1
|
Nkosi NC, Basson AK, Ntombela ZG, Dlamini NG, Pullabhotla RVSR. A Review on Bioflocculant-Synthesized Copper Nanoparticles: Characterization and Application in Wastewater Treatment. Bioengineering (Basel) 2024; 11:1007. [PMID: 39451384 PMCID: PMC11504074 DOI: 10.3390/bioengineering11101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Copper nanoparticles (CuNPs) are tiny materials with special features such as high electric conductivity, catalytic activity, antimicrobial activity, and optical activity. Published reports demonstrate their utilization in various fields, including biomedical, agricultural, environmental, wastewater treatment, and sensor fields. CuNPs can be produced utilizing traditional procedures; nevertheless, such procedures have restrictions like excessive consumption of energy, low production yields, and the utilization of detrimental substances. Thus, the adoption of environmentally approachable "green" approaches for copper nanoparticle synthesis is gaining popularity. These approaches involve employing plants, bacteria, and fungi. Nonetheless, there is a scarcity of data regarding the application of microbial bioflocculants in the synthesis of copper NPs. Therefore, this review emphasizes copper NP production using microbial flocculants, which offer economic benefits and are sustainable and harmless. The review also provides a characterization of the synthesized copper nanoparticles, employing numerous analytical tools to determine their compositional, morphological, and topographical features. It focuses on scientific advances from January 2015 to December 2023 and emphasizes the use of synthesized copper NPs in wastewater treatment.
Collapse
Affiliation(s)
- Nkanyiso C. Nkosi
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa 3886, South Africa
| | - Albertus K. Basson
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa 3886, South Africa
| | - Zuzingcebo G. Ntombela
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa 3886, South Africa
| | - Nkosinathi G. Dlamini
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa 3886, South Africa
| | - Rajasekhar V. S. R. Pullabhotla
- Chemistry Department, Faculty of Science, Agriculture, and Engineering, University of Zululand, P/Bag X1001, KwaDlangezwa 3886, South Africa
| |
Collapse
|
2
|
Mazraeh A, Tavallali H, Tavallali V. Variations in the biochemical characteristics of Lavandula sublepidota Rech.f. in response to the foliar enrichment of green-synthesized copper nano complexes from extract of neem and jujube. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108885. [PMID: 38971088 DOI: 10.1016/j.plaphy.2024.108885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
Copper (Cu) is an essential micronutrient in plant physiology and biochemistry. This article synthesized copper nano complexes (Cu-NCs) based on aqueous extracts of jujube and neem leaves. The effects of foliar application of Cu-jujube and Cu-neem Cu-NCs at concentrations of 0, 10, 25, and 50 mg L-1 on the bioactive compounds, antioxidant capacity, and essential oil of the Iranian native medicinal herb Lavandula sublepidota Rech. f. was investigated. The highest levels of flavonoids and polyphenols were observed in the plants treated with Cu-NCs at 25 mg L-1. However, no superiority was observed between the two types of Cu-NCs. Furthermore, 25 mg L-1 nCu-Z and nCu-N foliar application boosted essential oil yield (48 and 52%, respectively) over control. This suggests an ideal threshold beyond which toxicity was found. Similarly, the amount of commercially significant secondary metabolites increased at 25 mg L-1 CuNCs compared to 10 and 50 mg L-1 concentrations. The maximum antioxidant activity was found in extracts of lavender that had been treated with 25 mg L-1 CuNCs. When CuNCs were applied exogenously, the extracts' antibacterial activity (MIC μg mL-1) was substantially increased against the three pathogen strains. The results suggest that CuNCs demonstrate notably greater effectiveness, particularly at an ideal concentration of 25 mg L-1, in enhancing the production of essential oil and bioactive compounds in Lavandula sublepidota Rech. f. Therefore, these findings indicate the importance of the biosynthesis of NCs using plants and measuring the phytochemical changes of lavender plants.
Collapse
Affiliation(s)
- Ali Mazraeh
- Department of Chemistry, Payame Noor University PNU, P. O. Box 19395-4697, Tehran, Iran
| | - Hossein Tavallali
- Department of Chemistry, Payame Noor University PNU, P. O. Box 19395-4697, Tehran, Iran.
| | - Vahid Tavallali
- Department of Agriculture, Payame Noor University PNU, P.O. Box 19395-4697, Tehran, Iran.
| |
Collapse
|
3
|
Zamanian Z, Tajbakhsh E, Arbab Soleimani N, Ghasemian A. Aqueous extract-mediated green synthesis of CuO nanoparticles: Potential anti-tuberculosis agents. Food Sci Nutr 2024; 12:5907-5921. [PMID: 39139956 PMCID: PMC11317747 DOI: 10.1002/fsn3.4227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/14/2024] [Accepted: 05/04/2024] [Indexed: 08/15/2024] Open
Abstract
The emergence of drug-resistant strains in tuberculosis treatment underscores the urgency for novel therapeutic approaches. This study investigates the anti-tuberculosis activity of green-synthesized copper oxide (CuO) nanoparticles (NPs) using garlic and astragalus extracts. The physicochemical characterization of the nanoparticles confirms successful synthesis, followed by assessment of their antibacterial properties and safety profile. Rats infected with Mycobacterium tuberculosis are treated with nanocomposites derived from garlic extract at doses of 50 mg/kg and 100 mg/kg body weight. Evaluation includes the analysis of Early secreted antigenic target of 6 kDa (ESAT-6) expression and confirmation of antibodies through molecular assays. Administration of garlic and nanocomposites demonstrates significant inhibitory effects on tuberculosis progression in rats, validated by safety assessments and antibacterial efficacy. Notably, the 100 mg/kg dosage exhibits pronounced mitigation of tuberculosis-induced oxidative stress and lung damage. In conclusion, the combined administration of garlic extracts and green-synthesized nanocomposites shows promising efficacy in reducing tuberculosis infection, highlighting a potential avenue for anti-tuberculosis interventions.
Collapse
Affiliation(s)
- Zohreh Zamanian
- Department of Microbiology, Shahrekord BranchIslamic Azad UniversityShahrekordIran
| | - Elahe Tajbakhsh
- Department of Microbiology, Shahrekord BranchIslamic Azad UniversityShahrekordIran
| | | | - AbdolMajid Ghasemian
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| |
Collapse
|
4
|
Prakalathan D, Kavitha G, Kumar GD. Bioinspired copper oxide nanocomposites: harnessing plant extracts for enhanced photocatalytic performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51415-51430. [PMID: 39112896 DOI: 10.1007/s11356-024-34646-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/02/2024] [Indexed: 09/06/2024]
Abstract
This study focuses on developing copper oxide-based nanocomposites using plant extracts for photocatalytic applications. Curcuma amada leaf and Alysicarpus vaginalis leaf extracts were utilized alongside recycled copper precursors to synthesize photocatalysts via a green synthesis approach. Structural characterization through X-ray diffraction confirmed the formation of monoclinic CuO with reduced crystallite sizes due to plant extract incorporation. Fourier-transform infrared spectroscopy identified additional functional groups from the plant extracts, enhancing the material's properties. UV-Vis spectroscopy demonstrated increased light absorption and narrowed bandgaps in the nanocomposites, crucial for efficient photocatalysis under visible light. Morphological studies using FESEM revealed unique leaf-like structures in nanocomposites, indicative of the plant extract's influence on morphology. Photocatalytic degradation of methylene blue, rhodamine B, Congo red, and reactive blue 171 dyes showed enhanced performance of plant extract-modified CuO compared to without plant extract mediated CuO, attributed to improved charge carrier separation and extended lifetime. The effects of pH, catalyst dosage, and dye concentration on degradation efficiency were systematically investigated, highlighting optimal conditions for each dye type. Radical scavenger studies confirmed the roles of holes and hydroxyl radicals in the degradation process. Kinetic analysis revealed pseudo-second-order kinetics for dye degradation, underscoring the effectiveness of the nanocomposites. Overall, this research provides insights into sustainable photocatalytic materials using plant extracts and recycled copper, showcasing their potential for environmental remediation applications.
Collapse
Affiliation(s)
- Duraisamy Prakalathan
- Department of Chemistry, Gobi Arts & Science College, Gobichettipalayam, 638453, Erode, Tamil Nadu, India
| | - Gurusamy Kavitha
- Department of Chemistry, Gobi Arts & Science College, Gobichettipalayam, 638453, Erode, Tamil Nadu, India.
| | - Ganeshan Dinesh Kumar
- Department of Chemistry, Gobi Arts & Science College, Gobichettipalayam, 638453, Erode, Tamil Nadu, India
| |
Collapse
|
5
|
Devaraji M, Thanikachalam PV, Elumalai K. The potential of copper oxide nanoparticles in nanomedicine: A comprehensive review. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2024; 5:80-99. [PMID: 39416693 PMCID: PMC11446360 DOI: 10.1016/j.biotno.2024.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 10/19/2024]
Abstract
Nanotechnology is a modern scientific discipline that uses nanoparticles of metals like copper, silver, gold, platinum, and zinc for various applications. Copper oxide nanoparticles (CuONPs) are effective in biomedical settings, such as killing bacteria, speeding up reactions, stopping cancer cells, and coating surfaces. These inorganic nanostructures have a longer shelf life than their organic counterparts and are chemically inert and thermally stable. However, commercial synthesis of NPs often involves harmful byproducts and hazardous chemicals. Green synthesis for CuONPs offers numerous benefits, including being clean, harmless, economical, and environmentally friendly. Using naturally occurring organisms like bacteria, yeast, fungi, algae, and plants can make CuONPs more environmentally friendly. CuONPs are expected to be used in nanomedicine due to their potent antimicrobial properties and disinfecting agents for infectious diseases. This comprehensive review looks to evaluate research articles published in the last ten years that investigate the antioxidant, anticancer, antibacterial, wound healing, dental application and catalytic properties of copper nanoparticles generated using biological processes. Utilising the scientific approach of large-scale data analytics. However, their toxic effects on vertebrates and invertebrates raise concerns about their use for diagnostic and therapeutic purposes. Therefore, biocompatibility and non-toxicity are crucial for selecting nanoparticles for clinical research.
Collapse
Affiliation(s)
- Mahalakshmi Devaraji
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Punniyakoti V. Thanikachalam
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Karthikeyan Elumalai
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
6
|
Vodyashkin A, Stoinova A, Kezimana P. Promising biomedical systems based on copper nanoparticles: Synthesis, characterization, and applications. Colloids Surf B Biointerfaces 2024; 237:113861. [PMID: 38552288 DOI: 10.1016/j.colsurfb.2024.113861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Copper and copper oxide nanoparticles (CuNPs) have unique physicochemical properties that make them highly promising for biomedical applications. This review discusses the application of CuNPs in biomedicine, including diagnosis, therapy, and theranostics. Recent synthesis methods, with an emphasis on green approaches, are described, and the latest techniques for nanoparticle characterization are critically analyzed. CuNPs, including Cu2O, CuO, and Cu, have significant potential as anti-cancer agents, drug delivery systems, and photodynamic therapy enhancers, among other applications. While challenges such as ensuring biocompatibility and stability must be addressed, the state-of-the-art research reviewed here provides strong evidence for the efficacy and versatility of CuNPs. These multifunctional properties have been extensively researched and documented, showcasing the immense potential of CuNPs in biomedicine. Overall, the evidence suggests that CuNPs are a promising avenue for future research and development in biomedicine. We strongly support further progress in the development of synthesis and application strategies to enhance the effectiveness and safety of CuNPs for clinical purposes.
