1
|
Gutierrez B, Tsui JLH, Pullano G, Mazzoli M, Gangavarapu K, Inward RPD, Bajaj S, Evans Pena R, Busch-Moreno S, Suchard MA, Pybus OG, Dunner A, Puentes R, Ayala S, Fernandez J, Araos R, Ferres L, Colizza V, Kraemer MUG. Routes of importation and spatial dynamics of SARS-CoV-2 variants during localized interventions in Chile. PNAS NEXUS 2024; 3:pgae483. [PMID: 39525554 PMCID: PMC11547135 DOI: 10.1093/pnasnexus/pgae483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024]
Abstract
Human mobility is strongly associated with the spread of SARS-CoV-2 via air travel on an international scale and with population mixing and the number of people moving between locations on a local scale. However, these conclusions are drawn mostly from observations in the context of the global north where international and domestic connectivity is heavily influenced by the air travel network; scenarios where land-based mobility can also dominate viral spread remain understudied. Furthermore, research on the effects of nonpharmaceutical interventions (NPIs) has mostly focused on national- or regional-scale implementations, leaving gaps in our understanding of the potential benefits of implementing NPIs at higher granularity. Here, we use Chile as a model to explore the role of human mobility on disease spread within the global south; the country implemented a systematic genomic surveillance program and NPIs at a very high spatial granularity. We combine viral genomic data, anonymized human mobility data from mobile phones and official records of international travelers entering the country to characterize the routes of importation of different variants, the relative contributions of airport and land border importations, and the real-time impact of the country's mobility network on the diffusion of SARS-CoV-2. The introduction of variants which are dominant in neighboring countries (and not detected through airport genomic surveillance) is predicted by land border crossings and not by air travelers, and the strength of connectivity between comunas (Chile's lowest administrative divisions) predicts the time of arrival of imported lineages to new locations. A higher stringency of local NPIs was also associated with fewer domestic viral importations. Our analysis sheds light on the drivers of emerging respiratory infectious disease spread outside of air travel and on the consequences of disrupting regular movement patterns at lower spatial scales.
Collapse
Affiliation(s)
- Bernardo Gutierrez
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
- Pandemic Sciences Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Joseph L -H Tsui
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Giulia Pullano
- Department of Biology, Georgetown University, Washington, DC 20057, USA
- INSERM, Sorbonne Université, Institut Pierre Louis d’Epidémiologie et de Santé Publique, IPLESP, 75012 Paris, France
| | - Mattia Mazzoli
- INSERM, Sorbonne Université, Institut Pierre Louis d’Epidémiologie et de Santé Publique, IPLESP, 75012 Paris, France
- ISI Foundation, 10126 Turin, Italy
| | - Karthik Gangavarapu
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rhys P D Inward
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Sumali Bajaj
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Rosario Evans Pena
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Simon Busch-Moreno
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Marc A Suchard
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biostatistics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomathematics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Oliver G Pybus
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
- Pandemic Sciences Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
- Department of Pathobiology and Population Science, Royal Veterinary College, London AL9 7TA, United Kingdom
| | | | - Rodrigo Puentes
- Instituto de Salud Pública de Chile, 7780050 Santiago, Chile
| | - Salvador Ayala
- Instituto de Salud Pública de Chile, 7780050 Santiago, Chile
| | - Jorge Fernandez
- Instituto de Salud Pública de Chile, 7780050 Santiago, Chile
| | - Rafael Araos
- Facultad de Medicina Clínica Alemana, Instituto de Ciencias e Innovación en Medicina (ICIM), Universidad del Desarrollo, 7610671 Santiago, Chile
| | - Leo Ferres
- ISI Foundation, 10126 Turin, Italy
- Data Science Institute, Universidad del Desarrollo, 7610671 Santiago, Chile
- Telefónica, 7500775 Santiago, Chile
| | - Vittoria Colizza
- INSERM, Sorbonne Université, Institut Pierre Louis d’Epidémiologie et de Santé Publique, IPLESP, 75012 Paris, France
- Tokyo Tech World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Moritz U G Kraemer
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
- Pandemic Sciences Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
2
|
Hurtado JI, López-Radcenco A, Izquierdo-García JL, Rodríguez F, Moyna G, Greif G, Nin N. A comparative NMR-based metabolomics study of lung parenchyma of severe COVID-19 patients. Front Mol Biosci 2023; 10:1295216. [PMID: 38033387 PMCID: PMC10684917 DOI: 10.3389/fmolb.2023.1295216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
COVID-19 was the most significant infectious-agent-related cause of death in the 2020-2021 period. On average, over 60% of those admitted to ICU facilities with this disease died across the globe. In severe cases, COVID-19 leads to respiratory and systemic compromise, including pneumonia-like symptoms, acute respiratory distress syndrome, and multiorgan failure. While the upper respiratory tract and lungs are the principal sites of infection and injury, most studies on the metabolic signatures in COVID-19 patients have been carried out on serum and plasma samples. In this report we attempt to characterize the metabolome of lung parenchyma extracts from fatal COVID-19 cases and compare them with that from other respiratory diseases. Our findings indicate that the metabolomic profiles from fatal COVID-19 and non-COVID-19 cases are markedly different, with the former being the result of increased lactate and amino acid metabolism, altered energy pathways, oxidative stress, and inflammatory response. Overall, these findings provide additional insights into the pathophysiology of COVID-19 that could lead to the development of targeted therapies for the treatment of severe cases of the disease, and further highlight the potential of metabolomic approaches in COVID-19 research.
Collapse
Affiliation(s)
- Joaquín I. Hurtado
- Laboratorio de Interacción Hospedero Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - José Luis Izquierdo-García
- Grupo de Resonancia Magnética Nuclear e Imagen en Biomedicina, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Rodríguez
- Centro de Referencia COVID 1, Hospital Español, Administración de Servicios de Salud del Estado, Montevideo, Uruguay
| | - Guillermo Moyna
- Departamento de Química del Litoral, Universidad de la República, Paysandú, Uruguay
| | - Gonzalo Greif
- Laboratorio de Interacción Hospedero Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Nicolás Nin
- Centro de Referencia COVID 1, Hospital Español, Administración de Servicios de Salud del Estado, Montevideo, Uruguay
- Centro de Referencia COVID 2, Instituto Nacional de Ortopedia y Traumatología, Administración de Servicios de Salud del Estado, Montevideo, Uruguay
| |
Collapse
|
3
|
Meredith LW, Aboualy M, Ochola R, Okwarah P, Ozel M, Abubakar A, Barakat A. Key aspects defining the development and implementation of a regional genomic surveillance strategy for the Eastern Mediterranean Region. Influenza Other Respir Viruses 2023; 17:e13205. [PMID: 37859974 PMCID: PMC10583647 DOI: 10.1111/irv.13205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/24/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
The COVID-19 pandemic highlighted the critical role of pathogen sequencing in making informed public health decisions. Initially, the Eastern Mediterranean Region faced limitations in sequencing capacity. However, with robust WHO and stakeholder support, the situation significantly improved. By 2022, COVID-19 sequencing was underway in 22 out of 23 regional countries, with varying throughput and capacity. Notably, three genomic hubs were established in Oman, UAE, and Morocco, playing a key role in providing expanded genomics training and support across the region. While primarily for COVID-19 surveillance, this sequencing capacity offers an opportunity to integrate genomic surveillance into existing networks. This integration can enable early detection and response to high-threat pathogens with pandemic potential. To advance this, WHO/EMRO collaborated with stakeholders to formulate the Eastern Mediterranean Regional Genomic Surveillance Strategy for Emerging Pathogens of Pandemic Concern. Consultative meetings with regional and international genomic surveillance experts identified strategy focal points, key partners, priority pathogens, and implementation steps. As the strategy awaits member states' ratification in Q4 2023, this manuscript outlines pivotal facets defined by member states and the strategic document's key deliverables and opportunities. These efforts aim to yield a substantial positive impact within the region.
Collapse
Affiliation(s)
- Luke W. Meredith
- Infectious Hazard Management, Department of Health EmergencyWorld Health Organization, Eastern Mediterranean Regional OfficeCairoEgypt
| | - Mustafa Aboualy
- Infectious Hazard Management, Department of Health EmergencyWorld Health Organization, Eastern Mediterranean Regional OfficeCairoEgypt
| | - Rachel Ochola
- Infectious Hazard Management, Department of Health EmergencyWorld Health Organization, Eastern Mediterranean Regional OfficeCairoEgypt
| | - Patrick Okwarah
- Infectious Hazard Management, Department of Health EmergencyWorld Health Organization, Eastern Mediterranean Regional OfficeCairoEgypt
| | - Mehmet Ozel
- Infectious Hazard Management, Department of Health EmergencyWorld Health Organization, Eastern Mediterranean Regional OfficeCairoEgypt
| | - Abdinasir Abubakar
- Infectious Hazard Management, Department of Health EmergencyWorld Health Organization, Eastern Mediterranean Regional OfficeCairoEgypt
| | - Amal Barakat
- Infectious Hazard Management, Department of Health EmergencyWorld Health Organization, Eastern Mediterranean Regional OfficeCairoEgypt
| |
Collapse
|
4
|
De La Cruz-Montoya AH, Díaz Velásquez CE, Martínez-Gregorio H, Ruiz-De La Cruz M, Bustos-Arriaga J, Castro-Jiménez TK, Olguín-Hernández JE, Rodríguez-Sosa M, Terrazas-Valdes LI, Jiménez-Alvarez LA, Regino-Zamarripa NE, Ramírez-Martínez G, Cruz-Lagunas A, Peralta-Arrieta I, Armas-López L, Contreras-Garza BM, Palma-Cortés G, Cabello-Gutierrez C, Báez-Saldaña R, Zúñiga J, Ávila-Moreno F, Vaca-Paniagua F. Molecular transition of SARS-CoV-2 from critical patients during the first year of the COVID-19 pandemic in Mexico City. Front Cell Infect Microbiol 2023; 13:1155938. [PMID: 37260697 PMCID: PMC10227454 DOI: 10.3389/fcimb.2023.1155938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023] Open
Abstract
Background The SARS-CoV-2 virus has caused unprecedented mortality since its emergence in late 2019. The continuous evolution of the viral genome through the concerted action of mutational forces has produced distinct variants that became dominant, challenging human immunity and vaccine development. Aim and methods In this work, through an integrative genomic approach, we describe the molecular transition of SARS-CoV-2 by analyzing the viral whole genome sequences from 50 critical COVID-19 patients recruited during the first year of the pandemic in Mexico City. Results Our results revealed differential levels of the evolutionary forces across the genome and specific mutational processes that have shaped the first two epidemiological waves of the pandemic in Mexico. Through phylogenetic analyses, we observed a genomic transition in the circulating SARS-CoV-2 genomes from several lineages prevalent in the first wave to a dominance of the B.1.1.519 variant (defined by T478K, P681H, and T732A mutations in the spike protein) in the second wave. Conclusion This work contributes to a better understanding of the evolutionary dynamics and selective pressures that act at the genomic level, the prediction of more accurate variants of clinical significance, and a better comprehension of the molecular mechanisms driving the evolution of SARS-CoV-2 to improve vaccine and drug development.
