1
|
Rosato G, Makoni GM, Cobos À, Sibila M, Segalés J, Marti H, Prähauser B, Seehusen F. Retrospective Analyses of Porcine Circovirus Type 3 (PCV-3) in Switzerland. Viruses 2024; 16:1431. [PMID: 39339907 PMCID: PMC11437478 DOI: 10.3390/v16091431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Porcine circovirus 3 (PCV-3) has emerged as a significant pathogen affecting global swine populations, yet its epidemiology and clinical implications remain incompletely understood. This retrospective study aimed to investigate the prevalence and histopathological features of PCV-3 infection in pigs from Switzerland, focusing on archival cases of suckling and weaner piglets presenting with suggestive lesions. An in-house qPCR assay was developed for detecting PCV-3 in frozen and formalin-fixed paraffin-embedded tissues, enhancing the national diagnostic capabilities. Histopathological reassessment identified PCV-3 systemic disease (PCV-3-SD) compatible lesions in 19 (6%) of archival cases, with 47% testing positive by qPCR across various organs. Notably, vascular lesions predominated, particularly in mesenteric arteries, heart, and kidneys. The study confirms the presence of PCV-3 in Switzerland since at least 2020, marking the first documented cases within the Swiss swine population. Despite challenges in in situ hybridization validation due to prolonged formalin fixation, the findings indicate viral systemic dissemination. These results contribute to the understanding of PCV-3 epidemiology in Swiss pigs, emphasizing the need for continued surveillance and further research on its clinical implications and interaction with host factors. Our study underscores the utility and limitations of molecular techniques in confirming PCV-3 infections.
Collapse
Affiliation(s)
- Giuliana Rosato
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Grace Makanaka Makoni
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Àlex Cobos
- Unitat Mixta d'Investigació IRTA UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Marina Sibila
- Unitat Mixta d'Investigació IRTA UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- IRTA, Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
| | - Joaquim Segalés
- Unitat Mixta d'Investigació IRTA UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- WOAH Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Hanna Marti
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Barbara Prähauser
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Frauke Seehusen
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
2
|
Hung YF, Liu PC, Lin CH, Lin CN, Wu HY, Chiou MT, Liu HJ, Yang CY. Molecular detection of emerging porcine circovirus in Taiwan. Heliyon 2024; 10:e35579. [PMID: 39170437 PMCID: PMC11336776 DOI: 10.1016/j.heliyon.2024.e35579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Porcine Circovirus type (PCV) 2 is an important pathogen that has been circulating worldwide and has cuased serious economic loss in pig industry. However, both PCV3 and PCV4 are newly emerging viruses. In Taiwan, PCV2 has been one of the critical pathogens in pig frams and PCV3 has been detected since 2016; however, the epidemiolog of PCV3 in Taiwan remains unclear and PCV4 has yet to be identified. Therefore, in order to detect the positive rate of PCV2, to investigate the epidemiolog of PCV3 in the pig farms, and to examine whether pigs were infected with PCV4 in Taiwan, a total of 128 samples from 46 clinical cases of pigs were collected from September 2020 to December 2021. The case detection rates were 54.3 % for PCV2, 43.5 % for PCV3, and 2.2 % for PCV4. The results suggested that the positivity rates for both PCV2 and PCV3 were still high in Taiwan. In addition, PCV3 was detected among cases from all 7 sampled counties and in 11 of the 16 sampling months, suggesting that PCV3 may lead to endemic pig disease in Taiwan. Surprisingly, the PCV4 was also detected, suggesting the first PCV4 case in Taiwan. The complete genomes derived from the identified PCV3 and PCV4 strains were subsequently sequenced followed by phylogenetic analysis. The results suggested that the 17 identified PCV3 strains could be divided into Taiwanese-like and Japanese-like strains. In addition, the amino acid residues at positions 27, 80, and 212 in the identified PCV4 cap protein were asparagine, isoleucine, and methionine, respectively, and thus the identified PCV4 was catalorized into clade PCV4b. Consequently, it is concluded that (i) the prevalence of PCV2 and PCV3 is still high in Taiwanese pigs, (ii) PCV3 has may be an endemic infection in Taiwan and can be classified into Japanese-like and Taiwanese-like strains, (iii) PCV4 was detected for the first time in Taiwanese pigs and can be classified into PCV4b. It remains unclear how PCV2, PCV3, and PCV4 were introduced to Taiwan, and thus continuous investigation of emerging pathogens in pigs is needed.
Collapse
Affiliation(s)
- Yu Fan Hung
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung City, 402202, Taiwan
| | - Po-Chen Liu
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung City, 402202, Taiwan
- Animal Disease Diagnostic Center, National Chung Hsing University, Taichung City, 402202, Taiwan
| | - Ching-Hung Lin
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung City, 402202, Taiwan
| | - Chao-Nan Lin
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| | - Hung-Yi Wu
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung City, 402202, Taiwan
| | - Ming-Tang Chiou
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| | - Hung-Jen Liu
- Institute of Molecular Biology, National Chung Hsing University, Taichung City, 402202, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung City, 402202, Taiwan
| | - Cheng-Yao Yang
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung City, 402202, Taiwan
- Animal Disease Diagnostic Center, National Chung Hsing University, Taichung City, 402202, Taiwan
| |
Collapse
|
3
|
Kroeger M, Temeeyasen G, Dilberger-Lawson S, Nelson E, Magtoto R, Gimenez-Lirola L, Piñeyro P. The porcine circovirus 3 humoral response: characterization of maternally derived antibodies and dynamic following experimental infection. Microbiol Spectr 2024; 12:e0087024. [PMID: 38916319 PMCID: PMC11302138 DOI: 10.1128/spectrum.00870-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/17/2024] [Indexed: 06/26/2024] Open
Abstract
Since Porcine Circovirus 3 (PCV3) was first identified in 2016, our understanding of the humoral response is still relatively scarce. Current knowledge of the PCV3 humoral response is primarily based on field studies identifying the seroprevalence of PCV3 Cap-induced antibodies. Studies on the humoral response following experimental PCV3 infection have conflicting results where one study reports the development of the Cap IgG response 7 days postinfection with no concurrent Cap IgM response, while a second study shows a Cap IgM response at the same time point with no detection of Cap IgG. The dynamics of the PCV3 Cap and Rep IgG following maternal antibody transfer and experimental infection have not been well characterized. Additionally, the cross-reactivity of convalescent serum from PCV2 and PCV3 experimentally infected animals to serologic methods of the alternate PCV has limited evaluation. Here, we show that maternally derived antibodies were detectable in piglet serum 7-9 weeks postfarrowing for the Cap IgG and 5-weeks-post farrowing for the Rep IgG using Cap- and Rep-specific enzyme linked immunosorbent assays (ELISA) and immunofluorescent assays (IFA) methods. Following experimental inoculation, Cap IgG was detected at 2-weeks-post inoculation and Rep IgG detection was delayed until 4-weeks-post inoculation. Furthermore, convalescent serum from either PCV2 or PCV3 methods displayed no cross-reactivity by serological methods against the other PCV. The information gained in this study highlights the development of both the Cap- and Rep-specific antibodies following experimental infection and through the transfer of maternal antibodies. The increased understanding of the dynamics of maternal antibody transfer and development of the humoral response following infection gained in the present study may aid in the establishment of husbandry practices and potential application of prophylactics to control PCV3 clinical disease. IMPORTANCE Research on Porcine Circovirus 3 (PCV3) immunology is vital for understanding and controlling this virus. Previous studies primarily relied on field observations, but they have shown conflicting results about the immunological response against PCV3. This study helps fill those gaps by looking at how antibodies develop in pigs, especially those maternal-derived, and their impact in neonatal pigs preventing PCV3-associated disease in piglets. In addition, we look at the dynamics of antibodies in experimental infections mimicking infection in pigs in the grower-phase condition. Understanding this process can help to develop better strategies to prevent PCV3 infection. Also, this research found that PCV2 and PCV3 do not cross-react, which is crucial for serological test development and results interpretation. Overall, this work is essential for improving swine health and farming practices in the face of PCV3 infections.
Collapse
Affiliation(s)
- Molly Kroeger
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Gun Temeeyasen
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Steven Dilberger-Lawson
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Eric Nelson
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Ronaldo Magtoto
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Luis Gimenez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| | - Pablo Piñeyro
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
4
|
Kroeger M, Vargas-Bermudez DS, Jaime J, Parada J, Groeltz J, Gauger P, Piñeyro P. First detection of PCV4 in swine in the United States: codetection with PCV2 and PCV3 and direct detection within tissues. Sci Rep 2024; 14:15535. [PMID: 38969759 PMCID: PMC11226432 DOI: 10.1038/s41598-024-66328-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
Since PCV4 was first described in 2019, the virus has been identified in several countries in Southeast Asia and Europe. Most studies have been limited to detecting PCV4 by PCR. Thus, PCV4 has an unclear association with clinical disease. This study utilized 512 porcine clinical lung, feces, spleen, serum, lymphoid tissue, and fetus samples submitted to the ISU-VDL from June-September 2023. PCV4 was detected in 8.6% of samples with an average Ct value of 33. While detection rates among sample types were variable, lymphoid tissue had the highest detection rate (18.7%). Two ORF2 sequences were obtained from lymphoid tissue samples and had 96.36-98.98% nucleotide identity with reference sequences. Direct detection of PCV4 by RNAscope revealed viral replication in B lymphocytes and macrophages in lymph node germinal centers and histiocytic and T lymphocyte infiltration in the lamina propria of the small intestine. PCV4 detection was most commonly observed in nursery to finishing aged pigs displaying respiratory and enteric disease. Coinfection with PCV2, PCV3, and other endemic pathogens was frequently observed, highlighting the complex interplay between different PCVs and their potential roles in disease pathogenesis. This study provides insights into the frequency of detection, tissue distribution, and genetic characteristics of PCV4 in the US.
Collapse
Affiliation(s)
- Molly Kroeger
- Veterinary Diagnostic Laboratory, Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1655 Veterinary Medicine, Ames, IA, 50011, USA
| | - Diana S Vargas-Bermudez
- Animal Health Department. Center of Infectious Diseases and Veterinary Immunology, College of Veterinary Medicine and Production Animal, Colombia National University, Bogotá, Colombia
| | - Jairo Jaime
- Animal Health Department. Center of Infectious Diseases and Veterinary Immunology, College of Veterinary Medicine and Production Animal, Colombia National University, Bogotá, Colombia
| | - Julian Parada
- CONICET- Animal Pathology Department. Agronomy and Veterinary College, Río Cuarto National University, Córdoba, Argentina
| | - Jennifer Groeltz
- Veterinary Diagnostic Laboratory, Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1655 Veterinary Medicine, Ames, IA, 50011, USA
| | - Philip Gauger
- Veterinary Diagnostic Laboratory, Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1655 Veterinary Medicine, Ames, IA, 50011, USA
| | - Pablo Piñeyro
- Veterinary Diagnostic Laboratory, Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, 1655 Veterinary Medicine, Ames, IA, 50011, USA.
| |
Collapse
|
5
|
Chang CC, Wu CY, Wu CM, Wu CW, Wang YC, Lin GJ, Chien MS, Huang C. Cytotoxicity effect and transcriptome analysis of PCV3-infected cells revealed potential viral pathogenic mechanisms. Microb Pathog 2024; 192:106715. [PMID: 38810767 DOI: 10.1016/j.micpath.2024.106715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/10/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Porcine circovirus type 3 (PCV3) has become an important pathogen in the global swine industry and poses a threat to pig health, but its pathogenic mechanism remains unknown. In this study, we constructed an innovative, linear infectious clone of PCV3 for rescuing the virus, and explored the transcriptome of infected cells to gain insights into its pathogenic mechanisms. Subsequently, an in vivo experiment was conducted to evaluate the pathogenicity of the rescued virus in pig. PCV3 nucleic acid was distributed across various organs, indicating systemic circulation via the bloodstream and viremia. Immunohistochemical staining also revealed a significant presence of PCV3 antigens in the spleen, lungs, and lymph nodes, indicating that PCV3 had tropism for these organs. Transcriptome analysis of infected ST cells revealed differential expression of genes associated with apoptosis, immune responses, and cellular metabolism. Notably, upregulation of genes related to the hypoxia-inducible factor-1 pathway, glycolysis, and the AGE/RAGE pathway suggests activation of inflammatory responses, ultimately leading to onset of disease. These findings have expanded our understanding of PCV3 pathogenesis, and the interplay between PCV3 and host factors.
Collapse
Affiliation(s)
- Chia-Chun Chang
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan
| | - Ching-Ying Wu
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan
| | - Chi-Ming Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan
| | - Ching-Wei Wu
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan; Research Center for Animal Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan
| | - Yi-Chen Wang
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan
| | - Guang-Jan Lin
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan
| | - Maw-Sheng Chien
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan; Research Center for Animal Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan.
| | - Chienjin Huang
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan.
| |
Collapse
|
6
|
Krasnikov N, Rykova V, Kucheruk O, Komina A, Pchelnikov A, Gulyukin A, Yuzhakov A. Genetic diversity of porcine circoviruses 2 and 3 circulating among wild boars in the Moscow Region of Russia. Front Vet Sci 2024; 11:1372203. [PMID: 38988985 PMCID: PMC11233533 DOI: 10.3389/fvets.2024.1372203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/13/2024] [Indexed: 07/12/2024] Open
Abstract
Porcine circoviruses (PCVs) are widely distributed in swine herds. PCV2, the significant swine pathogen, causes infections characterized by growth and development disorders, skin lesions, and respiratory distress. PCV3 has been circulating worldwide and can be associated with various clinical signs and disease developments. Wild boars are the main reservoir of these pathogens in wildlife and can create an alarming threat to pig farming. In Russia, three PCV2 genotypes (PCV2a, PCV2b, and PCV2d) were identified in pig farms. Additionally, PCV3 was observed in pig herds during the monitoring studies in the country. However, data considering the circulation of PCVs in herds of wild boars in Russia is scant. For this purpose, we performed PCR assays of the samples from 30 wild boars hunted in the Moscow Region of Russia in 2021-2023. The ratios of wild boars positive for PCV2, PCV3, or coinfected were 50, 10, and 13.3%, respectively. Additionally, we sequenced 15 PCV2 and four PCV3 complete genomes and conducted phylogenetic analysis, which divided PCV2 isolates into two groups: PCV2d and PCV2b. The study showed a high infection rate of PCV2 among wild boars, with PCV2d dominance. Simultaneously, PCV3 also circulates among wild boars. The obtained results can provide a basis for the development of preventive measures to support infection transmission risks between farm and wild animals.