Collapse
Affiliation(s)
| | - Anastasia Stoinova
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia.
| | - Parfait Kezimana
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia.
| |
Collapse
|
7
|
Rasheed R, Bhat A, Singh B, Tian F. Biogenic Synthesis of Selenium and Copper Oxide Nanoparticles and Inhibitory Effect against Multi-Drug Resistant Biofilm-Forming Bacterial Pathogens. Biomedicines 2024; 12:994. [PMID: 38790956 PMCID: PMC11117875 DOI: 10.3390/biomedicines12050994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Antimicrobial resistance (AMR), caused by microbial infections, has become a major contributor to morbid rates of mortality worldwide and a serious threat to public health. The exponential increase in resistant pathogen strains including Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) poses significant hurdles in the health sector due to their greater resistance to traditional treatments and medicines. Efforts to tackle infectious diseases caused by resistant microbes have prompted the development of novel antibacterial agents. Herein, we present selenium and copper oxide monometallic nanoparticles (Se-MMNPs and CuO-MMNPs), characterized using various techniques and evaluated for their antibacterial potential via disc diffusion, determination of minimum inhibitory concentration (MIC), antibiofilm, and killing kinetic action. Dynamic light scattering (DLS), scanning electron microscopy (SEM/EDX), and X-ray diffraction (XRD) techniques confirmed the size-distribution, spherical-shape, stability, elemental composition, and structural aspects of the synthesized nanoparticles. The MIC values of Se-MMNPs and CuO-MMNPs against S. aureus and E. coli were determined to be 125 μg/mL and 100 μg/mL, respectively. Time-kill kinetics studies revealed that CuO-MMNPs efficiently mitigate the growth of S. aureus and E. coli within 3 and 3.5 h while Se-MMNPs took 4 and 5 h, respectively. Moreover, CuO-MMNPs demonstrated better inhibition compared to Se-MMNPs. Overall, the proposed materials exhibited promising antibacterial activity against S. aureus and E. coli pathogens.
Collapse
Affiliation(s)
- Rida Rasheed
- University of Wah, Wah Cantonment 47040, Pakistan;
| | - Abhijnan Bhat
- School of Food Science & Environmental Health, Technological University Dublin (TU Dublin), Grangegorman, D07 ADY7 Dublin, Ireland; (A.B.); (B.S.)
| | - Baljit Singh
- School of Food Science & Environmental Health, Technological University Dublin (TU Dublin), Grangegorman, D07 ADY7 Dublin, Ireland; (A.B.); (B.S.)
- MiCRA Biodiagnostics Technology Gateway and Health, Engineering & Materials Sciences (HEMS) Hub, Technological University Dublin (TU Dublin), D24 FKT9 Dublin, Ireland
| | - Furong Tian
- School of Food Science & Environmental Health, Technological University Dublin (TU Dublin), Grangegorman, D07 ADY7 Dublin, Ireland; (A.B.); (B.S.)
- Nanolab Research Centre, FOCAS Research Institute, Technological University Dublin (TU Dublin), Camden Row, D08 CKP1 Dublin, Ireland
| |
Collapse
|
8
|
Fatima K, Asif M, Farooq U, Gilani SJ, Bin Jumah MN, Ahmed MM. Antioxidant and Anti-inflammatory Applications of Aerva persica Aqueous-Root Extract-Mediated Synthesis of ZnO Nanoparticles. ACS OMEGA 2024; 9:15882-15892. [PMID: 38617686 PMCID: PMC11007848 DOI: 10.1021/acsomega.3c08143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
In the present study, ZnO nanoparticles were synthesized by using aqueous extracts of Aerva persica roots. Characterization of as-prepared ZnO nanoparticles was carried out using different techniques, including powder X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and BET surface area analysis. Morphological analysis confirmed the small, aggregated flake-shaped morphology of as-synthesized ZnO nanostructures. The as-prepared ZnO nanoparticles were analyzed for their potential application as anti-inflammatory (using in vivo inhibition of carrageenan induced paw edema) and antioxidant (using in vitro radical scavenging activity) agents. The ZnO nanoparticles were found to have a potent antioxidant and anti-inflammatory activity comparable to that of standard ascorbic acid (antioxidant) and indomethacin (anti-inflammatory drug). Therefore, due to their ecofriendly synthesis, nontoxicity, and biocompatible nature, zinc oxide nanoparticles synthesized successfully from roots extract of the plant Aerva persica with potent efficiencies can be utilized for different biomedical applications.
Collapse
Affiliation(s)
- Kaneez Fatima
- Faculty
of Pharmacy, Maulana Azad University, Bujhawad, Teh: Luni, Jodhpur 342802, Rajasthan, India
- INTI
International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia
| | - Mohammad Asif
- Faculty
of Pharmacy, Lachoo Memorial College of
Science and Technology, Shastri Nagar, Sector A, Jodhpur 342001, Rajasthan, India
| | - Umar Farooq
- Chemistry
Department, School of Basic Sciences, Galgotias
University, Greater
Noida 201309, India
| | - Sadaf Jamal Gilani
- Department
of Basic Health Sciences, Foundation Year, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - May Nasser Bin Jumah
- Biology Department,
College of Science, Princess Nourah bint
Abdulrahman University, Riyadh 11671, Saudi Arabia
- Environment
and Biomaterial Unit, Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Saudi
Society for Applied Science, Princess Nourah
bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mohammed Muqtader Ahmed
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
9
|
Rasheed R, Uzair B, Raza A, Binsuwaidan R, Alshammari N. Fungus-mediated synthesis of Se-BiO-CuO multimetallic nanoparticles as a potential alternative antimicrobial against ESBL-producing Escherichia coli of veterinary origin. Front Cell Infect Microbiol 2024; 14:1301351. [PMID: 38655284 PMCID: PMC11037251 DOI: 10.3389/fcimb.2024.1301351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/23/2024] [Indexed: 04/26/2024] Open
Abstract
Bacterial infections emerge as a significant contributor to mortality and morbidity worldwide. Emerging extended-spectrum β-lactamase (ESBL) Escherichia coli strains provide a greater risk of bacteremia and mortality, are increasingly resistant to antibiotics, and are a major producer of ESBLs. E. coli bacteremia-linked mastitis is one of the most common bacterial diseases in animals, which can affect the quality of the milk and damage organ functions. There is an elevated menace of treatment failure and recurrence of E. coli bacteremia necessitating the adoption of rigorous alternative treatment approaches. In this study, Se-Boil-CuO multimetallic nanoparticles (MMNPs) were synthesized as an alternate treatment from Talaromyces haitouensis extract, and their efficiency in treating ESBL E. coli was confirmed using standard antimicrobial assays. Scanning electron microscopy, UV-visible spectroscopy, and dynamic light scattering were used to validate and characterize the mycosynthesized Se-BiO-CuO MMNPs. UV-visible spectra of Se-BiO-CuO MMNPs showed absorption peak bands at 570, 376, and 290 nm, respectively. The average diameters of the amorphous-shaped Se-BiO-CuO MMNPs synthesized by T. haitouensis extract were approximately 66-80 nm, respectively. Se-BiO-CuO MMNPs (100 μg/mL) showed a maximal inhibition zone of 18.33 ± 0.57 mm against E. coli. Se-BiO-CuO MMNPs also exhibited a deleterious impact on E. coli killing kinetics, biofilm formation, swimming motility, efflux of cellular components, and membrane integrity. The hemolysis assay also confirms the biocompatibility of Se-BiO-CuO MMNPs at the minimum inhibitory concentration (MIC) range. Our findings suggest that Se-BiO-CuO MMNPs may serve as a potential substitute for ESBL E. coli bacteremia.
Collapse
Affiliation(s)
- Rida Rasheed
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Bushra Uzair
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Abida Raza
- National Center of Industrial Biotechnology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
10
|
Vijayaram S, Razafindralambo H, Sun YZ, Vasantharaj S, Ghafarifarsani H, Hoseinifar SH, Raeeszadeh M. Applications of Green Synthesized Metal Nanoparticles - a Review. Biol Trace Elem Res 2024; 202:360-386. [PMID: 37046039 PMCID: PMC10097525 DOI: 10.1007/s12011-023-03645-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/20/2023] [Indexed: 04/14/2023]
Abstract
Green nanotechnology is an emerging field of science that focuses on the production of nanoparticles by living cells through biological pathways. This topic plays an extremely imperative responsibility in various fields, including pharmaceuticals, nuclear energy, fuel and energy, electronics, and bioengineering. Biological processes by green synthesis tools are more suitable to develop nanoparticles ranging from 1 to 100 nm compared to other related methods, owing to their safety, eco-friendliness, non-toxicity, and cost-effectiveness. In particular, the metal nanoparticles are synthesized by top-down and bottom-up approaches through various techniques like physical, chemical, and biological methods. Their characterization is very vital and the confirmation of nanoparticle traits is done by various instrumentation analyses such as UV-Vis spectrophotometry (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), atomic force microscopy (AFM), annular dark-field imaging (HAADF), and intracranial pressure (ICP). In this review, we provide especially information on green synthesized metal nanoparticles, which are helpful to improve biomedical and environmental applications. In particular, the methods and conditions of plant-based synthesis, characterization techniques, and applications of green silver, gold, iron, selenium, and copper nanoparticles are overviewed.
Collapse
Affiliation(s)
| | - Hary Razafindralambo
- ProBioLab, Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Liège, Belgium
- BioEcoAgro Joint Research Unit, TERRA Teaching and Research Centre, Microbial Processes and Interactions, Gembloux AgroBio Tech/Université de Liège, Gembloux, Belgium, University of Liege, Liège, Belgium
| | - Yun-Zhang Sun
- Fisheries College, Jimei University, Xiamen, 361021, China.
| | - Seerangaraj Vasantharaj
- Department of Biotechnology, Hindusthan College of Arts and Science, Coimbatore, 641028, Tamil Nadu, India
| | - Hamed Ghafarifarsani
- Department of Fisheries, Faculty of Natural Resources, Urmia University, Urmia, Iran.
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahdieh Raeeszadeh
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
11
|
Sathe A, Prajapati BG, Bhattacharya S. Understanding the charismatic potential of nanotechnology to treat skin carcinoma. Med Oncol 2023; 41:22. [PMID: 38112978 DOI: 10.1007/s12032-023-02258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023]
Abstract
Carcinoma is a condition that continues to pose a significant challenge, despite current medical advances. Skin carcinoma is the leading cause of cancer, and it has seen a massive increase all over the world. The challenges with current treatment are due to toxicity that leads to many more skin complications. Due to this to avoid such complications by designing diverse nanoparticles as delivery carriers, nanomedicine is employed as a hub for diagnostics and therapy. Liposomes, gold nanoparticles, transferases, nanofibers, etc., can all be used as delivery nanocarriers. These nanoparticles' structures and characteristics protect the medicine from degradation and improve its stability. Surface modifying agents and procedures are employed to functionalize nanoparticles, resulting in smart delivery systems. The application of nanotechnology-based approaches systematically increases drug delivery to target cells. Skin cancer has several challenges, including a long time to diagnose early types of cancer and a slower growth rate. This review focuses on innovative skin cancer therapy techniques, focusing on nanotechnology and the challenges associated with current treatment of skin cancer.
Collapse
Affiliation(s)
- Aamravi Sathe
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Bhupendra G Prajapati
- Shree S K Patel College of Pharmaceutical Education and Research, Ganpat University, Mahesana, Gujarat, 384012, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India.
| |
Collapse
|
12
|
Sassa-Deepaeng T, Yodthong W, Khumpirapang N, Anuchapreeda S, Okonogi S. Effects of plant-based copper nanoparticles on the elimination of ciprofloxacin. Drug Discov Ther 2023; 17:320-327. [PMID: 37839876 DOI: 10.5582/ddt.2023.01057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Ciprofloxacin (CIP) is frequently detected in the environment and causes the emergence of drug-resistant bacteria. High levels of CIP in the environment are also harmful to humans and animals. Therefore, effective elimination of CIP is required. In this study, plant-based copper nanoparticles (CuNPs) have been fabricated for the purpose of eliminating CIP. Aqueous extracts of 6 plants were compared for their phytochemicals and reducing activity. Among all the extracts, Garcinia mangostana extract (GM) was the most potent with the highest total phenolic compounds, flavonoids, tannins, terpenoids, and reducing activity. CuNPs synthesized using GM (GM-CuNPs) were characterized using UV-VIS spectroscopy and dynamic light scattering. The results showed that the maximum absorption of GM-CuNPs was at 340 nm. The average size of GM-CuNPs is in the nanoscale range of 159.2 ± 61 nm, with a narrow size distribution and a negative zeta potential of - 4.13 ± 6.97 mV. The stability of GM-CuNPs is not solely due to their zeta potential but also phytochemicals in the extract. GM-CuNPs at 25 mM showed the highest efficiency of 95% in removing CIP from aqueous medium pH 6-7 at 25-35°C within 20 min. The results indicated that the electrostatic attraction between the negative charge of GM-CuNPs and the positive charge of CIP controlled the drug adsorption on the nanoparticles. In conclusion, the developed GM-CuNPs have excellent CIP removal efficiency. These synthesized GM-CuNPs are expected to be environmentally friendly for the removal of antibiotics and other drugs.