Collapse
Affiliation(s)
- Aldo Hugo De La Cruz-Montoya
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Mexico
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Clara Estela Díaz Velásquez
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Mexico
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Héctor Martínez-Gregorio
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Mexico
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Miguel Ruiz-De La Cruz
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Mexico
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Avenida Instituto Politécnico Nacional, Colonia San Pedro Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, Mexico
| | - José Bustos-Arriaga
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Tannya Karen Castro-Jiménez
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Jonadab Efraín Olguín-Hernández
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Mexico
| | - Miriam Rodríguez-Sosa
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Luis Ignacio Terrazas-Valdes
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Mexico
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Luis Armando Jiménez-Alvarez
- Laboratorio de Inmunobiología y Genética y Departamento de Virología, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Nora Elemi Regino-Zamarripa
- Laboratorio de Inmunobiología y Genética y Departamento de Virología, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ciudad de México, Mexico
| | - Gustavo Ramírez-Martínez
- Laboratorio de Inmunobiología y Genética y Departamento de Virología, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Alfredo Cruz-Lagunas
- Laboratorio de Inmunobiología y Genética y Departamento de Virología, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Irlanda Peralta-Arrieta
- Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Leonel Armas-López
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | | | - Gabriel Palma-Cortés
- Department of Research in Virology and Mycology, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Carlos Cabello-Gutierrez
- Department of Research in Virology and Mycology, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Renata Báez-Saldaña
- Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Joaquín Zúñiga
- Laboratorio de Inmunobiología y Genética y Departamento de Virología, Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ciudad de México, Mexico
- Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
| | - Federico Ávila-Moreno
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
- Instituto Nacional de Enfermedades Respiratorias (INER) Ismael Cosio Villegas, Ciudad de México, Mexico
- Laboratorio 12 de Enfermedades Pulmonares y Epigenómica del Cáncer, Unidad de Investigación en Biomedicina (UBIMED), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Felipe Vaca-Paniagua
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Tlalnepantla, Mexico
- Unidad de Investigación en Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| |
Collapse
|
5
|
Cancela F, Ramos N, Smyth DS, Etchebehere C, Berois M, Rodríguez J, Rufo C, Alemán A, Borzacconi L, López J, González E, Botto G, Thornhill SG, Mirazo S, Trujillo M. Wastewater surveillance of SARS-CoV-2 genomic populations on a country-wide scale through targeted sequencing. PLoS One 2023; 18:e0284483. [PMID: 37083889 PMCID: PMC10121012 DOI: 10.1371/journal.pone.0284483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
SARS-CoV-2 surveillance of viral populations in wastewater samples is recognized as a useful tool for monitoring epidemic waves and boosting health preparedness. Next generation sequencing of viral RNA isolated from wastewater is a convenient and cost-effective strategy to understand the molecular epidemiology of SARS-CoV-2 and provide insights on the population dynamics of viral variants at the community level. However, in low- and middle-income countries, isolated groups have performed wastewater monitoring and data has not been extensively shared in the scientific community. Here we report the results of monitoring the co-circulation and abundance of variants of concern (VOCs) of SARS-CoV-2 in Uruguay, a small country in Latin America, between November 2020-July 2021 using wastewater surveillance. RNA isolated from wastewater was characterized by targeted sequencing of the Receptor Binding Domain region within the spike gene. Two computational approaches were used to track the viral variants. The results of the wastewater analysis showed the transition in the overall predominance of viral variants in wastewater from No-VOCs to successive VOCs, in agreement with clinical surveillance from sequencing of nasal swabs. The mutations K417T, E484K and N501Y, that characterize the Gamma VOC, were detected as early as December 2020, several weeks before the first clinical case was reported. Interestingly, a non-synonymous mutation described in the Delta VOC, L452R, was detected at a very low frequency since April 2021 when using a recently described sequence analysis tool (SAM Refiner). Wastewater NGS-based surveillance of SARS-CoV-2 is a reliable and complementary tool for monitoring the introduction and prevalence of VOCs at a community level allowing early public health decisions. This approach allows the tracking of symptomatic and asymptomatic individuals, who are generally under-reported in countries with limited clinical testing capacity. Our results suggests that wastewater-based epidemiology can contribute to improving public health responses in low- and middle-income countries.
Collapse
Affiliation(s)
- Florencia Cancela
- Sección Virología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Natalia Ramos
- Sección Virología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Davida S Smyth
- Department of Life Sciences, Texas A&M University-San Antonio, San Antonio, Texas, United States of America
| | - Claudia Etchebehere
- Departamento de Bioquímica y Genómica Microbiana, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Mabel Berois
- Sección Virología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Jesica Rodríguez
- Laboratorio de Alimentos y Nutrición, Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Caterina Rufo
- Laboratorio de Alimentos y Nutrición, Polo Tecnológico de Pando, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Alicia Alemán
- Departamento de Medicina Preventiva, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Liliana Borzacconi
- Instituto de Ingeniería Química, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Julieta López
- Departamento de Ingeniería Ambiental, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Elizabeth González
- Departamento de Ingeniería Ambiental, Facultad de Ingeniería, Universidad de la República, Montevideo, Uruguay
| | - Germán Botto
- Departamento de Métodos Cuantitativos, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Starla G Thornhill
- Department of Life Sciences, Texas A&M University-San Antonio, San Antonio, Texas, United States of America
| | - Santiago Mirazo
- Sección Virología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Departamento de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Mónica Trujillo
- Department of Biological Sciences and Geology, Queensborough Community College of The City University of New York, Queens, New York, United States of America
| |
Collapse
|
6
|
Chen D, Randhawa GS, Soltysiak MP, de Souza CP, Kari L, Singh SM, Hill KA. Mutational Patterns Observed in SARS-CoV-2 Genomes Sampled From Successive Epochs Delimited by Major Public Health Events in Ontario, Canada: Genomic Surveillance Study. JMIR BIOINFORMATICS AND BIOTECHNOLOGY 2022; 3:e42243. [PMID: 38935965 PMCID: PMC11135226 DOI: 10.2196/42243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 06/29/2024]
Abstract
BACKGROUND The emergence of SARS-CoV-2 variants with mutations associated with increased transmissibility and virulence is a public health concern in Ontario, Canada. Characterizing how the mutational patterns of the SARS-CoV-2 genome have changed over time can shed light on the driving factors, including selection for increased fitness and host immune response, that may contribute to the emergence of novel variants. Moreover, the study of SARS-CoV-2 in the microcosm of Ontario, Canada can reveal how different province-specific public health policies over time may be associated with observed mutational patterns as a model system. OBJECTIVE This study aimed to perform a comprehensive analysis of single base substitution (SBS) types, counts, and genomic locations observed in SARS-CoV-2 genomic sequences sampled in Ontario, Canada. Comparisons of mutational patterns were conducted between sequences sampled during 4 different epochs delimited by major public health events to track the evolution of the SARS-CoV-2 mutational landscape over 2 years. METHODS In total, 24,244 SARS-CoV-2 genomic sequences and associated metadata sampled in Ontario, Canada from January 1, 2020, to December 31, 2021, were retrieved from the Global Initiative on Sharing All Influenza Data database. Sequences were assigned to 4 epochs delimited by major public health events based on the sampling date. SBSs from each SARS-CoV-2 sequence were identified relative to the MN996528.1 reference genome. Catalogues of SBS types and counts were generated to estimate the impact of selection in each open reading frame, and identify mutation clusters. The estimation of mutational fitness over time was performed using the Augur pipeline. RESULTS The biases in SBS types and proportions observed support previous reports of host antiviral defense activity involving the SARS-CoV-2 genome. There was an increase in U>C substitutions associated with adenosine deaminase acting on RNA (ADAR) activity uniquely observed during Epoch 4. The burden of novel SBSs observed in SARS-CoV-2 genomic sequences was the greatest in Epoch 2 (median 5), followed by Epoch 3 (median 4). Clusters of SBSs were observed in the spike protein open reading frame, ORF1a, and ORF3a. The high proportion of nonsynonymous SBSs and increasing dN/dS metric (ratio of nonsynonymous to synonymous mutations in a given open reading frame) to above 1 in Epoch 4 indicate positive selection of the spike protein open reading frame. CONCLUSIONS Quantitative analysis of the mutational patterns of the SARS-CoV-2 genome in the microcosm of Ontario, Canada within early consecutive epochs of the pandemic tracked the mutational dynamics in the context of public health events that instigate significant shifts in selection and mutagenesis. Continued genomic surveillance of emergent variants will be useful for the design of public health policies in response to the evolving COVID-19 pandemic.
Collapse
Affiliation(s)
- David Chen
- Department of Biology, Western University, London, ON, Canada
| | - Gurjit S Randhawa
- School of Mathematical and Computational Sciences, University of Prince Edward Island, Charlottetown, PE, Canada
| | | | - Camila Pe de Souza
- Department of Statistical and Actuarial Sciences, Western University, London, ON, Canada
| | - Lila Kari
- School of Computer Science, University of Waterloo, Waterloo, ON, Canada
| | - Shiva M Singh
- Department of Biology, Western University, London, ON, Canada
| | - Kathleen A Hill
- Department of Biology, Western University, London, ON, Canada
| |
Collapse
|
7
|
Al-Ani RM. Ear, nose, and throat manifestations of COVID-19 and its vaccines. World J Clin Cases 2022; 10:8808-8815. [PMID: 36157654 PMCID: PMC9477042 DOI: 10.12998/wjcc.v10.i25.8808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/01/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly infectious disease and was designated a pandemic by the World Health Organization (WHO) on March 11, 2020. There are no classical manifestations of the disease. The most prevalent symptoms include fever, cough, dyspnea, myalgia and headache. The main route of transmission of the severe acute respiratory syndrome coronavirus-2 is through the upper respiratory tract. Therefore, it is not strange to find different ear, nose and throat (ENT) symptoms in individuals infected with this virus. Olfactory dysfunction is a common feature of COVID-19; either it is the only presenting symptom or it accompanies other manifestations of the disease. Other otolaryngological features such as sudden sensorineural hearing loss (SSNHL), dysphonia, nasal obstruction, sore throat, etc. are less frequent manifestations of COVID-19. These features, in addition, to being presented early in the disease process, certain long-standing symptoms like parosmia, dysphonia, and persistent deafness, are other characteristics of the disease. Geographical variation in otorhinolaryngological prevalence is another problem with this debilitating disease. Local and systemic adverse effects (local site injection pain, fever, myalgia, headache, and others) of the COVID-19 vaccines are more frequent than otolaryngological side effects (anosmia, hyposmia, Bell’s palsy, SSNHL, etc.). We aimed in this review to summarize the early and persistent ENT symptoms of COVID-19 or after the various COVID-19 vaccines.