Collapse
Affiliation(s)
- Nikita Krasnikov
- *Correspondence: Nikita Krasnikov, ; Valentina Rykova, ; Anton Yuzhakov,
| | - Valentina Rykova
- *Correspondence: Nikita Krasnikov, ; Valentina Rykova, ; Anton Yuzhakov,
| | | | | | | | | | - Anton Yuzhakov
- *Correspondence: Nikita Krasnikov, ; Valentina Rykova, ; Anton Yuzhakov,
| |
Collapse
|
7
|
Gao YY, Wang Q, Zhang S, Zhao J, Bao D, Zhao H, Wang K, Hu GX, Gao FS. Establishment and preliminary application of duplex fluorescence quantitative PCR for porcine circoviruses type 2 and type 3. Heliyon 2024; 10:e31779. [PMID: 38868040 PMCID: PMC11167290 DOI: 10.1016/j.heliyon.2024.e31779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
Porcine circovirus types 2 (PCV2) and 3 (PCV3) are the two most prevalent porcine circoviruses in China, all of which can infect swine herds and cause serious diseases. To detect coinfection with PCV2 and PCV3, primers and probes for duplex PCV2 and PCV3 real-time PCR were designed to target their cap genes based on the constructed plasmids pUC57-PCV2 and pUC57-PCV3. The established duplex PCV2 and PCV3 real-time PCRs were specific to PCV2 and PCV3 and showed no cross-reactions with other porcine viral pathogens. The limit of detection was 5 and 50 copies for the PCV2 and PCV3 plasmids, respectively. The intra- and interassay repeatability had coefficients of variation below 3 %. The established methods were used to analyze clinical samples from Liaoning and Jilin provinces of China. The coinfection rates of PCV2 and PCV3 in pigs extensively fed in Liaoning and Jilin, large-scale farmed pigs in Liaoning and large-scale farmed pigs in Jilin were 15.0 % (6/40), 36.7 % (11/30) and 35.4 % (62/175), respectively. This study established a useful duplex PCV2 and PCV3 real-time PCR method that can be used for the detection of PCV2 and PCV3 in local clinical samples.
Collapse
Affiliation(s)
- Yong-Yu Gao
- College of Animal Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Qian Wang
- The Third Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, 130117, China
| | - Shuang Zhang
- College of Animal Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Jian Zhao
- ChangChun Sino Biotechnology CO., LTD., Changchun, Jilin, 130012, China
| | - Di Bao
- College of Animal Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Han Zhao
- College of Animal Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Kai Wang
- College of Animal Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Gui-Xue Hu
- College of Animal Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Feng-Shan Gao
- College of Life and Health, Dalian University, Dalian, 116622, China
- The Dalian Animal Virus Antigen Epitope Screening and Protein Engineering Drug Developing Key Laboratory, Dalian, 116622, China
| |
Collapse
|
8
|
Kim SJ, Moon J. Narrative Review of the Safety of Using Pigs for Xenotransplantation: Characteristics and Diagnostic Methods of Vertical Transmissible Viruses. Biomedicines 2024; 12:1181. [PMID: 38927388 PMCID: PMC11200752 DOI: 10.3390/biomedicines12061181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Amid the deepening imbalance in the supply and demand of allogeneic organs, xenotransplantation can be a practical alternative because it makes an unlimited supply of organs possible. However, to perform xenotransplantation on patients, the source animals to be used must be free from infectious agents. This requires the breeding of animals using assisted reproductive techniques, such as somatic cell nuclear transfer, embryo transfer, and cesarean section, without colostrum derived in designated pathogen-free (DPF) facilities. Most infectious agents can be removed from animals produced via these methods, but several viruses known to pass through the placenta are not easy to remove, even with these methods. Therefore, in this narrative review, we examine the characteristics of several viruses that are important to consider in xenotransplantation due to their ability to cross the placenta, and investigate how these viruses can be detected. This review is intended to help maintain DPF facilities by preventing animals infected with the virus from entering DPF facilities and to help select pigs suitable for xenotransplantation.
Collapse
Affiliation(s)
- Su-Jin Kim
- Apures Co., Ltd., 44, Hansan-gil, Cheongbuk-eup, Pyeongtaek-si 17792, Gyeonggi-do, Republic of Korea;
| | - Joonho Moon
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| |
Collapse
|
9
|
Shuai J, Chen K, Wang Z, Zeng R, Ma B, Zhang M, Song H, Zhang X. A multiplex digital PCR assay for detection and quantitation of porcine circovirus type 2 and type 3. Arch Virol 2024; 169:119. [PMID: 38753197 DOI: 10.1007/s00705-024-06044-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/30/2024] [Indexed: 06/13/2024]
Abstract
Porcine circovirus (PCV) has become a major pathogen, causing major economic losses in the global pig industry, and PCV type 2 (PCV2) and 3 (PCV3) are distributed worldwide. We designed specific primer and probe sequences targeting PCV2 Cap and PCV3 Rap and developed a multiplex crystal digital PCR (cdPCR) method after optimizing the primer concentration, probe concentration, and annealing temperature. The multiplex cdPCR assay permits precise and differential detection of PCV2 and PCV3, with a limit of detection of 1.39 × 101 and 1.27 × 101 copies/reaction, respectively, and no cross-reaction with other porcine viruses was observed. The intra-assay and interassay coefficients of variation (CVs) were less than 8.75%, indicating good repeatability and reproducibility. To evaluate the practical value of this assay, 40 tissue samples and 70 feed samples were tested for both PCV2 and PCV3 by cdPCR and quantitative PCR (qPCR). Using multiplex cdPCR, the rates of PCV2 infection, PCV3 infection, and coinfection were 28.45%, 1.72%, and 12.93%, respectively, and using multiplex qPCR, they were 25.00%, 0.86%, and 4.31%, respectively This highly specific and sensitive multiplex cdPCR thus allows accurate simultaneous detection of PCV2 and PCV3, and it is particularly well suited for applications that require the detection of small amounts of input nucleic acid or samples with intensive processing and complex matrices.
Collapse
Affiliation(s)
- Jiangbing Shuai
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou, 310016, China
| | - Kexin Chen
- College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
| | - Zhongcai Wang
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou, 310016, China
| | - Ruoxue Zeng
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou, 310016, China
| | - Biao Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, 310018, China
| | - Mingzhou Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, 310018, China
| | - Houhui Song
- College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
| | - Xiaofeng Zhang
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou, 310016, China.
| |
Collapse
|
10
|
Frant MP, Mazur-Panasiuk N, Gal-Cisoń A, Bocian Ł, Łyjak M, Szczotka-Bochniarz A. Porcine Circovirus Type 3 (PCV3) in Poland: Prevalence in Wild Boar Population in Connection with African Swine Fever (ASF). Viruses 2024; 16:754. [PMID: 38793635 PMCID: PMC11125846 DOI: 10.3390/v16050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Human health is dependent on food safety and, therefore, on the health of farm animals. One of the most significant threats in regard to swine diseases is African swine fever (ASF). Infections caused by porcine circoviruses (PCVs) represent another important swine disease. Due to the ubiquitous nature of PCV2, it is not surprising that this virus has been detected in ASFV-affected pigs. However, recent data indicate that coinfection of PCV3 and ASFV also occurs. It is still unclear whether PCV infection plays a role in ASFV infection, and that subject requires further analysis. The aim of this study was to assess whether PCV3 and PCV4 are present in the wild boar population in Poland (real-time PCR). The analysis was performed on wild boar samples collected for routine ASF surveillance in Poland, between 2018 and 2021. By extension, the obtained data were compared in regard to ASFV presence in these samples, thus investigating the odds of ASFV infection on the grounds of the PCV carrier state in free-ranging Suidae in Poland. In addition, sequencing of PCV3 and phylogenetic analysis were performed, based on a full genome and a capsid gene. In the current study, we demonstrated the high prevalence of PCV3 in the wild boar population in Poland; meanwhile, PCV4 was not detected. The odds of ASFV infection on the grounds of the PCV3 carrier state in free-ranging Suidae in Poland was more than twice as high. Ten full genome sequences of PCV3 were obtained, all of them belonging to clade 3a. The similarity between them was in the range of 98.78-99.80%.
Collapse
Affiliation(s)
- Maciej Piotr Frant
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland; (A.G.-C.); (M.Ł.); (A.S.-B.)
| | - Natalia Mazur-Panasiuk
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Kraków, Poland;
| | - Anna Gal-Cisoń
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland; (A.G.-C.); (M.Ł.); (A.S.-B.)
| | - Łukasz Bocian
- Department of Epidemiology and Risk Assessment, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland;
| | - Magdalena Łyjak
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland; (A.G.-C.); (M.Ł.); (A.S.-B.)
| | - Anna Szczotka-Bochniarz
- Department of Swine Diseases, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland; (A.G.-C.); (M.Ł.); (A.S.-B.)
- Department of Cattle and Sheep Diseases, National Veterinary Research Institute, Partyzantów Avenue 57, 24-100 Puławy, Poland
| |
Collapse
|
11
|
Zhang P, Ren Z, Gao X, Zhao M, Wang Y, Chen J, Wang G, Xiang H, Cai R, Luo S, Wang X. Development and application of a TaqMan-probe-based multiplex real-time PCR assay for simultaneous detection of porcine circovirus 2, 3, and 4 in Guangdong province of China. Front Vet Sci 2024; 11:1353439. [PMID: 38737459 PMCID: PMC11085253 DOI: 10.3389/fvets.2024.1353439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Porcine circoviruses disease (PCVD), caused by porcine circovirus (PCVs), is an important swine disease characterized by porcine dermatitis, nephrotic syndrome and reproductive disorders in sows. However, diseases caused by PCV2, PCV3, or PCV4 are difficult to distinguish, so a simple, rapid, accurate and high-throughput diagnostic and identification method is urgently needed to differentiate these three types. In this study, specific primers and probes were designed based on the conserved region sequences of the Rep gene of PCV2, and the Cap gene of PCV3 and PCV4. A multiplex qPCR assay was developed and optimized that the limit of detection concentration could reach as low as 3.8 copies/μL, with all correlation coefficients (R2) exceeding 0.999. Furthermore, the method showed no cross-reaction with other crucial porcine viral pathogens, and both intra-repeatability and inter-reproducibility coefficients of variation were below 2%. The assay was applied to the detection of 738 pig samples collected from 2020 to 2021 in Guangdong Province, China. This revealed positive infection rates of 65.18% for PCV2, 29.27% for PCV3, and 0% for PCV4, with a PCV2/PCV3 co-infection rate of 23.17%. Subsequently, complete genome sequences of 17 PCV2 and 4 PCV3 strains were obtained from the above positive samples and pre-preserved positive circovirus samples. Nucleotide sequence analysis revealed that the 17 PCV2 strains shared 96.7-100% complete nucleotide identity, with 6 strains being PCV2b and 11 strains being PCV2d; the 4 PCV3 strains shared 98.9-99.4% complete nucleotide identity, with 2 strains being PCV3a-1 and 2 strains being PCV3b. This research provides a reliable tool for rapid PCVs identification and detection. Molecular epidemiological investigation of PCVs in pigs in Guangdong Province will help us to understand PCV2 and PCV3 epidemiological characteristics and evolutionary trends.