Collapse
Affiliation(s)
- Tanongsak Sassa-Deepaeng
- Agricultural Biochemistry Research Unit, Faculty of Sciences and Agricultural Technology, Rajamangala University of Technology Lanna Lampang, Lampang, Thailand
| | - Wachira Yodthong
- Lampang Inland Fisheries Research and Development Center, Lampang, Thailand
| | - Nattakanwadee Khumpirapang
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Songyot Anuchapreeda
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn Okonogi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
13
|
Tanwar S, Parauha YR, There Y, Dhoble SJ. Green synthesis-assisted copper nanoparticles using Aegle marmelos leaves extract: physical, optical, and antimicrobial properties. LUMINESCENCE 2023; 38:1912-1920. [PMID: 37564001 DOI: 10.1002/bio.4579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 06/28/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023]
Abstract
In the present report, Aegle marmelos leaf powder was used to synthesize copper nanoparticles (CuNPs) using a simple and cost-effective method. A. marmelos leaves have various medicinal uses including for the treatment of diarrhoea, constipation, diabetes, cholera, skin diseases, earache, blood purification, heart problems, and so on. The plant biomolecules induce the reduction of Cu2+ ions to CuNPs and also act as a capping and stabilizing agent. The formation of CuNPs was confirmed using photoluminescence (PL) excitation and emission spectra on a Shimadzu RF-5301 PC spectrofluorophotometer and the absorbance spectra of a UV-visible spectrophotometer at different stages during the synthesis process. In addition, other properties of synthesized CuNPs were also investigated using X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy techniques. The average size of the synthesized CuNPs was in the range 20-40 nm. Furthermore, the synthesized NPs were also considered for an antimicrobial study against Gram-positive Staphylococcus aureus and Proteus, and Gram-negative Escherichia coli and Salmonella spp. using the agar well diffusion method. The zone of inhibition against the Gram-positive bacteria was greater than the zone of inhibition against the Gram-negative bacteria. These investigation results suggest that synthesized NPs are promising nanomaterials for use as antimicrobial agents.
Collapse
Affiliation(s)
- Shruti Tanwar
- Department of Microbiology, Taywade College, Mahadula-Koradi, Nagpur, India
- Department of Physics, R.T.M. Nagpur University, Nagpur, India
| | - Yatish Ratn Parauha
- Department of Physics, Shri Ramdeobaba College of Engineering and Management, Nagpur, India
| | - Yogesh There
- Department of Microbiology, Taywade College, Mahadula-Koradi, Nagpur, India
| | | |
Collapse
|
14
|
Priya M, Venkatesan R, Deepa S, Sana SS, Arumugam S, Karami AM, Vetcher AA, Kim SC. Green synthesis, characterization, antibacterial, and antifungal activity of copper oxide nanoparticles derived from Morinda citrifolia leaf extract. Sci Rep 2023; 13:18838. [PMID: 37914791 PMCID: PMC10620180 DOI: 10.1038/s41598-023-46002-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
The green methodologies of nanoparticles with plant extracts have received an increase of interest. Copper oxide nanoparticles (CuO NPs) have been utilized in a many of applications in the last few decades. The current study presents the synthesis of CuO NPs with aqueous extract of Morinda citrifolia as a stabilizing agent. The leaf extract of Morinda citrifolia was mixed with a solution of copper sulphate (CuSO4·5H2O) and sodium hydroxide as a catalyst. UV-visible spectroscopy, FTIR, XRD, SEM, TEM, and EDAX analysis were performed to study the synthesized CuO NPs. Particle size distribution of the synthesized CuO NPs have been measured with dynamic light scattering. The CuO NPs synthesized were highly stable, sphere-like, and have size of particles from 20 to 50 nm. Furthermore, as-formed CuO NPs shown strong antibacterial activity against the Gram-positive bacteria (Bacillus subtilis, and Staphylococcus aureus), and Gram-negative bacteria (Escherichia coli). CuO NPs revealed a similar trend was analysed for antifungal activity. The zone of inhibition for the fungi evaluated for Aspergillus flavus (13.0 ± 1.1), Aspergillus niger (14.3 ± 0.7), and Penicillium frequentans (16.8 ± 1.4). According to the results of this investigation, green synthesized CuO NPs with Morinda citrifolia leaf extract may be used in biomedicine as a replacement agent for biological applications.
Collapse
Affiliation(s)
- Manogar Priya
- Department of Chemistry, School of Basic Sciences, Vels Institute of Science, Technology and Advanced Studies, Chennai, Tamil Nadu, 600117, India.
| | - Raja Venkatesan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Simon Deepa
- Department of Chemistry, School of Basic Sciences, Vels Institute of Science, Technology and Advanced Studies, Chennai, Tamil Nadu, 600117, India
| | - Siva Sankar Sana
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Soundhar Arumugam
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Abdulnasser M Karami
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Alexandre A Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples' Friendship, University of Russia (RUDN), 6 Miklukho-Maklaya St., Moscow, Russia, 117198
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
15
|
Alotaibi B, Elekhnawy E, El-Masry TA, Saleh A, El-Bouseary MM, Alosaimi ME, Alotaibi KN, Abdelkader DH, Negm WA. Green synthetized Cu-Oxide Nanoparticles: Properties and applications for enhancing healing of wounds infected with Staphylococcus aureus. Int J Pharm 2023; 645:123415. [PMID: 37714313 DOI: 10.1016/j.ijpharm.2023.123415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/02/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Treating wound infections is a challenging concern in various clinical settings in Egypt, especially in the increasing global problem of resistance to antimicrobials. Here, we aimed to fabricate CuO NPs via green synthesis using aqueous Yucca gigantea extract. Then, the effect of green synthesized CuO NPs on Staphylococcus aureus clinical isolates has been studied in vivo and in vitro. The aqueous extract of Yucca gigantea has been employed in our study as a scale-up approach to safely, affordably, sustainably, and practically fabricate copper oxide nanoparticles (CuO NPs). Fourier transforms infrared (FT-IR), X-ray Diffraction (XRD), and UV-vis spectroscopy were utilized in vitro to describe the bonding features of CuO NPs.Scanning Electron microscopy (SEM), Transmission electron microscopy (TEM), Energy dispersive X-ray (EDX), and dynamic light scattering (DLS) were used to detect the morphological and elemental composition of the resulting CuO NPs. The fabrication of CuO NPs was confirmed by the IR spectral band at 515 cm-1, ensuring the metal-oxygen bondCu-O with two strong bands at 229 and 305 nm. SEM and TEM show CuO NPs with a size range from 30 to 50 nm. Cu and O comprised most of the particles produced through green synthesis, with weight percentages of 57.82 and 42.18 %, respectively. CuO NPs were observed to have a Zeta-potential value of -15.7 mV, demonstrating their great stability. CuO NPs revealed antibacterial potential toward the tested isolates with minimum inhibitory concentration values of 128 to 512 µg/mL. CuO NPs had antibiofilm potential by crystal violet assay, downregulating the expression of icaA and icaD genes in 23.07 % and 19.32 of the S. aureus isolates. The wound-healing potential of CuO NPs was investigated in vivo. It significantly decreased the bacterial burden and increased wound healing percentage compared to the positive control group. Moreover, CuO NPs caused an upregulation of the genes encoding platelet-derived growth factor (PDGF) and fibronectin in tissue repair. Thus, we can use CuO NPs as a future source for wound healing materials, especially in infected wounds.
Collapse
Affiliation(s)
- Badriyah Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia.
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia.
| | - Maisra M El-Bouseary
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Manal E Alosaimi
- Department of Basic Health Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | | | - Dalia H Abdelkader
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
16
|
Devadoss D, Asirvatham A, Kujur A, Saaron G, Devi N, John Mary S. Green synthesis of copper oxide nanoparticles from Murraya koenigii and its corrosion resistivity on Ti-6Al-4V dental alloy. J Mech Behav Biomed Mater 2023; 146:106080. [PMID: 37643540 DOI: 10.1016/j.jmbbm.2023.106080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
The present work describes green-mediated copper oxide nanoparticles as a potential corrosion inhibitor for the dental alloy Ti-6Al-4V. The salt of copper was reduced to metal nanoparticles using Murraya koenigii leaves, which helps with the agglomeration and nanocluster formation through a reduction mechanism. The current synthesis is a single-step process and is cost-effective. The synthesized nanoparticle was characterized using UV, FTIR, XRD, Zeta potential and Particle size analyzer, SEM, and EDX. The particles were then electrodeposited on Ti-6Al-4V alloy, and the corrosion resistivity in the dental medium was analyzed using Electrochemical parameters such as Corrosion current, Corrosion potential, and anodic and cathodic intercepts through the Tafel and Nyquist plots. The synthesized nanoparticles showed characteristic absorbance at 359 nm. FTIR peaks confirm the phytochemical constituents present in the Murraya koenigii that accounts for the formation of nanoparticles. The XRD predicts the crystalline nature, which is further studied using SEM and EDX. The Zeta potential and Particle size analyzer confirms the negative-negative interactive nature of the synthesized CuO NPs. The NPs showed explicit corrosion inhibition properties with an overall inhibition efficiency of 58.15% and 25.6%, respectively. The study confirms the advantage of using Copper Oxide nanoparticles as a potential coating agent in dental implant alloys in increasing its corrosion efficiency.
Collapse
Affiliation(s)
- Delinta Devadoss
- Department of Chemistry, Loyola College, Chennai, 600 034, India; Loyola Institute of Frontier Energy, Loyola College, Chennai, 600 034, India.
| | - Ajila Asirvatham
- Department of Chemistry, Loyola College, Chennai, 600 034, India; Loyola Institute of Frontier Energy, Loyola College, Chennai, 600 034, India.
| | - Ashok Kujur
- Loyola Institute of Frontier Energy, Loyola College, Chennai, 600 034, India; Creighton University, School of Medicine, 2500 California Plaza, Omaha, 68178, Nebraska, USA.
| | - Geo Saaron
- Department of Chemistry, Loyola College, Chennai, 600 034, India; Loyola Institute of Frontier Energy, Loyola College, Chennai, 600 034, India.
| | - Nirmala Devi
- Department of Chemistry, Loyola College, Chennai, 600 034, India; Loyola Institute of Frontier Energy, Loyola College, Chennai, 600 034, India.
| | - S John Mary
- Department of Chemistry, Loyola College, Chennai, 600 034, India; Loyola Institute of Frontier Energy, Loyola College, Chennai, 600 034, India.
| |
Collapse
|
17
|
Antonio-Pérez A, Durán-Armenta LF, Pérez-Loredo MG, Torres-Huerta AL. Biosynthesis of Copper Nanoparticles with Medicinal Plants Extracts: From Extraction Methods to Applications. MICROMACHINES 2023; 14:1882. [PMID: 37893319 PMCID: PMC10609153 DOI: 10.3390/mi14101882] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 10/29/2023]
Abstract
Copper nanoparticles (CuNPs) can be synthesized by green methods using plant extracts. These methods are more environmentally friendly and offer improved properties of the synthesized NPs in terms of biocompatibility and functional capabilities. Traditional medicine has a rich history of utilization of herbs for millennia, offering a viable alternative or complementary option to conventional pharmacological medications. Plants of traditional herbal use or those with medicinal properties are candidates to be used to obtain NPs due to their high and complex content of biocompounds with different redox capacities that provide a dynamic reaction environment for NP synthesis. Other synthesis conditions, such as salt precursor concentration, temperature, time synthesis, and pH, have a significant effect on the characteristics of the NPs. This paper will review the properties of some compounds from medicinal plants, plant extract obtention methods alternatives, characteristics of plant extracts, and how they relate to the NP synthesis process. Additionally, the document includes diverse applications associated with CuNPs, starting from antibacterial properties to potential applications in metabolic disease treatment, vegetable tissue culture, therapy, and cardioprotective effect, among others.
Collapse
Affiliation(s)
- Aurora Antonio-Pérez
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Atizapán de Zaragoza, Ciudad López Mateos 52926, Mexico; (A.A.-P.); (M.G.P.-L.)
| | - Luis Fernando Durán-Armenta
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium;
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - María Guadalupe Pérez-Loredo
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Atizapán de Zaragoza, Ciudad López Mateos 52926, Mexico; (A.A.-P.); (M.G.P.-L.)