Collapse
Affiliation(s)
- Raid M Al-Ani
- Department of Surgery/Otolaryngology, University of Anbar, College of Medicine, Ramadi 31001, Anbar, Iraq
| |
Collapse
|
8
|
A Comparative Study of the Plasma Chemokine Profile in COVID-19 Patients Infected with Different SARS-CoV-2 Variants. Int J Mol Sci 2022; 23:ijms23169058. [PMID: 36012323 PMCID: PMC9409001 DOI: 10.3390/ijms23169058] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Infection caused by SARS-CoV-2 mostly affects the upper and lower respiratory tracts and causes symptoms ranging from the common cold to pneumonia with acute respiratory distress syndrome. Chemokines are deeply involved in the chemoattraction, proliferation, and activation of immune cells within inflammation. It is crucial to consider that mutations within the virion can potentially affect the clinical course of SARS-CoV-2 infection because disease severity and manifestation vary depending on the genetic variant. Our objective was to measure and assess the different concentrations of chemokines involved in COVID-19 caused by different variants of the virus. METHODS We used the blood plasma of patients infected with different variants of SARS-CoV-2, i.e., the ancestral Wuhan strain and the Alpha, Delta, and Omicron variants. We measured the concentrations of 11 chemokines in the samples: CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1β, CCL7/MCP-3, CCL11/Eotaxin, CCL22/MDC, CXCL1/GROα, CXCL8/IL-8, CXCL9/MIG, CXCL10/IP-10, and CX3CL1/Fractalkine. RESULTS We noted a statistically significant elevation in the concentrations of CCL2/MCP-1, CXCL8/IL-8, and CXCL1/IP-10 independently of the variant, and a drop in the CCL22/MDC concentrations. CONCLUSIONS The chemokine concentrations varied significantly depending on the viral variant, leading us to infer that mutations in viral proteins play a role in the cellular and molecular mechanisms of immune responses.
Collapse
|
9
|
Flores-Alanis A, Delgado G, Espinosa-Camacho LF, Rodríguez-Gómez F, Cruz-Rangel A, Sandner-Miranda L, Cravioto A, Morales-Espinosa R. Two Years of Evolutionary Dynamics of SARS-CoV-2 in Mexico, With Emphasis on the Variants of Concern. Front Microbiol 2022; 13:886585. [PMID: 35865920 PMCID: PMC9294468 DOI: 10.3389/fmicb.2022.886585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/07/2022] [Indexed: 01/09/2023] Open
Abstract
Background The advance of the COVID-19 pandemic and spread of SARS-CoV-2 around the world has generated the emergence of new genomic variants. Those variants with possible clinical and therapeutic implications have been classified as variants of concern (VOCs) and variants of interest (VOIs). Objective This study aims to describe the COVID-19 pandemic and build the evolutionary and demographic dynamics of SARS-CoV-2 populations in Mexico, with emphasis on VOCs. Methods 30,645 complete genomes of SARS-CoV-2 from Mexico were obtained from GISAID databases up to January 25, 2022. A lineage assignment and phylogenetic analysis was completed, and demographic history for Alpha, Gamma, Delta and Omicron VOCs, and the Mexican variant (B.1.1.519) was performed. Results 148 variants were detected among the 30,645 genomes analyzed with the Delta variant being the most prevalent in the country, representing 49.7% of all genomes. Conclusion The COVID-19 pandemic in Mexico was caused by several introductions of SARS-CoV-2, mainly from the United States of America and Europe, followed by local transmission. Regional molecular epidemiological surveillance must implement to detect emergence, introductions and spread of new variants with biologically important mutations.
Collapse
Affiliation(s)
- Alejandro Flores-Alanis
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriela Delgado
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis F. Espinosa-Camacho
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Flor Rodríguez-Gómez
- Laboratorio de Análisis de la Biodiversidad y Genómica, Departamento de Bioingeniería Traslacional, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Mexico
| | - Armando Cruz-Rangel
- Laboratorio de Bioquímica de Enfermedades Crónicas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Luisa Sandner-Miranda
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandro Cravioto
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosario Morales-Espinosa
- Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
10
|
Li J, Jia H, Tian M, Wu N, Yang X, Qi J, Ren W, Li F, Bian H. SARS-CoV-2 and Emerging Variants: Unmasking Structure, Function, Infection, and Immune Escape Mechanisms. Front Cell Infect Microbiol 2022; 12:869832. [PMID: 35646741 PMCID: PMC9134119 DOI: 10.3389/fcimb.2022.869832] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/06/2022] [Indexed: 12/24/2022] Open
Abstract
As of April 1, 2022, over 468 million COVID-19 cases and over 6 million deaths have been confirmed globally. Unlike the common coronavirus, SARS-CoV-2 has highly contagious and attracted a high level of concern worldwide. Through the analysis of SARS-CoV-2 structural, non-structural, and accessory proteins, we can gain a deeper understanding of structure-function relationships, viral infection mechanisms, and viable strategies for antiviral therapy. Angiotensin-converting enzyme 2 (ACE2) is the first widely acknowledged SARS-CoV-2 receptor, but researches have shown that there are additional co-receptors that can facilitate the entry of SARS-CoV-2 to infect humans. We have performed an in-depth review of published papers, searching for co-receptors or other auxiliary membrane proteins that enhance viral infection, and analyzing pertinent pathogenic mechanisms. The genome, and especially the spike gene, undergoes mutations at an abnormally high frequency during virus replication and/or when it is transmitted from one individual to another. We summarized the main mutant strains currently circulating global, and elaborated the structural feature for increased infectivity and immune evasion of variants. Meanwhile, the principal purpose of the review is to update information on the COVID-19 outbreak. Many countries have novel findings on the early stage of the epidemic, and accruing evidence has rewritten the timeline of the outbreak, triggering new thinking about the origin and spread of COVID-19. It is anticipated that this can provide further insights for future research and global epidemic prevention and control.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Feifei Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
11
|
Cattani VB, dos Santos TA, Castro-Alves J, Ribeiro-Alves M. Risk assessment and rationalization of health resource allocation: Lessons from the Brazilian COVID-19 cohort in 2020. Prev Med Rep 2022; 26:101724. [PMID: 35132372 PMCID: PMC8809658 DOI: 10.1016/j.pmedr.2022.101724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 10/29/2022] Open
|
12
|
da Silva RA, de Souza Ferreira LP, Leite JMRS, Tiraboschi FA, Valente TM, de Paiva Roda VM, Duarte Sanchez JJ. Statistical Modeling of Deaths from COVID-19 Influenced by Social Isolation in Latin American Countries. Am J Trop Med Hyg 2022; 106:tpmd210217. [PMID: 35292589 PMCID: PMC9128698 DOI: 10.4269/ajtmh.21-0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/18/2022] [Indexed: 11/08/2022] Open
Abstract
Social isolation is extremely important to minimize the effects of a pandemic. Latin American countries have similar socioeconomic characteristics and health system infrastructures. These countries face difficulties in dealing with the COVID-19 pandemic, and some of them have very high death rates. The government stringency index (GSI) of 12 Latin American countries was gathered from the Oxford COVID-19 Government Response Tracker project. The GSI is calculated by considering nine social distancing and isolation measures. Population data from the United Nations Population Fund and number-of-deaths data were collected from the dashboard of the WHO. We performed an analysis of the data collected from March through December 2020 using a mixed linear model. Peru, Brazil, Chile, Bolivia, Colombia, Argentina, and Ecuador had the highest death rates, with an increasing trend over time. Suriname, Venezuela, Uruguay, Paraguay, and Guyana had the lowest death rates, and these rates remained steady. The GSI in most countries followed the same pattern during the months analyzed. In other words, high indices at the beginning of the pandemic and lower indices in the latter months, whereas the number of deaths increased during the entire period. Almost no country kept its GSI high for a long time, especially from October to December. Time and GSI, as well as their interaction, were highly significant. As their interaction increases, the death rate decreases. In conclusion, a greater GSI at the start of the COVID-19 pandemic was associated with a decrease in the number of deaths over time in Latin American countries.
Collapse
Affiliation(s)
- Rafael André da Silva
- Life Systems Biology Graduate Program, Institute of Biomedical Sciences,University of São Paulo (ICB/USP), São Paulo, SP, Brazil
- Biosciences Graduate Program, Intitute of Biosciences, Letters and Exact Sciences, São Paulo State University (IBILCE/UNESP), São José do Rio Preto, SP, Brazil
| | - Luiz Philipe de Souza Ferreira
- Structural and Functional Biology Graduate Program, Paulista School of Medicine, Federal University of Sao Paulo (EPM/UNIFESP), São Paulo, SP, Brazil
- Department of Physiotherapy, University of Fortaleza (UNIFOR), Fortaleza, CE, Brazil
| | | | | | | | - Vinicius Moraes de Paiva Roda
- Life Systems Biology Graduate Program, Institute of Biomedical Sciences,University of São Paulo (ICB/USP), São Paulo, SP, Brazil
| | | |
Collapse
|
13
|
Mendiola-Pastrana IR, López-Ortiz E, Río de la Loza-Zamora JG, González J, Gómez-García A, López-Ortiz G. SARS-CoV-2 Variants and Clinical Outcomes: A Systematic Review. Life (Basel) 2022; 12:life12020170. [PMID: 35207458 PMCID: PMC8879159 DOI: 10.3390/life12020170] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/19/2022] Open
Abstract
Background: From the start of the COVID-19 pandemic, new SARS-CoV-2 variants have emerged that potentially affect transmissibility, severity, and immune evasion in infected individuals. In the present systematic review, the impact of different SARS-CoV-2 variants on clinical outcomes is analyzed. Methods: A systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020. Two databases (PubMed and ScienceDirect) were searched for original articles published from 1 January 2020 to 23 November 2021. The articles that met the selection criteria were appraised according to the Newcastle–Ottawa Quality Assessment Scale. Results: Thirty-three articles were included, involving a total of 253,209 patients and 188,944 partial or complete SARS-CoV-2 sequences. The most reported SARS-CoV-2 variants showed changes in the spike protein, N protein, RdRp and NSP3. In 28 scenarios, SARS-CoV-2 variants were found to be associated with a mild to severe or even fatal clinical outcome, 15 articles reported such association to be statistically significant. Adjustments in eight of them were made for age, sex and other covariates. Conclusions: SARS-CoV-2 variants can potentially have an impact on clinical outcomes; future studies focused on this topic should consider several covariates that influence the clinical course of the disease.