Collapse
Affiliation(s)
- Pian Zhang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Observation and Research Station for Animal Disease, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhaowen Ren
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Observation and Research Station for Animal Disease, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiaopeng Gao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Observation and Research Station for Animal Disease, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Mengpo Zhao
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Observation and Research Station for Animal Disease, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yanyun Wang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Observation and Research Station for Animal Disease, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jing Chen
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Observation and Research Station for Animal Disease, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Gang Wang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Observation and Research Station for Animal Disease, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hua Xiang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Observation and Research Station for Animal Disease, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Rujian Cai
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Observation and Research Station for Animal Disease, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shengjun Luo
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Observation and Research Station for Animal Disease, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaohu Wang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Observation and Research Station for Animal Disease, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
12
|
Park S, Kim S, Jeong T, Oh B, Lim CW, Kim B. Prevalence of porcine circovirus type 2 and type 3 in slaughtered pigs and wild boars in Korea. Vet Med Sci 2024; 10:e1329. [PMID: 38050451 PMCID: PMC10766032 DOI: 10.1002/vms3.1329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 09/25/2023] [Accepted: 11/07/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Porcine circovirus, a non-enveloped single-stranded DNA virus belonging to the genus Circovirus of the family Circoviridae, is a major pathogen of porcine circovirus-associated disease. Porcine circovirus 3, a novel porcine circovirus, has been identified in individuals with clinical symptoms. OBJECTIVES The prevalence of porcine circovirus 2 and porcine circovirus 3 and the confirmation of diagnosis of this emerging viral disease have not been fully studied yet. Therefore, the objective of the present study was to investigate the prevalence of porcine circovirus 2 and porcine circovirus 3 in slaughtered pigs and wild boars in Korea between 2018 and 2019. METHODS Lungs and hilar lymph nodes of healthy pigs slaughtered in slaughterhouses and captured wild pigs were collected, and viruses were detected by multiplex quantitative polymerase chain reaction and two staining methods (in situ hybridization and immunohistochemistry) to confirm the presence of porcine circovirus 2 and porcine circovirus 3. RESULTS Positive rates of porcine circovirus 2 in lungs and hilar lymph nodes were 78.1% (75/96) and 89.5% (86/96) in slaughtered pigs, respectively. They were 18.0% (30/167) and 46.3% (24/55) in wild boars, respectively. Positive rates of porcine circovirus 3 in lungs and hilar lymph nodes were 30.2% (29/96) and 13.5% (13/96) in slaughtered pigs, respectively. They were 4.2% (7/167) and 5.5% (3/55) in wild boars, respectively. At the farm level, positive rates of porcine circovirus 2 and porcine circovirus 3 were 97.9% (47/48) and 54.2% (26/48), respectively. Positive rates of porcine circovirus 2 and porcine circovirus 3 decreased in spring. Immunohistochemistry and in situ hybridization confirmed the presence of porcine circovirus 2 and porcine circovirus 3 in lungs, but not porcine circovirus 3 in the hilar lymph nodes. CONCLUSION These results suggest that the prevalence of porcine circovirus 2 and porcine circovirus 3 might vary depending on the season and the type of sample. Wild boars might play a role in the epidemiology of porcine circovirus 2 and porcine circovirus 3 in South Korea. Continuous surveillance and further study are needed for this emerging disease.
Collapse
Affiliation(s)
- Seok‐Chan Park
- College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National UniversityIksanRepublic of Korea
| | - Suwon Kim
- College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National UniversityIksanRepublic of Korea
| | - Tae‐Won Jeong
- HLB BIOSTEP Co., Ltd., Research CenterIncheonRepublic of Korea
| | - Byungkwan Oh
- College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National UniversityIksanRepublic of Korea
| | - Chae Woong Lim
- College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National UniversityIksanRepublic of Korea
| | - Bumseok Kim
- College of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National UniversityIksanRepublic of Korea
| |
Collapse
|
13
|
Gao K, Li H, Lei X, Sun Z, Zheng T, Chen M, Ning Z. Recombinant Orf virus induced antibody production against capsid protein of porcine circovirus type 3 in mice. Vet Res Commun 2023; 47:2071-2081. [PMID: 37421550 DOI: 10.1007/s11259-023-10169-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
The emerging worldwide distributed porcine circovirus type 3 (PCV3) infection poses a serious threat to swine herds. An important means of preventing and controlling PCV3 infection is the development of the vaccine, while, the inability to cultivate in vitro has become the biggest obstacle. Orf virus (ORFV), the prototypic member of the Parapoxviridae, has been proven to be a novel valid vaccine vector for preparing various candidate vaccines. Here, recombinant ORFV expressing capsid protein (Cap) of PCV3 was obtained and proved its favorable immunogenicity inducing antibody against Cap in BALB/c mice. Based on the enhanced green fluorescent protein (EGFP) as a selectable marker, the recombinant rORFVΔ132-PCV3Cap-EGFP was generated. Then, recombinant ORFV expressing Cap only, rORFVΔ132-PCV3Cap, was obtained based on rORFVΔ132-PCV3Cap-EGFP using a double homologous recombination method by screening single non-fluorescent virus plaque. Results of the western blot showed that the Cap can be detected in rORFVΔ132-PCV3Cap infected OFTu cells. The results of immune experiments in BALB/c mice indicated that a specific antibody against Cap of PCV3 in serum was induced by rORFVΔ132-PCV3Cap infection. The results presented here provide a candidate vaccine against PCV3 and a feasible technical platform for vaccine development based on ORFV.
Collapse
Affiliation(s)
- Kuipeng Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Huizi Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoling Lei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenzhen Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Tingting Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhangyong Ning
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| |
Collapse
|
14
|
Wang Y, Yang DA, Zhao K, Laven R, Jiang P, Yang Z. Comparison of four clinical sample types for detection and investigation of PCV3 prevalence in the pig farrowing room. Prev Vet Med 2023; 221:106076. [PMID: 37976967 DOI: 10.1016/j.prevetmed.2023.106076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/21/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Porcine circovirus type 3 (PCV3) is a newly described circovirus that has been identified in pig populations across the globe. The virus is associated with multiple diseases including reproductive and systemic diseases. As effective vaccines are lacking, surveillance is crucial for PCV3 control, but there are currently, few side-by-side comparisons of the efficacy of different samples for the detection of PCV3. This study collected four sample types, including colostrum, udder skin wipes, placental umbilical cord blood, and processing fluid from 134 litters in a sow farm from July to September 2021 for PCV3 detection based on quantitative PCR tests. Udder skin wipes showed the highest detection rates (76.9%), while 71.6% of the processing fluid, 49.3% of the placental umbilical cord, and 29.1% of the colostrum samples were positive. Logistic regression analysis suggested that the detection rates of udder skin wipes and processing fluid were similar (odds ratio for processing fluid vs udder skin wipes was 0.76, 95% confidence interval (CI) 0.43-1.32), but the two tests were probably not identifying the same population as infected, as the agreement between the samples was only moderate (Gwet's AC1: 0.65). In this study, we were able to demonstrate that PCV3 was present in the farrowing room throughout the period from birth to weaning using udder skin wipes, although viral load decreased over time. The odds of PCV3 detection in colostrum from 2-parity sows was three times higher (95% CI 1.4-6.8) than that of primiparous sows, while the odds of PCV3 detection in sows with mummified fetuses was 2.7 times higher (95% CI 1.1-6.6) than sows with no mummified fetuses. In conclusion, these results indicate that udder skin wipes have high detection rates in infected animals over the whole period from birth to weaning and would thus be suitable samples for PCV3 surveillance in the farrowing rooms.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, the Belt and Road International Sci-Tech Innovation Institute of Transboundary Animal Disease Diagnosis and Immunization, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Danchen Aaron Yang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, the Belt and Road International Sci-Tech Innovation Institute of Transboundary Animal Disease Diagnosis and Immunization, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | | | - Richard Laven
- School of Veterinary Science, Massey University, Palmerston North 4442, New Zealand
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, the Belt and Road International Sci-Tech Innovation Institute of Transboundary Animal Disease Diagnosis and Immunization, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Yang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, the Belt and Road International Sci-Tech Innovation Institute of Transboundary Animal Disease Diagnosis and Immunization, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
15
|
Lai DC, Nguyen DMT, Nguyen TT, Ngo TNT, Do DT. Co-circulation and genetic characteristics of porcine circoviruses in postweaning multisystemic wasting syndrome cases in commercial swine farms. Virusdisease 2023; 34:531-538. [PMID: 38046060 PMCID: PMC10686971 DOI: 10.1007/s13337-023-00849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/25/2023] [Indexed: 12/05/2023] Open
Abstract
This study aimed to investigate the co-infection and genetic characteristics of Porcine circoviruses in PMWS-affected pigs in five commercial farrow-to-finish swine farms in Vietnam. By the end of 2022, the percentage of PMWS-affected pigs in these farms has increased significantly compared to previous years. The lymph node samples from ten PMWS typical cases were randomly collected to test for the presence of PRRSV, PCV2, PCV3 and PCV4. While PRRSV and PCV4 were not found in these cases, 10 and 3 out of 10 samples were positive for PCV2 and PCV3, respectively. Three farms in the study showed the co-infection of PCV2 and PCV3 in affected pigs. Besides, all PCV-positive samples were sequenced to evaluate genetic characterization of PCVs in PMWS-affected cases. Phylogenetic analysis showed that all PCV3 strains in the study were clustered into PCV3b genotype. 8 out of 10 PCV2 strains belonged to PCV2d genotype while the remaining two strains belonged to PCV2b genotypes. Two farms had co-circulation of PCV2b and PCV2d genotypes in two different age groups of pigs, which is reported for the first time in Vietnam. Several amino acid substitutions were identified in important antigenic regions in the capsid protein of the PCV2 field strains compared to vaccine strains. Taken together, the results showed the high co-prevalence of PCV3 and PCV2, and the wide genetic diversity of PCV2 field and vaccine strains may be the cause of the increased PMWS situation in these pig farms. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-023-00849-4.
Collapse
Affiliation(s)
- Danh Cong Lai
- Faculty of Animal Science and Veterinary Medicine, Nong Lam University - HCMC (NLU), Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583 USA
| | - Duyen My Thi Nguyen
- Faculty of Animal Science and Veterinary Medicine, Nong Lam University - HCMC (NLU), Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Toan Tat Nguyen
- Faculty of Animal Science and Veterinary Medicine, Nong Lam University - HCMC (NLU), Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Tram Ngoc Thi Ngo
- Faculty of Animal Science and Veterinary Medicine, Nong Lam University - HCMC (NLU), Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Duy Tien Do
- Faculty of Animal Science and Veterinary Medicine, Nong Lam University - HCMC (NLU), Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam
| |
Collapse
|
16
|
Peng Q, Shi J, Lang Y, Zhu Y, Huang X, Cao S, Yan Q, Zhao S. Phylogenetic Analysis and Serological Investigation of Porcine Circovirus Indicates Frequent Infection with Various Subtypes. Int J Mol Sci 2023; 24:15850. [PMID: 37958833 PMCID: PMC10649267 DOI: 10.3390/ijms242115850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/15/2023] Open
Abstract
Porcine circoviruses (PCVs) are notorious for triggering severe diseases in pigs and causing serious economic losses to the swine industry. In the present study, we undertook a comprehensive approach for the investigation of PCV prevalence, including the phylogenetic analysis of obtained PCV sequences, the determination of major circulating genotypes and serological screening based on different recombinant Cap proteins with specific immunoreactivity. Epidemiological surveillance data indicate that PCV2d and PCV3a are widely distributed in Southwest China, while PCV4 has only sporadic circulation. Meanwhile, serological investigations showed high PCV2 antibody positivity in collected serum samples (>50%), followed by PCV4 (nearly 50%) and PCV3 (30-35%). The analysis supports different circulation patterns of PCV2, PCV3 and PCV4 and illustrates the PCV2/PCV3 genetic evolution characteristics on a nationwide basis. Taken together, our findings add up to the current understanding of PCV epidemiology and provide new tools and insight for PCV antiviral intervention.
Collapse
Affiliation(s)
- Qianling Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiqiang Shi
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yifei Lang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yulan Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaobo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Sanjie Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shan Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
17
|
Burrai GP, Hawko S, Dei Giudici S, Polinas M, Angioi PP, Mura L, Alberti A, Hosri C, Hassoun G, Oggiano A, Antuofermo E. The Synergic Role of Emerging and Endemic Swine Virus in the Porcine Respiratory Disease Complex: Pathological and Biomolecular Analysis. Vet Sci 2023; 10:595. [PMID: 37888547 PMCID: PMC10611356 DOI: 10.3390/vetsci10100595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Porcine respiratory disease complex (PRDC) represents a significant threat to the swine industry, causing economic losses in pigs worldwide. Recently, beyond the endemic viruses PRRSV and PCV2, emerging viruses such as TTSuV, PCV3, and PPV2, have been associated with PRDC, but their role remains unclear. This study investigates the presence of PCV2 and PRRSV and emerging viruses (PCV3, TTSuV, and PPV2) in the lungs of swine belonging to different age groups by histopathology and real-time PCR. The prevalent lung lesion was interstitial pneumonia with increased severity in post-weaning pigs. PRRSV was detected in 33% of piglets' lungs and in 20% of adults and post-weaning pigs with high Ct, while PCV2 was found in 100% of adult pigs, 33% of post-weaning pigs, and 22% of piglets, with low Ct in post-weaning pigs. PCV3 was present in all categories and coexisted with other viruses. TTSuV was detected in all swine in combination with other viruses, possibly influencing the disease dynamics, while PPV2 was detected in 100% of adults' and 90% of piglets' lungs. The detection of TTSuV, PCV3, and PPV2 in affected pigs prioritizes the need for comprehensive approaches in implementing appropriate control measures and minimizing economic losses associated with PRDC.