- División Académica de Tecnología Ambiental, Universidad Tecnológica Fidel Velázquez, Av. Emiliano Zapata S/N, El Tráfico, Nicolás Romero C.P.54400, Mexico
| | - Ana Laura Torres-Huerta
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Estado de México, Av. Lago de Guadalupe KM 3.5, Margarita Maza de Juárez, Atizapán de Zaragoza, Ciudad López Mateos 52926, Mexico; (A.A.-P.); (M.G.P.-L.)
| |
Collapse
|
18
|
Dadhwal P, Dhingra HK, Dwivedi V, Alarifi S, Kalasariya H, Yadav VK, Patel A. Hippophae rhamnoides L. (sea buckthorn) mediated green synthesis of copper nanoparticles and their application in anticancer activity. Front Mol Biosci 2023; 10:1246728. [PMID: 37692067 PMCID: PMC10484619 DOI: 10.3389/fmolb.2023.1246728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023] Open
Abstract
Green synthesis of nanoparticles has drawn huge attention in the last decade due to their eco-friendly, biocompatible nature. Phyto-assisted synthesis of metallic nanoparticles is widespread in the field of nanomedicine, especially for antimicrobial and anticancer activity. Here in the present research work, investigators have used the stem extract of the Himalayan plant Hippophae rhamnoides L, for the synthesis of copper nanoparticles (CuNPs). The synthesized of CuNPs were analyzed by using sophisticated instruments, i.e., Fourier transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, X-ray diffraction (XRD), high-performance liquid chromatography (HPLC), and scanning electron microscope (SEM). The size of the synthesized CuNPs was varying from 38 nm to 94 nm which were mainly spherical in shape. Further, the potential of the synthesized CuNPs was evaluated as an anticancer agent on the Hela cell lines, by performing an MTT assay. In the MTT assay, a concentration-dependent activity of CuNPs demonstrated the lower cell viability at 100 μg/mL and IC50 value at 48 μg/mL of HeLa cancer cell lines. In addition to this, apoptosis activity was evaluated by reactive oxygen species (ROS), DAPI (4',6-diamidino-2-phenylindole) staining, Annexin V, and Propidium iodide (PI) staining, wherein the maximum ROS production was at a dose of 100 µg per mL of CuNPs with a higher intensity of green fluorescence. In both DAPI and PI staining, maximum nuclear condensation was observed with 100 μg/mL of CuNPs against HeLa cell lines.
Collapse
Affiliation(s)
- Pooja Dadhwal
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Rajasthan, India
| | - Harish Kumar Dhingra
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Rajasthan, India
| | - Vinay Dwivedi
- Biotechnology Engineering and Food Technology, Chandigarh University Chandigarh, Mohali, India
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Haresh Kalasariya
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
19
|
Mironeasa S, Coţovanu I, Mironeasa C, Ungureanu-Iuga M. A Review of the Changes Produced by Extrusion Cooking on the Bioactive Compounds from Vegetal Sources. Antioxidants (Basel) 2023; 12:1453. [PMID: 37507991 PMCID: PMC10376774 DOI: 10.3390/antiox12071453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The demand for healthy ready-to-eat foods like snacks is increasing. Physical modification of vegetal food matrices through extrusion generates significant changes in the chemical composition of the final product. There is a great variety of food matrices that can be used in extrusion, most of them being based on cereals, legumes, fruits, vegetables, or seeds. The aim of this review was to summarize the main effects of the extrusion process on the bioactive compounds content, namely phenolics, terpenes, vitamins, minerals, and fibers of vegetal mixes, as well as on their biological activity. The literature reported contradictory results regarding the changes in bioactive compounds after extrusion, mainly due to the differences in the processing conditions, chemical composition, physicochemical properties, and nutritional value of the extruded material and quantification methods. The thermolabile phenolics and vitamins were negatively affected by extrusion, while the fiber content was proved to be enhanced. Further research is needed regarding the interactions between bioactive components during extrusion, as well as a more detailed analysis of the impact of extrusion on the terpenes since there are few papers dealing with this aspect.
Collapse
Affiliation(s)
- Silvia Mironeasa
- Faculty of Food Engineering, "Ştefan cel Mare" University of Suceava, 13 Universitatii Street, 720229 Suceava, Romania
| | - Ionica Coţovanu
- Faculty of Food Engineering, "Ştefan cel Mare" University of Suceava, 13 Universitatii Street, 720229 Suceava, Romania
| | - Costel Mironeasa
- Faculty of Mechanical Engineering, Automotive and Robotics, "Ştefan cel Mare" University of Suceava, 13 Universitatii Street, 720229 Suceava, Romania
| | - Mădălina Ungureanu-Iuga
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies and Distributed Systems for Fabrication and Control (MANSiD), "Ştefan cel Mare" University of Suceava, 13 Universitatii Street, 720229 Suceava, Romania
- Mountain Economy Center (CE-MONT), "Costin C. Kiriţescu" National Institute of Economic Researches (INCE), Romanian Academy, 49 Petreni Street, 725700 Vatra Dornei, Romania
| |
Collapse
|
20
|
Afzal MA, Javed M, Aroob S, Javed T, M Alnoman M, Alelwani W, Bibi I, Sharif M, Saleem M, Rizwan M, Raheel A, Maseeh I, Carabineiro SAC, Taj MB. The Biogenic Synthesis of Bimetallic Ag/ZnO Nanoparticles: A Multifunctional Approach for Methyl Violet Photocatalytic Degradation and the Assessment of Antibacterial, Antioxidant, and Cytotoxicity Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2079. [PMID: 37513090 PMCID: PMC10385465 DOI: 10.3390/nano13142079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
In this study, bimetallic nanoparticles (NPs) of silver (Ag) and zinc oxide (ZnO) were synthesized using Leptadenia pyrotechnica leaf extract for the first time. Monometallic NPs were also obtained for comparison. The characterization of the prepared NPs was carried out using various techniques, including UV-Visible spectroscopy (UV-Vis), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The latter confirmed the crystalline nature and diameter of the monometallic and bimetallic NPs of Ag and ZnO. The SEM images of the prepared NPs revealed their different shapes. The biological activities of the NPs were evaluated concerning their antibacterial, antioxidant, and cytotoxic properties. The antibacterial activities were measured using the time-killing method. The results demonstrated that both the monometallic and bimetallic NPs inhibited the growth of Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. The antioxidant activities of the NPs were evaluated using the DPPH (2,2-diphenyl-1-picrylhydrazyl) assay and their cytotoxicity was checked using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The results indicated that the controlled quantity of the monometallic and bimetallic NPs did not affect the viability of the cells. However, the decreased cell (L-929) viability suggested that the NPs could have anticancer properties. Furthermore, the photocatalytic degradation of methyl violet and 4-nitrophenol was investigated using the prepared Ag/ZnO NPs, examining the factors affecting the degradation process and conducting a kinetic and thermodynamic study. The prepared Ag/ZnO NPs demonstrated good photocatalytic degradation (88.9%) of the methyl violet (rate constant of 0.0183 min-1) in comparison to 4-nitrophenol (NPh), with a degradation rate of 81.37% and 0.0172 min-1, respectively. Overall, the bimetallic NPs showed superior antibacterial, antioxidant, cytotoxic, and photocatalytic properties compared to the monometallic NPs of Ag and ZnO.
Collapse
Affiliation(s)
- Muhammad Asjad Afzal
- Institute of Chemistry, Green Synthesis Laboratory, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Javed
- Department of Chemistry, University of Lahore, Lahore 54590, Pakistan
| | - Sadia Aroob
- Institute of Chemistry, Green Synthesis Laboratory, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Tariq Javed
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Maryam M Alnoman
- Department of Biology, Faculty of Science, Taibah University, Yanbu P.O. Box 344, Saudi Arabia
| | - Walla Alelwani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Ismat Bibi
- Institute of Chemistry, Green Synthesis Laboratory, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Sharif
- Institute of Chemistry, Green Synthesis Laboratory, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Saleem
- Institute of Chemistry, Green Synthesis Laboratory, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Rizwan
- Department of Chemistry, University of Lahore, Lahore 54590, Pakistan
| | - Ahmad Raheel
- Department of Chemistry, Quaid-e-Azam University, Islamabad 44000, Pakistan
| | - Ihsan Maseeh
- Institute of Chemistry, Green Synthesis Laboratory, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Sónia A C Carabineiro
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Muhammad Babar Taj
- Institute of Chemistry, Green Synthesis Laboratory, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
21
|
Khanaaekwichaporn P, Thammakhet-Buranachai C, Sangsudcha W, Thavarungkul P, Kanatharana P, Jeerapan I. A wearable electrode based on copper nanoparticles for rapid determination of paraquat. Mikrochim Acta 2023; 190:286. [PMID: 37417989 DOI: 10.1007/s00604-023-05861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
The application of copper-based nanoparticles synthesized via green synthesis and their integration with a wearable electrode is reported for designing a flexible catalytic electrode on a glove for onsite electroanalysis of paraquat. A copper precursor and an orange extract from Citrus reticulata are used to synthesize an economical electrocatalytic material for supporting the selective and sensitive detection of paraquat. The electrode yields multidimensional fingerprints due to two redox couples in a square wave voltammogram, corresponding to the presence of paraquat. The developed lab-on-a-finger sensor provides the fast electroanalysis of paraquat within 10 s, covering a wide range from 0.50 to 1000 µM, with a low detection limit down to 0.31 µM and high selectivity. It is also possible to use this sensor at a fast scan rate as high as 6 V s-1 (< 0.5 s for a scan). This wearable glove sensor allows the user to directly touch and analyze samples, such as surfaces of vegetables and fruits, to screen the contamination. It is envisioned that these glove-embedded sensors can be applied to the on-site analysis of food contamination and environments.
Collapse
Affiliation(s)
- Phennapa Khanaaekwichaporn
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Chongdee Thammakhet-Buranachai
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Warawut Sangsudcha
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Itthipon Jeerapan
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
22
|
Luque-Jacobo CM, Cespedes-Loayza AL, Echegaray-Ugarte TS, Cruz-Loayza JL, Cruz I, de Carvalho JC, Goyzueta-Mamani LD. Biogenic Synthesis of Copper Nanoparticles: A Systematic Review of Their Features and Main Applications. Molecules 2023; 28:4838. [PMID: 37375393 DOI: 10.3390/molecules28124838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Nanotechnology is an innovative field of study that has made significant progress due to its potential versatility and wide range of applications, precisely because of the development of metal nanoparticles such as copper. Nanoparticles are bodies composed of a nanometric cluster of atoms (1-100 nm). Biogenic alternatives have replaced their chemical synthesis due to their environmental friendliness, dependability, sustainability, and low energy demand. This ecofriendly option has medical, pharmaceutical, food, and agricultural applications. When compared to their chemical counterparts, using biological agents, such as micro-organisms and plant extracts, as reducing and stabilizing agents has shown viability and acceptance. Therefore, it is a feasible alternative for rapid synthesis and scaling-up processes. Several research articles on the biogenic synthesis of copper nanoparticles have been published over the past decade. Still, none provided an organized, comprehensive overview of their properties and potential applications. Thus, this systematic review aims to assess research articles published over the past decade regarding the antioxidant, antitumor, antimicrobial, dye removal, and catalytic activities of biogenically synthesized copper nanoparticles using the scientific methodology of big data analytics. Plant extract and micro-organisms (bacteria and fungi) are addressed as biological agents. We intend to assist the scientific community in comprehending and locating helpful information for future research or application development.
Collapse
Affiliation(s)
- Cristina M Luque-Jacobo
- Sustainable Innovative Biomaterials Department, Le Qara Research Center, Arequipa 04000, Peru
| | | | | | | | - Isemar Cruz
- Sustainable Innovative Biomaterials Department, Le Qara Research Center, Arequipa 04000, Peru
| | - Júlio Cesar de Carvalho
- Bioprocess Engineering and Biotechnology Department, Federal University of Paraná-Polytechnic Center, Curitiba 81531-980, Brazil
| | - Luis Daniel Goyzueta-Mamani
- Sustainable Innovative Biomaterials Department, Le Qara Research Center, Arequipa 04000, Peru
- Vicerrectorado de Investigación, Universidad Católica de Santa María, Urb. San José s/n-Umacollo, Arequipa 04000, Peru
| |
Collapse
|
23
|
Nikolova MP, Joshi PB, Chavali MS. Updates on Biogenic Metallic and Metal Oxide Nanoparticles: Therapy, Drug Delivery and Cytotoxicity. Pharmaceutics 2023; 15:1650. [PMID: 37376098 PMCID: PMC10301310 DOI: 10.3390/pharmaceutics15061650] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The ambition to combat the issues affecting the environment and human health triggers the development of biosynthesis that incorporates the production of natural compounds by living organisms via eco-friendly nano assembly. Biosynthesized nanoparticles (NPs) have various pharmaceutical applications, such as tumoricidal, anti-inflammatory, antimicrobials, antiviral, etc. When combined, bio-nanotechnology and drug delivery give rise to the development of various pharmaceutics with site-specific biomedical applications. In this review, we have attempted to summarize in brief the types of renewable biological systems used for the biosynthesis of metallic and metal oxide NPs and the vital contribution of biogenic NPs as pharmaceutics and drug carriers simultaneously. The biosystem used for nano assembly further affects the morphology, size, shape, and structure of the produced nanomaterial. The toxicity of the biogenic NPs, because of their pharmacokinetic behavior in vitro and in vivo, is also discussed, together with some recent achievements towards enhanced biocompatibility, bioavailability, and reduced side effects. Because of the large biodiversity, the potential biomedical application of metal NPs produced via natural extracts in biogenic nanomedicine is yet to be explored.
