated VM‐related and angiogenesis‐related proteins in vitro. Furthermore, when tested in vivo, the targeted co‐delivery liposomes increased selective accumulation of drugs in tumor sites and showed extended stability in blood circulation. In conclusion, RPV‐modified epirubicin and dioscin co‐delivery liposomes showed strong antitumor efficacy in vivo and could thus be considered a promising strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Fu-Yi Cai
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xue-Min Yao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Ming Jing
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Min Fu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Jing-Jing Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Si-Yu He
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Lu Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xin-Ze Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Rui-Jun Ju
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| |
Collapse
|
28
|
Liu JJ, Tang W, Fu M, Gong XQ, Kong L, Yao XM, Jing M, Cai FY, Li XT, Ju RJ. Development of R 8 modified epirubicin-dihydroartemisinin liposomes for treatment of non-small-cell lung cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1947-1960. [PMID: 31079495 DOI: 10.1080/21691401.2019.1615932] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Presently, there are no few anticancer drugs that have been used clinically due to their poor targeting ability, short half-life period, non-selective distributions, generation of vasculogenic mimicry (VM) channels, high metastasis, and high recurrence rate. This study aimed to explore the effects of R8 modified epirubicin-dihydroartemisinin liposomes that could target non-small-cell lung cancer (NSCLC) cells, destroy VM channels, inhibit tumor metastasis, and explain the possible underlying mechanism. In vitro assays indicated that R8 modified epirubicin-dihydroartemisinin liposomes with ideal physicochemical characteristics could exhibit not only powerful cytotoxicity on A549 cells, but also the effective suppression of VM channels and tumor metastasis. Mechanistic studies manifested that R8 modified epirubicin-dihydroartemisinin liposomes could down-regulate the levels of VE-Cad, TGF-β1, MMP-2, and HIF-1α. In vivo assays indicated that R8 modified epirubicin-dihydroartemisinin liposomes could both increase the selective accumulation of chemotherapeutic drugs at tumor sites and show a targeting conspicuous of antitumor efficacy. In conclusion, the R8 modified epirubicin-dihydroartemisinin liposomes prepared in this study provide a treatment strategy with high efficiency for NSCLC.
Collapse
Affiliation(s)
- Jing-Jing Liu
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Wei Tang
- b Linyi Food and Drug Testing Center , Linyi , China
| | - Min Fu
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Xiao-Qing Gong
- c Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China
| | - Liang Kong
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Xue-Min Yao
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Ming Jing
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Fu-Yi Cai
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Xue-Tao Li
- a School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Rui-Jun Ju
- c Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China
| |
Collapse
|
29
|
The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity. Molecules 2019; 24:molecules24173085. [PMID: 31450691 PMCID: PMC6749267 DOI: 10.3390/molecules24173085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 11/25/2022] Open
Abstract
The natural peptide somatostatin has hormonal and cytostatic effects exerted by the binding to specific receptors in various tissues. Therapeutic uses are strongly prevented by its very short biological half-life of 1–2 min due to enzymatic hydrolysis, therefore encapsulation methodologies are explored to overcome the need for continuous infusion regimes. Multilamellar liposomes made of natural phosphatidylcholine were used for the incorporation of a mixture of somatostatin and sorbitol dissolved in citrate buffer at pH = 5. Lyophilization and reconstitution of the suspension were carried out, showing the flexibility of this preparation. Full characterization of this suspension was obtained as particle size, encapsulation efficiency and retarded release properties in aqueous medium and human plasma. Liposomal somatostatin incubated at 37 °C in the presence of Fe(II) and (III) salts were used as a biomimetic model of drug-cell membrane interaction, evidencing the free radical processes of peroxidation and isomerization that transform the unsaturated fatty acid moieties of the lipid vesicles. This study offers new insights into a liposomal delivery system and highlights molecular reactivity of sulfur-containing drugs with its carrier or biological membranes for pharmacological applications.