Collapse
Affiliation(s)
- Giovanni Pietro Burrai
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.P.B.); (S.H.); (A.A.); (E.A.)
| | - Salwa Hawko
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.P.B.); (S.H.); (A.A.); (E.A.)
| | - Silvia Dei Giudici
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (L.M.); (A.O.)
| | - Marta Polinas
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.P.B.); (S.H.); (A.A.); (E.A.)
| | - Pier Paolo Angioi
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (L.M.); (A.O.)
| | - Lorena Mura
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (L.M.); (A.O.)
| | - Alberto Alberti
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.P.B.); (S.H.); (A.A.); (E.A.)
| | - Chadi Hosri
- Department of Veterinary Medicine, Faculty of Agricultural Sciences and Veterinary Medicine, Lebanese University, Beirut 1487, Lebanon; (C.H.); (G.H.)
| | - Georges Hassoun
- Department of Veterinary Medicine, Faculty of Agricultural Sciences and Veterinary Medicine, Lebanese University, Beirut 1487, Lebanon; (C.H.); (G.H.)
| | - Annalisa Oggiano
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy; (S.D.G.); (P.P.A.); (L.M.); (A.O.)
| | - Elisabetta Antuofermo
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (G.P.B.); (S.H.); (A.A.); (E.A.)
| |
Collapse
|
18
|
Wang M, Yu Y, Wu J, Wang S, Giménez-Lirola LG, Piñeyro P, Wang Y, Cui H, He X, Zimmerman JJ, Tu Y, Cai X, Wang G. Genetic and In Vitro Characteristics of a Porcine Circovirus Type 3 Isolate from Northeast China. Vet Sci 2023; 10:517. [PMID: 37624304 PMCID: PMC10459391 DOI: 10.3390/vetsci10080517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
Porcine circovirus 3 (PCV3) is an emerging virus first discovered in the United States in 2015, and since then, PCV3 has been found in many regions of the world, including America, Asia, and Europe. Although several PCV3 investigations have been carried out, there is a lack of knowledge regarding the pathogenicity of PCV3, mostly due to the limited number of PCV3 isolates that are readily available. In this study, PCV3-DB-1 was isolated in PK-15 cells and characterized in vitro. Electron microscopy revealed the presence of PCV-like particles, and in situ hybridization RNA analysis demonstrated the replication of PCV3 in PK-15 cell culture. Based on phylogenetic analysis of PCV3 isolates from the Heilongjiang province of China, PCV3-DB-1 with 24 alanine and 27 lysine in the Cap protein was originally isolated and determined to belong to the clade PCV3a.
Collapse
Affiliation(s)
- Menghang Wang
- Heilongjiang Research Center for Veterinary Biopharmaceutical Technology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.W.)
| | - Ying Yu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Jianan Wu
- Heilongjiang Research Center for Veterinary Biopharmaceutical Technology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.W.)
| | - Shujie Wang
- Heilongjiang Research Center for Veterinary Biopharmaceutical Technology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.W.)
| | - Luis G Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Pablo Piñeyro
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Yu Wang
- Heilongjiang Research Center for Veterinary Biopharmaceutical Technology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.W.)
| | - Hongliang Cui
- Heilongjiang Research Center for Veterinary Biopharmaceutical Technology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.W.)
| | - Xijun He
- Heilongjiang Research Center for Veterinary Biopharmaceutical Technology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.W.)
| | - Jeffrey J. Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Yabin Tu
- Heilongjiang Research Center for Veterinary Biopharmaceutical Technology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.W.)
| | - Xuehui Cai
- Heilongjiang Research Center for Veterinary Biopharmaceutical Technology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.W.)
| | - Gang Wang
- Heilongjiang Research Center for Veterinary Biopharmaceutical Technology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (M.W.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271002, China
| |
Collapse
|
19
|
Maity HK, Samanta K, Deb R, Gupta VK. Revisiting Porcine Circovirus Infection: Recent Insights and Its Significance in the Piggery Sector. Vaccines (Basel) 2023; 11:1308. [PMID: 37631876 PMCID: PMC10457769 DOI: 10.3390/vaccines11081308] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Porcine circovirus (PCV), a member of the Circoviridae family within the genus Circovirus, poses a significant economic risk to the global swine industry. PCV2, which has nine identified genotypes (a-i), has emerged as the predominant genotype worldwide, particularly PCV2d. PCV2 has been commonly found in both domestic pigs and wild boars, and sporadically in non-porcine animals. The virus spreads among swine populations through horizontal and vertical transmission routes. Despite the availability of commercial vaccines for controlling porcine circovirus infections and associated diseases, the continuous genotypic shifts from a to b, and subsequently from b to d, have maintained PCV2 as a significant pathogen with substantial economic implications. This review aims to provide an updated understanding of the biology, genetic variation, distribution, and preventive strategies concerning porcine circoviruses and their associated diseases in swine.
Collapse
Affiliation(s)
- Hemanta Kumar Maity
- Department of Avian Science, Faculty of Veterinary & Animal Science, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Kartik Samanta
- Department of Avian Science, Faculty of Veterinary & Animal Science, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Rajib Deb
- ICAR-National Research Center on Pig, Rani, Guwahati 781131, Assam, India
| | - Vivek Kumar Gupta
- ICAR-National Research Center on Pig, Rani, Guwahati 781131, Assam, India
| |
Collapse
|
20
|
Tan CY, Lee KC, Chiou MT, Lin CN, Ooi PT. Chromogenic in situ hybridization technique for detecting porcine circovirus 3 in lung and lymphoid tissues. Vet World 2023; 16:1444-1450. [PMID: 37621535 PMCID: PMC10446708 DOI: 10.14202/vetworld.2023.1444-1450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/29/2023] [Indexed: 08/26/2023] Open
Abstract
Background and Aim Porcine circovirus 3 (PCV3) was recently reported in Malaysian commercial pig population in 2020 by conventional polymerase chain reaction (PCR), revealing a molecular prevalence of 17.02% in the sampled domestic pig population. This study aims to describe a chromogenic in situ hybridization (ISH) technique using digoxigenin (DIG)-labeled cloned PCV3 open reading frame 1 (ORF1) fragment DNA to detect and localize the PCV3 antigen in formalin-fixed, paraffin-embedded lung, and lymphoid tissue specimens. Materials and Methods Since PCV3 was mainly detected in lung and lymphoid tissues, we obtained tissue specimens from these organs from the previous Malaysian PCV3 study. Digoxigenin-labeled ISH probes were designed to target a 69 bp region of PCV3 ORF1 spanning from the nucleotide positions (282-350). Results Light microscopy analysis revealed that chromogenic staining of PCV3 antigens was visualized within the cytoplasm of pneumocytes and lymphocytes, indicating positive ISH results. The results of molecular detection of PCV3 using PCR and ISH showed a high agreement of 90.91%, including for the negative PCV3 status for all samples. Conclusion This study reports a chromogenic ISH technique using DIG-labeled probes targeting PCV3 ORF1 to detect PCV3 antigens in lung and lymphoid tissues. Despite the limited availability of PCV3 antibodies, ISH remains relevant for investigating PCV3 replication and pathogenesis and can be used complementarily with PCR for evaluating the localization of antigens in infected tissues.
Collapse
Affiliation(s)
- Chew Yee Tan
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Kah Chun Lee
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Ming-Tang Chiou
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chao-Nan Lin
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Peck Toung Ooi
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
21
|
Molossi FA, Albuquerque de Almeida B, Santana de Cecco B, Pissetti C, Ventura L, Brandalise L, Simão G, Vanucci F, Negrao Watababe TT, Vaz Jr. IDS, Driemeier D. Porcine circovirus type 3: immunohistochemical detection in lesions of naturally affected piglets. Front Vet Sci 2023; 10:1174718. [PMID: 37215483 PMCID: PMC10192697 DOI: 10.3389/fvets.2023.1174718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
This study aimed to evaluate the relationship between porcine circovirus type 3 (PCV3) viral load and histopathological findings in perinatal piglet tissues and to develop an immunohistochemical method for detecting the virus in lesions. The quantitative polymerase chain reaction (qPCR) cycle threshold (Ct) when amplifying PCV3 DNA and the area of perivascular inflammatory infiltrates in different organs [central nervous system (CNS), lung, heart, liver, spleen, and lymph nodes] were compared. To develop an immunohistochemistry technique, rabbit sera were produced against PCV3-capsid protein peptides selected using bioinformatic analyses. The assay was initially implemented using a tissue sample previously tested using qPCR and in situ hybridization to optimize the procedure and reagent dilutions. To evaluate immunohistochemistry performance, tissue samples from another 17 cases were analyzed using standardized parameters. The most common microscopic lesion was multisystemic periarteritis, with associated vasculitis, as the mesenteric vascular plexus is one of the most affected organs. Other tissues, such as the heart, lung, CNS, and skeletal muscle, were also affected. Comparison of the Ct values for different tissues showed no significant difference, except in lymphoid organs (spleen and lymph nodes), which had significantly higher viral loads than the CNS tissues. There was no correlation between Ct values and perivascular inflammatory infiltrates. PCV3 immunohistochemistry revealed granular immunolabeling, mainly in the cytoplasm of cells in the vascular mesenteric plexus, heart, lung, kidney, and spleen.
Collapse
Affiliation(s)
| | | | - Bianca Santana de Cecco
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Caroline Pissetti
- Centro de Diagnóstico de Sanidade Animal (CEDISA), Concórdia, Brazil
| | - Lauren Ventura
- Centro de Diagnóstico de Sanidade Animal (CEDISA), Concórdia, Brazil
| | | | | | - Fabio Vanucci
- Veterinary Diagnostic Laboratory, University of Minnesota, St. Paul, MN, United States
| | - Tatiane Terumi Negrao Watababe
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Los Angeles, CA, United States
| | - Itabajara da Silva Vaz Jr.
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, Brazil
| | - David Driemeier
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
22
|
Development of a TaqMan-Probe-Based Multiplex Real-Time PCR for the Simultaneous Detection of Porcine Circovirus 2, 3, and 4 in East China from 2020 to 2022. Vet Sci 2022; 10:vetsci10010029. [PMID: 36669030 PMCID: PMC9860698 DOI: 10.3390/vetsci10010029] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Porcine circovirus disease (PCVD) caused by porcine circovirus (PCV) is an important swine disease that is characterized by porcine dermatitis, nephropathy syndrome, and reproductive disorders in sows. However, disease caused by PCV2, PCV3, or PCV4 is hard to distinguish, so a rapid and sensitive detection method is urgently needed to differentiate these three types. In this study, four pairs of specific primers and the corresponding probes for PCV 2, -3, and -4, and porcine endogenous gene β-Actin as the positive internal reference index, were designed to establish a TaqMan multiplex real-time PCR (qPCR) assay for the simultaneous differential diagnosis of different types of viruses. The results showed that this assay has good specificity and no cross-reactivity with other important porcine viral pathogens. Furthermore, it has high sensitivity, with a detection limit of 101 copies/μL, and good reproducibility, with intra- and inter-group coefficients of variation below 2%. Subsequently, 535 clinical samples of suspected sow reproductive disorders collected from Shandong, Zhejiang, Anhui, and Jiangsu provinces from 2020 to 2022 were analyzed using the established assay. The results showed that the individual positive rates of PCV2, PCV3, and PCV4 were 31.03%, 30.09%, and 30.84%, respectively; the mixed infection rates of PCV2 and PCV3, PCV2 and PCV4, and PCV3 and PCV4 were 31.03%, 30.09%, and 30.84%, respectively; the mixed infection rate of PCV2, PCV3, and PCV4 was 28.22%. This indicated that this assay provides a convenient tool for the rapid detection and differentiation of PCV2, PCV3, and PCV4 in pig farms in East China. Our findings highlight that there are different types of porcine circovirus infection in pig farms in East China, which makes pig disease prevention and control difficult.
Collapse
|
23
|
Cobos À, Sibila M, Alomar J, Pérez M, Huerta E, Segalés J. Retrospective assessment of porcine circovirus 3 (PCV-3) in formalin-fixed, paraffin-embedded tissues from pigs affected by different clinical-pathological conditions. Porcine Health Manag 2022; 8:51. [PMID: 36471405 PMCID: PMC9720923 DOI: 10.1186/s40813-022-00293-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Porcine circovirus 3 (PCV-3) is a recently discovered pathogen of swine that has been associated with several conditions. However, many questions remain unanswered regarding its infection, especially in terms of pathogenesis and disease impact. The aim of the present study was to retrospectively investigate the presence of PCV-3 genome by real time quantitative PCR (qPCR) and in situ hybridization (ISH) on selected formalin-fixed paraffin-embedded tissues of pigs affected by different clinical conditions and histological lesions. MATERIALS AND METHODS Conditions investigated included porcine dermatitis and nephropathy syndrome (PDNS), periweaning failure-to-thrive syndrome (PFTS), congenital tremors type AII, reproductive disorders, and pigs affected by systemic periarteritis/arteritis, myocarditis, or encephalitis. Studied cases (n = 587) were investigated from a diagnostic database (n = 4162) that comprised samples collected within the period 1998-2021. From each condition/lesion, 10 to 12 cases were subsequently selected and tested by qPCR and ISH (72 cases total). RESULTS A total of 587 cases fulfilled inclusion criteria of the different studied conditions and were distributed among the seven groups. For the further selected cases, PCV-3 genome was found by qPCR in 12/12 periarteritis, 5/10 reproductive disease, 5/10 PFTS, 3/10 myocarditis, 1/10 encephalitis and 1/10 congenital tremor cases. PCV-3 was not found in any of the PDNS cases assessed. In periarteritis cases, tissues more commonly affected were mesenteric arteries and kidney. Reproductive disease cases associated to PCV-3 genome consistently displayed myocarditis. The lesions and labelling distribution of PFTS cases with presence of PCV-3 genome were comparable to those of the periarteritis group. qPCR and ISH yielded similar results within each studied case and were statistically comparable. CONCLUSION Our results suggest that periarteritis is the hallmark lesion of PCV-3-SD, and that mesenteric lymph node and kidney appeared to be the most reliable organs to confirm the presence of PCV-3 genome in cases with periarteritis.