Collapse
Affiliation(s)
- Maria P. Nikolova
- Department of Material Science and Technology, University of Ruse “A. Kanchev”, 8 Studentska Str., 7017 Ruse, Bulgaria
| | - Payal B. Joshi
- Shefali Research Laboratories, 203/454, Sai Section, Ambernath (East), Mumbai 421501, Maharashtra, India;
| | - Murthy S. Chavali
- Office of the Dean (Research), Dr. Vishwanath Karad MIT World Peace University (MIT-WPU), Kothrud, Pune 411038, Maharashtra, India;
| |
Collapse
|
24
|
Ranjbar M, Khakdan F, Mukherjee A. In vitro analysis of green synthesized CuO nanoparticles using Tanacetum parthenium extract for multifunctional applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60180-60195. [PMID: 37017848 DOI: 10.1007/s11356-023-26706-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/25/2023] [Indexed: 05/10/2023]
Abstract
Tanacetum parthenium L. is a popular traditional medicinal plant that the role of presence of particular phytochemical compounds are still unconsidered particularly in the bio-nano researches. Here, for the first time, the green fabrication of CuO NPs using Tanacetum parthenium L. extract was performed and assessed for the antimicrobial, cytotoxicity, and dye degradation activities. Characterization of CuO NPs was done by UV-visible spectra, XRD, FT-IR, TEM, and EDX. The synthesized CuO NPs possess a crystalline nature, a functional group that resembles T. parthenium, with a spherical shape particle with an average size of 28 nm. EDX confirmed CuO NPs formation. The CuO NPs showed excellent antimicrobial activity against tested microorganisms. The cytotoxicity of CuO NPs was demonstrated the concentration-dependent inhibition of the growth against both cancer and normal cell lines. The results exhibited concentration-dependent inhibition of the growth of Hela, A 549, and MCF7 cancer cells (IC50 = 65.0, 57.4, and 71.8 µg/mL, respectively), which were statistically significant comparing control cells (IC50 = 226.1 µg/mL). Furthermore, we observed that CuO NPs-induced programmed cell death in the cancer cells were mediated with the downregulation of Bcl2 and upregulation of bax, caspase-3. CuO NPs were verified to be a superb catalyst as they had excellent activity for the degradation of 99.6%, 98.7%, 96.6%, and 96.6% of Congo red, methylene blue, methylene orange, and rhodamine B as industrial dyes in 3, 6.5, 6.5, and 6.5 min, respectively. Overall, the present study nominates T. parthenium as a proper bio-agent in the biosynthesis of CuO NPs with powerful catalytic and antimicrobial activities as well as a cancer treatment.
Collapse
Affiliation(s)
- Mojtaba Ranjbar
- Department of Microbial Biotechnology, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran.
| | | | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
25
|
Guzmán-Altamirano MÁ, Rebollo-Plata B, Joaquín-Ramos ADJ, Gómez-Espinoza MG. Green synthesis and antimicrobial mechanism of nanoparticles: applications in agricultural and agrifood safety. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2727-2744. [PMID: 35941521 DOI: 10.1002/jsfa.12162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 06/29/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The growing demand for food and its safety are a challenge for agriculture and agrifood. This has led to the incorporation of alternatives such as organic agriculture, the use of biocontrollers, the development of transgenic plants resistant to pathogens and the incorporation of nanotechnology. In this sense, agrochemicals based on nanoparticles (NPs) have been developed. Recently, the green synthesis of NPs has grown rapidly and, for this reason, molecules, microorganisms, fungi and plants are used. Synthesis from plant extracts offers a broad spectrum and, despite the fact that NPs are usually dispersed in size and shape, extensive antimicrobial effectiveness has been demonstrated at nanomolar concentrations. It has been shown that the mechanism of action can be through the dissipation of the driving force of the protons, the alteration of cellular permeability, the formation of bonds with the thiol group of the proteins, the generation of reactive species of oxygen, and the hyperoxidation of DNA, RNA and even the cell membrane. To improve the efficiency of NPs, modifications have been made such as coating with other metals, the addition of antibiotics, detergents and surfactants, as well as the acidification of the solution. Consequently, NPs are considered as a promising method for achieving safety in the agricultural and agrifood area. However, it is necessary to investigate the side effects of NPs, when applied in agroecological systems, on the textural, nutriment and sensory properties of food, as well as the impact on human health. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Bernabe Rebollo-Plata
- Departamento de Ing. Electrónica, Instituto Tecnológico superior de Irapuato, Guanajuato, México
| | | | | |
Collapse
|
26
|
Ramasubbu K, Padmanabhan S, Al-Ghanim KA, Nicoletti M, Govindarajan M, Sachivkina N, Rajeswari VD. Green Synthesis of Copper Oxide Nanoparticles Using Sesbania grandiflora Leaf Extract and Their Evaluation of Anti-Diabetic, Cytotoxic, Anti-Microbial, and Anti-Inflammatory Properties in an In-Vitro Approach. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Green methods of synthesizing nanoparticles are safer than chemical and physical methods, as well as being eco-friendly and cost-efficient. In this study, we use copper oxide nanoparticles (CuO NPs) fabricated with Sesbania grandiflora (Sg) (Hummingbird tree) leaves to test the effectiveness of green synthesizing methods. The attained Sg-CuO NPs physical and optical nature is characterized by UV-Vis spectroscopy Differential Reflectance Spectroscopy (UV-Vis DRS), Fourier Transform Infra-Red spectroscopy (FTIR), X-ray Diffraction spectroscopy (XRD), Scanning Electron Microscope (SEM), and Energy Dispersive X-ray Analysis (EDAX). UV-Vis spectrum for Sg-CuO NPs revealed a peak at 410 nm. SEM images showed the aggregation of needle-shaped particles, at a size of 33 nm. The amylase and glucosidase enzymes were inhibited by the Sg-CuO NPs up to 76.7% and 72.1%, respectively, indicating a possible antihyperglycemic effect. Fabricated Sg-CuO NPs disclosed the excellent inhibition of DPPH-free radicle formation (89.7%) and repressed protein degradation (81.3%). The results showed that Sg-CuO NPs display good anti-bacterial activity against the gram-negative (Escherichia coli and Pseudomonas aeruginosa) and gram-positive (Staphylococcus aureus). Cytotoxicity of the Sg-CuO NPs was determined using anIC50 of 37 μg/mL. Sg-CuO NPs have shown promising anti-diabetic, anti-oxidant, protein degradation-inhibiting, and anti-microbial properties. Our findings have shown that synthesized Sg-CuO NPs have biological activities that may be utilized to treat bacterial infections linked to hyperglycemia.
Collapse
|
27
|
Chand Mali S, Dhaka A, Sharma S, Trivedi R. Review on biogenic synthesis of copper nanoparticles and its potential applications. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
28
|
Qualitative Analysis on the Phytochemical Compounds and Total Phenolic Content of Cissus hastata (Semperai) Leaf Extract. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2022. [DOI: 10.3390/ijpb14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Plant extracts of Cissus hastata, indigenously known as Semperai, have been used as an effective traditional remedy against coughs. Recently, the leaf extract was potentially shown to have anti-hemorrhoid activity, although there is a lack of scientific data due to its folklore usage. Hence, the therapeutic properties of the phytochemicals and metabolites of Semperai remain elusive. Therefore, this study aims to determine the total phenolic content and phytochemical compounds of the plant leaf extract. Total phenolic content and antioxidant activity were determined by the Folin–Ciocalteau method and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, respectively. Phytochemical compounds present in the leaf methanol extract were analyzed by a qualitative method. Results showed the extract comprised a total of 21.3 mg GAE/g of phenolic content with reference to gallic acid. The antioxidant activity was almost absence with an IC50 of 7.80 µg/mL when compared to trolox and gallic acid. Presence of the red to orange precipitate in reference to gallic acid indicate alkaloid content, while the appearance of black-blue/green color in reference to gallic acid are referred to as tannins. The steroids were represented by an upper red layer and a yellowish sulfuric acid with green fluorescence in comparison to cholesterol. Nonetheless, saponin was not detected in the extract, as indicated by the absence of the persisting foam in the test solution when compared with sodium dodecyl sulphate. In conclusion, despite not having an antioxidant property, the methanol extract of Semperai comprised a fair amount of phenolic compounds, including tannins, alkaloids, and steroids, which, potentially, are highly anti-inflammatory towards hemorrhoids.
Collapse
|
29
|
Taha A, Hassanin HA. Facile Green Synthesis of Ni(OH) 2@Mn 3O 4 Cactus-Type Nanocomposite: Characterization and Cytotoxicity Properties. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248703. [PMID: 36557837 PMCID: PMC9782178 DOI: 10.3390/molecules27248703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 09/29/2022] [Accepted: 10/08/2022] [Indexed: 12/13/2022]
Abstract
In the present work, the facile eco-friendly synthesis and evaluation of the anti-tumor activity of Ni(OH)2@Mn3O4 nanocomposite were carried out. The synthesis of Ni(OH)2@Mn3O4 nanocomposite from chia-seed extract was mediated by sonication. The obtained materials were characterized by different spectroscopic techniques such as transmission electron microscopy (TEM), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-Vis), and Fourier transform infrared (FT-IR) spectroscopies. The results of XRD, SEM, EDS, TEM, FT-IR, and UV-Vis analysis indicate the successful manufacturing of a crystalline, cactus-type Ni(OH)2@Mn3O4 nanocomposite of 10.10 nm average particle size. XPS analysis confirms that the synthesized materials consist mainly of Ni2+, Mn2+, and Mn3+. The antitumor activity of the nanocomposite was tested against a breast cancer (MCF-7) cell line. The results showed Ni(OH)2@Mn3O4 nanocomposite possesses insignificant cytotoxicity. The cell-death percentage was 34% at a 100 ppm concentration of Ni(OH)2@Mn3O4 nanocomposite. The obtained results imply that the synthesized nanocomposite could be suitable and safe for drug delivery and water treatment.
Collapse
Affiliation(s)
- Amel Taha
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science and Technology, Al-Neelain University, Khartoum 11121, Sudan
| | - Hanaa A. Hassanin
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt
- Correspondence: ; Tel.: +966-135897502; Fax: +966-135899557
| |
Collapse
|
30
|
Adeli-Sardou M, Shakibaie M, Forootanfar H, Jabari-Morouei F, Riahi-Madvar S, Ghafari-Shahrbabaki SS, Mehrabani M. Cytotoxicity and anti-biofilm activities of biogenic cadmium nanoparticles and cadmium nitrate: a preliminary study. World J Microbiol Biotechnol 2022; 38:246. [DOI: 10.1007/s11274-022-03418-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/15/2022] [Indexed: 10/31/2022]
|
31
|
Samrot AV, Ram Singh SP, Deenadhayalan R, Rajesh VV, Padmanaban S, Radhakrishnan K. Nanoparticles, a Double-Edged Sword with Oxidant as Well as Antioxidant Properties—A Review. OXYGEN 2022; 2:591-604. [DOI: https:/doi.org/10.3390/oxygen2040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
Abstract
The usage of nanoparticles became inevitable in medicine and other fields when it was found that they could be administered to hosts to act as oxidants or antioxidants. These oxidative nanoparticles act as pro-oxidants and induce oxidative stress-mediated toxicity through the generation of free radicals. Some nanoparticles can act as antioxidants to scavenge these free radicals and help in maintaining normal metabolism. The oxidant and antioxidant properties of nanoparticles rely on various factors including size, shape, chemical composition, etc. These properties also help them to be taken up by cells and lead to further interaction with cell organelles/biological macromolecules, leading to either the prevention of oxidative damage, the creation of mitochondrial dysfunction, damage to genetic material, or cytotoxic effects. It is important to know the properties that make these nanoparticles act as oxidants/antioxidants and the mechanisms behind them. In this review, the roles and mechanisms of nanoparticles as oxidants and antioxidants are explained.