Collapse
|
30
|
Di J, Zheng B, Kong Q, Jiang Y, Liu S, Yang Y, Han X, Sheng Y, Zhang Y, Cheng L, Han J. Prioritization of candidate cancer drugs based on a drug functional similarity network constructed by integrating pathway activities and drug activities. Mol Oncol 2019; 13:2259-2277. [PMID: 31408580 PMCID: PMC6763777 DOI: 10.1002/1878-0261.12564] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/13/2019] [Accepted: 08/12/2019] [Indexed: 12/27/2022] Open
Abstract
Due to the speed, efficiency, relative risk, and lower costs compared to traditional drug discovery, the prioritization of candidate drugs for repurposing against cancers of interest has attracted the attention of experts in recent years. Herein, we present a powerful computational approach, termed prioritization of candidate drugs (PriorCD), for the prioritization of candidate cancer drugs based on a global network propagation algorithm and a drug–drug functional similarity network constructed by integrating pathway activity profiles and drug activity profiles. This provides a new approach to drug repurposing by first considering the drug functional similarities at the pathway level. The performance of PriorCD in drug repurposing was evaluated by using drug datasets of breast cancer and ovarian cancer. Cross‐validation tests on the drugs approved for the treatment of these cancers indicated that our approach can achieve area under receiver‐operating characteristic curve (AUROC) values greater than 0.82. Furthermore, literature searches validated our results, and comparison with other classical gene‐based repurposing methods indicated that our pathway‐level PriorCD is comparatively more effective at prioritizing candidate drugs with similar therapeutic effects. We hope that our study will be of benefit to the field of drug discovery. In order to expand the usage of PriorCD, a freely available R‐based package, PriorCD, has been developed to prioritize candidate anticancer drugs for drug repurposing.
Collapse
Affiliation(s)
- Jieyi Di
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Baotong Zheng
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Qingfei Kong
- Department of Neurobiology, Harbin Medical University, China
| | - Ying Jiang
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siyao Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Yang Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Xudong Han
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Yuqi Sheng
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| |
Collapse
|
31
|
Wang Y, Fu M, Liu J, Yang Y, Yu Y, Li J, Pan W, Fan L, Li G, Li X, Wang X. Inhibition of tumor metastasis by targeted daunorubicin and dioscin codelivery liposomes modified with PFV for the treatment of non-small-cell lung cancer. Int J Nanomedicine 2019; 14:4071-4090. [PMID: 31239668 PMCID: PMC6551515 DOI: 10.2147/ijn.s194304] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/12/2019] [Indexed: 12/26/2022] Open
Abstract
Background: Chemotherapy for non-small-cell lung cancer (NSCLC) still leads to unsatisfactory clinical prognosis because of poor active targeting and tumor metastasis. Purpose: The objective of this study was to construct a kind of PFV peptide modified targeted daunorubicin and dioscin codelivery liposomes, which could enhance tumor targeting and inhibit tumor cell metastasis. Methods and results: Targeted daunorubicin and dioscin codelivery liposomes were prepared by film dispersion and the ammonium sulfate gradient method. With the ideal physicochemical properties, targeted daunorubicin and dioscin codelivery liposomes exhibited enhanced cellular uptake and showed strong cytotoxicity to tumor cells. The encapsulation of dioscin increased the inhibitory effects of daunorubicin on A549 cells, vasculogenic mimicry (VM) channels and tumor metastasis. The