Collapse
Affiliation(s)
- Indira R. Mendiola-Pastrana
- Subdivisión de Medicina Familiar, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.R.M.-P.); (E.L.-O.); (J.G.R.d.l.L.-Z.)
| | - Eduardo López-Ortiz
- Subdivisión de Medicina Familiar, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.R.M.-P.); (E.L.-O.); (J.G.R.d.l.L.-Z.)
| | - José G. Río de la Loza-Zamora
- Subdivisión de Medicina Familiar, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.R.M.-P.); (E.L.-O.); (J.G.R.d.l.L.-Z.)
| | - James González
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Anel Gómez-García
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia 58351, Mexico;
| | - Geovani López-Ortiz
- Subdivisión de Medicina Familiar, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.R.M.-P.); (E.L.-O.); (J.G.R.d.l.L.-Z.)
- Correspondence:
| |
Collapse
|
14
|
Oulas A, Richter J, Zanti M, Tomazou M, Michailidou K, Christodoulou K, Christodoulou C, Spyrou GM. In depth analysis of Cyprus-specific mutations of SARS-CoV-2 strains using computational approaches. BMC Genom Data 2021; 22:48. [PMID: 34773976 PMCID: PMC8590444 DOI: 10.1186/s12863-021-01007-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aims to characterize SARS-CoV-2 mutations which are primarily prevalent in the Cypriot population. Moreover, using computational approaches, we assess whether these mutations are associated with changes in viral virulence. METHODS We utilize genetic data from 144 sequences of SARS-CoV-2 strains from the Cypriot population obtained between March 2020 and January 2021, as well as all data available from GISAID. We combine this with countries' regional information, such as deaths and cases per million, as well as COVID-19-related public health austerity measure response times. Initial indications of selective advantage of Cyprus-specific mutations are obtained by mutation tracking analysis. This entails calculating specific mutation frequencies within the Cypriot population and comparing these with their prevalence world-wide throughout the course of the pandemic. We further make use of linear regression models to extrapolate additional information that may be missed through standard statistical analysis. RESULTS We report a single mutation found in the ORF1ab gene (nucleotide position 18,440) that appears to be significantly enriched within the Cypriot population. The amino acid change is denoted as S6059F, which maps to the SARS-CoV-2 NSP14 protein. We further analyse this mutation using regression models to investigate possible associations with increased deaths and cases per million. Moreover, protein structure prediction tools show that the mutation infers a conformational change to the protein that significantly alters its structure when compared to the reference protein. CONCLUSIONS Investigating Cyprus-specific mutations for SARS-CoV-2 can lead to a better understanding of viral pathogenicity. Researching these mutations can generate potential links between viral-specific mutations and the unique genomics of the Cypriot population. This can not only lead to important findings from which to battle the pandemic on a national level, but also provide insights into viral virulence worldwide.
Collapse
Affiliation(s)
- Anastasis Oulas
- Bioinformatics Department, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
- The Cyprus School of Molecular Medicine, Nicosia, Cyprus.
| | - Jan Richter
- Molecular Virology Department, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Maria Zanti
- Bioinformatics Department, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Biostatistics Unit, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marios Tomazou
- Bioinformatics Department, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Neurogenetics Department, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyriaki Michailidou
- The Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Biostatistics Unit, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyproula Christodoulou
- The Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Neurogenetics Department, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Christina Christodoulou
- The Cyprus School of Molecular Medicine, Nicosia, Cyprus
- Molecular Virology Department, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George M Spyrou
- Bioinformatics Department, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| |
Collapse
|
15
|
A Global Mutational Profile of SARS-CoV-2: A Systematic Review and Meta-Analysis of 368,316 COVID-19 Patients. Life (Basel) 2021; 11:life11111224. [PMID: 34833100 PMCID: PMC8620851 DOI: 10.3390/life11111224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022] Open
Abstract
Since its first detection in December 2019, more than 232 million cases of COVID-19, including 4.7 million deaths, have been reported by the WHO. The SARS-CoV-2 viral genomes have evolved rapidly worldwide, causing the emergence of new variants. This systematic review and meta-analysis was conducted to provide a global mutational profile of SARS-CoV-2 from December 2019 to October 2020. The review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA), and a study protocol was lodged with PROSPERO. Data from 62 eligible studies involving 368,316 SARS-CoV-2 genomes were analyzed. The mutational data analyzed showed most studies detected mutations in the Spike protein (n = 50), Nucleocapsid phosphoprotein (n = 34), ORF1ab gene (n = 29), 5′-UTR (n = 28) and ORF3a (n = 25). Under the random-effects model, pooled prevalence of SARS-CoV-2 variants was estimated at 95.1% (95% CI; 93.3–96.4%; I2 = 98.952%; p = 0.000) while subgroup meta-analysis by country showed majority of the studies were conducted ‘Worldwide’ (n = 10), followed by ‘Multiple countries’ (n = 6) and the USA (n = 5). The estimated prevalence indicated a need to continuously monitor the prevalence of new mutations due to their potential influence on disease severity, transmissibility and vaccine effectiveness.
Collapse
|
16
|
Gunadi, Hakim MS, Wibawa H, Marcellus, Trisnawati I, Supriyati E, Afiahayati, Khair RE, Iskandar K, Siswanto, Irene, Anggorowati N, Daniwijaya EW, Nugrahaningsih DAA, Puspadewi Y, Simanjaya S, Puspitarani DA, Hanifin HF, Setiawan AA, Tania I, Amalia CS, Artayasa IPA, Rachman H, Mulyawan H, Ananda NR, Arguni E, Nuryastuti T, Wibawa T. Association between prognostic factors and the outcomes of patients infected with SARS-CoV-2 harboring multiple spike protein mutations. Sci Rep 2021; 11:21352. [PMID: 34725366 PMCID: PMC8560824 DOI: 10.1038/s41598-021-00459-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/05/2021] [Indexed: 12/16/2022] Open
Abstract
The outcome of SARS-CoV-2 infection is determined by multiple factors, including the viral, host genetics, age, and comorbidities. This study investigated the association between prognostic factors and disease outcomes of patients infected by SARS-CoV-2 with multiple S protein mutations. Fifty-one COVID-19 patients were recruited in this study. Whole-genome sequencing of 170 full-genomes of SARS-CoV-2 was conducted with the Illumina MiSeq sequencer. Most patients (47%) had mild symptoms of COVID-19 followed by moderate (19.6%), no symptoms (13.7%), severe (4%), and critical (2%). Mortality was found in 13.7% of the COVID-19 patients. There was a significant difference between the age of hospitalized patients (53.4 ± 18 years) and the age of non-hospitalized patients (34.6 ± 19) (p = 0.001). The patients' hospitalization was strongly associated with hypertension, diabetes, and anticoagulant and were strongly significant with the OR of 17 (95% CI 2-144; p = 0.001), 4.47 (95% CI 1.07-18.58; p = 0.039), and 27.97 (95% CI 1.54-507.13; p = 0.02), respectively; while the patients' mortality was significantly correlated with patients' age, anticoagulant, steroid, and diabetes, with OR of 8.44 (95% CI 1.5-47.49; p = 0.016), 46.8 (95% CI 4.63-472.77; p = 0.001), 15.75 (95% CI 2-123.86; p = 0.009), and 8.5 (95% CI 1.43-50.66; p = 0.019), respectively. This study found the clade: L (2%), GH (84.3%), GR (11.7%), and O (2%). Besides the D614G mutation, we found L5F (18.8%), V213A (18.8%), and S689R (8.3%). No significant association between multiple S protein mutations and the patients' hospitalization or mortality. Multivariate analysis revealed that hypertension and anticoagulant were the significant factors influencing the hospitalization and mortality of patients with COVID-19 with an OR of 17.06 (95% CI 2.02-144.36; p = 0.009) and 46.8 (95% CI 4.63-472.77; p = 0.001), respectively. Moreover, the multiple S protein mutations almost reached a strong association with patients' hospitalization (p = 0.07). We concluded that hypertension and anticoagulant therapy have a significant impact on COVID-19 outcomes. This study also suggests that multiple S protein mutations may impact the COVID-19 outcomes. This further emphasized the significance of monitoring SARS-CoV-2 variants through genomic surveillance, particularly those that may impact the COVID-19 outcomes.