Collapse
|
32
|
Omran AM, Al-Aoh HA, Albalawi K, Saleh FM, Alanazi YF, Al-Shehri HS, Parveen H, Al-Morwani MM, Keshk AA, Panneerselvam C, Mustafa SK, Ahmed_Abakur EH. Biomimetic synthesis of Piper betle decorated nano copper oxide: Investigations of their antioxidant, antibacterial and apoptotic efficacy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
33
|
Ao B, He F, Lv J, Tu J, Tan Z, Jiang H, Shi X, Li J, Hou J, Hu Y, Xia X. Green synthesis of biogenetic Te(0) nanoparticles by high tellurite tolerance fungus Mortierella sp. AB1 with antibacterial activity. Front Microbiol 2022; 13:1020179. [PMID: 36274686 PMCID: PMC9581301 DOI: 10.3389/fmicb.2022.1020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Tellurite [Te(IV)] is a high-toxicity metalloid. In this study, a fungus with high Te(IV) resistance was isolated. Strain AB1 could efficiently reduce highly toxic Te(IV) to less toxic Te(0). The reduced products formed rod-shaped biogenetic Te(0) nanoparticles (Bio-TeNPs) intracellularly. Further TEM-element mapping, FTIR, and XPS analysis showed that the extracted Bio-TeNPs ranged from 100 to 500 nm and consisted of Te(0), proteins, lipids, aromatic compounds, and carbohydrates. Moreover, Bio-TeNPs exhibited excellent antibacterial ability against Shigella dysenteriae, Escherichia coli, Enterobacter sakazakii, and Salmonella typhimurium according to inhibition zone tests. Further growth and live/dead staining experiments showed that E. coli and S. typhimurium were significantly inhibited by Bio-TeNPs, and cells were broken or shriveled after treatment with Bio-TeNPs based on SEM observation. Additionally, the antioxidant and cytotoxicity tests showed that the Bio-TeNPs exhibited excellent antioxidant capacity with no cytotoxicity. All these results suggested that strain AB1 showed great potential in bioremediation and Bio-TeNPs were excellent antibacterial nanomaterials with no cytotoxicity.
Collapse
Affiliation(s)
- Bo Ao
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Huangshi Key Laboratory of Lake Environmental Protection and Sustainable Utilization of Resources, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, China
| | - Fei He
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Jing Lv
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Junming Tu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Huangshi Key Laboratory of Lake Environmental Protection and Sustainable Utilization of Resources, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, China
| | - Zheng Tan
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Huangshi Key Laboratory of Lake Environmental Protection and Sustainable Utilization of Resources, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, China
| | - Honglin Jiang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Xiaoshan Shi
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Huangshi Key Laboratory of Lake Environmental Protection and Sustainable Utilization of Resources, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, China
| | - Jingjing Li
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Huangshi Key Laboratory of Lake Environmental Protection and Sustainable Utilization of Resources, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, China
- Department of Virology, University of Helsinki, Helsinki, Finland
| | - Jianjun Hou
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Huangshi Key Laboratory of Lake Environmental Protection and Sustainable Utilization of Resources, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, China
| | - Yuanliang Hu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Huangshi Key Laboratory of Lake Environmental Protection and Sustainable Utilization of Resources, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, China
| | - Xian Xia
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Huangshi Key Laboratory of Lake Environmental Protection and Sustainable Utilization of Resources, Hubei Engineering Research Center of Characteristic Wild Vegetable Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, China
- *Correspondence: Xian Xia,
| |
Collapse
|
34
|
Shah IH, Ashraf M, Sabir IA, Manzoor MA, Malik MS, Gulzar S, Ashraf F, Iqbal J, Niu Q, Zhang Y. Green synthesis and Characterization of Copper oxide nanoparticles using Calotropis procera leaf extract and their different biological potentials. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132696] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Chompunut L, Wanaporn T, Anupong W, Narayanan M, Alshiekheid M, Sabour A, Karuppusamy I, Lan Chi NT, Shanmuganathan R. Synthesis of copper nanoparticles from the aqueous extract of Cynodon dactylon and evaluation of its antimicrobial and photocatalytic properties. Food Chem Toxicol 2022; 166:113245. [PMID: 35728723 DOI: 10.1016/j.fct.2022.113245] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/25/2022] [Accepted: 06/15/2022] [Indexed: 10/18/2022]
Abstract
The copper nanoparticles (CuNPs) synthesizing potential of Cynodon dactylon aqueous leaf extract and their antibacterial as well as dye degradation potentials were investigated. The synthesized CuNPs was initially characterized by gradual colour change from dark brown to blue in colour and then found absorbance peak at 469 nm. Furthermore, the SEM and DLS analyses showed that biosynthesized CuNPs were spherical in shaped and size ranging from 120 to 129 nm. The FTIR spectrum confirmed the presence of flavonoids, alkaloids, terpenoids, and phenols, which involved in the reduction, capping, and stabilization of CuNPs. This green synthesized CuNPs also demonstrated remarkable antibacterial activity against the bacterial pathogens such as Escherichia coli, Bacillus subtilis and Staphylococcus aureus and Klebsiella pneumoniae. This green synthesized CuNPs exhibited considerable dye degrading potential in the following order as methyl organge > methyl red > Erichrome black T dyes in the presence of sunlight through photocatalytic degradation process. These results conclude that C. dactylon aqueous leaf extract mediated nanoparticles possess remarkable antibacterial and dye degrading potential.
Collapse
Affiliation(s)
- Lumsangkul Chompunut
- Department of Animal and Aquatic Science, Faculty of Agriculture, Chiang Mai University, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Tapingkae Wanaporn
- Department of Animal and Aquatic Science, Faculty of Agriculture, Chiang Mai University, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wongchai Anupong
- Department of Agricultural Economy and Development, Faculty of Agriculture, Chiang Mai University, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Mathiyazhagan Narayanan
- Division of Research and Innovations, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602 105, Tamil Nadu, India
| | - Maha Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Amal Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Indira Karuppusamy
- Research Center for Strategic Materials, Corrosion Resistant Steel Group, National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Rajasree Shanmuganathan
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
36
|
Ullah A, Lim SI. Plant Extract-Based Synthesis of Metallic Nanomaterials, Their Applications, and Safety Concerns. Biotechnol Bioeng 2022; 119:2273-2304. [PMID: 35635495 DOI: 10.1002/bit.28148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/12/2022] [Accepted: 05/19/2022] [Indexed: 11/06/2022]
Abstract
Nanotechnology has attracted the attention of researchers from different scientific fields because of the escalated properties of nanomaterials compared with the properties of macromolecules. Nanomaterials can be prepared through different approaches involving physical and chemical methods. The development of nanomaterials through plant-based green chemistry approaches is more advantageous than other methods from the perspectives of environmental safety, animal, and human health. The biomolecules and metabolites of plants act as reducing and capping agents for the synthesis of metallic green nanomaterials. Plant-based synthesis is a preferred approach as it is not only cost-effective, easy, safe, clean, and eco-friendly but also provides pure nanomaterials in high yield. Since nanomaterials have antimicrobial and antioxidant potential, green nanomaterials synthesized from plants can be used for a variety of biomedical and environmental remediation applications. Past studies have focused mainly on the overall biogenic synthesis of individual or combinations of metallic nanomaterials and their oxides from different biological sources, including microorganisms and biomolecules. Moreover, from the viewpoint of biomedical applications, the literature is mainly focusing on synthetic nanomaterials. Herein, we discuss the extraction of green molecules and recent developments in the synthesis of different plant-based metallic nanomaterials, including silver, gold, platinum, palladium, copper, zinc, iron, and carbon. Apart from the biomedical applications of metallic nanomaterials, including antimicrobial, anticancer, diagnostic, drug delivery, tissue engineering, and regenerative medicine applications, their environmental remediation potential is also discussed. Furthermore, safety concerns and safety regulations pertaining to green nanomaterials are also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Aziz Ullah
- Department of Chemical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.,Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University Dera Ismail Khan, 29050, Khyber Pakhtunkhwa, Pakistan
| | - Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
37
|
Ben Jaballah M, Ambily Rajendran A, Prieto-Simón B, Dridi C. Development of a sustainable nanosensor using green Cu nanoparticles for simultaneous determination of antibiotics in drinking water. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2014-2025. [PMID: 35545944 DOI: 10.1039/d2ay00419d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, a novel, cost-effective, and eco-friendly electrochemical (EC) nanosensor was fabricated for the simultaneous detection of daptomycin (DAP) and meropenem (MEROP). EC methods have been developed for the determination of antibiotics. In this context, green synthesized copper nanoparticles (CuNPs) using Moringa oleifera plant extract were used as electrode modifiers. The incorporation of CuNPs was proposed to enhance the sensitivity and allow the simultaneous quantification of both antibiotics in water. Transmission electron microscopy (TEM), dynamic light scattering (DLS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, UV-visible spectroscopy, and field emission scanning electron microscopy with energy dispersive X-ray spectroscopy (FESEM-EDX) were employed to characterize CuNPs. Physical adsorption of 20.0 nm (±2.2 nm) spherical CuNPs on the surface of screen-printed carbon electrodes (SPCEs) induced a remarkable electrocatalytic effect. Indeed, the detection of both antibiotics exhibited a limit of detection (LOD) of 0.01 g L-1. The response to various interfering species was assessed. Finally, the quantification of DAP and MEROP in drinking water was demonstrated, confirming the potential of the developed sensor for environmental monitoring applications.
Collapse
Affiliation(s)
- Menyar Ben Jaballah
- NANOMISENE Laboratory, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology CRMN of Sousse Technopole, B.P. 334, Sahloul, Sousse, 4054, Tunisia.
- High School of Sciences and Technology of Hammam Sousse, University of Sousse, Tunisia
| | - Anand Ambily Rajendran
- Department of Electronic Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Beatriz Prieto-Simón
- Department of Electronic Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain
| | - Chérif Dridi
- NANOMISENE Laboratory, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology CRMN of Sousse Technopole, B.P. 334, Sahloul, Sousse, 4054, Tunisia.
| |
Collapse
|
38
|
Rajagopal M, Paul AK, Lee MT, Joykin AR, Por CS, Mahboob T, Salibay CC, Torres MS, Guiang MMM, Rahmatullah M, Jahan R, Jannat K, Wilairatana P, de Lourdes Pereira M, Lim CL, Nissapatorn V. Phytochemicals and Nano-Phytopharmaceuticals Use in Skin, Urogenital and Locomotor Disorders: Are We There? PLANTS 2022; 11:plants11091265. [PMID: 35567266 PMCID: PMC9099949 DOI: 10.3390/plants11091265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/02/2022]
Abstract
Nanomedicines emerged from nanotechnology and have been introduced to bring advancements in treating multiple diseases. Nano-phytomedicines are synthesized from active phytoconstituents or plant extracts. Advancements in nanotechnology also help in the diagnosis, monitoring, control, and prevention of various diseases. The field of nanomedicine and the improvements of nanoparticles has been of keen interest in multiple industries, including pharmaceutics, diagnostics, electronics, communications, and cosmetics. In herbal medicines, these nanoparticles have several attractive properties that have brought them to the forefront in searching for novel drug delivery systems by enhancing efficacy, bioavailability, and target specificity. The current review investigated various therapeutic applications of different nano-phytopharmaceuticals in locomotor, dermal, reproductive, and urinary tract disorders to enhance bioavailability and efficacy of phytochemicals and herbal extracts in preclinical and in vitro studies. There is a lack of clinical and extensive preclinical studies. The research in this field is expanding but strong evidence on the efficacy of these nano-phytopharmaceuticals for human use is still limited. The long-term efficacy and safety of nano-phytopharmaceuticals must be ensured with priority before these materials emerge as common human therapeutics. Overall, this review provides up-to-date information on related contemporary research on nano-phytopharmaceuticals and nano-extracts in the fields of dermatological, urogenital, and locomotor disorders.
