1
|
Mirzakhani M, Bayat M, Dashti M, Tahmasebi S, Rostamtabar M, Esmaeili Gouvarchin Ghaleh H, Amani J. The Assessment of Anti-SARS-CoV-2 Antibodies in Different Vaccine Platforms: A Systematic Review and Meta-Analysis of COVID-19 Vaccine Clinical Trial Studies. Rev Med Virol 2024; 34:e2579. [PMID: 39327654 DOI: 10.1002/rmv.2579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/13/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND AND OBJECTIVE The COVID-19 pandemic spread rapidly throughout the world and caused millions of deaths globally. Several vaccines have been developed to control the COVID-19 pandemic and reduce the burden it placed on public health. This study aimed to assess the efficacy of different vaccine platforms in inducing potent antibody responses. Moreover, the seroconversion rate and common side effects of vaccine platforms were evaluated. METHODS This meta-analysis included clinical trials of COVID-19 vaccines that met the eligibility criteria. Electronic databases (including PubMed, Scopus, and Web of Science) and Google Scholar search engine were searched for eligible studies. Regarding the methodological heterogeneity between the included studies, we selected a random-effects model. The geometric mean ratio (GMR) was chosen as the effect size for this meta-analysis. RESULTS Of the 1838 records identified through screening and after removing duplicate records, the full texts of 1076 records were assessed for eligibility. After the full-text assessment, 56 records were eligible and included in the study. Overall, vaccinated participants had a 150.8-fold increased rate of anti-spike IgG titres compared with the placebo group (GMR = 150.8; 95% CI, 95.9-237.1; I2 = 100%). Moreover, vaccinated participants had a 37.3-fold increased rate of neutralising antibody titres compared with the placebo group (GMR = 37.3; 95% CI, 28.5-48.7; I2 = 99%). The mRNA platform showed a higher rate of anti-spike IgG (GMR = 1263.5; 95% CI, 431.1-3702.8; I2 = 99%), while neutralising antibody titres were higher in the subunit platform (GMR = 53.4; 95% CI, 32.8-87.1; I2 = 99%) than in other platforms. Different vaccine platforms showed different rates of both anti-spike IgG and neutralising antibody titres with interesting results. The seroconversion rate of anti-spike IgG and neutralising antibody titres was more than 98% in the vaccinated participants. CONCLUSION Inactivated and subunit vaccines produced a high percentage of neutralising antibodies and had a low common adverse reaction rate compared to other platforms. In this regard, subunit and inactivated vaccines can still be used as the main vaccine platforms for effectively controlling infections with high transmission rates.
Collapse
Affiliation(s)
- Mohammad Mirzakhani
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Bayat
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Dashti
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Kashmar School of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rostamtabar
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Esmaeili Gouvarchin Ghaleh
- Applied Virology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Volosnikova EA, Volkova NV, Ermolaev VV, Borgoyakova MB, Nesmeyanova VS, Zaykovskaya AV, Pyankov OV, Zaitsev BN, Belenkaya SV, Isaeva AA, Shcherbakov DN. Use of Adjuvant Compositions Based on Squalene Ensures Induction of Neutralizing Antibodies against SARS-CoV-2. Bull Exp Biol Med 2024; 177:221-224. [PMID: 39093475 DOI: 10.1007/s10517-024-06160-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Indexed: 08/04/2024]
Abstract
Squalene-based adjuvant compositions that can provide effective induction of specific humoral immune response have been developed. Recombinant receptor-binding domain (RBD) of surface S-protein of SARS-CoV-2 was used to evaluate the properties of the composition. Immunization of mice with the developed squalene-based compositions in combination with RBD allows obtaining high titers of specific antibodies: from 105 to 2×106. The blood sera from immunized mice exhibit neutralizing activity against SARS-CoV-2 Delta variant (B.1.617.2) with a titer up to 1:2000.
Collapse
Affiliation(s)
- E A Volosnikova
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia.
| | - N V Volkova
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - V V Ermolaev
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - M B Borgoyakova
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - V S Nesmeyanova
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - A V Zaykovskaya
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - O V Pyankov
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - B N Zaitsev
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - S V Belenkaya
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - A A Isaeva
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| | - D N Shcherbakov
- State Research Center of Virology and Biotechnology "VECTOR", Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Koltsovo, Novosibirsk region, Russia
| |
Collapse
|
3
|
Sanchez-Martinez ZV, Alpuche-Lazcano SP, Stuible M, Durocher Y. CHO cells for virus-like particle and subunit vaccine manufacturing. Vaccine 2024; 42:2530-2542. [PMID: 38503664 DOI: 10.1016/j.vaccine.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Chinese Hamster Ovary (CHO) cells, employed primarily for manufacturing monoclonal antibodies and other recombinant protein (r-protein) therapeutics, are emerging as a promising host for vaccine antigen production. This is exemplified by the recently approved CHO cell-derived subunit vaccines (SUV) against respiratory syncytial virus (RSV) and varicella-zoster virus (VZV), as well as the enveloped virus-like particle (eVLP) vaccine against hepatitis B virus (HBV). Here, we summarize the design, production, and immunogenicity features of these vaccine and review the most recent progress of other CHO-derived vaccines in pre-clinical and clinical development. We also discuss the challenges associated with vaccine production in CHO cells, with a focus on ensuring viral clearance for eVLP products.
Collapse
Affiliation(s)
- Zalma V Sanchez-Martinez
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Sergio P Alpuche-Lazcano
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | - Matthew Stuible
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council of Canada, Montreal, QC H4P 2R2, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; PROTEO: The Quebec Network for Research on Protein Function, Structure, and Engineering, Université du Québec à Montréal, 201 Avenue du Président Kennedy, Montréal, QC H2X 3Y7, Canada.