Collapse
Affiliation(s)
- Àlex Cobos
- grid.7080.f0000 0001 2296 0625Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia Spain ,grid.7080.f0000 0001 2296 0625Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia Spain ,grid.7080.f0000 0001 2296 0625IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia Spain
| | - Marina Sibila
- grid.7080.f0000 0001 2296 0625Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia Spain ,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Barcelona, Catalonia Spain ,grid.7080.f0000 0001 2296 0625IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia Spain
| | - Jaume Alomar
- grid.7080.f0000 0001 2296 0625Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia Spain
| | - Mónica Pérez
- grid.7080.f0000 0001 2296 0625Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia Spain ,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Barcelona, Catalonia Spain ,grid.7080.f0000 0001 2296 0625IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia Spain
| | - Eva Huerta
- grid.7080.f0000 0001 2296 0625Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia Spain ,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Barcelona, Catalonia Spain ,grid.7080.f0000 0001 2296 0625IRTA Programa de Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia Spain
| | - Joaquim Segalés
- grid.7080.f0000 0001 2296 0625Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia Spain ,grid.7080.f0000 0001 2296 0625Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Catalonia Spain ,OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Bellaterra, Barcelona, Catalonia Spain
| |
Collapse
|
24
|
Molossi FA, de Cecco BS, de Almeida BA, Henker LC, da Silva MS, Mósena ACS, Canal CW, Brandalise L, Simão GMR, Vanucci F, Pavarini SP, Driemeier D. PCV3-associated reproductive failure in pig herds in Brazil. Trop Anim Health Prod 2022; 54:293. [PMID: 36097231 DOI: 10.1007/s11250-022-03282-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022]
Abstract
Porcine circovirus type 3 (PCV3) has been widely detected worldwide in healthy and sick pigs. Recently its association with clinical disease and reproductive failure has been proven through the detection of intralesional viral mRNA in affected pigs. This study aims to describe the occurrence of PCV3-associated reproductive failure (abortions) in sow herds in southern Brazil. Eleven fetuses from five different litters from two herds were analyzed. These herds reported an increase in the rate of late-gestation abortions, stillbirths, and the percentage of mummified piglets. At gross examination, six of the fetuses had large caudally rotated ears and one fetus was mummified. Microscopically, multisystemic vasculitis, lymphocytic interstitial pneumonia, myocarditis, and encephalitis were observed. These six fetuses with gross and histological lesions were positive in qPCR analysis for PCV3, and PCV3 transcription was shown through in situ hybridization (ISH-RNA) within the histologic lesions. Samples from all 11 fetuses tested negative in PCR exam for Porcine Circovirus type 1 and 2, Porcine Reproductive and Respiratory Syndrome, Porcine Parvovirus, and Atypical Porcine Pestivirus. Furthermore, based on the ORF2 analysis, the PCV3a clade was identified. This is the first report of PCV3a-associated reproductive failure in pig herds in South America.
Collapse
Affiliation(s)
- Franciéli Adriane Molossi
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Bianca Santana de Cecco
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Bruno Albuquerque de Almeida
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Luan Cleber Henker
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Mariana Soares da Silva
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Ana Cristina Sbaraini Mósena
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Cláudio Wageck Canal
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | | | | | - Fabio Vanucci
- University of Minnesota Veterinary Diagnostic Laboratory, St. Paul, MN, USA
| | - Saulo P Pavarini
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - David Driemeier
- Setor de Patologia Veterinária, Faculdade de Veterinária, Universidade Federal Do Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
25
|
Faustini G, Drigo M, Menandro ML, Pasotto D, Giovanni F. Phylodynamic analysis of current Porcine circovirus 4 sequences: Does the porcine circoviruses evolutionary history repeat itself? Transbound Emerg Dis 2022; 69:e3363-e3369. [PMID: 35735227 PMCID: PMC9796702 DOI: 10.1111/tbed.14638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/12/2022] [Accepted: 06/18/2022] [Indexed: 01/07/2023]
Abstract
Four porcine circoviruses (PCVs) have been discovered over time and seem to share a common history, particularly for PCV-2 and -3. Despite being reported as apparently new viruses, rapidly emerging as a threat for the worldwide swine industry, they were then proven to have been circulating and coexisting with domestic pigs undetected for decades, without causing relevant health issues. A similar scenario could be true for the most recently identified PCV-4. However, its detection in Asia only and the limited genetic variability could suggest a truly recent origin. To investigate which of the above-mentioned scenarios is more plausible, a phylodynamic analysis was performed on all available PCV-4 sequences for which adequate metadata were available to reconstruct the viral history and evolution. Obtained results suggest an ancient origin, at least decades ago, followed by a prolonged low-level circulation and a moderate increase in viral population size after the second half of the XX century, in parallel with a progressive rise in pig population and farming intensification. A relevant local geographical clustering was also highlighted. The reason behind such low spreading capacity and limited geographical distribution compared to other circoviruses is currently obscure and will require dedicated studies, involving a more extensive sampling and sequencing activity.
Collapse
Affiliation(s)
- Giulia Faustini
- Department of Animal MedicineProduction and Health (MAPS)University of Padua, LegnaroPaduaItaly
| | - Michele Drigo
- Department of Animal MedicineProduction and Health (MAPS)University of Padua, LegnaroPaduaItaly
| | - Maria Luisa Menandro
- Department of Animal MedicineProduction and Health (MAPS)University of Padua, LegnaroPaduaItaly
| | - Daniela Pasotto
- Department of Animal MedicineProduction and Health (MAPS)University of Padua, LegnaroPaduaItaly
| | - Franzo Giovanni
- Department of Animal MedicineProduction and Health (MAPS)University of Padua, LegnaroPaduaItaly
| |
Collapse
|
26
|
First complete genomic sequence analysis of porcine circovirus type 4 (PCV4) in wild boars. Vet Microbiol 2022; 273:109547. [PMID: 36037620 DOI: 10.1016/j.vetmic.2022.109547] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/07/2022] [Accepted: 08/13/2022] [Indexed: 11/21/2022]
Abstract
Porcine circovirus type 4 (PCV4), a unique circovirus with a different classification from other existing circovirus, was discovered in domestic pigs in several provinces of China. In this study, in order to investigate the epidemiology and genetic diversity of PCV4 in wild boars (Sus scrofa), a total number of 138 wild boar samples were collected from five different areas in Jiangxi Province of China, between January 2020 and December 2020. Taqman based real-time PCR were used to test PCV4 as well as PCV1, PCV2, and PCV3. Among 138 samples, 30 samples (21.7%) were positive for PCV1, 31 samples (22.5%) were positive for PCV2, 8 samples (5.8%) were positive for PCV3 and 27 samples (19.6%) were positive for PCV4, respectively. Some of the samples were co-infected with multiple PCVs. In this study, we successfully sequenced the complete genome of two PCV4 strains, which shared 98.5-99.8% of their genomic nucleotide similarity with the other five PCV4 strains discovered in domestic pigs. Phylogenetic analysis showed that the two PCV4 strains derived from wild boars were located in a closed relative branch with other PCV4 strains derived from domestic pigs, but were distinguished from other circovirus. These results of this study not only expand our understanding of the prevalence of PCVs, especially PCV4, in wild boars in Jiangxi province of China, but also showed the molecular epidemiology of PCV4. Nevertheless, the impact of wild boars infected with PCV4 on intensive farmed pigs industry remains to be further explored.
Collapse
|
27
|
Yang Z, Marthaler DG, Rovira A. Frequency of porcine circovirus 3 detection and histologic lesions in clinical samples from swine in the United States. J Vet Diagn Invest 2022; 34:602-611. [PMID: 35674058 PMCID: PMC9266519 DOI: 10.1177/10406387221099538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Porcine circovirus 3 (PCV3) is widespread in pigs worldwide. Diverse clinical signs and lesions have been associated with PCV3, but the role of PCV3 as a cause of disease in swine remains unclear. We investigated the association of PCV3 with clinical signs and histologic lesions in 730 diagnostic swine cases between February 2016 and January 2018. The cases contained 2,177 samples submitted from 474 sites located in 21 states in the United States. PCR assay results were positive for PCV3 for 577 of 2,177 (27%) samples, 255 of 730 (35%) cases, 181 of 474 (38%) sites, and 17 of 21 (81%) states. We detected PCV3 in 19 of 28 specimen types and in pigs of all ages and clinical presentations, including healthy pigs, with the highest detection rate in adult pigs. PCV3 detection was not associated with respiratory, gastrointestinal, or CNS signs, weight loss, or sudden death. Of 58 types of histologic lesions evaluated, PCV3 detection was associated with myocarditis, cardiac vasculitis, and interstitial pneumonia in growing pigs. A high PCV3 detection rate was observed in aborted fetuses.
Collapse
Affiliation(s)
- Zhen Yang
- College of Veterinary Medicine, St Paul, MN, USA
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | | | - Albert Rovira
- College of Veterinary Medicine and Veterinary Diagnostic Laboratory, University of Minnesota, St Paul, MN, USA
| |
Collapse
|
28
|
Cui Y, Hou L, Pan Y, Feng X, Zhou J, Wang D, Guo J, Liu C, Shi Y, Sun T, Yang X, Zhu N, Tong X, Wang Y, Liu J. Reconstruction of the Evolutionary Origin, Phylodynamics, and Phylogeography of the Porcine Circovirus Type 3. Front Microbiol 2022; 13:898212. [PMID: 35663871 PMCID: PMC9158500 DOI: 10.3389/fmicb.2022.898212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Porcine circovirus type 3 (PCV3) is a newly identified virus associated with porcine dermatitis and nephropathy syndrome (PDNS) and multisystemic inflammatory responses in pigs. Recent studies suggests that PCV3 originated from bat circoviruses; however, the origin time, mode of spread, and geographic distribution of PCV3 remain unclear. In this study, the evolutionary origin, phylodynamics, and phylogeography of PCV3 were reconstructed based on the available complete genome sequences. PCV3 showed a closer relationship with bird circovirus than with bat circovirus, but their common ancestor was bat circovirus, indicating that birds may be intermediate hosts for the spread of circoviruses in pigs. Using the BEAST and phylogenetic analyses, three different clades of PCV3 (PCV3a, PCV3b, and PCV3c) were identified, with PCV3a being the most prevalent PCV3 clade. Further studies indicated that the earliest origin of PCV3 can be traced back to 1907.53–1923.44, with a substitution rate of 3.104 × 10–4 to 6.8524 × 10–4 substitution/site/year. A phylogeographic analysis highlighted Malaysia as the earliest location of the original PCV3, which migrated to Asia, America, and Europe. Overall, this study provides novel insights into the evolutionary origin, spread mode, and geographic distribution of PCV3, which will facilitate the prevention and control of PCV3 epidemics in the future.
Collapse
Affiliation(s)
- Yongqiu Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yang Pan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xufei Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Dedong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jinshuo Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Changzhe Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongyan Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Tong Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaoyu Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ning Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xinxin Tong
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yongxia Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
29
|
High Prevalence of Porcine Circovirus 3 in Hungarian Pig Herds: Results of a Systematic Sampling Protocol. Viruses 2022; 14:v14061219. [PMID: 35746692 PMCID: PMC9228016 DOI: 10.3390/v14061219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine circovirus type 3 (PCV3) is an emerging pathogen that has been reported worldwide in all ages of healthy and clinically ill pigs. The presence of this virus in Hungary has been confirmed in a commercial farm experiencing reproductive failures, but there were no data on the circulation of PCV3 in the country. Here we report the prevalence and the genetic diversity of PCV3 in Hungarian herds. To estimate the prevalence, 1855 serum samples, 176 oral fluid and 97 processing fluid samples were collected in a systematic, cross-sectional method from 20 large scale swineherds and tested by real-time qPCR. PCV3 was present in at least one type of diagnostic matrix in 19 out of the 20 (95%) pig farms. The highest detection rates were observed in the processing fluid samples (61%), but 41% of the oral fluid and 23% of the serum samples were positive. The virus was found in all age groups, and slightly more adult animals were infected than growing pigs, but the viral burden was lower amongst them. Phylogenetic analysis of nine complete genomes, obtained from either the sampled herds or organ samples of PCV3-positive carcasses, showed high nucleotide identity between the detected sequences, which all belonged to the PCV3a genotype. Our results indicate that PCV3 is widespread in Hungary, but in most cases, the virus seems to circulate subclinically, infecting all age groups and production phases without the presence of apparent clinical disease.
Collapse
|
30
|
Arenales A, Santana C, Rolim A, Pereira E, Nascimento E, Paixão T, Santos R. Histopathologic patterns and etiologic diagnosis of porcine respiratory disease complex in Brazil. ARQ BRAS MED VET ZOO 2022. [DOI: 10.1590/1678-4162-12439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Porcine respiratory disease complex is a major health concern for the porcine industry, causing significant economic loss. In this study, a total of 156 samples from pigs referred to a diagnostic laboratory in Brazil for 15 months were analyzed by histopathology, bacterial isolation, PCR, and immunohistochemistry. Multiple infections were common, so 42.3% of the pigs had more than one pathogen detected in the lungs. Swine influenza virus was detected in 25.0% of the cases. Porcine circovirus type 2 was detected in 7.1% of the pigs, which was often associated with Pasteurella multocida. In addition, one case of porcine circovirus type 3 infection associated with granulomatous pneumonia was diagnosed. Bacteria were isolated in 125 cases, namely Pasteurella multocida (34.0%), Glaesserella (Haemophilus) parasuis (35.2%), Streptococcus suis (13.5%), and Actinobacillus pleuropneumoniae (7.7%). Mycoplasma hyopneumoniae was identified in 7.0% of the cases, and 18.6% of pigs carried Salmonella sp. The most common patterns of pulmonary inflammation were broncopneumonia, bronchointerstitial pneumonia, and pleuritis, in that order. This study demonstrated that histopathology is an efficient tool along with other laboratorial diagnostic tests for establishing an etiologic diagnosis in cases of porcine respiratory disease complex.