Collapse
Affiliation(s)
- Mogana Rajagopal
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia; (M.R.); (M.-T.L.); (A.R.J.); (C.-S.P.)
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia;
| | - Ming-Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia; (M.R.); (M.-T.L.); (A.R.J.); (C.-S.P.)
| | - Anabelle Rose Joykin
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia; (M.R.); (M.-T.L.); (A.R.J.); (C.-S.P.)
| | - Choo-Shiuan Por
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur 56000, Malaysia; (M.R.); (M.-T.L.); (A.R.J.); (C.-S.P.)
| | - Tooba Mahboob
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Cristina C. Salibay
- Biologica Sciences Department, College of Science and Computer Studies, De La Salle University, Dasmarinas 4114, Philippines; (C.C.S.); (M.S.T.)
| | - Mario S. Torres
- Biologica Sciences Department, College of Science and Computer Studies, De La Salle University, Dasmarinas 4114, Philippines; (C.C.S.); (M.S.T.)
| | - Maria Melanie M. Guiang
- Department of Biology, College of Arts and Sciences, Central Mindanao University, Bukidnon 8710, Philippines;
- Center of Biodiversity Research and Extension in Mindanao (CEBREM), Central Mindanao University, Bukidnon 8710, Philippines
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (M.R.); (R.J.); (K.J.)
| | - Rownak Jahan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (M.R.); (R.J.); (K.J.)
| | - Khoshnur Jannat
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (M.R.); (R.J.); (K.J.)
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (P.W.); (V.N.)
| | - Maria de Lourdes Pereira
- CICECO—Aveiro Institute of Materials, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Chooi Ling Lim
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat 80160, Thailand;
- Correspondence: (P.W.); (V.N.)
| |
Collapse
|
39
|
Tseng KH, Huang CH, Ku HC, Tien DC, Stobinski L. Parameter configuration of the electrical spark discharge method for preparing graphene copper nanocomposite colloids and the analysis of product characteristics. RSC Adv 2022; 12:12978-12982. [PMID: 35497012 PMCID: PMC9049821 DOI: 10.1039/d2ra01456d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/20/2022] [Indexed: 11/21/2022] Open
Abstract
The electrical spark discharge method was used to prepare graphene copper nanocomposite (GNS-Cu) colloids under normal temperature and pressure. Cu and graphite were mixed in deionized water at a Cu : C mass ratio of 9 : 1 (99% purity), and the mixture was used to produce composite rods as the electrodes for spark machining. An electrical discharge machine with five settings of pulse cycle turn-on and turn-off times, namely 10-10, 30-30, 50-50, 70-70, and 90-90 μs, was used to prepare five different types of GNS-Cu colloids. The ultraviolet-visible spectroscopy results revealed that the highest absorbance (2.441) was observed when the turn-on and turn-off times were 30-30 μs, indicating that this configuration was most efficient for preparing GNS-Cu colloids. Transmission electron microscopy and X-ray diffraction analysis were also conducted to examine the surface characteristics and crystal structure of GNS-Cu colloids. The transmission electron microscopy results revealed that Cu particles in the GNS-Cu colloids were located within or on top of graphene sheets. The Cu particle size varied with the discharge efficiency, and the lattice spacing of the Cu particles was approximately 0.218 nm. The results of X-ray diffraction analysis revealed that no byproducts were formed from the preparation of GNS-Cu colloids, which had complete crystal structures.
Collapse
Affiliation(s)
- Kuo-Hsiung Tseng
- Department of Electrical Engineering, National Taipei University of Technology Taipei 10608 Taiwan
| | - Chang-Hsiang Huang
- Department of Electrical Engineering, National Taipei University of Technology Taipei 10608 Taiwan
| | - Hsueh-Chien Ku
- Department of Electrical Engineering, National Taipei University of Technology Taipei 10608 Taiwan
| | - Der-Chi Tien
- Department of Electrical Engineering, National Taipei University of Technology Taipei 10608 Taiwan
| | - Leszek Stobinski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology Waryńskiego 1 00-645 Warsaw Poland
| |
Collapse
|
40
|
Krishnaraj C, Young GM, Yun SI. In vitro embryotoxicity and mode of antibacterial mechanistic study of gold and copper nanoparticles synthesized from Angelica keiskei (Miq.) Koidz. leaves extract. Saudi J Biol Sci 2022; 29:2552-2563. [PMID: 35531254 PMCID: PMC9072899 DOI: 10.1016/j.sjbs.2021.12.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022] Open
Abstract
The present study demonstrated the in vitro embryotoxicity assessment of gold nanoparticles (AuNPs) and copper nanoparticles (CuNPs) prepared from the leaves extract of Angelica keiskei (Miq.) Koidz. and addressed their mode of antibacterial mechanisms. Both AuNPs and CuNPs were rapidly synthesized and the formations were observed within 1 h and 24 h, respectively. Further the morphological images of the nanoparticles were confirmed through transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). The high-resolution X-ray diffraction (HR-XRD) analysis of the biosynthesized AuNPs and CuNPs were matched with joint committee on powder diffraction standards (JCPDS) file no of 04-0784 and 89-5899, respectively. A strong prominent Au and Cu signals were observed through energy dispersive spectroscopy (EDS) analysis. Fourier transform infrared spectroscopy (FT-IR) analysis confirmed the responsible phytochemicals for the synthesis of AuNPs and CuNPs. In order to assess the toxic effects of AuNPs and CuNPs, bactericidal activity was performed against few of the test pathogens in which the effective inhibition was observed against Gram-negative bacteria than the Gram-positive bacteria. The mode of action and interaction of nanoparticles were performed on the bacterial pathogens and the results concluded that the interaction of nanoparticles initially initiated on the surface of the cell wall adherence followed by ruptured the cells and caused the cell death. In addition to the antibacterial activity, in vitro embryotoxicity studies were performed against zebrafish embryos and the results confirmed that 200 µg/ml concentration of AuNPs showed the embryotoxicity, whereas 2 µg/ml of CuNPs resulted the embryotoxicity. Furthermore, the morphological anomalies of zebrafish embryos revealed the toxic nature of the synthesized nanoparticles.
Collapse
Affiliation(s)
- Chandran Krishnaraj
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea.,Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Glenn M Young
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
| | - Soon-Il Yun
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea.,Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
41
|
Li S, Wang X, Chen J, Guo J, Yuan M, Wan G, Yan C, Li W, Machens HG, Rinkevich Y, Yang X, Song H, Chen Z. Calcium ion cross-linked sodium alginate hydrogels containing deferoxamine and copper nanoparticles for diabetic wound healing. Int J Biol Macromol 2022; 202:657-670. [PMID: 35066024 DOI: 10.1016/j.ijbiomac.2022.01.080] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/13/2021] [Accepted: 01/12/2022] [Indexed: 11/28/2022]
Abstract
Chronic non-healing diabetic wounds and ulcers can be fatal, lead to amputations, and remain a major challenge to medical, and health care sectors. Susceptibility to infection and impaired angiogenesis are two central reasons for the clinical consequences associated with chronic non-healing diabetic wounds. Herein, we successfully developed calcium ion (Ca2+) cross-linked sodium alginate (SA) hydrogels with both pro-angiogenesis and antibacterial properties. Our results demonstrated that deferoxamine (DFO) and copper nanoparticles (Cu-NPs) worked synergistically to enhance the proliferation, migration, and angiogenesis of human umbilical venous endothelial cells in vitro. Results of colony formation assay indicated Cu-NPs were effective against E. coli and S. aureus in a dose-dependent manner in vitro. An SA hydrogel containing both DFO and Cu-NPs (SA-DFO/Cu) was prepared using a Ca2+ cross-linking method. Cytotoxicity assay and colony formation assay indicated that the hydrogel exhibited beneficial biocompatible and antibacterial properties in vitro. Furthermore, SA-DFO/Cu significantly accelerated diabetic wound healing, improved angiogenesis and reduced long-lasting inflammation in a mouse model of diabetic wound. Mechanistically, DFO and Cu-NPs synergistically stimulated the levels of hypoxia-inducible factor 1α and vascular endothelial growth factor in vivo. Given the pro-angiogenesis, antibacterial and healing properties, the hydrogel possesses high potential for clinical application in refractory wounds.
Collapse
Affiliation(s)
- Shengbo Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuemei Wang
- College of Chemistry & Molecular Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan 430072, China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiahe Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Meng Yuan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gui Wan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chengqi Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenqing Li
- Department of Hand and Foot Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Hans-Günther Machens
- Department of Plastic and Hand Surgery, Technical University of Munich, Munich 81675, Germany
| | - Yuval Rinkevich
- Institute of Lung Biology and Disease, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377 Munich, Germany; Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Heng Song
- College of Chemistry & Molecular Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan 430072, China.
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
42
|
Bergal A, Matar GH, Andaç M. Olive and green tea leaf extracts mediated green synthesis of silver nanoparticles (AgNPs): comparison investigation on characterizations and antibacterial activity. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00958-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Ssekatawa K, Byarugaba DK, Angwe MK, Wampande EM, Ejobi F, Nxumalo E, Maaza M, Sackey J, Kirabira JB. Phyto-Mediated Copper Oxide Nanoparticles for Antibacterial, Antioxidant and Photocatalytic Performances. Front Bioeng Biotechnol 2022; 10:820218. [PMID: 35252130 PMCID: PMC8889028 DOI: 10.3389/fbioe.2022.820218] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/26/2022] [Indexed: 12/28/2022] Open
Abstract
The greatest challenge of the current generation and generations to come is antimicrobial resistance, as different pathogenic bacteria have continuously evolved to become resistant to even the most recently synthesized antibiotics such as carbapenems. Resistance to carbapenems limits the therapeutic options of MDR infections as they are the only safe and effective drugs recommended to treat such infections. This scenario has complicated treatment outcomes, even to the commonest bacterial infections. Repeated attempts to develop other approaches have been made. The most promising novel therapeutic option is the use of nanomaterials as antimicrobial agents. Thus, this study examined the efficacy of Camellia sinensis extract (CSE) and Prunus africana bark extract (PAE) green synthesized Copper oxide nanoparticles (CuONPs) against carbapenem-resistant bacteria. Furthermore, the photocatalytic and antioxidant activities of CuONPs were evaluated to determine the potential of using them in a wide range of applications. CuONPs were biosynthesized by CSE and PAE. UV vis spectroscopy, X-ray Diffraction (XRD), Dynamic light scattering (DLS), Fourier Transform Infrared spectroscopy (FTIR), and Scanning Electron Microscopy (SEM) were used to characterize the nanoparticles. CuONPs susceptibility tests were carried out by the agar well diffusion method. The photocatalytic and antioxidant activities of the CuONPs were determined by the methylene blue and DPPH free radical scavenging assays, respectively. UV vis absorbance spectra registered surface plasmon resonance peaks between 272 and 286 nm, confirming the presence of CuONPs. The XRD array had nine strong peaks at 2θ values typical of CuONPs. FTIR spectra exhibited bands associated with organic functional groups confirming capping and functionalization of the CuONPs by the phytochemicals. DLS analysis registered a net zeta potential of +12.5 mV. SEM analysis revealed that the nanoparticles were spherical and clustered with a mean diameter of 6 nm. Phytosynthesized CuONPs exhibited the highest growth suppression zones of 30 mm with MIC ranging from 30 to 125 μg/ml against MDR bacteria. Furthermore, the CuONPs achieved a methylene blue dye photocatalysis degradation efficiency of 85.5% and a free radical scavenging activity of 28.8%. PAE and CSE successfully bio-reduced copper ions to the nanoscale level with potent antimicrobial, photocatalysis, and antioxidant activities.