| |
Collapse
|
4
|
Mohazzab A, Fallah Mehrabadi MH, Es-Haghi A, Kalantari S, Mokhberalsafa L, Setarehdan SA, Sadeghi F, Rezaei Mokarram A, Haji Moradi M, Razaz SH, Taghdiri M, Ansarifar A, Lotfi M, Khorasani A, Nofeli M, Masoumi S, Boluki Z, Erfanpoor S, Bagheri Amiri F, Esmailzadehha N, Filsoof S, Mohseni V, Ghahremanzadeh N, Safari S, Shahsavan M, Bayazidi S, Raghami Derakhshani M, Rabiee MH, Golmoradi-Zadeh R, Khodadoost B, Solaymani-Dodaran M, Banihashemi SR. Phase II, Safety and Immunogenicity of RAZI Cov Pars (RCP) SARS Cov-2 Vaccine in Adults Aged 18-70 Years; A Randomized, Double-Blind Clinical Trial. J Pharm Sci 2023; 112:3012-3021. [PMID: 37832918 DOI: 10.1016/j.xphs.2023.09.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/30/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND This study explores the safety and immunogenicity of the Razi-Cov-Pars (RCP) SARS Cov-2 recombinant spike protein vaccine. METHOD In a randomized, double-blind, placebo-controlled trial, adults aged 18-70 were randomly allocated to receive selected 10 µg/200 µl vaccine strengths or placebo (adjuvant). It included two intramuscular injections at days 0 and 21, followed by an intranasal dose at day 51. Immediate and delayed solicited local and systemic adverse reactions after each dose up to a week, and specific IgG antibodies against SARS Cov-2 spike antigens two weeks after the 2nd dose were assessed as primary outcomes. Secondary safety outcomes were abnormal laboratory findings and medically attended adverse events (MAAE) over six months follow up. Secondary immunogenicity outcomes were neutralizing antibody activity and cell-mediated immune response. RESULT Between May 27th and July 15th, 2021, 500 participants were enrolled. Participants' mean (SD) age was 37.8 (9.0), and 67.0 % were male. No immediate adverse reaction was observed following the intervention. All solicited local and systemic adverse events were moderate (Grade I-II). Specific IgG antibody response against S antigen in the vaccine group was 5.28 times (95 %CI: 4.02-6.94) the placebo group with a 75 % seroconversion rate. During six months of follow-up, 8 SAEs were reported, unrelated to the study intervention. The participants sustained their acquired humoral responses at the end of the sixth month. The vaccine predominantly resulted in T-helper 1 cell-mediated immunity, CD8+ cytotoxic T-cell increase, and no increase in inflammatory IL-6 cytokine. CONCLUSION RCP vaccine is safe and creates strong and durable humoral and cellular immunity. TRIAL REGISTRATION (IRCT20201214049709N2).
Collapse
Affiliation(s)
- Arash Mohazzab
- School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Reproductive Biotechnology Research Center, Avicenna Research Institute Tehran, ACECR, Tehran, Iran
| | - Mohammad Hossein Fallah Mehrabadi
- Department of epidemiology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ali Es-Haghi
- Department of Physico Chemistry, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Saeed Kalantari
- Departments of Infectious Diseases and Tropical Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ladan Mokhberalsafa
- Department of epidemiology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Fariba Sadeghi
- Department of epidemiology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ali Rezaei Mokarram
- Research and Development Department, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Monireh Haji Moradi
- Department of immunology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Seyad Hossein Razaz
- Department of immunology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Maryam Taghdiri
- Department of immunology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Akram Ansarifar
- School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Lotfi
- Department of Quality Control, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Akbar Khorasani
- Research and Development Department, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mojtaba Nofeli
- Research and Development Department, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Safdar Masoumi
- Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Boluki
- Knowledge Utilization Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Erfanpoor
- School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Bagheri Amiri
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging infectious diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Neda Esmailzadehha
- School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Filsoof
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahideh Mohseni
- School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Shiva Safari
- School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Shahsavan
- School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Shnoo Bayazidi
- School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Raghami Derakhshani
- Department of epidemiology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Hasan Rabiee
- Department Of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Rezvan Golmoradi-Zadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnam Khodadoost
- School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Solaymani-Dodaran
- Clinical Trial Center, Iran University of Medical Science, Tehran, Iran; Minimally Invasive Surgery Research Center, Hazrat-e-Rasool Hospital, Iran University of Medical Science, Tehran, Iran.
| | - Seyed Reza Banihashemi
- Department of immunology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
5
|
Suryawanshi YR. An overview of protein-based SARS-CoV-2 vaccines. Vaccine 2023; 41:6174-6193. [PMID: 37699784 DOI: 10.1016/j.vaccine.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/10/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
SARS-CoV-2 resulted in the COVID-19 pandemic which, to date, has resulted in an estimated loss of over 15 million human lives globally and continues to have negative social, and economic implications worldwide. Vaccine platforms that can be quickly updated to counter newly emerging SARS-CoV-2 variants are critical in combating the COVID-19 pandemic. Messenger RNA-based SARS-CoV-2 vaccines can be easily updated and have shown superior efficacy over other vaccine types, yet their high cost, reactogenicity, and stringent need for ultracold storage limit their accessibility. Global access to economic, safe, and effective SARS-CoV-2 vaccines is a critical step toward reducing COVID-19-associated mortality and ending the pandemic. Several protein-based SARS-CoV-2 vaccines targeting the spike protein (or its receptor-binding domain) have demonstrated safety and efficacy in clinical studies. Moreover, protein-based vaccines can be updated to immunize against new virus variants. Protein-based vaccines do not contain live viruses and are safe to use in immunocompromised and elderly populations, and can be optimized to improve the immune outcome in these poorly immunoresponsive individuals by using adjuvants. SARS-CoV-2 shows high genetic variability, similar to other RNA viruses, and protein-based vaccines are an economically feasible vaccine platform that can be used to design new vaccines with durable protective immunity, in addition to expanding the vaccine coverage.