Collapse
Affiliation(s)
- Gunadi
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jl. Kesehatan No. 1, Yogyakarta, 55281, Indonesia.
| | - Mohamad Saifudin Hakim
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hendra Wibawa
- Disease Investigation Center, Wates, Yogyakarta, Indonesia
| | - Marcellus
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ika Trisnawati
- Pulmonology Division, Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Endah Supriyati
- Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Afiahayati
- Department of Computer Science and Electronics Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Riat El Khair
- Department of Clinical Pathology and Laboratory Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, 55281, Indonesia
| | - Kristy Iskandar
- Department of Child Health/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/UGM Academic Hospital, Yogyakarta, Indonesia
| | - Siswanto
- Department of Physiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/UGM Academic Hospital, Yogyakarta, Indonesia
| | - Irene
- Balai Besar Teknik Kesehatan Lingkungan Dan Pengendalian Penyakit, Yogyakarta, Yogyakarta, Indonesia
| | - Nungki Anggorowati
- Department of Anatomical Pathology/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Edwin Widyanto Daniwijaya
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/UGM Academic Hospital, Yogyakarta, Indonesia
| | - Dwi Aris Agung Nugrahaningsih
- Department of Pharmacology and Therapy/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yunika Puspadewi
- Department of Clinical Pathology and Laboratory Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, 55281, Indonesia
| | - Susan Simanjaya
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dyah Ayu Puspitarani
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hana Fauzyyah Hanifin
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Alvina Alexandra Setiawan
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Irene Tania
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Cita Shafira Amalia
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - I Putu Aditio Artayasa
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Haries Rachman
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Nur Rahmi Ananda
- Pulmonology Division, Department of Internal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Eggi Arguni
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Titik Nuryastuti
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Tri Wibawa
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
17
|
Rego N, Salazar C, Paz M, Costábile A, Fajardo A, Ferrés I, Perbolianachis P, Fernández-Calero T, Noya V, Machado MR, Brandes M, Arce R, Arleo M, Possi T, Reyes N, Bentancor MN, Lizasoain A, Bortagaray V, Moller A, Chappos O, Nin N, Hurtado J, Duquía M, González MB, Griffero L, Méndez M, Techera MP, Zanetti J, Pereira E, Rivera B, Maidana M, Alonso M, Smircich P, Arantes I, Mir D, Alonso C, Medina J, Albornoz H, Colina R, Bello G, Moreno P, Moratorio G, Iraola G, Spangenberg L. Emergence and Spread of a B.1.1.28-Derived P.6 Lineage with Q675H and Q677H Spike Mutations in Uruguay. Viruses 2021; 13:1801. [PMID: 34578382 PMCID: PMC8473254 DOI: 10.3390/v13091801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
Uruguay controlled the viral dissemination during the first nine months of the SARS-CoV-2 pandemic. Unfortunately, towards the end of 2020, the number of daily new cases exponentially increased. Herein, we analyzed the country-wide genetic diversity of SARS-CoV-2 between November 2020 and April 2021. We identified that the most prevalent viral variant during the first epidemic wave in Uruguay (December 2020-February 2021) was a B.1.1.28 sublineage carrying Spike mutations Q675H + Q677H, now designated as P.6, followed by lineages P.2 and P.7. P.6 probably arose around November 2020, in Montevideo, Uruguay's capital department, and rapidly spread to other departments, with evidence of further local transmission clusters; it also spread sporadically to the USA and Spain. The more efficient dissemination of lineage P.6 with respect to P.2 and P.7 and the presence of mutations (Q675H and Q677H) in the proximity of the key cleavage site at the S1/S2 boundary suggest that P.6 may be more transmissible than other lineages co-circulating in Uruguay. Although P.6 was replaced by the variant of concern (VOC) P.1 as the predominant lineage in Uruguay since April 2021, the monitoring of the concurrent emergence of Q675H + Q677H in VOCs should be of worldwide interest.
Collapse
Affiliation(s)
- Natalia Rego
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (N.R.); (T.F.-C.); (M.B.)
| | - Cecilia Salazar
- Laboratorio de Genómica Microbiana, Institut Pasteur Montevideo, Montevideo 11400, Uruguay; (C.S.); (I.F.)
- Centro de Innovación en Vigilancia Epidemiológica, Institut Pasteur Montevideo, Montevideo 11400, Uruguay; (M.P.); (A.C.)
| | - Mercedes Paz
- Centro de Innovación en Vigilancia Epidemiológica, Institut Pasteur Montevideo, Montevideo 11400, Uruguay; (M.P.); (A.C.)
| | - Alicia Costábile
- Centro de Innovación en Vigilancia Epidemiológica, Institut Pasteur Montevideo, Montevideo 11400, Uruguay; (M.P.); (A.C.)
- Laboratorio de Virología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (A.F.); (P.P.); (R.A.)
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Alvaro Fajardo
- Laboratorio de Virología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (A.F.); (P.P.); (R.A.)
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Ignacio Ferrés
- Laboratorio de Genómica Microbiana, Institut Pasteur Montevideo, Montevideo 11400, Uruguay; (C.S.); (I.F.)
- Centro de Innovación en Vigilancia Epidemiológica, Institut Pasteur Montevideo, Montevideo 11400, Uruguay; (M.P.); (A.C.)
| | - Paula Perbolianachis
- Laboratorio de Virología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (A.F.); (P.P.); (R.A.)
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Tamara Fernández-Calero
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (N.R.); (T.F.-C.); (M.B.)
- Department of Exact and Natural Sciences, Universidad Católica del Uruguay, Montevideo 11600, Uruguay
| | - Veronica Noya
- Laboratorio de Biología Molecular, Sanatorio Americano, Montevideo 11600, Uruguay; (V.N.); (M.A.); (T.P.); (N.R.); (M.N.B.)
| | - Matias R. Machado
- Protein Engineering, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
| | - Mariana Brandes
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (N.R.); (T.F.-C.); (M.B.)
| | - Rodrigo Arce
- Laboratorio de Virología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (A.F.); (P.P.); (R.A.)
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
- Laboratorio de Biología Molecular, Sanatorio Americano, Montevideo 11600, Uruguay; (V.N.); (M.A.); (T.P.); (N.R.); (M.N.B.)
| | - Mailen Arleo
- Laboratorio de Biología Molecular, Sanatorio Americano, Montevideo 11600, Uruguay; (V.N.); (M.A.); (T.P.); (N.R.); (M.N.B.)
| | - Tania Possi
- Laboratorio de Biología Molecular, Sanatorio Americano, Montevideo 11600, Uruguay; (V.N.); (M.A.); (T.P.); (N.R.); (M.N.B.)
| | - Natalia Reyes
- Laboratorio de Biología Molecular, Sanatorio Americano, Montevideo 11600, Uruguay; (V.N.); (M.A.); (T.P.); (N.R.); (M.N.B.)
| | - María Noel Bentancor
- Laboratorio de Biología Molecular, Sanatorio Americano, Montevideo 11600, Uruguay; (V.N.); (M.A.); (T.P.); (N.R.); (M.N.B.)
| | - Andrés Lizasoain
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto 50000, Uruguay; (A.L.); (V.B.); (A.M.); (R.C.)
| | - Viviana Bortagaray
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto 50000, Uruguay; (A.L.); (V.B.); (A.M.); (R.C.)
| | - Ana Moller
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto 50000, Uruguay; (A.L.); (V.B.); (A.M.); (R.C.)
| | - Odhille Chappos
- Centro Universitario Regional Este, Universidad de la República, Rocha 27000, Uruguay; (O.C.); (M.D.); (M.B.G.); (L.G.); (M.M.); (M.P.T.); (J.Z.); (E.P.); (C.A.)
| | - Nicolas Nin
- Unidad de Cuidados Intensivos, Hospital Español “Juan J. Crottogini”, Montevideo 11800, Uruguay; (N.N.); (J.H.)
| | - Javier Hurtado
- Unidad de Cuidados Intensivos, Hospital Español “Juan J. Crottogini”, Montevideo 11800, Uruguay; (N.N.); (J.H.)
| | - Melissa Duquía
- Centro Universitario Regional Este, Universidad de la República, Rocha 27000, Uruguay; (O.C.); (M.D.); (M.B.G.); (L.G.); (M.M.); (M.P.T.); (J.Z.); (E.P.); (C.A.)
| | - Maria Belén González
- Centro Universitario Regional Este, Universidad de la República, Rocha 27000, Uruguay; (O.C.); (M.D.); (M.B.G.); (L.G.); (M.M.); (M.P.T.); (J.Z.); (E.P.); (C.A.)
| | - Luciana Griffero
- Centro Universitario Regional Este, Universidad de la República, Rocha 27000, Uruguay; (O.C.); (M.D.); (M.B.G.); (L.G.); (M.M.); (M.P.T.); (J.Z.); (E.P.); (C.A.)
| | - Mauricio Méndez
- Centro Universitario Regional Este, Universidad de la República, Rocha 27000, Uruguay; (O.C.); (M.D.); (M.B.G.); (L.G.); (M.M.); (M.P.T.); (J.Z.); (E.P.); (C.A.)
| | - Maria Pía Techera
- Centro Universitario Regional Este, Universidad de la República, Rocha 27000, Uruguay; (O.C.); (M.D.); (M.B.G.); (L.G.); (M.M.); (M.P.T.); (J.Z.); (E.P.); (C.A.)
| | - Juan Zanetti
- Centro Universitario Regional Este, Universidad de la República, Rocha 27000, Uruguay; (O.C.); (M.D.); (M.B.G.); (L.G.); (M.M.); (M.P.T.); (J.Z.); (E.P.); (C.A.)
| | - Emiliano Pereira
- Centro Universitario Regional Este, Universidad de la República, Rocha 27000, Uruguay; (O.C.); (M.D.); (M.B.G.); (L.G.); (M.M.); (M.P.T.); (J.Z.); (E.P.); (C.A.)
| | - Bernardina Rivera
- Laboratorio de Diagnóstico Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (B.R.); (M.M.); (M.A.)
| | - Matías Maidana
- Laboratorio de Diagnóstico Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (B.R.); (M.M.); (M.A.)
| | - Martina Alonso
- Laboratorio de Diagnóstico Molecular, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (B.R.); (M.M.); (M.A.)
| | - Pablo Smircich
- Bioinformatics Laboratory, Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo 11600, Uruguay;
- Laboratory of Molecular Interactions, Facultad de Ciencias, UdelaR, Montevideo 11400, Uruguay
| | - Ighor Arantes
- Laboratorio de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (I.A.); (G.B.)
| | - Daiana Mir
- Unidad de Genómica y Bioinformática, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte, Universidad de la República, Salto 50000, Uruguay;
| | - Cecilia Alonso
- Centro Universitario Regional Este, Universidad de la República, Rocha 27000, Uruguay; (O.C.); (M.D.); (M.B.G.); (L.G.); (M.M.); (M.P.T.); (J.Z.); (E.P.); (C.A.)
| | - Julio Medina
- Cátedra de Enfermedades Infecciosas, Facultad de Medicina, Universidad de la República, Montevideo 11300, Uruguay; (J.M.); (H.A.)
- Dirección General de Salud, Ministerio de Salud Pública, Montevideo 11200, Uruguay
| | - Henry Albornoz
- Cátedra de Enfermedades Infecciosas, Facultad de Medicina, Universidad de la República, Montevideo 11300, Uruguay; (J.M.); (H.A.)
- Dirección General de Salud, Ministerio de Salud Pública, Montevideo 11200, Uruguay
| | - Rodney Colina
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto 50000, Uruguay; (A.L.); (V.B.); (A.M.); (R.C.)
| | - Gonzalo Bello
- Laboratorio de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro 21040-900, Brazil; (I.A.); (G.B.)
| | - Pilar Moreno
- Centro de Innovación en Vigilancia Epidemiológica, Institut Pasteur Montevideo, Montevideo 11400, Uruguay; (M.P.); (A.C.)
- Laboratorio de Virología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (A.F.); (P.P.); (R.A.)