enhanced antimetastatic mechanism of the targeted liposomes was attributed to the downregulation of matrix metalloproteinase-2 (MMP-2), vascular endothelial cadherin (VE-Cad), transforming growth factor-β1 (TGF-β1) and hypoxia inducible factor-1α (HIF-1α). Meanwhile, the targeted daunorubicin and dioscin codelivery liposomes exhibited significant antitumor effects in tumor-bearing mice. H&E staining, immunohistochemistry with Ki-67 and TUNEL assay also showed the promoted antitumor activity of the targeted liposomes. Conclusion: Targeted daunorubicin and dioscin codelivery liposomes may provide an effective strategy for the treatment of NSCLC.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, People’s Republic of China
| | - Min Fu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, People’s Republic of China
| | - Jingjing Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, People’s Republic of China
| | - Yining Yang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, People’s Republic of China
| | - Yibin Yu
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, People’s Republic of China
| | - Jinyu Li
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, People’s Republic of China
| | - Weisan Pan
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, People’s Republic of China
| | - Lei Fan
- Department of Pharmacy, 210th Hospital of People’s Liberation Army, Dalian, Liaoning, People’s Republic of China
| | - Guiru Li
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Xuetao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning, People’s Republic of China
| | - Xiaobo Wang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, People’s Republic of China
- Department of Pharmacy, 210th Hospital of People’s Liberation Army, Dalian, Liaoning, People’s Republic of China
| |
Collapse
|
32
|
Zhu HZ, Hou J, Guo Y, Liu X, Jiang FL, Chen GP, Pang XF, Sun JG, Chen ZT. Identification and imaging of miR-155 in the early screening of lung cancer by targeted delivery of octreotide-conjugated chitosan-molecular beacon nanoparticles. Drug Deliv 2019; 25:1974-1983. [PMID: 30621480 PMCID: PMC6327580 DOI: 10.1080/10717544.2018.1516003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Lung cancer is still the most common cancer globally. Early screening remains the key to improve the prognosis of patients. There is currently a lack of specific and sensitive methods for early screening of lung cancer. In recent years, studies have found that microRNA plays an important role in the occurrence and development of lung cancer and become a biological target in the early diagnosis of lung cancer. In this study, lung cancer cells, subcutaneous xenografts of lung cancer in nude mice, and Lox-Stop-lox K-ras G12D transgenic mice were used as models. The transgenic mice displayed the dynamic processes from normal lung tissue to atypical hyperplasia, adenomas, carcinoma in situ and lung adenocarcinoma. It was found that miR-155 and somatostatin receptor 2 (SSTR2) were expressed in all the disease stages of transgenic mice. Through molecular beacon (MB) technology and nanotechnology, chitosan-molecular beacon (CS-MB) nanoparticles and targeted octreotide (OCT) were conjugated and synthesized. The octreotide-conjugated chitosan-molecular beacon nanoparticles (CS-MB-OCT) can specifically bind to SSTR2 expressed by the lung cancer cells to achieve the goal of identification of lung cancer cells and imaging miR-155 in vivo and in vitro. Fluorescence imaging at different disease stages of lung cancer in Lox-Stop-lox K-ras G12D transgenic mice was performed, and could dynamically monitor the occurrence and development of lung cancer by different fluorescence intensity ranges. The current research, in turn, provides new idea, new method, and new technology for the early screening of lung cancer.