Collapse
Affiliation(s)
- Yogesh R Suryawanshi
- Mayo Clinic Vaccine Research Group and Division of General Internal Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Curtis NC, Shin S, Hederman AP, Connor RI, Wieland-Alter WF, Ionov S, Boylston J, Rose J, Sakharkar M, Dorman DB, Dessaint JA, Gwilt LL, Crowley AR, Feldman J, Hauser BM, Schmidt AG, Ashare A, Walker LM, Wright PF, Ackerman ME, Lee J. Characterization of SARS-CoV-2 Convalescent Patients' Serological Repertoire Reveals High Prevalence of Iso-RBD Antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.08.556349. [PMID: 37745524 PMCID: PMC10515772 DOI: 10.1101/2023.09.08.556349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
While our understanding of SARS-CoV-2 pathogenesis and antibody responses following infection and vaccination has improved tremendously since the outbreak in 2019, the sequence identities and relative abundances of the individual constituent antibody molecules in circulation remain understudied. Using Ig-Seq, we proteomically profiled the serological repertoire specific to the whole ectodomain of SARS-CoV-2 prefusion-stabilized spike (S) as well as to the receptor binding domain (RBD) over a 6-month period in four subjects following SARS-CoV-2 infection before SARS-CoV-2 vaccines were available. In each individual, we identified between 59 and 167 unique IgG clonotypes in serum. To our surprise, we discovered that ∼50% of serum IgG specific for RBD did not recognize prefusion-stabilized S (referred to as iso-RBD antibodies), suggesting that a significant fraction of serum IgG targets epitopes on RBD inaccessible on the prefusion-stabilized conformation of S. On the other hand, the abundance of iso-RBD antibodies in nine individuals who received mRNA-based COVID-19 vaccines encoding prefusion-stabilized S was significantly lower (∼8%). We expressed a panel of 12 monoclonal antibodies (mAbs) that were abundantly present in serum from two SARS-CoV-2 infected individuals, and their binding specificities to prefusion-stabilized S and RBD were all in agreement with the binding specificities assigned based on the proteomics data, including 1 iso-RBD mAb which bound to RBD but not to prefusion-stabilized S. 2 of 12 mAbs demonstrated neutralizing activity, while other mAbs were non-neutralizing. 11 of 12 mAbs also bound to S (B.1.351), but only 1 maintained binding to S (B.1.1.529). This particular mAb binding to S (B.1.1.529) 1) represented an antibody lineage that comprised 43% of the individual's total S-reactive serum IgG binding titer 6 months post-infection, 2) bound to the S from a related human coronavirus, HKU1, and 3) had a high somatic hypermutation level (10.9%), suggesting that this antibody lineage likely had been elicited previously by pre-pandemic coronavirus and was re-activated following the SARS-CoV-2 infection. All 12 mAbs demonstrated their ability to engage in Fc-mediated effector function activities. Collectively, our study provides a quantitative overview of the serological repertoire following SARS-CoV-2 infection and the significant contribution of iso-RBD antibodies, demonstrating how vaccination strategies involving prefusion-stabilized S may have reduced the elicitation of iso-RBD serum antibodies which are unlikely to contribute to protection.
Collapse
|
7
|
Ma Y, Li P, Hu Y, Qiu T, Wang L, Lu H, Lv K, Xu M, Zhuang J, Liu X, He S, He B, Liu S, Liu L, Wang Y, Yue X, Zhai Y, Luo W, Mai H, Kuang Y, Chen S, Ye F, Zhou N, Zhao W, Chen J, Chen S, Xiong X, Shi M, Pan JA, Chen YQ. Spike substitution T813S increases Sarbecovirus fusogenicity by enhancing the usage of TMPRSS2. PLoS Pathog 2023; 19:e1011123. [PMID: 37196033 DOI: 10.1371/journal.ppat.1011123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/30/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
SARS-CoV Spike (S) protein shares considerable homology with SARS-CoV-2 S, especially in the conserved S2 subunit (S2). S protein mediates coronavirus receptor binding and membrane fusion, and the latter activity can greatly influence coronavirus infection. We observed that SARS-CoV S is less effective in inducing membrane fusion compared with SARS-CoV-2 S. We identify that S813T mutation is sufficient in S2 interfering with the cleavage of SARS-CoV-2 S by TMPRSS2, reducing spike fusogenicity and pseudoparticle entry. Conversely, the mutation of T813S in SARS-CoV S increased fusion ability and viral replication. Our data suggested that residue 813 in the S was critical for the proteolytic activation, and the change from threonine to Serine at 813 position might be an evolutionary feature adopted by SARS-2-related viruses. This finding deepened the understanding of Spike fusogenicity and could provide a new perspective for exploring Sarbecovirus' evolution.
Collapse
Affiliation(s)
- Yong Ma
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Pengbin Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yunqi Hu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Tianyi Qiu
- Institute of Clinical Science, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lixiang Wang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hongjie Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Kexin Lv
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Mengxin Xu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Jiaxin Zhuang
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xue Liu
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Suhua He
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Bing He
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Shuning Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Lin Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yuanyuan Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xinyu Yue
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yanmei Zhai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Wanyu Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Haoting Mai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yu Kuang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Shifeng Chen
- The 74(th) Group Army Hospital, Guangzhou, China
| | - Feng Ye
- The 74(th) Group Army Hospital, Guangzhou, China
| | - Na Zhou
- The 74(th) Group Army Hospital, Guangzhou, China
| | - Wenjing Zhao
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Jun Chen
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shoudeng Chen
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Mang Shi
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ji-An Pan
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Sun Yat-sen University, Guanzhou, China
| |
Collapse
|
8
|
González-Martínez DA, González Ruíz G, Escalante-Bermúdez C, García Artalejo JA, Gómez Peña T, Gómez JA, González-Martínez E, Cazañas Quintana Y, Fundora Barrios T, Hernández T, Varela Pérez RC, Díaz Goire D, Castro López D, Ruíz Ramirez I, Díaz-Águila CR, Moran-Mirabal JM. Efficient capture of recombinant SARS-CoV-2 receptor-binding domain (RBD) with citrate-coated magnetic iron oxide nanoparticles. NANOSCALE 2023; 15:7854-7869. [PMID: 37060148 DOI: 10.1039/d3nr01109g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Several vaccines against COVID-19 use a recombinant SARS-CoV-2 receptor-binding domain (RBD) as antigen, making the purification of this protein a key step in their production. In this work, citrate-coated magnetic iron oxide nanoparticles were evaluated as nano adsorbents in the first step (capture) of the purification of recombinant RBD. The nanoparticles were isolated through coprecipitation and subsequently coated with sodium citrate. The citrate-coated nanoparticles exhibited a diameter of 10 ± 2 nm, a hydrodynamic diameter of 160 ± 3 nm, and contained 1.9 wt% of citrate. The presence of citrate on the nanoparticles' surface was confirmed through FT-IR spectra and thermogravimetric analysis. The crystallite size (10.1 nm) and the lattice parameter (8.3646 Å) were determined by X-ray diffraction. In parallel, RBD-containing supernatant extracted from cell culture was exchanged through ultrafiltration and diafiltration into the adsorption buffer. The magnetic capture was then optimized using different concentrations of nanoparticles in the purified supernatant, and we found 40 mg mL-1 to be optimal. The ideal amount of nanoparticles was assessed by varying the RBD concentration in the supernatant (between 0.113 mg mL-1 and 0.98 mg mL-1), which resulted in good capture yields (between 83 ± 5% and 94 ± 4%). The improvement of RBD purity after desorption was demonstrated by SDS-PAGE and RP-HPLC. Furthermore, the magnetic capture was scaled up 100 times, and the desorption was subjected to chromatographic purifications. The obtained products recognized anti-RBD antibodies and bound the ACE2 receptor, proving their functionality after the developed procedure.