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Gonzalo Moratorio
- Centro de Innovación en Vigilancia Epidemiológica, Institut Pasteur Montevideo, Montevideo 11400, Uruguay; (M.P.); (A.C.)
- Laboratorio de Virología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (A.F.); (P.P.); (R.A.)
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
| | - Gregorio Iraola
- Laboratorio de Genómica Microbiana, Institut Pasteur Montevideo, Montevideo 11400, Uruguay; (C.S.); (I.F.)
- Centro de Innovación en Vigilancia Epidemiológica, Institut Pasteur Montevideo, Montevideo 11400, Uruguay; (M.P.); (A.C.)
- Center for Integrative Biology, Universidad Mayor, Santiago de Chile 8580745, Chile
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Lucía Spangenberg
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay; (N.R.); (T.F.-C.); (M.B.)
- Department of Informatics and Computer Science, Universidad Católica del Uruguay, Montevideo 11600, Uruguay
| |
Collapse
|
18
|
Rego N, Costábile A, Paz M, Salazar C, Perbolianachis P, Spangenberg L, Ferrés I, Arce R, Fajardo A, Arleo M, Possi T, Reyes N, Bentancor MN, Lizasoain A, Benítez MJ, Bortagaray V, Moller A, Bello G, Arantes I, Brandes M, Smircich P, Chappos O, Duquía M, González B, Griffero L, Méndez M, Techera MP, Zanetti J, Rivera B, Maidana M, Alonso M, Alonso C, Medina J, Albornoz H, Colina R, Noya V, Iraola G, Fernández-Calero T, Moratorio G, Moreno P. Real-Time Genomic Surveillance for SARS-CoV-2 Variants of Concern, Uruguay. Emerg Infect Dis 2021; 27:2957-2960. [PMID: 34437831 PMCID: PMC8544970 DOI: 10.3201/eid2711.211198] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We developed a genomic surveillance program for real-time monitoring of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) in Uruguay. We report on a PCR method for SARS-CoV-2 VOCs, the surveillance workflow, and multiple independent introductions and community transmission of the SARS-CoV-2 P.1 VOC in Uruguay.
Collapse
|
19
|
Patiño LH, Ballesteros N, Muñoz M, Castañeda S, Hernández C, Gomez S, Florez C, Rico A, Pardo L, Hernandez-Pereira CE, Delgado-Noguera L, Grillet ME, Hernandez MM, Khan Z, van de Guchte A, Dutta J, Gonzalez-Reiche AS, Simon V, van Bakel H, Sordillo EM, Ramírez JD, Paniz-Mondolfi AE. SARS-CoV-2 in Transit: Characterization of SARS-CoV-2 Genomes From Venezuelan Migrants in Colombia. Int J Infect Dis 2021; 110:410-416. [PMID: 34333122 PMCID: PMC10130730 DOI: 10.1016/j.ijid.2021.07.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/30/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES To evaluate the genomic epidemiology of SARS-CoV-2 from Venezuelan migrants living in Colombia. METHODS This study sequenced SARS-CoV-2 from 30 clinical specimens collected from Venezuelan migrants. Genomes were compared with the Wuhan reference genome to identify polymorphisms, reconstruct phylogenetic relationships and perform comparative genomic analyses. Geographic, sociodemographic and clinical data were also studied across genotypes. RESULTS This study demonstrated the presence of six distinct SARS-CoV-2 lineages circulating among Venezuelan migrants, as well as a close relationship between SARS-CoV-2 genomic sequences obtained from individuals living in the Venezuelan-Colombian border regions of La Guajira (Colombia) and Zulia (Venezuela). Three clusters (C-1, C-2 and C-3) were well supported by phylogenomic inference, supporting the hypothesis of three potential transmission routes across the Colombian-Venezuelan border. These genomes included point mutations previously associated with increased infectivity. A mutation (L18F) in the N-terminal domain of the spike protein that has been associated with compromised binding of neutralizing antibodies was found in 2 of 30 (6.6%) genomes. A statistically significant association was identified with symptomatology for cluster C2. CONCLUSION The close phylogenetic relationships between SARS-CoV-2 genomes from Venezuelan migrants and from people living at the Venezuela-Colombian border support the importance of human movements for the spread of COVID-19 and for emerging virus variants.
Collapse
Affiliation(s)
- Luz H Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Nathalia Ballesteros
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | | | | | | | | | - Carlos E Hernandez-Pereira
- Instituto de Investigaciones Biomédicas IDB/Emerging Pathogens Network-Incubadora Venezolana de la Ciencia, Cabudare, Venezuela
| | - Lourdes Delgado-Noguera
- Instituto de Investigaciones Biomédicas IDB/Emerging Pathogens Network-Incubadora Venezolana de la Ciencia, Cabudare, Venezuela
| | - Maria E Grillet
- Instituto de Zoología y Ecología Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Matthew M Hernandez
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zenab Khan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adriana van de Guchte
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jayeeta Dutta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana S Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emilia Mia Sordillo
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; St. Luke's-Roosevelt Institute for Health Sciences, Mount Sinai Health System, New York, NY, USA
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
| | - Alberto E Paniz-Mondolfi
- Instituto de Investigaciones Biomédicas IDB/Emerging Pathogens Network-Incubadora Venezolana de la Ciencia, Cabudare, Venezuela; Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
20
|
Dao TL, Hoang VT, Colson P, Lagier JC, Million M, Raoult D, Levasseur A, Gautret P. SARS-CoV-2 Infectivity and Severity of COVID-19 According to SARS-CoV-2 Variants: Current Evidence. J Clin Med 2021; 10:2635. [PMID: 34203844 PMCID: PMC8232800 DOI: 10.3390/jcm10122635] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND We conducted this review to summarize the relation between viral mutation and infectivity of SARS-CoV-2 and also the severity of COVID-19 in vivo and in vitro. METHOD Articles were identified through a literature search until 31 May 2021, in PubMed, Web of Science and Google Scholar. RESULTS Sixty-three studies were included. To date, most studies showed that the viral mutations, especially the D614G variant, correlate with a higher infectivity than the wild-type virus. However, the evidence of the association between viral mutation and severity of the disease is scant. A SARS-CoV-2 variant with a 382-nucleotide deletion was associated with less severe infection in patients. The 11,083G > U mutation was significantly associated with asymptomatic patients. By contrast, ORF1ab 4715L and S protein 614G variants were significantly more frequent in patients from countries where high fatality rates were also reported. The current evidence showed that variants of concern have led to increased infectivity and deteriorating epidemiological situations. However, the relation between this variant and severity of COVID-19 infection was contradictory. CONCLUSION The COVID-19 pandemic continues to spread worldwide. It is necessary to anticipate large clinical cohorts to evaluate the virulence and transmissibility of SARS-CoV-2 mutants.
Collapse
Affiliation(s)
- Thi Loi Dao
- IRD, AP-HM, SSA, VITROME, Aix Marseille University, 13005 Marseille, France; (T.L.D.); (V.T.H.)
- IHU—Méditerranée Infection, Aix Marseille University, 13005 Marseille, France; (P.C.); (J.C.L.); (M.M.); (D.R.); (A.L.)
- Thai Binh University of Medicine and Pharmacy, Thai Binh 410000, Vietnam
| | - Van Thuan Hoang
- IRD, AP-HM, SSA, VITROME, Aix Marseille University, 13005 Marseille, France; (T.L.D.); (V.T.H.)
- IHU—Méditerranée Infection, Aix Marseille University, 13005 Marseille, France; (P.C.); (J.C.L.); (M.M.); (D.R.); (A.L.)
- Thai Binh University of Medicine and Pharmacy, Thai Binh 410000, Vietnam
| | - Philippe Colson
- IHU—Méditerranée Infection, Aix Marseille University, 13005 Marseille, France; (P.C.); (J.C.L.); (M.M.); (D.R.); (A.L.)
- IRD, AP-HM, MEPHI, Aix Marseille University, 13005 Marseille, France
| | - Jean Christophe Lagier
- IHU—Méditerranée Infection, Aix Marseille University, 13005 Marseille, France; (P.C.); (J.C.L.); (M.M.); (D.R.); (A.L.)
- IRD, AP-HM, MEPHI, Aix Marseille University, 13005 Marseille, France
| | - Matthieu Million
- IHU—Méditerranée Infection, Aix Marseille University, 13005 Marseille, France; (P.C.); (J.C.L.); (M.M.); (D.R.); (A.L.)
- IRD, AP-HM, MEPHI, Aix Marseille University, 13005 Marseille, France
| | - Didier Raoult
- IHU—Méditerranée Infection, Aix Marseille University, 13005 Marseille, France; (P.C.); (J.C.L.); (M.M.); (D.R.); (A.L.)
- IRD, AP-HM, MEPHI, Aix Marseille University, 13005 Marseille, France
| | - Anthony Levasseur
- IHU—Méditerranée Infection, Aix Marseille University, 13005 Marseille, France; (P.C.); (J.C.L.); (M.M.); (D.R.); (A.L.)
- IRD, AP-HM, MEPHI, Aix Marseille University, 13005 Marseille, France
| | - Philippe Gautret
- IRD, AP-HM, SSA, VITROME, Aix Marseille University, 13005 Marseille, France; (T.L.D.); (V.T.H.)
- IHU—Méditerranée Infection, Aix Marseille University, 13005 Marseille, France; (P.C.); (J.C.L.); (M.M.); (D.R.); (A.L.)
| |
Collapse
|
21
|
Cuspoca AF, Díaz LL, Acosta AF, Peñaloza MK, Méndez YR, Clavijo DC, Yosa Reyes J. An Immunoinformatics Approach for SARS-CoV-2 in Latam Populations and Multi-Epitope Vaccine Candidate Directed towards the World's Population. Vaccines (Basel) 2021; 9:vaccines9060581. [PMID: 34205992 PMCID: PMC8228945 DOI: 10.3390/vaccines9060581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
The coronavirus pandemic is a major public health crisis affecting global health systems with dire socioeconomic consequences, especially in vulnerable regions such as Latin America (LATAM). There is an urgent need for a vaccine to help control contagion, reduce mortality and alleviate social costs. In this study, we propose a rational multi-epitope candidate vaccine against SARS-CoV-2. Using bioinformatics, we constructed a library of potential vaccine peptides, based on the affinity of the most common major human histocompatibility complex (HLA) I and II molecules in the LATAM population to predict immunological complexes among antigenic, non-toxic and non-allergenic peptides extracted from the conserved regions of 92 proteomes. Although HLA-C, had the greatest antigenic peptide capacity from SARS-CoV-2, HLA-B and HLA-A, could be more relevant based on COVID-19 risk of infection in LATAM countries. We also used three-dimensional structures of SARS-CoV-2 proteins to identify potential regions for antibody production. The best HLA-I and II predictions (with increased coverage in common alleles and regions evoking B lymphocyte responses) were grouped into an optimized final multi-epitope construct containing the adjuvants Beta defensin-3, TpD, and PADRE, which are recognized for invoking a safe and specific immune response. Finally, we used Molecular Dynamics to identify the multi-epitope construct which may be a stable target for TLR-4/MD-2. This would prove to be safe and provide the physicochemical requirements for conducting experimental tests around the world.