Collapse
Affiliation(s)
- A. Arenales
- Universidade Federal de Minas Gerais, Brazil
| | | | - A.C.R. Rolim
- Instituto de Pesquisas Veterinárias Especializadas, Brasil
| | | | | | - T.A. Paixão
- Universidade Federal de Minas Gerais, Brazil
| | - R.L. Santos
- Universidade Federal de Minas Gerais, Brazil
| |
Collapse
|
31
|
Zhang M, Liu CC, Huang Y, Hill JE, Araya MB, Ojkic D, Gagnon CA. Phylogenetic analysis of porcine circovirus 3 circulating in Canadian pigs. Vet Med Sci 2022; 8:1969-1974. [PMID: 35636428 PMCID: PMC9514502 DOI: 10.1002/vms3.851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Introduction Porcine circovirus 3 (PCV3) has been detected in pigs worldwide and associated with several clinical signs. Methods To investigate the genetic diversity of PCV3 strains circulating in Canada, 44 PCV3 positive samples from Saskatchewan (2/44), Manitoba (2/44), Quebec (4/44), Alberta (11/44) and Ontario (25/44) submitted to diagnostic laboratories in Canada between 2019 and 2021 were sequenced and analyzed. Results Phylogenetic analysis of capsid genes showed that all of the 44 Canadian strains classified into PCV3a and segregated into seven lineages with common amino acid changes observed at A24V, R27K, N56D, T77S, Q98R, L150I (F) and R168K positions. Conclusion Future studies are required to determine whether the polymorphisms in capsid proteins, as revealed in this study, could be associated with differences in the pathogenicity or antigenicity of PCV3 strains. This is the first phylogenetic analysis of PCV3 strains among different provinces in Canada.
Collapse
Affiliation(s)
- Maodong Zhang
- Prairie Diagnostic Services Inc. Saskatoon Saskatchewan Canada
- Department of Veterinary Pathology, Western College of Veterinary Medicine University of Saskatchewan Saskatoon Saskatchewan Canada
| | - Chao Chun Liu
- Department of Molecular Biology and Biochemistry Simon Fraser University Burnaby British Columbia Canada
| | - Yanyun Huang
- Prairie Diagnostic Services Inc. Saskatoon Saskatchewan Canada
- Department of Veterinary Pathology, Western College of Veterinary Medicine University of Saskatchewan Saskatoon Saskatchewan Canada
| | - Janet E. Hill
- Department of Veterinary Microbiology, Western College of Veterinary Medicine University of Saskatchewan Saskatoon Saskatchewan Canada
| | | | - Davor Ojkic
- Animal Health Laboratory University of Guelph Guelph Ontario Canada
| | - Carl A. Gagnon
- Molecular Diagnostic Laboratory of Centre de Diagnostic Vétérinaire de universitas de Montréal (CDVUM) and Swine and Poultry Infectious Diseases Research Center (CRIPA‐FRQNT), Faculté de Médecine Vétérinaire Université de Montréal Saint‐Hyacinthe Quebec Canada
| |
Collapse
|
32
|
Pan Y, Qiu S, Chen R, Zhang T, Liang L, Wang M, Baloch AR, Wang L, Zhang Q, Yu S. Molecular detection and phylogenetic analysis of porcine circovirus type 3 in Tibetan pigs on the Qinghai-Tibet Plateau of China. Virol J 2022; 19:64. [PMID: 35392945 PMCID: PMC8991800 DOI: 10.1186/s12985-022-01792-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/23/2022] [Indexed: 11/15/2022] Open
Abstract
Background Porcine circovirus type 3 (PCV3) has been confirmed to infect pigs, posing a health risk and making pigs more susceptible to other pathogens. After the first report of PCV3 infection in the United States, its prevalence was determined in pigs suffering from clinical digestive or respiratory diseases in several other regions, including the Sichuan and Gansu provinces of China. In this study, we describe the frequency of PCV3 detection in Tibetan pigs inhabiting three different provinces surrounding the Qinghai-Tibet Plateau of China. Methods A total of 316 samples from diarrheic animals and 182 samples from healthy animals were collected in a randomized manner. Conventional PCR was applied for PCV3 DNA detection. The conserved regions of the PCV3 gene were analyzed with MEGA 7.1 software to design specific primers to sequence entire Cap genes in PCV3 strains, and the sequences were then used to confirm the subtypes of PCV3 in the positive samples. Prediction of the amino acid sequences by nucleotide sequence translation was also performed to compare the point mutations in the entire Cap protein. Twenty PCV3 whole-genomic sequences were used for genome phylogenetic analyses of PCV3 and sequence alignments with 22 other reference strains. Results We found that the prevalence of the virus was significantly higher in samples from pigs with diarrhoea than that in samples from healthy pigs. Phylogenetic analysis of Cap proteins demonstrated that the 20 PCV3 strains formed three clades, including PCV3a (8/20, 40.00%), PCV3b (5/20, 25%) and PCV3c (7/20, 35.00%). The complete genome sequence revealed that these strains formed one branch in the phylogenetic tree. Sequence analysis showed that the Cap proteins of the 20 different viral strains shared between 95.84 and 99.18% nucleotide identity. Cap protein sequence analyses showed that the positivity rate of PCV3a was highest in the samples from pigs with diarrhoea. In comparison, PCV3c was the most elevated subtype in the healthy samples. There was no mutation at a specific site in the amino acid sequences of the entire Cap protein from different PCV3 subtype strains from heathy samples. There was a mutation at site 113 in PCV3a, site 129 in PCV3b, and site 116 in PCV3c. Conclusion Our present data provide evidence that PCV3 is prevalent in Tibetan pigs at high altitudes in China, and the higher prevalence rates of the PCV3a and PCV3b subtypes in samples from pigs with diarrhoea further indicate that the genotypes should not be neglected during surveys of the pathogenicity of PCV3. Phylogenetic and genetic diversity analyses suggested that the continuous evolution, adaptation and mechanisms of pathogenicity of PCV3 in Tibetan pigs living in this special environment should be further studied.
Collapse
Affiliation(s)
- Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Shantong Qiu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Rui Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Tiantian Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Linfeng Liang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Abdul Rasheed Baloch
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Libin Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Qian Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Sijiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
| |
Collapse
|
33
|
Five years of porcine circovirus 3: what have we learned about the clinical disease, immune pathogenesis, and diagnosis. Virus Res 2022; 314:198764. [DOI: 10.1016/j.virusres.2022.198764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/24/2022]
|
34
|
Porcine Circoviruses and Herpesviruses Are Prevalent in an Austrian Game Population. Pathogens 2022; 11:pathogens11030305. [PMID: 35335629 PMCID: PMC8953168 DOI: 10.3390/pathogens11030305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
During the annual hunt in a privately owned Austrian game population in fall 2019 and 2020, 64 red deer (Cervus elaphus), 5 fallow deer (Dama dama), 6 mouflon (Ovis gmelini musimon), and 95 wild boars (Sus scrofa) were shot and sampled for PCR testing. Pools of spleen, lung, and tonsillar swabs were screened for specific nucleic acids of porcine circoviruses. Wild ruminants were additionally tested for herpesviruses and pestiviruses, and wild boars were screened for pseudorabies virus (PrV) and porcine lymphotropic herpesviruses (PLHV-1-3). PCV2 was detectable in 5% (3 of 64) of red deer and 75% (71 of 95) of wild boar samples. In addition, 24 wild boar samples (25%) but none of the ruminants tested positive for PCV3 specific nucleic acids. Herpesviruses were detected in 15 (20%) ruminant samples. Sequence analyses showed the closest relationships to fallow deer herpesvirus and elk gammaherpesvirus. In wild boars, PLHV-1 was detectable in 10 (11%), PLHV-2 in 44 (46%), and PLHV-3 in 66 (69%) of animals, including 36 double and 3 triple infections. No pestiviruses were detectable in any ruminant samples, and all wild boar samples were negative in PrV-PCR. Our data demonstrate a high prevalence of PCV2 and PLHVs in an Austrian game population, confirm the presence of PCV3 in Austrian wild boars, and indicate a low risk of spillover of notifiable animal diseases into the domestic animal population.
Collapse
|
35
|
Ruiz A, Saporiti V, Huerta E, Balasch M, Segalés J, Sibila M. Exploratory Study of the Frequency of Detection and Tissue Distribution of Porcine Circovirus 3 (PCV-3) in Pig Fetuses at Different Gestational Ages. Pathogens 2022; 11:118. [PMID: 35215062 PMCID: PMC8877316 DOI: 10.3390/pathogens11020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Porcine circovirus 3 (PCV-3) has been associated with several pig diseases. Despite the pathogenicity of this virus has not been completely clarified, reproductive disorders are consistently associated with its infection. The aim of the present work was to analyze the presence of PCV-3 DNA in tissues from pig fetuses from different gestational timepoints. The fetuses were obtained either from farms with no reproductive problems (NRP, n = 249; all of them from the last third of gestation) or from a slaughterhouse (S, n = 51; 49 of the second-third of gestation and 2 from the third one). Tissues collected included brain, heart, lung, kidney, and/or spleen. Overall, the frequency of detection of PCV-3 was significantly higher in fetuses from the last third of the gestation (69/251, 27.5%) when compared to those from the second-third (5/49, 10.2%), although the viral loads were not significantly different. Moreover, the frequency of detection in NRP fetuses (69/249, 27.7%) was significantly higher than in S ones (5/51, 9.8%). Furthermore, PCV-3 DNA was detected in all tissue types analyzed. In conclusion, the present study demonstrates a higher frequency of PCV-3 DNA detection in fetuses from late periods of the gestation and highlights wide organ distributions of the virus in pig fetuses.
Collapse
Affiliation(s)
- Albert Ruiz
- Zoetis Manufacturing & Research Spain S.L., Ctra. Camprodon s/n, La Riba, 17813 Girona, Spain; (A.R.); (M.B.)
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (V.S.); (E.H.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain;
| | - Viviane Saporiti
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (V.S.); (E.H.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain;
| | - Eva Huerta
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (V.S.); (E.H.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain;
| | - Mònica Balasch
- Zoetis Manufacturing & Research Spain S.L., Ctra. Camprodon s/n, La Riba, 17813 Girona, Spain; (A.R.); (M.B.)
| | - Joaquim Segalés
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain;
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, UAB, 08193 Barcelona, Spain
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (V.S.); (E.H.)
- OIE Collaborating Centre for the Research and Control of Emerging and Re-Emerging Swine Diseases in Europe (IRTA-CReSA), 08193 Barcelona, Spain;
| |
Collapse
|
36
|
A putative PCV3-associated disease in piglets from Southern Brazil. Braz J Microbiol 2022; 53:491-498. [PMID: 34988935 DOI: 10.1007/s42770-021-00644-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Porcine circovirus type 3 (PCV3) is widely distributed worldwide, and its association with clinical disease in pigs has been studied in recent years. This study describes a novel PCV3-associated clinical disease in piglets from Brazil. Since September 2020, we received 48 piglets with large caudally rotated ears, weakness, and dyspnea. Most piglets were from gilts and died 1-5 days after birth. Two piglets that presented similar clinical signs and survived until 35-60 days had a marked decrease in growth rate. At post-mortem examination, the lungs did not collapse due to marked interlobular edema. Microscopically, the main feature was multisystemic vasculitis characterized by lymphocytes and plasma cells infiltrating and disrupting the wall of vessels, lymphohistiocytic interstitial pneumonia, myocarditis, and encephalitis. Viral replication was confirmed in these lesions through in situ hybridization (ISH-RNA). Seventeen cases were positive for PCV3 in PCR analysis, and all samples tested negative for porcine circovirus (PCV1, and PCV2); porcine parvovirus (PPV1, 2, 5, and 6); atypical porcine pestivirus (APPV); porcine reproductive and respiratory syndrome (PRRSV); and ovine herpesvirus-2 (OvHV-2). Phylogenetic analysis of the ORF2 sequence from five different pig farms showed that the PCV3a clade is circulating among Brazil's swineherds and causing neonatal piglet losses. This is the first report of PCV3a-associated disease in neonatal pigs from farms in Brazil.
Collapse
|
37
|
Sirisereewan C, Thanawongnuwech R, Kedkovid R. Current Understanding of the Pathogenesis of Porcine Circovirus 3. Pathogens 2022; 11:pathogens11010064. [PMID: 35056012 PMCID: PMC8778431 DOI: 10.3390/pathogens11010064] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Circoviruses are closed, circular, single-stranded DNA viruses belonging to the family Circoviridae and the genus Circovirus. To date, at least four porcine circoviruses (PCVs) have been recognized, including PCV1 to PCV4, respectively. Similar to PCV2 pathogenesis, PCV3 has been reported worldwide with myriad clinical and pathological presentations such as reproductive disorders, respiratory diseases, diarrhea etc. Current understanding of PCV3 pathogenesis is very limited since the majority of studies were mostly field observations. Interpretation of the results from such studies is not always simple. Various confounding factors affect the clinical appearance and pathological changes of the infected pigs. Recently, several experimental PCV3 infection studies have been reported, providing a better understanding of its pathogenesis. In this review, we focused on novel findings regarding PCV3 pathogenesis from both field observation and experimental infection studies. Possible factors involved in the conflicting results among the experimental infection studies are also discussed. This review article provides important insight into the current knowledge on PCV3 pathogenesis which would aid in prioritizing research in order to fill the knowledge gaps.