Collapse
Affiliation(s)
- David A González-Martínez
- Facultad de Química, Universidad de La Habana, Zapata y G, Plaza de la Revolución, 10400, La Habana, Cuba.
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | - Gustavo González Ruíz
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
| | - Cesar Escalante-Bermúdez
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
- Laboratorio de Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, Zapata y G, Plaza de la Revolución, 10400, La Habana, Cuba
| | | | - Tania Gómez Peña
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
| | - José Alberto Gómez
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
| | - Eduardo González-Martínez
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| | | | - Thais Fundora Barrios
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
| | - Tays Hernández
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
| | | | - Dayli Díaz Goire
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
| | - Diaselys Castro López
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
| | - Ingrid Ruíz Ramirez
- Centro de Inmunología Molecular, calle 216 esq. 15, Atabey, Playa, 11600, La Habana, Cuba.
| | - Carlos R Díaz-Águila
- Centro de Biomateriales, Universidad de La Habana, Avenida Universidad entre G y Ronda, Plaza de la Revolución, 10400, La Habana, Cuba
| | - Jose M Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
- Centre for Advanced Light Microscopy, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4M, Canada
- Brockhouse Institute for Materials Research, McMaster University 1280 Main Street West, Hamilton, Ontario, L8S 4M1, Canada
| |
Collapse
|
9
|
Deliyannis G, Gherardin NA, Wong CY, Grimley SL, Cooney JP, Redmond SJ, Ellenberg P, Davidson KC, Mordant FL, Smith T, Gillard M, Lopez E, McAuley J, Tan CW, Wang JJ, Zeng W, Littlejohn M, Zhou R, Fuk-Woo Chan J, Chen ZW, Hartwig AE, Bowen R, Mackenzie JM, Vincan E, Torresi J, Kedzierska K, Pouton CW, Gordon TP, Wang LF, Kent SJ, Wheatley AK, Lewin SR, Subbarao K, Chung AW, Pellegrini M, Munro T, Nolan T, Rockman S, Jackson DC, Purcell DFJ, Godfrey DI. Broad immunity to SARS-CoV-2 variants of concern mediated by a SARS-CoV-2 receptor-binding domain protein vaccine. EBioMedicine 2023; 92:104574. [PMID: 37148585 PMCID: PMC10159263 DOI: 10.1016/j.ebiom.2023.104574] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/02/2023] [Accepted: 04/01/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND The SARS-CoV-2 global pandemic has fuelled the generation of vaccines at an unprecedented pace and scale. However, many challenges remain, including: the emergence of vaccine-resistant mutant viruses, vaccine stability during storage and transport, waning vaccine-induced immunity, and concerns about infrequent adverse events associated with existing vaccines. METHODS We report on a protein subunit vaccine comprising the receptor-binding domain (RBD) of the ancestral SARS-CoV-2 spike protein, dimerised with an immunoglobulin IgG1 Fc domain. These were tested in conjunction with three different adjuvants: a TLR2 agonist R4-Pam2Cys, an NKT cell agonist glycolipid α-Galactosylceramide, or MF59® squalene oil-in-water adjuvant, using mice, rats and hamsters. We also developed an RBD-human IgG1 Fc vaccine with an RBD sequence of the immuno-evasive beta variant (N501Y, E484K, K417N). These vaccines were also tested as a heterologous third dose booster in mice, following priming with whole spike vaccine. FINDINGS Each formulation of the RBD-Fc vaccines drove strong neutralising antibody (nAb) responses and provided durable and highly protective immunity against lower and upper airway infection in mouse models of COVID-19. The 'beta variant' RBD vaccine, combined with MF59® adjuvant, induced strong protection in mice against the beta strain as well as the ancestral strain. Furthermore, when used as a heterologous third dose booster, the RBD-Fc vaccines combined with MF59® increased titres of nAb against other variants including alpha, delta, delta+, gamma, lambda, mu, and omicron BA.1, BA.2 and BA.5. INTERPRETATION These results demonstrated that an RBD-Fc protein subunit/MF59® adjuvanted vaccine can induce high levels of broadly reactive nAbs, including when used as a booster following prior immunisation of mice with whole ancestral-strain spike vaccines. This vaccine platform offers a potential approach to augment some of the currently approved vaccines in the face of emerging variants of concern, and it has now entered a phase I clinical trial. FUNDING This work was supported by grants from the Medical Research Future Fund (MRFF) (2005846), The Jack Ma Foundation, National Health and Medical Research Council of Australia (NHMRC; 1113293) and Singapore National Medical Research Council (MOH-COVID19RF-003). Individual researchers were supported by an NHMRC Senior Principal Research Fellowship (1117766), NHMRC Investigator Awards (2008913 and 1173871), Australian Research Council Discovery Early Career Research Award (ARC DECRA; DE210100705) and philanthropic awards from IFM investors and the A2 Milk Company.
Collapse
Affiliation(s)
- Georgia Deliyannis
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Nicholas A Gherardin
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Chinn Yi Wong
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Samantha L Grimley
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - James P Cooney
- Walter and Eliza Hall Institute, Infectious Diseases & Immune Defence Division, Parkville, Victoria 3052, Australia
| | - Samuel J Redmond
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Paula Ellenberg
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Kathryn C Davidson
- Walter and Eliza Hall Institute, Infectious Diseases & Immune Defence Division, Parkville, Victoria 3052, Australia
| | - Francesca L Mordant
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Tim Smith
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Marianne Gillard
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Ester Lopez
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Julie McAuley
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Chee Wah Tan
- Duke NUS Medical School, Programme for Emerging Infectious Diseases, Singapore
| | - Jing J Wang
- Department of Immunology, Flinders University and SA Pathology, Flinders Medical Centre, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Weiguang Zeng
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Mason Littlejohn
- Doherty Directorate, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Runhong Zhou
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jasper Fuk-Woo Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Zhi-Wei Chen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Airn E Hartwig
- Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Richard Bowen
- Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Jason M Mackenzie
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Elizabeth Vincan
- Victorian Infectious Diseases Reference Laboratory (VIDRL) at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia; Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Joseph Torresi
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Katherine Kedzierska
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia
| | - Tom P Gordon
- Department of Immunology, Flinders University and SA Pathology, Flinders Medical Centre, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Lin-Fa Wang
- Duke NUS Medical School, Programme for Emerging Infectious Diseases, Singapore
| | - Stephen J Kent
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Adam K Wheatley
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia; Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia; Department of Infectious Diseases, The Alfred Hospital and Monash University, Melbourne, 3010 Australia
| | - Kanta Subbarao
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia; WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Amy W Chung
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Marc Pellegrini
- Walter and Eliza Hall Institute, Infectious Diseases & Immune Defence Division, Parkville, Victoria 3052, Australia
| | - Trent Munro
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Terry Nolan
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia; Vaccine and Immunisation Research Group (VIRGo), Department of Infectious Disease, Peter Doherty Institute for Infection and Immunity, University of Melbourne, and Murdoch Children's Research Institute, Victoria 3010, Australia
| | - Steven Rockman
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia; Seqirus, Vaccine Innovation Unit, Parkville, Victoria, 3052, Australia
| | - David C Jackson
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Damian F J Purcell
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Dale I Godfrey
- Department of Microbiology & Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia.