Collapse
Affiliation(s)
- Andrés Felipe Cuspoca
- Grupo de Investigación en Epidemiología Clínica de Colombia (GRECO), Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (A.F.C.); (L.L.D.); (A.F.A.); (M.K.P.); (Y.R.M.)
| | - Laura Lorena Díaz
- Grupo de Investigación en Epidemiología Clínica de Colombia (GRECO), Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (A.F.C.); (L.L.D.); (A.F.A.); (M.K.P.); (Y.R.M.)
| | - Alvaro Fernando Acosta
- Grupo de Investigación en Epidemiología Clínica de Colombia (GRECO), Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (A.F.C.); (L.L.D.); (A.F.A.); (M.K.P.); (Y.R.M.)
| | - Marcela Katherine Peñaloza
- Grupo de Investigación en Epidemiología Clínica de Colombia (GRECO), Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (A.F.C.); (L.L.D.); (A.F.A.); (M.K.P.); (Y.R.M.)
| | - Yardany Rafael Méndez
- Grupo de Investigación en Epidemiología Clínica de Colombia (GRECO), Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (A.F.C.); (L.L.D.); (A.F.A.); (M.K.P.); (Y.R.M.)
| | - Diana Carolina Clavijo
- Facultad de Ingeniería y Ciencias, Pontificia Universidad Javeriana Cali, Santiago de Cali 760031, Colombia;
| | - Juvenal Yosa Reyes
- Laboratorio de Simulación Molecular, Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Correspondence:
| |
Collapse
|
22
|
Mir D, Rego N, Resende PC, Tort F, Fernández-Calero T, Noya V, Brandes M, Possi T, Arleo M, Reyes N, Victoria M, Lizasoain A, Castells M, Maya L, Salvo M, Schäffer Gregianini T, Mar da Rosa MT, Garay Martins L, Alonso C, Vega Y, Salazar C, Ferrés I, Smircich P, Sotelo Silveira J, Fort RS, Mathó C, Arantes I, Appolinario L, Mendonça AC, Benítez-Galeano MJ, Simoes C, Graña M, Motta F, Siqueira MM, Bello G, Colina R, Spangenberg L. Recurrent Dissemination of SARS-CoV-2 Through the Uruguayan-Brazilian Border. Front Microbiol 2021; 12:653986. [PMID: 34122369 PMCID: PMC8195593 DOI: 10.3389/fmicb.2021.653986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
Uruguay is one of the few countries in the Americas that successfully contained the coronavirus disease 19 (COVID-19) epidemic during the first half of 2020. Nevertheless, the intensive human mobility across the dry border with Brazil is a major challenge for public health authorities. We aimed to investigate the origin of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains detected in Uruguayan localities bordering Brazil as well as to measure the viral flux across this ∼1,100 km uninterrupted dry frontier. Using complete SARS-CoV-2 genomes from the Uruguayan-Brazilian bordering region and phylogeographic analyses, we inferred the virus dissemination frequency between Brazil and Uruguay and characterized local outbreak dynamics during the first months (May-July) of the pandemic. Phylogenetic analyses revealed multiple introductions of SARS-CoV-2 Brazilian lineages B.1.1.28 and B.1.1.33 into Uruguayan localities at the bordering region. The most probable sources of viral strains introduced to Uruguay were the Southeast Brazilian region and the state of Rio Grande do Sul. Some of the viral strains introduced in Uruguayan border localities between early May and mid-July were able to locally spread and originated the first outbreaks detected outside the metropolitan region. The viral lineages responsible for Uruguayan urban outbreaks were defined by a set of between four and 11 mutations (synonymous and non-synonymous) with respect to the ancestral B.1.1.28 and B.1.1.33 viruses that arose in Brazil, supporting the notion of a rapid genetic differentiation between SARS-CoV-2 subpopulations spreading in South America. Although Uruguayan borders have remained essentially closed to non-Uruguayan citizens, the inevitable flow of people across the dry border with Brazil allowed the repeated entry of the virus into Uruguay and the subsequent emergence of local outbreaks in Uruguayan border localities. Implementation of coordinated bi-national surveillance systems is crucial to achieve an efficient control of the SARS-CoV-2 spread across this kind of highly permeable borderland regions around the world.
Collapse
Affiliation(s)
- Daiana Mir
- Unidad de Genómica y Bioinformática, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte, Universidad de la República, Salto, Uruguay
| | - Natalia Rego
- Unidad de Bioinformaítica, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Paola Cristina Resende
- Laboratório de Vírus Respiratórios e Sarampo, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
| | - Fernando Tort
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte, Universidad de la República, Salto, Uruguay
| | - Tamara Fernández-Calero
- Unidad de Bioinformaítica, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Departamento de Ciencias Exactas y Naturales, Universidad Católica del Uruguay, Montevideo, Uruguay
| | - Verónica Noya
- Unidad de Bioinformaítica, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Laboratorio de Biología Molecular, Sanatorio Americano, Montevideo, Uruguay
| | - Mariana Brandes
- Unidad de Bioinformaítica, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Tania Possi
- Laboratorio de Biología Molecular, Sanatorio Americano, Montevideo, Uruguay
| | - Mailen Arleo
- Laboratorio de Biología Molecular, Sanatorio Americano, Montevideo, Uruguay
| | - Natalia Reyes
- Laboratorio de Biología Molecular, Sanatorio Americano, Montevideo, Uruguay
| | - Matías Victoria
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte, Universidad de la República, Salto, Uruguay
| | - Andres Lizasoain
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte, Universidad de la República, Salto, Uruguay
| | - Matías Castells
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte, Universidad de la República, Salto, Uruguay
| | - Leticia Maya
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte, Universidad de la República, Salto, Uruguay
| | - Matías Salvo
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte, Universidad de la República, Salto, Uruguay
| | - Tatiana Schäffer Gregianini
- Laboratório Central de Saúde Pública, Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul (LACEN/CEVS/SES-RS), Porto Alegre, Brazil
| | - Marilda Tereza Mar da Rosa
- Laboratório Central de Saúde Pública, Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul (LACEN/CEVS/SES-RS), Porto Alegre, Brazil
| | - Letícia Garay Martins
- Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cecilia Alonso
- CENUR Este-Sede Rocha-Universidad de la República, Montevideo, Uruguay
| | - Yasser Vega
- Laboratorio DILAVE/MGAP-INIA-Universidad de la República, Tacuarembó, Uruguay
| | - Cecilia Salazar
- Laboratorio de Genómica Microbiana, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Ignacio Ferrés
- Laboratorio de Genómica Microbiana, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Pablo Smircich
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Jose Sotelo Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC. Sección Biología Celular, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Rafael Sebastián Fort
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Mathó
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC. Sección Biología Celular, Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ighor Arantes
- Laboratorio de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
| | - Luciana Appolinario
- Laboratório de Vírus Respiratórios e Sarampo, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
| | - Ana Carolina Mendonça
- Laboratório de Vírus Respiratórios e Sarampo, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
| | - María José Benítez-Galeano
- Unidad de Genómica y Bioinformática, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte, Universidad de la República, Salto, Uruguay
| | - Camila Simoes
- Unidad de Bioinformaítica, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Martín Graña
- Unidad de Bioinformaítica, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Fernando Motta
- Laboratório de Vírus Respiratórios e Sarampo, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
| | - Marilda Mendonça Siqueira
- Laboratório de Vírus Respiratórios e Sarampo, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
| | - Gonzalo Bello
- Laboratorio de AIDS e Imunologia Molecular, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, Brazil
| | - Rodney Colina
- Laboratorio de Virología Molecular, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte, Universidad de la República, Salto, Uruguay
| | - Lucía Spangenberg
- Unidad de Bioinformaítica, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Departamento de Informática y Ciencias de la Computación, Universidad Católica del Uruguay, Montevideo, Uruguay
| |
Collapse
|
23
|
Miao M, Clercq ED, Li G. Genetic Diversity of SARS-CoV-2 over a One-Year Period of the COVID-19 Pandemic: A Global Perspective. Biomedicines 2021; 9:412. [PMID: 33920487 PMCID: PMC8069977 DOI: 10.3390/biomedicines9040412] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/26/2021] [Accepted: 04/07/2021] [Indexed: 02/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a global pandemic of coronavirus disease in 2019 (COVID-19). Genome surveillance is a key method to track the spread of SARS-CoV-2 variants. Genetic diversity and evolution of SARS-CoV-2 were analyzed based on 260,673 whole-genome sequences, which were sampled from 62 countries between 24 December 2019 and 12 January 2021. We found that amino acid (AA) substitutions were observed in all SARS-CoV-2 proteins, and the top six proteins with the highest substitution rates were ORF10, nucleocapsid, ORF3a, spike glycoprotein, RNA-dependent RNA polymerase, and ORF8. Among 25,629 amino acid substitutions at 8484 polymorphic sites across the coding region of the SARS-CoV-2 genome, the D614G (93.88%) variant in spike and the P323L (93.74%) variant in RNA-dependent RNA polymerase were the dominant variants on six continents. As of January 2021, the genomic sequences of SARS-CoV-2 could be divided into at least 12 different clades. Distributions of SARS-CoV-2 clades were featured with temporal and geographical dynamics on six continents. Overall, this large-scale analysis provides a detailed mapping of SARS-CoV-2 variants in different geographic areas at different time points, highlighting the importance of evaluating highly prevalent variants in the development of SARS-CoV-2 antiviral drugs and vaccines.