Collapse
Affiliation(s)
- Chaitawat Sirisereewan
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Roongroje Thanawongnuwech
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Correspondence: (R.T.); (R.K.)
| | - Roongtham Kedkovid
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
- Swine Reproduction Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (R.T.); (R.K.)
| |
Collapse
|
38
|
Ge M, Ren J, Xie YL, Zhao D, Fan FC, Song XQ, Li MX, Xiao CT. Prevalence and Genetic Analysis of Porcine Circovirus 3 in China From 2019 to 2020. Front Vet Sci 2021; 8:773912. [PMID: 34926645 PMCID: PMC8671461 DOI: 10.3389/fvets.2021.773912] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
Porcine circovirus type 3 (PCV3), a virus belonging to the Circoviridae family, is considered to be associated with respiratory and neurological signs, cardiac and multisystemic inflammation, reproductive failure, and porcine dermatitis and nephropathy syndrome-like disease in pigs (Sus scrofa). In this study, epidemiological and serological investigations of PCV3 in clinically healthy pigs from different regions of China were performed. Overall, 42.87% (1,101/2,568) of pigs were positive for PCV3 Cap antibody via indirect enzyme-linked immunosorbent assay, with a higher prevalence of PCV3 in multiparous sows (62.22%, 881/1,416) and fattening pigs (28.96%, 159/549) than in suckling piglets (8.96%, 32/357) and nursery pigs (11.79%, 29/246). Of the 2,568 samples, 255 were further tested for PCV3 DNA using real-time polymerase chain reaction, and 63.14% of these were positive, with nearly half having <10 virus copies. The PCV3 DNA and antibody positivity rates were high in the pig serum samples; however, the virus titers and antibody levels were both low, indicating that the humoral immune response of PCV3-infected pigs was weak or lagging, and persistent or repeated infections could occur. Additionally, the complete genomes of 23 PCV3 strains were sequenced and analyzed, which showed nucleotide identities of 98.5~100.0%, 98.6~100.0%, and 99.2~100.0% in the complete genome, open reading frame (ORF)2, and ORF1 sequences, respectively, and amino acid identities of 96.7~100.0% and 99.3~100.0% in the capsid and replicase proteins, respectively. Phylogenetic analysis based on ORF2 nucleotide sequences indicated that the PCV3 strains obtained in the present study could be classified into three sub-clades, with most strains clustered into clade 3c, indicating that PCV3c is the dominant subtype in the regions of China investigated. In general, the present study revealed a high prevalence and high genetic divergence of PCV3 among Chinese pig herds, and indicated that the potential effect of PCV3 on the pig industry may be a concern.
Collapse
Affiliation(s)
- Meng Ge
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China.,Hunan Engineering Technology Research Center of Veterinary Drugs, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Jie Ren
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Yi-Lin Xie
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Dun Zhao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Fang-Cheng Fan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Xiao-Qin Song
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Man-Xiang Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China.,Hunan Engineering Technology Research Center of Veterinary Drugs, College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Chao-Ting Xiao
- Institute of Pathogen Biology and Immunology, College of Biology, Hunan University, Changsha, China
| |
Collapse
|
39
|
Dénes L, Horváth DG, Duran O, Ratkhjen PH, Kraft C, Acs B, Szász AM, Rümenapf T, Papp M, Ladinig A, Balka G. In Situ Hybridization of PRRSV-1 Combined with Digital Image Analysis in Lung Tissues of Pigs Challenged with PRRSV-1. Vet Sci 2021; 8:235. [PMID: 34679065 PMCID: PMC8540710 DOI: 10.3390/vetsci8100235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Betaarterivirus suid 1 and 2 are the causative agents of porcine reproductive and respiratory syndrome (PRRS), which is one of the most significant diseases of the swine industry, causing significant economic losses in the main pig producing countries. Here, we report the development of a novel, RNA-based in situ hybridization technique (RNAscope) to detect PRRS virus (PRRSV) RNA in lung tissues of experimentally infected animals. The technique was applied to lung tissues of 20 piglets, which had been inoculated with a wild-type, highly pathogenic PRRSV-1 strain. To determine the RNAscope's applicability as a semi-quantitative method, we analysed the association between the proportion of the virus-infected cells measured with an image analysis software (QuPath) and the outcome of the real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) tests performed in parallel. The results of the quantitative approach of these two molecular biological methods show significant association (pseudo R2 = 0.3894, p = 0.004). This is the first time RNAscope assay has been implemented for the detection of PRRSV-1 in experimental animals.
Collapse
Affiliation(s)
- Lilla Dénes
- Department of Pathology, University of Veterinary Medicine, István u. 2, 1078 Budapest, Hungary; (L.D.); (D.G.H.)
| | - Dávid G. Horváth
- Department of Pathology, University of Veterinary Medicine, István u. 2, 1078 Budapest, Hungary; (L.D.); (D.G.H.)
| | - Oliver Duran
- Boehringer Ingelheim Vetmedica GmbH, 55218 Ingelheim am Rhein, Germany; (O.D.); (P.H.R.); (C.K.)
| | - Poul H. Ratkhjen
- Boehringer Ingelheim Vetmedica GmbH, 55218 Ingelheim am Rhein, Germany; (O.D.); (P.H.R.); (C.K.)
| | - Christian Kraft
- Boehringer Ingelheim Vetmedica GmbH, 55218 Ingelheim am Rhein, Germany; (O.D.); (P.H.R.); (C.K.)
| | - Balazs Acs
- Department of Oncology and Pathology, Karolinska Institutet, CCK R8:04, 17176 Stockholm, Sweden;
- Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Building 70, Level-2, 11883 Stockholm, Sweden
| | - Attila M. Szász
- Department of Internal Medicine and Oncology, Semmelweis University, Korányi Sándor u. 2/a, 1083 Budapest, Hungary;
| | - Till Rümenapf
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria;
| | - Marton Papp
- Centre for Bioinformatics, University of Veterinary Medicine, István u. 2, 1078 Budapest, Hungary;
| | - Andrea Ladinig
- University Clinic for Swine, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria;
| | - Gyula Balka
- Department of Pathology, University of Veterinary Medicine, István u. 2, 1078 Budapest, Hungary; (L.D.); (D.G.H.)
| |
Collapse
|
40
|
Chen S, Zhang L, Li X, Niu G, Ren L. Recent Progress on Epidemiology and Pathobiology of Porcine Circovirus 3. Viruses 2021; 13:v13101944. [PMID: 34696373 PMCID: PMC8538958 DOI: 10.3390/v13101944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/27/2022] Open
Abstract
The recently discovered porcine circovirus 3 (PCV3) belongs to the Circovirus genus of the Circoviridae family together with the other three PCVs, PCV1, PCV2, and PCV4. As reported, PCV3 can infect pig, wild boar, and several other intermediate hosts, resulting in single or multiple infections in the affected animal. The PCV3 infection can lead to respiratory diseases, digestive disorders, reproductive disorders, multisystemic inflammation, and immune responses. Up to now, PCV3 infection, as well as the disease caused by PCV3, has been reported in many swine farms worldwide with high positive rates, which indicates that the virus may be another important pathogen in the swine industry. Therefore, we reviewed the current progress on epidemiology and pathobiology of PCV3, which may provide the latest knowledge of the virus and PCV3-related diseases.
Collapse
|
41
|
Visuthsak W, Woonwong Y, Thanantong N, Poolperm P, Boonsoongnern A, Ratanavanichrojn N, Jirawattanapong P, Soda N, Kaminsonsakul T, Phuttapatimok S, Sukmak M. PCV3 in Thailand: Molecular epidemiology and relationship with PCV2. Transbound Emerg Dis 2021; 68:2980-2989. [PMID: 34406701 DOI: 10.1111/tbed.14294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 03/18/2021] [Accepted: 08/16/2021] [Indexed: 11/28/2022]
Abstract
Porcine circovirus type 3 has been circulating throughout the world and since their first report, various clinical signs and disease developments have been documented. The virus is similar to the closely related PCV2 and is associated with several clinical signs called porcine circovirus-associated diseases (PCVAD). PCV2 or PCV3 is occasionally reported with clinical signs such as PDNS, respiratory signs and reproductive failure. Retrospective research conducted in Thailand revealed that both PCV2 and PCV3 have been circulation for decades. However, awareness about PCV3 infection has just arisen in recent years because of the similarities observed in disease circulation and clinical signs that have led to concerns. This study was conducted to find the relationship between the quantity of PCV2 and PCV3 in Thai pigs displaying the clinical signs related to PCVAD. A total of 479 serum samples with different production phases and clinical signs were sent to Kamphaeng Saen Veterinary Diagnostic Center (KVDC) for qPCR to detect the presence of PCV2 or PCV3. There was no relationship between the PCV3 and PCVAD-related clinical signs. Also, the relationship between PCV2 and PCV3 with no clinical signs suggested that both viruses might come from the same reservoir or have been circulating in Thailand for a long time, leading to common incidents in finding. The viral load of PCV2 was significantly different among the pig groups with and without clinical signs. The capsid sequence analysis of PCV3 revealed that 22 capsid sequences obtained from this study were found as clusters within PCV3a with a minor variation. Additional control measures are further needed to reduce the findings of the viruses. A future study with a control experiment may be needed to clarify the pathogenesis of PCV3.
Collapse
Affiliation(s)
- Wansika Visuthsak
- Center for Agricultural Biotechnology, Kasetsart University, Nakhon Pathom, Thailand.,Center of Excellence on Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok, Thailand
| | - Yonlayong Woonwong
- Faculty of Veterinary Medicine, Department of Farm Resources and Production Medicine, Kasetsart University, Nakhon Pathom, Thailand
| | - Narut Thanantong
- Faculty of Veterinary Medicine, Department of Farm Resources and Production Medicine, Kasetsart University, Nakhon Pathom, Thailand
| | - Pariwat Poolperm
- Faculty of Veterinary Medicine, Department of Farm Resources and Production Medicine, Kasetsart University, Nakhon Pathom, Thailand
| | - Alongkot Boonsoongnern
- Faculty of Veterinary Medicine, Department of Farm Resources and Production Medicine, Kasetsart University, Nakhon Pathom, Thailand
| | - Nattavut Ratanavanichrojn
- Faculty of Veterinary Medicine, Department of Farm Resources and Production Medicine, Kasetsart University, Nakhon Pathom, Thailand
| | - Pichai Jirawattanapong
- Faculty of Veterinary Medicine, Department of Farm Resources and Production Medicine, Kasetsart University, Nakhon Pathom, Thailand
| | - Nantana Soda
- Faculty of Veterinary Medicine, Kamphaeng Saen Veterinary Diagnostic Center (KVDC), Kasetsart University, Nakhon Pathom, Thailand
| | - Tanyanant Kaminsonsakul
- Faculty of Veterinary Medicine, Kamphaeng Saen Veterinary Diagnostic Center (KVDC), Kasetsart University, Nakhon Pathom, Thailand
| | - Sahathat Phuttapatimok
- Faculty of Veterinary Medicine, Kamphaeng Saen Veterinary Diagnostic Center (KVDC), Kasetsart University, Nakhon Pathom, Thailand
| | - Manakorn Sukmak
- Center for Agricultural Biotechnology, Kasetsart University, Nakhon Pathom, Thailand.,Center of Excellence on Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok, Thailand.,Faculty of Veterinary Medicine, Department of Farm Resources and Production Medicine, Kasetsart University, Nakhon Pathom, Thailand.,Faculty of Veterinary Medicine, Kamphaeng Saen Veterinary Diagnostic Center (KVDC), Kasetsart University, Nakhon Pathom, Thailand
| |
Collapse
|
42
|
Alomar J, Saporiti V, Pérez M, Gonçalvez D, Sibila M, Segalés J. Multisystemic lymphoplasmacytic inflammation associated with PCV-3 in wasting pigs. Transbound Emerg Dis 2021; 68:2969-2974. [PMID: 34328681 DOI: 10.1111/tbed.14260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 01/05/2023]
Abstract
Porcine circovirus 3 (PCV-3) has been detected in diseased and healthy pigs of different ages. Several reports have associated the agent with reproductive failure and mummified and stillborn piglets. One report from North America has proposed a consistent potential association with postweaning disorders. Thus, the present case report aimed to describe the histopathological lesions and their association with the presence of PCV-3 genome in postweaning pigs showing growth-retardation and thrown-back ears. All affected animals displayed multi-organic lymphoplasmacytic periarteritis, lymphocytic myocarditis and/or lymphoplasmacytic meningoencephalitis. PCV-3 genetic material was detected by in situ hybridization within the lesions and confirmed by PCV-3 real-time quantitative PCR detection in tissues. This study represents the first report of PCV-3 associated with clinical disease in postweaning pigs in Europe.
Collapse
Affiliation(s)
- Jaume Alomar
- Servei de Diagnòstic de Patologia Veterinària, Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain
| | - Viviane Saporiti
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA- UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Mònica Pérez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA- UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | | | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA- UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Joaquim Segalés
- Servei de Diagnòstic de Patologia Veterinària, Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, 08193, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain.,UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, 08193, Spain
| |
Collapse
|
43
|
Prevalence and genetic analysis of porcine circovirus type 2 (PCV2) and type 3 (PCV3) between 2018 and 2020 in central China. INFECTION GENETICS AND EVOLUTION 2021; 94:105016. [PMID: 34325052 DOI: 10.1016/j.meegid.2021.105016] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022]
Abstract
Porcine circovirus type 2 (PCV2) is the causative agent of porcine circovirus-associated diseases (PCVAD), causing substantial economic losses to the swine industry worldwide. PCV3, as a recently discovered virus, is associated with porcine dermatitis, nephropathy syndrome, reproductive failure, congenital tremors, and other clinical symptoms. To further investigate the epidemic profile and genetic diversity of the two viruses, a total of 198 samples from swine at various growth stages suspected for PCVAD on 55 different pig farms between 2018 and 2020 were analyzed for presence of PCV2 and PCV3 by using a multiplex real-time PCR assay. Among the 198 samples, 113 (57.07%) and 72 (36.36%) were positive for PCV2 and PCV3 respectively, and 39 (19.7%) were positive for PCV2 and PCV3 co-infection. Subsequently, whole genome sequences of 34 PCV2 and 19 PCV3 strains were obtained from 30 and 19 clinical samples, respectively. Of these, 8 PCV2 strains belonged to PCV2a, 10 belonged to PCV2b and 16 belonged to PCV2d, indicating PCV2d was the predominant PCV2 genotype circulating in central China. Furthermore, co-infection of different PCV2 genotype strains was identified in three samples (JZ-4, KF-2 and JY-1), and a cross-recombination was found in the ORF2 region of the sequenced 13 PCV2d strains whose putative parental strains were LN6/1999 (MF278777) and MEX/41238/2014 (KT795287) strains. The phylogenetic analysis of PCV3 showed high nucleotide identity (>98%) among sequences obtained in this study and reference sequences. These data will aid our understanding of the molecular epidemiology and evolution of PCV2 and PCV3.