| |
Collapse
|
10
|
Diamos AG, Pardhe MD, Bergeman MH, Kamzina AS, DiPalma MP, Aman S, Chaves A, Lowe K, Kilbourne J, Hogue IB, Mason HS. A self-binding immune complex vaccine elicits strong neutralizing responses against herpes simplex virus in mice. Front Immunol 2023; 14:1085911. [PMID: 37205110 PMCID: PMC10186352 DOI: 10.3389/fimmu.2023.1085911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Introduction It has been known for over half a century that mixing an antigen with its cognate antibody in an immune complex (IC) can enhance antigen immunogenicity. However, many ICs produce inconsistent immune responses, and the use of ICs in the development new vaccines has been limited despite the otherwise widespread success of antibody-based therapeutics. To address this problem, we designed a self-binding recombinant immune complex (RIC) vaccine which mimics the larger ICs generated during natural infection. Materials and methods In this study, we created two novel vaccine candidates: 1) a traditional IC targeting herpes simplex virus 2 (HSV-2) by mixing glycoprotein D (gD) with a neutralizing antibody (gD-IC); and 2) an RIC consisting of gD fused to an immunoglobulin heavy chain and then tagged with its own binding site, allowing self-binding (gD-RIC). We characterized the complex size and immune receptor binding characteristics in vitro for each preparation. Then, the in vivo immunogenicity and virus neutralization of each vaccine were compared in mice. Results gD-RIC formed larger complexes which enhanced C1q receptor binding 25-fold compared to gD-IC. After immunization of mice, gD-RIC elicited up to 1,000-fold higher gD-specific antibody titers compared to traditional IC, reaching endpoint titers of 1:500,000 after two doses without adjuvant. The RIC construct also elicited stronger virus-specific neutralization against HSV-2, as well as stronger cross-neutralization against HSV-1, although the proportion of neutralizing antibodies to total antibodies was somewhat reduced in the RIC group. Discussion This work demonstrates that the RIC system overcomes many of the pitfalls of traditional IC, providing potent immune responses against HSV-2 gD. Based on these findings, further improvements to the RIC system are discussed. RIC have now been shown to be capable of inducing potent immune responses to a variety of viral antigens, underscoring their broad potential as a vaccine platform.
Collapse
Affiliation(s)
- Andrew G. Diamos
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute at Arizona State University (ASU), School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | | | | | | | | | | | | | | | | | - Ian B. Hogue
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute at Arizona State University (ASU), School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Hugh S. Mason
- Center for Immunotherapy, Vaccines, and Virotherapy, Biodesign Institute at Arizona State University (ASU), School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
11
|
Love J, Rodriguez-Aponte S, Tostanoski L, Dalvie N, Johnston R, Jacob-Dolan C, Powers O, Hachmann N, Miller J, Hall K, Siamatu M, Mazurek C, Surve N, Barouch D. SARS-CoV-2 RBD dimers elicit response comparable to VLPs in mice. RESEARCH SQUARE 2023:rs.3.rs-2692315. [PMID: 37163131 PMCID: PMC10168475 DOI: 10.21203/rs.3.rs-2692315/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We report the direct comparison of monomeric, dimeric and trimeric RBD protein subunit vaccines to a virus-like particle (VLP) displaying RBD. After two and three doses, a RBD dimer and trimer elicited antibody levels in mice comparable to an RBD-VLP. Furthermore, an Omicron (BA.1) RBD hetero-dimer induced neutralizing activity similar to the RBD-VLP. A RBD hetero-dimer and RBD-VLP also shows comparable breadth to other SARS-CoV-2 variants-of-concern (VOCs).
Collapse
|
12
|
Bayani F, Hashkavaei NS, Arjmand S, Rezaei S, Uskoković V, Alijanianzadeh M, Uversky VN, Ranaei Siadat SO, Mozaffari-Jovin S, Sefidbakht Y. An overview of the vaccine platforms to combat COVID-19 with a focus on the subunit vaccines. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 178:32-49. [PMID: 36801471 PMCID: PMC9938630 DOI: 10.1016/j.pbiomolbio.2023.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/21/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging virus that has caused the recent coronavirus disease (COVID-19) global pandemic. The current approved COVID-19 vaccines have shown considerable efficiency against hospitalization and death. However, the continuation of the pandemic for more than two years and the likelihood of new strain emergence despite the global rollout of vaccination highlight the immediate need for the development and improvement of vaccines. mRNA, viral vector, and inactivated virus vaccine platforms were the first members of the worldwide approved vaccine list. Subunit vaccines. which are vaccines based on synthetic peptides or recombinant proteins, have been used in lower numbers and limited countries. The unavoidable advantages of this platform, including safety and precise immune targeting, make it a promising vaccine with wider global use in the near future. This review article summarizes the current knowledge on different vaccine platforms, focusing on the subunit vaccines and their clinical trial advancements against COVID-19.