Collapse
Affiliation(s)
- Miao Miao
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China;
| | - Erik De Clercq
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium;
| | - Guangdi Li
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410078, China;
| |
Collapse
|
24
|
Gutierrez B, Márquez S, Prado-Vivar B, Becerra-Wong M, Guadalupe JJ, da Silva Candido D, Fernandez-Cadena JC, Morey-Leon G, Armas-Gonzalez R, Andrade-Molina DM, Bruno A, de Mora D, Olmedo M, Portugal D, Gonzalez M, Orlando A, Drexler JF, Moreira-Soto A, Sander AL, Brünink S, Kühne A, Patiño L, Carrazco-Montalvo A, Mestanza O, Zurita J, Sevillano G, du Plessis L, McCrone JT, Coloma J, Trueba G, Barragán V, Rojas-Silva P, Grunauer M, Kraemer MU, Faria NR, Escalera-Zamudio M, Pybus OG, Cárdenas P. Genomic epidemiology of SARS-CoV-2 transmission lineages in Ecuador. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.03.31.21254685. [PMID: 33851177 PMCID: PMC8043474 DOI: 10.1101/2021.03.31.21254685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Characterisation of SARS-CoV-2 genetic diversity through space and time can reveal trends in virus importation and domestic circulation, and permit the exploration of questions regarding the early transmission dynamics. Here we present a detailed description of SARS-CoV-2 genomic epidemiology in Ecuador, one of the hardest hit countries during the early stages of the COVID-19 pandemic. We generate and analyse 160 whole genome sequences sampled from all provinces of Ecuador in 2020. Molecular clock and phylgeographic analysis of these sequences in the context of global SARS-CoV-2 diversity enable us to identify and characterise individual transmission lineages within Ecuador, explore their spatiotemporal distributions, and consider their introduction and domestic circulation. Our results reveal a pattern of multiple international importations across the country, with apparent differences between key provinces. Transmission lineages were mostly introduced before the implementation of non-pharmaceutical interventions (NPIs), with differential degrees of persistence and national dissemination.
Collapse
Affiliation(s)
- Bernardo Gutierrez
- Department of Zoology, University of Oxford, Oxford, UK
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Sully Márquez
- Instituto de Microbiología, Universidad San Francisco de Quito, Quito, Ecuador
| | - Belén Prado-Vivar
- Instituto de Microbiología, Universidad San Francisco de Quito, Quito, Ecuador
| | - Mónica Becerra-Wong
- Instituto de Microbiología, Universidad San Francisco de Quito, Quito, Ecuador
| | - Juan José Guadalupe
- Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito, Quito, Ecuador
| | | | - Juan Carlos Fernandez-Cadena
- Omics Sciences Laboratory, Faculty of Medical Sciences, Universidad de Especialidades Espíritu Santo, Samborondón, Ecuador
| | - Gabriel Morey-Leon
- Faculty of Medical Sciences, Universidad de Guayaquil, Guayaquil, Ecuador
| | - Rubén Armas-Gonzalez
- Faculty of Sciences, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Derly Madeleiny Andrade-Molina
- Omics Sciences Laboratory, Faculty of Medical Sciences, Universidad de Especialidades Espíritu Santo, Samborondón, Ecuador
| | - Alfredo Bruno
- Instituto Nacional de Investigación en Salud Pública, Guayaquil, Ecuador
- Universidad Agraria del Ecuador
| | - Domenica de Mora
- Instituto Nacional de Investigación en Salud Pública, Guayaquil, Ecuador
| | - Maritza Olmedo
- Instituto Nacional de Investigación en Salud Pública, Guayaquil, Ecuador
| | - Denisse Portugal
- Instituto Nacional de Investigación en Salud Pública, Guayaquil, Ecuador
| | - Manuel Gonzalez
- Instituto Nacional de Investigación en Salud Pública, Guayaquil, Ecuador
| | - Alberto Orlando
- Instituto Nacional de Investigación en Salud Pública, Guayaquil, Ecuador
| | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | - Andres Moreira-Soto
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | - Anna-Lena Sander
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | - Sebastian Brünink
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | - Arne Kühne
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | - Leandro Patiño
- Instituto Nacional de Investigación en Salud Pública, Guayaquil, Ecuador
| | | | - Orson Mestanza
- Instituto Nacional de Investigación en Salud Pública, Guayaquil, Ecuador
| | - Jeannete Zurita
- Facultad de Medicina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Unidad de Investigaciones en Biomedicina, Zurita & Zurita Laboratorios, Quito, Ecuador
| | - Gabriela Sevillano
- Unidad de Investigaciones en Biomedicina, Zurita & Zurita Laboratorios, Quito, Ecuador
| | | | - John T. McCrone
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Josefina Coloma
- School of Public Health, University of California, Berkeley, USA
| | - Gabriel Trueba
- Instituto de Microbiología, Universidad San Francisco de Quito, Quito, Ecuador
| | - Verónica Barragán
- Instituto de Microbiología, Universidad San Francisco de Quito, Quito, Ecuador
| | | | - Michelle Grunauer
- Escuela de Medicina, Universidad San Francisco de Quito, Quito, Ecuador
| | | | - Nuno R. Faria
- Department of Zoology, University of Oxford, Oxford, UK
- MRC Centre for Global Infectious Disease Analysis, J-IDEA, Imperial College London, London, UK
| | | | - Oliver G. Pybus
- Department of Zoology, University of Oxford, Oxford, UK
- Department of Pathobiology and Population Sciences, Royal Veterinary College London, London, UK
| | - Paúl Cárdenas
- Instituto de Microbiología, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
25
|
Gutierrez B, Márquez S, Prado-Vivar B, Becerra-Wong M, Guadalupe JJ, Candido DDS, Fernandez-Cadena JC, Morey-Leon G, Armas-Gonzalez R, Andrade-Molina DM, Bruno A, De Mora D, Olmedo M, Portugal D, Gonzalez M, Orlando A, Drexler JF, Moreira-Soto A, Sander AL, Brünink S, Kühne A, Patiño L, Carrazco-Montalvo A, Mestanza O, Zurita J, Sevillano G, Du Plessis L, McCrone JT, Coloma J, Trueba G, Barragán V, Rojas-Silva P, Grunauer M, Kraemer MUG, Faria NR, Escalera-Zamudio M, Pybus OG, Cárdenas P. Genomic epidemiology of SARS-CoV-2 transmission lineages in Ecuador. Virus Evol 2021; 7:veab051. [PMID: 34527281 PMCID: PMC8244811 DOI: 10.1093/ve/veab051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/12/2021] [Accepted: 06/03/2021] [Indexed: 12/23/2022] Open
Abstract
Characterisation of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic diversity through space and time can reveal trends in virus importation and domestic circulation and permit the exploration of questions regarding the early transmission dynamics. Here, we present a detailed description of SARS-CoV-2 genomic epidemiology in Ecuador, one of the hardest hit countries during the early stages of the coronavirus-19 pandemic. We generated and analysed 160 whole genome sequences sampled from all provinces of Ecuador in 2020. Molecular clock and phylogeographic analysis of these sequences in the context of global SARS-CoV-2 diversity enable us to identify and characterise individual transmission lineages within Ecuador, explore their spatiotemporal distributions, and consider their introduction and domestic circulation. Our results reveal a pattern of multiple international importations across the country, with apparent differences between key provinces. Transmission lineages were mostly introduced before the implementation of non-pharmaceutical interventions, with differential degrees of persistence and national dissemination.
Collapse
Affiliation(s)
- Bernardo Gutierrez
- Department of Zoology, University of Oxford, Oxford, Oxfordshire OX1 3SY, UK
| | - Sully Márquez
- Instituto de Microbiología, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Belén Prado-Vivar
- Instituto de Microbiología, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Mónica Becerra-Wong
- Instituto de Microbiología, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Juan José Guadalupe
- Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | | | - Juan Carlos Fernandez-Cadena
- Omics Sciences Laboratory, Faculty of Medical Sciences, Universidad de Especialidades Espíritu Santo, Samborondón 092301, Ecuador
| | - Gabriel Morey-Leon
- Faculty of Medical Sciences, Universidad de Guayaquil, Guayaquil 090613, Ecuador
| | - Rubén Armas-Gonzalez
- Faculty of Sciences, Escuela Superior Politécnica del Litoral, Guayaquil 090112, Ecuador
| | - Derly Madeleiny Andrade-Molina
- Omics Sciences Laboratory, Faculty of Medical Sciences, Universidad de Especialidades Espíritu Santo, Samborondón 092301, Ecuador
| | - Alfredo Bruno
- Instituto Nacional de Investigación en Salud Pública, Guayaquil 3961, Ecuador
| | - Domenica De Mora
- Instituto Nacional de Investigación en Salud Pública, Guayaquil 3961, Ecuador
| | - Maritza Olmedo
- Instituto Nacional de Investigación en Salud Pública, Guayaquil 3961, Ecuador
| | - Denisse Portugal
- Instituto Nacional de Investigación en Salud Pública, Guayaquil 3961, Ecuador
| | - Manuel Gonzalez
- Instituto Nacional de Investigación en Salud Pública, Guayaquil 3961, Ecuador
| | - Alberto Orlando
- Instituto Nacional de Investigación en Salud Pública, Guayaquil 3961, Ecuador
| | - Jan Felix Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany
| | - Andres Moreira-Soto
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany
| | - Anna-Lena Sander
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany
| | - Sebastian Brünink
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany
| | - Arne Kühne
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany
| | - Leandro Patiño
- Instituto Nacional de Investigación en Salud Pública, Guayaquil 3961, Ecuador
| | | | - Orson Mestanza
- Servicio de Genética, Instituto Nacional de Salud del Niño San Borja, Lima 15037, Perú
| | - Jeannete Zurita
- Facultad de Medicina, Pontificia Universidad Católica del Ecuador, Quito 170143, Ecuador
| | - Gabriela Sevillano
- Unidad de Investigaciones en Biomedicina, Zurita & Zurita Laboratorios, Quito 170104, Ecuador
| | - Louis Du Plessis
- Department of Zoology, University of Oxford, Oxford, Oxfordshire OX1 3SY, UK
| | - John T McCrone
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JW, UK
| | - Josefina Coloma
- School of Public Health, University of California, Berkeley CA 94704, USA
| | - Gabriel Trueba
- Instituto de Microbiología, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Verónica Barragán
- Instituto de Microbiología, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Patricio Rojas-Silva
- Instituto de Microbiología, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Michelle Grunauer
- Escuela de Medicina, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Moritz U G Kraemer
- Department of Zoology, University of Oxford, Oxford, Oxfordshire OX1 3SY, UK
| | - Nuno R Faria
- Department of Zoology, University of Oxford, Oxford, Oxfordshire OX1 3SY, UK
| | | | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, Oxfordshire OX1 3SY, UK
| | - Paúl Cárdenas
- Instituto de Microbiología, Universidad San Francisco de Quito, Quito 170901, Ecuador
| |
Collapse
|