Collapse
|
44
|
Assao VS, Santos MR, Pereira CER, Vannucci F, Silva-Júnior A. Porcine circovirus 3 in North and South America: Epidemiology and genetic diversity. Transbound Emerg Dis 2021; 68:2949-2956. [PMID: 34310859 DOI: 10.1111/tbed.14238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022]
Abstract
Porcine circovirus 3 (PCV3) is a recently discovered virus that has been detected in the swine population worldwide. PCV3 infection has been associated with several signs, but its pathogenicity is currently uncertain. This review article aimed to analyse the PCV3 strains that circulate in different countries in North and South America. We demonstrated the main regions of polymorphisms in the capsid protein structure. Furthermore, we found that PCV3 has at least six different lineages circulating in the Americas. Additional studies are required to determine the role of PCV3 in different clinical syndromes and its epidemiology in swine herds in North and South American countries.
Collapse
Affiliation(s)
| | | | | | - Fabio Vannucci
- College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota
| | | |
Collapse
|
45
|
Porcine circovirus 2 manipulates PERK-ERO1α axis of endoplasmic reticulum in favor of its replication by derepressing viral DNA from HMGB1 sequestration within nuclei. J Virol 2021; 95:e0100921. [PMID: 34287039 DOI: 10.1128/jvi.01009-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) causes several disease syndromes in grower pigs. PCV2 infection triggers endoplasmic reticulum (ER) stress, autophagy and oxidative stress, all of which support PCV2 replication. We have recently reported that nuclear HMGB1 is an anti-PCV2 factor by binding to viral genomic DNA. However, how PCV2 manipulates host cell responses to favor its replication has not been explored. Here, we demonstrate that PCV2 infection increased expression of ERO1α, generation of ROS and nucleocytoplasmic migration of HMGB1 via PERK activation in PK-15 cells. Inhibition of PERK or ERO1α repressed ROS production in PCV2-infected cells and increased HMGB1 retention within nuclei. These findings indicate that PCV2-induced activation of the PERK-ERO1α axis would lead to enhanced generation of ROS sufficient to decrease HMGB1 retention in the nuclei, thus derepressing viral DNA from HMGB1 sequestration. The viral Rep and Cap proteins were able to induce PERK-ERO1α-mediated ROS accumulation. Cysteine residues 107 and 305 of Rep or 108 of Cap played important roles in PCV2-induced PERK activation and distribution of HMGB1. Of the mutant viruses, only the mutant PCV2 with substitution of all three cysteine residues failed to activate PERK with reduced ROS generation and decreased nucleocytoplasmic migration of HMGB1. Collectively, this study offers novel insight into the mechanism of enhanced viral replication in which PCV2 manipulates ER to perturb its redox homeostasis via the PERK-ERO1α axis and the ER-sourced ROS from oxidative folding is sufficient to reduce HMGB1 retention in the nuclei, hence the release of HMGB1-bound viral DNA for replication. IMPORTANCE Considering the fact that clinical PCVAD mostly results from activation of latent PCV2 infection by confounding factors such as co-infection or environmental stresses, we propose that such confounding factors might impose oxidative stress to the animals where PCV2 in infected cells might utilize the elevated ROS to promote HMGB1 migration out of nuclei in favor of its replication. An animal infection model with a particular stressor could be approached with or without antioxidant treatment to examine the relationship among the stressor, ROS level, HMGB1 distribution in target tissues, virus replication and severity of PCVAD. This will help decide the use of antioxidants in the feeding regime on pig farms that suffer from PCVAD. Further investigation could examine if similar strategies are employed by DNA viruses, such as PCV3 and BFDV and if there is cross-talk among ER stress, autophagy/mitophagy and mitochondria-sourced ROS in favor of PCV2 replication.
Collapse
|
46
|
Arruda B, Shen H, Zheng Y, Li G. Novel Morbillivirus as Putative Cause of Fetal Death and Encephalitis among Swine. Emerg Infect Dis 2021; 27:1858-1866. [PMID: 34152961 PMCID: PMC8237871 DOI: 10.3201/eid2707.203971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Morbilliviruses are highly contagious pathogens. The Morbillivirus genus includes measles virus, canine distemper virus (CDV), phocine distemper virus (PDV), peste des petits ruminants virus, rinderpest virus, and feline morbillivirus. We detected a novel porcine morbillivirus (PoMV) as a putative cause of fetal death, encephalitis, and placentitis among swine by using histopathology, metagenomic sequencing, and in situ hybridization. Phylogenetic analyses showed PoMV is most closely related to CDV (62.9% nt identities) and PDV (62.8% nt identities). We observed intranuclear inclusions in neurons and glial cells of swine fetuses with encephalitis. Cellular tropism is similar to other morbilliviruses, and PoMV viral RNA was detected in neurons, respiratory epithelium, and lymphocytes. This study provides fundamental knowledge concerning the pathology, genome composition, transmission, and cellular tropism of a novel pathogen within the genus Morbillivirus and opens the door to a new, applicable disease model to drive research forward.
Collapse
|
47
|
Saporiti V, Franzo G, Sibila M, Segalés J. Porcine circovirus 3 (PCV-3) as a causal agent of disease in swine and a proposal of PCV-3 associated disease case definition. Transbound Emerg Dis 2021; 68:2936-2948. [PMID: 34184834 PMCID: PMC9291921 DOI: 10.1111/tbed.14204] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/09/2021] [Accepted: 06/23/2021] [Indexed: 01/14/2023]
Abstract
Porcine circovirus 3 (PCV‐3) was discovered in 2015 using next‐generation sequencing (NGS) methods. Since then, the virus has been detected worldwide in pigs displaying several clinical–pathological outcomes as well as in healthy animals. The objective of this review is to critically discuss the evidence existing so far regarding PCV‐3 as a swine pathogen. In fact, a significant number of publications claim PCV‐3 as a disease causal infectious agent, but very few of them have shown strong evidence of such potential causality. The most convincing proofs of disease association are those that demonstrate a clinical picture linked to multisystemic lymphoplasmacytic to lymphohistiocytic perivascular inflammation and presence of viral nucleic acid within these lesions. Based on these evidence, individual case definitions for PCV‐3‐reproductive disease and PCV‐3‐systemic disease are proposed to standardize diagnostic criteria for PCV‐3‐associated diseases. However, the real frequency of these clinical–pathological conditions linked to the novel virus is unknown, and the most frequent outcome of PCV‐3 infection is likely subclinical based on its worlwide distribution.
Collapse
Affiliation(s)
- Viviane Saporiti
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Padua, Italy
| | - Marina Sibila
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain.,OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Joaquim Segalés
- OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain.,UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
48
|
Tan CY, Lin CN, Ooi PT. What do we know about porcine circovirus 3 (PCV3) diagnosis so far?: A review. Transbound Emerg Dis 2021; 68:2915-2935. [PMID: 34110095 DOI: 10.1111/tbed.14185] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 11/30/2022]
Abstract
Porcine circovirus 3 (PCV3) was first discovered in 2016, almost concomitantly by two groups of researchers in the United States. The novel case was reported in a group of sows with chronic reproductive problems with clinical presentation alike porcine dermatitis and nephropathy syndrome (PDNS), where metagenomic sequencing revealed a genetically divergent porcine circovirus designated PCV3. The discovery of PCV3 in a PDNS case, which used to be considered as part of PCVAD attributed to PCV2 (porcine circovirus 2), has garnered attention and effort in further research of the novel virus. Just when an infectious molecular DNA clone of PCV3 has been developed and successfully used in an in vivo pathogenicity study, yet another novel PCV strain surfaced, designated PCV4 (porcine circovirus 4). So far, PCV3 has been reported in domestic swine population globally at low to moderate prevalence, from almost all sample types including organ tissues, faecal, semen and colostrum samples. PCV3 has been associated with a myriad of clinical presentations, from PDNS to porcine respiratory disease complex (PRDC). This review paper summarizes the studies on PCV3 to date, with focus on diagnosis.
Collapse
Affiliation(s)
- Chew Yee Tan
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| | - Chao-Nan Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Peck Toung Ooi
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
49
|
Histological Lesions and Replication Sites of PCV3 in Naturally Infected Pigs. Animals (Basel) 2021; 11:ani11061520. [PMID: 34073660 PMCID: PMC8224807 DOI: 10.3390/ani11061520] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Diagnosing porcine circovirus type 3 (PCV3) is a challenge in pig production. Although the virus has been recently isolated, the patterns of PCV3-associated histological lesions are still to be elucidated. The present study describes the association of PCV3 mRNA by in situ hybridization within histological lesions and PCV3 DNA detected by real-time PCR in naturally infected pigs. The main histologic lesions associated with PCV3 mRNA detection were lymphoplasmacytic myocarditis and lymphoplasmacytic interstitial pneumonia, in heart and lung, respectively. Our findings offer robust guidance of microscopic lesions associated with PCV3, which may have a key role in PCV3 diagnosis. Abstract Porcine circovirus type 3 (PCV3) has been recently described as a potential cause of abortions and systemic vasculitis in pigs. Although the virus has been detected by real-time PCR in several porcine tissues from countries worldwide, PCV3-associated diseases have not been satisfactorily clarified. The objective of this study was to investigate the association between the presence of PCV3 mRNA detected by in situ hybridization (ISH) within histological lesions and PCV3 DNA detected by real-time PCR in naturally infected pigs. A total of 25 PCV3 PCR-positive cases were analyzed. Formalin-fixed tissues from these cases were evaluated for histologic lesions and for ISH-RNA positive signals for PCV3. The most frequent tissue type with histopathologic lesions was heart, 76.2%, with lymphoplasmacytic myocarditis and epicarditis as the most frequent lesions observed. Lymphoplasmacytic interstitial pneumonia was also a frequent finding, 47.6%. There were also lesions in kidney, liver, spleen and lymph nodes. PCV3-ISH-RNA positive signals were mostly observed in association with lymphoplasmacytic inflammatory infiltrate in various tissues, including arteries. Based on our results, the minimum set of specimens to be submitted for histopathology and mRNA in situ hybridization to confirm or exclude a diagnosis of PCV3 are heart, lung and lymphoid tissues (i.e., spleen and lymph nodes), especially for differential diagnosis related with PCV2-associated diseases.
Collapse
|
50
|
Liu X, Shen H, Zhang X, Liang T, Ban Y, Yu L, Zhang L, Liu Y, Dong J, Zhang P, Lian K, Song C. Porcine circovirus type 3 capsid protein induces NF-κB activation and upregulates pro-inflammatory cytokine expression in HEK-293T cells. Arch Virol 2021; 166:2141-2149. [PMID: 34009439 DOI: 10.1007/s00705-021-05104-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022]
Abstract
Porcine circovirus type 3 (PCV3) has been widely detected throughout the world since it was first discovered on pig farms in 2015. PCV3 is closely associated with cardiac and multisystem inflammation, respiratory disease, congenital tremors, myocarditis, diarrhea, encephalitis and neurologic disease, and periarteritis. However, there have been few reports on the relationship between PCV3 and inflammatory pathways. The NF-κB signaling pathway plays an important role in the defense against viral infection. Here, we demonstrate that the capsid protein (Cap) of PCV3 plays a key role in the activation of NF-κB signaling in HEK-293T cells. Furthermore, PCV3 Cap promotes the mRNA expression of the pro-inflammatory cytokines IL6 and TNFα. In addition, PCV3 Cap promotes RIG-I and MDA5 mRNA expression in RIG-like receptor (RLR) signaling and MyD88 mRNA expression in Toll-like receptor (TLR) signaling but does not influence TRIF mRNA expression in TLR signaling. These results show that PCV3 Cap activates NF-κB signaling, possibly through the RLR and the TLR signaling pathways. This work illustrates that PCV3 Cap activates NF-κB signaling and thus may provide a basis for the pathogenesis of PCV3 and the innate immunity of the host.
Collapse
Affiliation(s)
- Xianhui Liu
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Hanqin Shen
- Wen's Foodstuff Group Co. Ltd, Guangdong Enterprise Key Laboratory for Animal Health and Environmental Control, Yunfu, 527439, China
| | - Xinming Zhang
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Tairun Liang
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Yanfang Ban
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Linyang Yu
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Leyi Zhang
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Yanling Liu
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Jianguo Dong
- School of Animal Husbandry and Medical Engineering, Xinyang Agriculture and Forestry University, No. 1 North Road, Pingqiao District, Xinyang, 464000, China
| | - Pengfei Zhang
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agricultural University, Guangzhou, 510642, China
| | - Kaiqi Lian
- School of Biotechnology and Food Science, Anyang Institute of Technology, Anyang, 455000, China
| | - Changxu Song
- College of Animal Science and National Engineering Center for Swine Breeding Industry, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|