Collapse
Affiliation(s)
- Fatemeh Bayani
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | | | - Sareh Arjmand
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Shokouh Rezaei
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Vuk Uskoković
- Department of Mechanical Engineering, San Diego State University, San Diego, CA, 92182, USA; TardigradeNano LLC, Irvine, CA, 92604, USA
| | - Mahdi Alijanianzadeh
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| | | | - Sina Mozaffari-Jovin
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yahya Sefidbakht
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
13
|
Ehteshaminia Y, Jalali SF, Jadidi-Niaragh F, Enderami SE, Pagheh AS, Akbari E, Kenari SA, Hassannia H. Enhancement of immunogenicity and neutralizing responses against SARS-CoV-2 spike protein using the Fc fusion fragment. Life Sci 2023; 320:121525. [PMID: 36841470 PMCID: PMC9951089 DOI: 10.1016/j.lfs.2023.121525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
AIMS Vaccination has played an important role in protecting against death and the severity of COVID-19. The recombinant protein vaccine platform has a long track record of safety and efficacy. Here, we fused the SARS-CoV-2 spike S1 subunit to the Fc region of IgG and investigated immunogenicity, reactivity to human vaccinated sera, and neutralizing activity as a candidate protein vaccine. MATERIALS AND METHOD We evaluated the immunogenicity of CHO-expressed S1-Fc fusion protein and tag-free S1 protein in rabbits via the production of S1-specific polyclonal antibodies. We subsequently compared the neutralizing activities of sera from immunized rabbits and human-vaccinated individuals using a surrogate Virus Neutralization Test (sVNT). KEY FINDINGS The results indicate that S1-specific polyclonal antibodies were induced in all groups; however, antibody levels were higher in rabbits immunized with S1-Fc fusion protein than tag-free S1 protein. Moreover, the reactivity of human vaccinated sera against S1-Fc fusion protein was significantly higher than tag-free S1 protein. Lastly, the results of the virus-neutralizing activity revealed that vaccination with S1-Fc fusion protein induced the highest level of neutralizing antibody response against SARS-CoV-2. SIGNIFICANCE Our results demonstrate that the S1 protein accompanied by the Fc fragment significantly enhances the immunogenicity and neutralizing responses against SARS-CoV-2. It is hoped that this platform can be used for human vaccination.
Collapse
Affiliation(s)
- Yahya Ehteshaminia
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Farzaneh Jalali
- Department of Hematology, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Seyed Ehsan Enderami
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdol Sattar Pagheh
- Infectious Diseases Research Center, Birjand University of Medical Science, Birjand, Iran
| | - Esmaeil Akbari
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Abedian Kenari
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hadi Hassannia
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
14
|
Immunogenicity and Safety of a Combined Intramuscular/Intranasal Recombinant Spike Protein COVID-19 Vaccine (RCP) in Healthy Adults Aged 18 to 55 Years Old: A Randomized, Double-Blind, Placebo-Controlled, Phase I Trial. Vaccines (Basel) 2023; 11:vaccines11020455. [PMID: 36851334 PMCID: PMC9961243 DOI: 10.3390/vaccines11020455] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Objectives: This study aimed to determine the safety and immunogenicity of a combined intramuscular/intranasal recombinant spike protein COVID-19 vaccine (RCP). Methods: We conducted a randomized, double-blind, placebo-controlled, phase I trial. Three vaccine strengths were compared with an adjuvant-only preparation. It included two intramuscular and a third intranasal dose. Eligible participants were followed for adverse reactions. Specific IgG, secretory IgA, neutralizing antibodies, and cell-mediated immunity were assessed. Results: A total of 153 participants were enrolled (13 sentinels, 120 randomized, 20 non-randomized open-labeled for IgA assessment). No related serious adverse event was observed. The geometric mean ratios (GMRs) and 95% CI for serum neutralizing antibodies compared with placebo two weeks after the second injection were 5.82 (1.46-23.13), 11.12 (2.74-45.09), and 20.70 (5.05-84.76) in 5, 10, and 20 µg vaccine groups, respectively. The GMR for anti-RBD IgA in mucosal fluid two weeks after the intranasal dose was 23.27 (21.27-25.45) in the 10 µg vaccine group. The humoral responses were sustained for up to five months. All vaccine strengths indicated a strong T-helper 1 response. Conclusion: RCP is safe and creates strong and durable humoral and cellular immunity and good mucosal immune response in its 10 µg /200 µL vaccine strengths. Trial registration: IRCT20201214049709N1.
Collapse
|
15
|
Zhang J, Xia Y, Liu X, Liu G. Advanced Vaccine Design Strategies against SARS-CoV-2 and Emerging Variants. Bioengineering (Basel) 2023; 10:bioengineering10020148. [PMID: 36829642 PMCID: PMC9951973 DOI: 10.3390/bioengineering10020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Vaccination is the most cost-effective means in the fight against infectious diseases. Various kinds of vaccines have been developed since the outbreak of COVID-19, some of which have been approved for clinical application. Though vaccines available achieved partial success in protecting vaccinated subjects from infection or hospitalization, numerous efforts are still needed to end the global pandemic, especially in the case of emerging new variants. Safe and efficient vaccines are the key elements to stop the pandemic from attacking the world now; novel and evolving vaccine technologies are urged in the course of fighting (re)-emerging infectious diseases. Advances in biotechnology offered the progress of vaccinology in the past few years, and lots of innovative approaches have been applied to the vaccine design during the ongoing pandemic. In this review, we summarize the state-of-the-art vaccine strategies involved in controlling the transmission of SARS-CoV-2 and its variants. In addition, challenges and future directions for rational vaccine design are discussed.
Collapse
Affiliation(s)
- Jianzhong Zhang
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yutian Xia
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xuan Liu
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
- Innovation Center for Cell Biology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
- Correspondence:
| |
Collapse
|
16
|
Kovalenko A, Ryabchevskaya E, Evtushenko E, Nikitin N, Karpova O. Recombinant Protein Vaccines against Human Betacoronaviruses: Strategies, Approaches and Progress. Int J Mol Sci 2023; 24:1701. [PMID: 36675218 PMCID: PMC9863728 DOI: 10.3390/ijms24021701] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Betacoronaviruses have already troubled humanity more than once. In 2002-2003 and 2012, the SARS-CoV and MERS-CoV, respectively, caused outbreaks of respiratory syndromes with a fatal outcome. The spread of the SARS-CoV-2 coronavirus has become a pandemic. These three coronaviruses belong to the genus Betacoronavirus and have a zoonotic origin. The emergence of new coronavirus infections in the future cannot be ruled out, and vaccination is the main way to prevent the spread of the infection. Previous experience in the development of vaccines against SARS and MERS has helped to develop a number of vaccines against SARS-CoV-2 in a fairly short time. Among them, there are quite a few recombinant protein vaccines, which seem to be very promising in terms of safety, minimization of side effects, storage and transportation conditions. The problem of developing a universal betacoronavirus vaccine is also still relevant. Here, we summarize the information on the designing of vaccines based on recombinant proteins against highly pathogenic human betacoronaviruses SARS-CoV, MERS-CoV and SARS-CoV-2.