Collapse
Affiliation(s)
- Kenneth Ssekatawa
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Denis K. Byarugaba
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Martin Kamilo Angwe
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Eddie M. Wampande
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Francis Ejobi
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Edward Nxumalo
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, Florida Science Campus, University of South Africa, Pretoria, South Africa
| | - Malik Maaza
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West, South Africa
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa
| | - Juliet Sackey
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West, South Africa
- UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Pretoria, South Africa
| | - John Baptist Kirabira
- Africa Center of Excellence in Materials, Product Development and Nanotechnology, College of Engineering, Design, Art and Technology, Makerere University, Kampala, Uganda
| |
Collapse
|
44
|
Nagaraja SK, Kumar RS, Chakraborty B, Hiremath H, Almansour AI, Perumal K, Gunagambhire PV, Nayaka S. Biomimetic synthesis of silver nanoparticles using Cucumis sativus var. hardwickii fruit extract and their characterizations, anticancer potential and apoptosis studies against Pa-1 (Human ovarian teratocarcinoma) cell line via flow cytometry. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02386-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
45
|
Sharma P, Goyal D, Chudasama B. Antibacterial Activity of Colloidal Copper Nanoparticles against Gram-negative (Escherichia coli and Proteus vulgaris) Bacteria. Lett Appl Microbiol 2022; 74:695-706. [PMID: 35034356 DOI: 10.1111/lam.13655] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/15/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
Antibacterial activities of as-synthesized nanoparticles have gained attention in past few years due to rapid phylogenesis of pathogens developing multi-drug resistance (MDR). Antibacterial activity of Copper nanoparticles (CuNPs) on surrogate pathogenic Gram-negative bacteria Escherichia coli (MTCC No. 739) and Proteus vulgaris (MTCC No. 426) was evaluated under culture conditions. Three sets of colloidal CuNPs were synthesized by chemical reduction method with per batch yield of 0.2 g, 0.3 g and 0.4 g. As-synthesized CuNPs possess identical plasmonic properties and have similar hydrodynamic particle sizes (11-14 nm). Antibacterial activities of CuNPs were evaluated by MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration) tests, cytoplasmic leakage and ROS (reactive oxygen species) assays. MIC and MBC tests revealed dose dependence bactericidal action. Growth curves of E. coli show faster growth inhibition along with higher cytoplasmic leakage than that of P. vulgaris. This might be because of increased membrane permeability of E. coli. CuNPs - microorganism interaction induces oxidative stress generated by ROS (reactive oxygen species). Leakage of cytoplasmic components, loss of membrane permeability and ROS generation are the primary causes of CuNPs induced bacterial cell death. As-synthesized CuNPs exhibiting promising antibacterial activities and could be a promising candidate for novel antibacterial agents.
Collapse
Affiliation(s)
- Purnima Sharma
- Department Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, India.,School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Patiala, 147004, India
| | - Dinesh Goyal
- Department Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, India
| | - Bhupendra Chudasama
- School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Patiala, 147004, India.,Thapar-VT Center of Excellence in Emerging Materials (CEEMS), Thapar Institute of Engineering and Technology, Patiala, 147004, India
| |
Collapse
|
46
|
El-Rab SMFG, Basha S, Ashour AA, Enan ET, Alyamani AA, Felemban NH. Green Synthesis of Copper Nano-Drug and Its Dental Application upon Periodontal Disease-Causing Microorganisms. J Microbiol Biotechnol 2021; 31:1656-1666. [PMID: 34489380 PMCID: PMC9706032 DOI: 10.4014/jmb.2106.06008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022]
Abstract
Dental pathogens lead to chronic diseases like periodontitis, which causes loss of teeth. Here, we examined the plausible antibacterial efficacy of copper nanoparticles (CuNPs) synthesized using Cupressus macrocarpa extract (CME) against periodontitis-causing bacteria. The antimicrobial properties of CME-CuNPs were then assessed against oral microbes (M. luteus. B. subtilis, P. aerioginosa) that cause periodontal disease and were identified using morphological/ biochemical analysis, and 16S-rRNA techniques. The CME-CuNPs were characterized, and accordingly, the peak found at 577 nm using UV-Vis spectrometer showed the formation of stable CME-CuNPs. Also, the results revealed the formation of spherical and oblong monodispersed CME-CuNPs with sizes ranged from 11.3 to 22.4 nm. The FTIR analysis suggested that the CME contains reducing agents that consequently had a role in Cu reduction and CME-CuNP formation. Furthermore, the CME-CuNPs exhibited potent antimicrobial efficacy against different isolates which was superior to the reported values in literature. The antibacterial efficacy of CME-CuNPs on oral bacteria was compared to the synergistic solution of clindamycin with CME-CuNPs. The solution exhibited a superior capacity to prevent bacterial growth. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and fractional inhibitory concentration (FIC) of CME-CuNPs with clindamycin recorded against the selected periodontal disease-causing microorganisms were observed between the range of 2.6-3.6 μg/ml, 4-5 μg/ml and 0.312-0.5, respectively. Finally, the synergistic antimicrobial efficacy exhibited by CME-CuNPs with clindamycin against the tested strains could be useful for the future development of more effective treatments to control dental diseases.
Collapse
Affiliation(s)
- Sanaa M. F. Gad El-Rab
- Department of Biotechnology, Faculty of Science, Taif University, P.O. Box 888, Taif 21974, KSA,Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut 71516, Egypt,Corresponding author Phone: +00201025475454 E-mail:
| | - Sakeenabi Basha
- Department of Preventive and Community Dentistry, Faculty of Dentistry, Taif University, Taif 26571, Saudi Arabia
| | - Amal A. Ashour
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Oral Pathology Division, Faculty of Dentistry, Taif University, Taif 21431, Saudi Arabia
| | - Enas Tawfik Enan
- Dental Biomaterials, Faculty of Dentistry, Taif University, Taif 26571, Saudi Arabia,Dental Biomaterials, Faculty of Dentistry, Mansoura University, Dakahleya 35516, Egypt
| | - Amal Ahmed Alyamani
- Department of Biotechnology, Faculty of Science, Taif University, P.O. Box 888, Taif 21974, KSA
| | - Nayef H. Felemban
- Preventive dentistry department, Faculty of Dentistry, Taif University, Taif 26571, Saudi Arabia
| |
Collapse
|
47
|
Viswanathan S, Palaniyandi T, Shanmugam R, M T, Rajendran BK, Sivaji A. Biomedical potential of silver nanoparticles capped with active ingredients of Hypnea valentiae, red algae species. PARTICULATE SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1080/02726351.2021.1992059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, India
| | - Rajeshkumar Shanmugam
- Department of Pharmacology, Saveetha Dental College and Hospital, SIMATS, Chennai, India
| | - Tharani M
- Department of Pharmacology, Saveetha Dental College and Hospital, SIMATS, Chennai, India
| | | | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore, India
| |
Collapse
|
48
|
Eco-benevolent synthesis of ZnO nanoflowers using Oxalis corniculata leaf extract for potential antimicrobial application in agriculture and cosmeceutical. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Rahmawati L, Aziz N, Oh J, Hong YH, Woo BY, Hong YD, Manilack P, Souladeth P, Jung JH, Lee WS, Jeon MJ, Kim T, Hossain MA, Yum J, Kim JH, Cho JY. Cissus subtetragona Planch. Ameliorates Inflammatory Responses in LPS-induced Macrophages, HCl/EtOH-induced Gastritis, and LPS-induced Lung Injury via Attenuation of Src and TAK1. Molecules 2021; 26:molecules26196073. [PMID: 34641616 PMCID: PMC8512965 DOI: 10.3390/molecules26196073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022] Open
Abstract
Several Cissus species have been used and reported to possess medicinal benefits. However, the anti-inflammatory mechanisms of Cissus subtetragona have not been described. In this study, we examined the potential anti-inflammatory effects of C. subtetragona ethanol extract (Cs-EE) in vitro and in vivo, and investigated its molecular mechanism as well as its flavonoid content. Lipopolysaccharide (LPS)-induced macrophage-like RAW264.7 cells and primary macrophages as well as LPS-induced acute lung injury (ALI) and HCl/EtOH-induced acute gastritis mouse models were utilized. Luciferase assays, immunoblotting analyses, overexpression strategies, and cellular thermal shift assay (CETSA) were performed to identify the molecular mechanisms and targets of Cs-EE. Cs-EE concentration-dependently reduced the secretion of NO and PGE2, inhibited the expression of inflammation-related cytokines in LPS-induced RAW264.7 cells, and decreased NF-κB- and AP-1-luciferase activity. Subsequently, we determined that Cs-EE decreased the phosphorylation events of NF-κB and AP-1 pathways. Cs-EE treatment also significantly ameliorated the inflammatory symptoms of HCl/EtOH-induced acute gastritis and LPS-induced ALI mouse models. Overexpression of HA-Src and HA-TAK1 along with CETSA experiments validated that inhibited inflammatory responses are the outcome of attenuation of Src and TAK1 activation. Taken together, these findings suggest that Cs-EE could be utilized as an anti-inflammatory remedy especially targeting against gastritis and acute lung injury by attenuating the activities of Src and TAK1.
Collapse
Affiliation(s)
- Laily Rahmawati
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (L.R.); (N.A.); (J.O.); (Y.H.H.)
| | - Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (L.R.); (N.A.); (J.O.); (Y.H.H.)
| | - Jieun Oh
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (L.R.); (N.A.); (J.O.); (Y.H.H.)
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (L.R.); (N.A.); (J.O.); (Y.H.H.)
| | - Byoung Young Woo
- AmorePacific R&D Center, Yongin 17074, Korea; (B.Y.W.); (Y.D.H.)
| | - Yong Deog Hong
- AmorePacific R&D Center, Yongin 17074, Korea; (B.Y.W.); (Y.D.H.)
| | - Philaxay Manilack
- Department of Forestry, Ministry of Agriculture and Forestry, Vientiane P.O. Box 811, Laos;
| | - Phetlasy Souladeth
- Department of Forest Management, Faculty of Forest Science, National University of Laos, Vientiane P.O. Box 7322, Laos;
| | - Ji Hwa Jung
- Division of Zoology, Honam National Institute of Biological Resources, Mokpo 58762, Korea;
| | - Woo Shin Lee
- Department of Forest Sciences, College of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea;
| | - Mi Jeong Jeon
- Animal Resources Division, National Institute of Biological Resources, Incheon 22689, Korea; (M.J.J.); (T.K.); (J.Y.)
| | - Taewoo Kim
- Animal Resources Division, National Institute of Biological Resources, Incheon 22689, Korea; (M.J.J.); (T.K.); (J.Y.)
| | - Mohammad Amjad Hossain
- Department of Veterinary Physiology, College of Medicine, Chonbuk National University, Iksan 54596, Korea;
| | - Jinwhoa Yum
- Animal Resources Division, National Institute of Biological Resources, Incheon 22689, Korea; (M.J.J.); (T.K.); (J.Y.)
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Medicine, Chonbuk National University, Iksan 54596, Korea;
- Correspondence: (J.-H.K.); (J.Y.C.); Tel.: +82-63-270-2563 (J.-H.K.); +82-31-290-7876 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (L.R.); (N.A.); (J.O.); (Y.H.H.)
- Correspondence: (J.-H.K.); (J.Y.C.); Tel.: +82-63-270-2563 (J.-H.K.); +82-31-290-7876 (J.Y.C.)
| |
Collapse
|
50
|
Phytosynthesis of Copper Nanoparticles Using Extracts of Spices and Their Antibacterial Properties. Processes (Basel) 2021. [DOI: 10.3390/pr9081341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
To prevent microbial growth, chemical solvents are typically utilized. However, chemical solvents are hazardous to human health with low antimicrobial effects. Metallic-element (such as copper, silver, and gold) nanoparticles have many applications in biotechnology and biomedicine. Copper nanoparticles (CuNPs) are efficient owing to their antimicrobial, anti-inflammatory, and anti-proliferative properties. The objective of this study was to perform biogenic synthesis of copper nanoparticles using three different spices (star anise, seed of Illicium verum; nutmeg, seed of Myristica fragrans; and mace, membrane covering the seed of Myristica fragrans) and determine their antibacterial properties. CuNPs of spices were prepared by dissolving copper sulfate in the respective plant extract. They were then characterized by UV-Vis spectroscopy, FTIR, GC-MS, EDAX, and SEM analysis. Results of UV-Vis spectroscopy showed the maximum absorbance peak at 350 nm. SEM analysis showed that the sizes of these CuNPs were in the range of 150–200 nm. EDAX analysis confirmed the presence of copper and oxygen and revealed that copper existed in an oxidized form. FTIR spectroscopy showed the presence of different functional groups in these synthesized nanoparticles. GC-MS analysis revealed compounds such as Anethole D-limonene, heptadecanoic acid, 16-methyl-, methyl ester, myristene, methyl eugenol, and methyl stearate, indicating the presence of functional groups. The antibacterial activities of the three extracts from spices were analyzed using growth zone inhibition and TLC-bioautography methods. The results showed that star anise spice extract had the highest antibacterial activity. These results indicate that such CuNPs phyto-formulated with spice extracts having antibacterial properties could be used as potential therapeutics for microbial diseases.
Collapse
|