Collapse
Affiliation(s)
- Hai-Zhen Zhu
- a Department of Oncology , Guizhou provincial people's Hospital , Guizhou , China
| | - Jing Hou
- b Department of Breast surgery , Guizhou provincial people's Hospital , Guizhou , China
| | - Yi Guo
- c Department of Basic knowledge , Guiyang nursing vocational college , Guizhou , China
| | - Xin Liu
- d Department of Clinical laboratory , Guizhou provincial people's Hospital , Guizhou , China
| | - Fei-Long Jiang
- e Department of Oncology , Chinese Medicine Hospital of Chongqing , Chongqing , China
| | - Guang-Peng Chen
- f Cancer Institute of PLA, Xinqiao Hospital, Army Medical University , Chongqing , China
| | - Xiu-Feng Pang
- g Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University , Shanghai , China
| | - Jian-Guo Sun
- f Cancer Institute of PLA, Xinqiao Hospital, Army Medical University , Chongqing , China
| | - Zheng-Tang Chen
- f Cancer Institute of PLA, Xinqiao Hospital, Army Medical University , Chongqing , China
| |
Collapse
|
33
|
Lichota A, Gwozdzinski K. Anticancer Activity of Natural Compounds from Plant and Marine Environment. Int J Mol Sci 2018; 19:E3533. [PMID: 30423952 PMCID: PMC6275022 DOI: 10.3390/ijms19113533] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023] Open
Abstract
This paper describes the substances of plant and marine origin that have anticancer properties. The chemical structure of the molecules of these substances, their properties, mechanisms of action, their structure⁻activity relationships, along with their anticancer properties and their potential as chemotherapeutic drugs are discussed in this paper. This paper presents natural substances from plants, animals, and their aquatic environments. These substances include the vinca alkaloids, mistletoe plant extracts, podophyllotoxin derivatives, taxanes, camptothecin, combretastatin, and others including geniposide, colchicine, artesunate, homoharringtonine, salvicine, ellipticine, roscovitine, maytanasin, tapsigargin, and bruceantin. Compounds (psammaplin, didemnin, dolastin, ecteinascidin, and halichondrin) isolated from the marine plants and animals such as microalgae, cyanobacteria, heterotrophic bacteria, invertebrates (e.g., sponges, tunicates, and soft corals) as well as certain other substances that have been tested on cells and experimental animals and used in human chemotherapy.
Collapse
Affiliation(s)
- Anna Lichota
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland.
| | - Krzysztof Gwozdzinski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-136 Lodz, Poland.
| |
Collapse
|
34
|
Ju RJ, Mu LM, Li XT, Li CQ, Cheng ZJ, Lu WL. Development of functional docetaxel nanomicelles for treatment of brain glioma. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018. [DOI: 10.1080/21691401.2018.1446971] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Rui-Jun Ju
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Li-Min Mu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Cui-Qing Li
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Zhan-Jie Cheng
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Wan-Liang Lu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug System, State Key Laboratory of Natural and Biomimetic Drugs, and School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
35
|
Konstat-Korzenny E, Ascencio-Aragón JA, Niezen-Lugo S, Vázquez-López R. Artemisinin and Its Synthetic Derivatives as a Possible Therapy for Cancer. ACTA ACUST UNITED AC 2018; 6:medsci6010019. [PMID: 29495461 PMCID: PMC5872176 DOI: 10.3390/medsci6010019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/15/2018] [Accepted: 02/22/2018] [Indexed: 12/11/2022]
Abstract
To assess the possibility of using the antimalarial drug artemisinin and its synthetic derivatives as antineoplastic drugs. A Pubmed and Google Scholar (1983–2018) search was performed using the terms artemisinin, cancer, artesunate and Artemisia annua. Case reports and original research articles, review articles, and clinical trials in both humans and animals were evaluated. Both in vitro and in vivo clinical trials and case reports have shown promising activity of the artemisinin drug derivatives in treating certain types of cancer. However, the reported articles are few, and therefore not statistically significant. The minimal toxicity shown in clinical trials and case reports, along with the selective cytotoxic activity of the compounds, make them possible cancer therapies due to the emerging evidence of the drug’s effectiveness.
Collapse
Affiliation(s)
- Enrique Konstat-Korzenny
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA) Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte. Av. Universidad Anáhuac 46 Col. Lomas Anáhuac Huixquilucan, Estado de México 52786, México.
| | - Jorge Alberto Ascencio-Aragón
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA) Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte. Av. Universidad Anáhuac 46 Col. Lomas Anáhuac Huixquilucan, Estado de México 52786, México.
| | - Sebastian Niezen-Lugo
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA) Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte. Av. Universidad Anáhuac 46 Col. Lomas Anáhuac Huixquilucan, Estado de México 52786, México.
| | - Rosalino Vázquez-López
- Departamento de Microbiología del Centro de Investigación en Ciencias de la Salud (CICSA) Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte. Av. Universidad Anáhuac 46 Col. Lomas Anáhuac Huixquilucan, Estado de México 52786, México.
| |
Collapse
|