Collapse
Affiliation(s)
| | | | | | - Nikolai Nikitin
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | | |
Collapse
|
17
|
He Q, Sun S, Chen X, Hu Z, Zhang Y, Peng H, Fu YX, Yang J, Chen L. The Bivalent COVID-19 Booster Immunization after Three Doses of Inactivated Vaccine Augments the Neutralizing Antibody Response against Circulating Omicron Sublineages. J Clin Med 2022; 12:146. [PMID: 36614948 PMCID: PMC9821285 DOI: 10.3390/jcm12010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/08/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
A fourth dose of a COVID-19 vaccine has been recommended by a number of authorities due to waning immunity over time and the emergence of immune-escaping variants. Here, we evaluated the safety and immunogenicity of the bivalent BV-01-B5 or V-01D-351 or the prototype V-01 for heterologous boosting in three-dose inactivated COVID-19 vaccine (ICV) recipients, in comparison with ICV homologous boosting. One pilot study (NCT05583357) included 20 participants randomized at 1:1, either receiving V-01D-351 or CoronaVac. The other one (NCT05585567) recruited 36 participants randomized at 2:1, either receiving BV-01-B5 or V-01, respectively. BV-01-B5, V-01D-351, and V-01 were safe and well-tolerated as heterologous booster shots after three doses of ICV, with adverse reactions predominantly being mild and moderate in severity, similar to the safety profile of ICV boosters. The bivalent V-01D-351 and BV-01-B5 and prototype V-01 booster demonstrated remarkable cross-reactive immunogenicity against the prototype and multiple emerging variants of concern (VOCs), with the geometric mean ratio (versus CoronaVac) in particular being 31.3 (500 vs. 16), 12.0 (192 vs. 16) and 8.5 (136 vs.16) against BA.4/5 14 days after the booster, respectively. Taken together, the modified bivalent-formulation V-01 boosters induced robust neutralizing responses against multiple Omicron sublineages, better than V-01 and remarkably superior to ICV booster, without compromising the safety and tolerability.
Collapse
Affiliation(s)
- Qiaren He
- The Outpatient Department, Shaoguan Hospital of Traditional Chinese Medicine, Shaoguan 512026, China
| | - Shiyu Sun
- Guangzhou Laboratory, Guangzhou 510005, China
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xi Chen
- Department of Research and Development, Livzon Bio Inc., Zhuhai 519045, China
| | - Zhenxiang Hu
- Department of Research and Development, Livzon Bio Inc., Zhuhai 519045, China
| | - Yan Zhang
- Medical and Clinical Center, Livzon Pharmaceutical Group Inc., Zhuhai 519045, China
| | - Hua Peng
- Guangzhou Laboratory, Guangzhou 510005, China
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang-Xin Fu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | | | - Long Chen
- The Outpatient Department, Shaoguan Hospital of Traditional Chinese Medicine, Shaoguan 512026, China
| |
Collapse
|
18
|
Graña C, Ghosn L, Evrenoglou T, Jarde A, Minozzi S, Bergman H, Buckley BS, Probyn K, Villanueva G, Henschke N, Bonnet H, Assi R, Menon S, Marti M, Devane D, Mallon P, Lelievre JD, Askie LM, Kredo T, Ferrand G, Davidson M, Riveros C, Tovey D, Meerpohl JJ, Grasselli G, Rada G, Hróbjartsson A, Ravaud P, Chaimani A, Boutron I. Efficacy and safety of COVID-19 vaccines. Cochrane Database Syst Rev 2022; 12:CD015477. [PMID: 36473651 PMCID: PMC9726273 DOI: 10.1002/14651858.cd015477] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Different forms of vaccines have been developed to prevent the SARS-CoV-2 virus and subsequent COVID-19 disease. Several are in widespread use globally. OBJECTIVES: To assess the efficacy and safety of COVID-19 vaccines (as a full primary vaccination series or a booster dose) against SARS-CoV-2. SEARCH METHODS We searched the Cochrane COVID-19 Study Register and the COVID-19 L·OVE platform (last search date 5 November 2021). We also searched the WHO International Clinical Trials Registry Platform, regulatory agency websites, and Retraction Watch. SELECTION CRITERIA We included randomized controlled trials (RCTs) comparing COVID-19 vaccines to placebo, no vaccine, other active vaccines, or other vaccine schedules. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. We used GRADE to assess the certainty of evidence for all except immunogenicity outcomes. We synthesized data for each vaccine separately and presented summary effect estimates with 95% confidence intervals (CIs). MAIN RESULTS: We included and analyzed 41 RCTs assessing 12 different vaccines, including homologous and heterologous vaccine schedules and the effect of booster doses. Thirty-two RCTs were multicentre and five were multinational. The sample sizes of RCTs were 60 to 44,325 participants. Participants were aged: 18 years or older in 36 RCTs; 12 years or older in one RCT; 12 to 17 years in two RCTs; and three to 17 years in two RCTs. Twenty-nine RCTs provided results for individuals aged over 60 years, and three RCTs included immunocompromized patients. No trials included pregnant women. Sixteen RCTs had two-month follow-up or less, 20 RCTs had two to six months, and five RCTs had greater than six to 12 months or less. Eighteen reports were based on preplanned interim analyses. Overall risk of bias was low for all outcomes in eight RCTs, while 33 had concerns for at least one outcome. We identified 343 registered RCTs with results not yet available. This abstract reports results for the critical outcomes of confirmed symptomatic COVID-19, severe and critical COVID-19, and serious adverse events only for the 10 WHO-approved vaccines. For remaining outcomes and vaccines, see main text. The evidence for mortality was generally sparse and of low or very low certainty for all WHO-approved vaccines, except AD26.COV2.S (Janssen), which probably reduces the risk of all-cause mortality (risk ratio (RR) 0.25, 95% CI 0.09 to 0.67; 1 RCT, 43,783 participants; high-certainty evidence). Confirmed symptomatic COVID-19 High-certainty evidence found that BNT162b2 (BioNtech/Fosun Pharma/Pfizer), mRNA-1273 (ModernaTx), ChAdOx1 (Oxford/AstraZeneca), Ad26.COV2.S, BBIBP-CorV (Sinopharm-Beijing), and BBV152 (Bharat Biotect) reduce the incidence of symptomatic COVID-19 compared to placebo (vaccine efficacy (VE): BNT162b2: 97.84%, 95% CI 44.25% to 99.92%; 2 RCTs, 44,077 participants; mRNA-1273: 93.20%, 95% CI 91.06% to 94.83%; 2 RCTs, 31,632 participants; ChAdOx1: 70.23%, 95% CI 62.10% to 76.62%; 2 RCTs, 43,390 participants; Ad26.COV2.S: 66.90%, 95% CI 59.10% to 73.40%; 1 RCT, 39,058 participants; BBIBP-CorV: 78.10%, 95% CI 64.80% to 86.30%; 1 RCT, 25,463 participants; BBV152: 77.80%, 95% CI 65.20% to 86.40%; 1 RCT, 16,973 participants). Moderate-certainty evidence found that NVX-CoV2373 (Novavax) probably reduces the incidence of symptomatic COVID-19 compared to placebo (VE 82.91%, 95% CI 50.49% to 94.10%; 3 RCTs, 42,175 participants). There is low-certainty evidence for CoronaVac (Sinovac) for this outcome (VE 69.81%, 95% CI 12.27% to 89.61%; 2 RCTs, 19,852 participants). Severe or critical COVID-19 High-certainty evidence found that BNT162b2, mRNA-1273, Ad26.COV2.S, and BBV152 result in a large reduction in incidence of severe or critical disease due to COVID-19 compared to placebo (VE: BNT162b2: 95.70%, 95% CI 73.90% to 99.90%; 1 RCT, 46,077 participants; mRNA-1273: 98.20%, 95% CI 92.80% to 99.60%; 1 RCT, 28,451 participants; AD26.COV2.S: 76.30%, 95% CI 57.90% to 87.50%; 1 RCT, 39,058 participants; BBV152: 93.40%, 95% CI 57.10% to 99.80%; 1 RCT, 16,976 participants). Moderate-certainty evidence found that NVX-CoV2373 probably reduces the incidence of severe or critical COVID-19 (VE 100.00%, 95% CI 86.99% to 100.00%; 1 RCT, 25,452 participants). Two trials reported high efficacy of CoronaVac for severe or critical disease with wide CIs, but these results could not be pooled. Serious adverse events (SAEs) mRNA-1273, ChAdOx1 (Oxford-AstraZeneca)/SII-ChAdOx1 (Serum Institute of India), Ad26.COV2.S, and BBV152 probably result in little or no difference in SAEs compared to placebo (RR: mRNA-1273: 0.92, 95% CI 0.78 to 1.08; 2 RCTs, 34,072 participants; ChAdOx1/SII-ChAdOx1: 0.88, 95% CI 0.72 to 1.07; 7 RCTs, 58,182 participants; Ad26.COV2.S: 0.92, 95% CI 0.69 to 1.22; 1 RCT, 43,783 participants); BBV152: 0.65, 95% CI 0.43 to 0.97; 1 RCT, 25,928 participants). In each of these, the likely absolute difference in effects was fewer than 5/1000 participants. Evidence for SAEs is uncertain for BNT162b2, CoronaVac, BBIBP-CorV, and NVX-CoV2373 compared to placebo (RR: BNT162b2: 1.30, 95% CI 0.55 to 3.07; 2 RCTs, 46,107 participants; CoronaVac: 0.97, 95% CI 0.62 to 1.51; 4 RCTs, 23,139 participants; BBIBP-CorV: 0.76, 95% CI 0.54 to 1.06; 1 RCT, 26,924 participants; NVX-CoV2373: 0.92, 95% CI 0.74 to 1.14; 4 RCTs, 38,802 participants). For the evaluation of heterologous schedules, booster doses, and efficacy against variants of concern, see main text of review. AUTHORS' CONCLUSIONS Compared to placebo, most vaccines reduce, or likely reduce, the proportion of participants with confirmed symptomatic COVID-19, and for some, there is high-certainty evidence that they reduce severe or critical disease. There is probably little or no difference between most vaccines and placebo for serious adverse events. Over 300 registered RCTs are evaluating the efficacy of COVID-19 vaccines, and this review is updated regularly on the COVID-NMA platform (covid-nma.com). Implications for practice Due to the trial exclusions, these results cannot be generalized to pregnant women, individuals with a history of SARS-CoV-2 infection, or immunocompromized people. Most trials had a short follow-up and were conducted before the emergence of variants of concern. Implications for research Future research should evaluate the long-term effect of vaccines, compare different vaccines and vaccine schedules, assess vaccine efficacy and safety in specific populations, and include outcomes such as preventing long COVID-19. Ongoing evaluation of vaccine efficacy and effectiveness against emerging variants of concern is also vital.
Collapse
Affiliation(s)
- Carolina Graña
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Lina Ghosn
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Theodoros Evrenoglou
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Alexander Jarde
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | | | | | | | | | | | | | - Hillary Bonnet
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Rouba Assi
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | | | - Melanie Marti
- Department of Immunization, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | - Declan Devane
- Evidence Synthesis Ireland, Cochrane Ireland and HRB-Trials Methodology Research Network, National University of Ireland, Galway, Ireland
| | - Patrick Mallon
- UCD Centre for Experimental Pathogen Host Research and UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Jean-Daniel Lelievre
- Department of Clinical Immunology and Infectious Diseases, Henri Mondor Hospital, Vaccine Research Institute, Université Paris Est Créteil, Paris, France
| | - Lisa M Askie
- Quality Assurance Norms and Standards Department, World Health Organization, Geneva, Switzerland
| | - Tamara Kredo
- Cochrane South Africa, South African Medical Research Council, Cape Town, South Africa
| | | | - Mauricia Davidson
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Carolina Riveros
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | | | - Joerg J Meerpohl
- Institute for Evidence in Medicine, Medical Center & Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Cochrane Germany, Cochrane Germany Foundation, Freiburg, Germany
| | - Giacomo Grasselli
- Department of Anesthesia, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Gabriel Rada
- Epistemonikos Foundation, Santiago, Chile
- UC Evidence Center, Cochrane Chile Associated Center, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Asbjørn Hróbjartsson
- Centre for Evidence Based Medicine Odense (CEBMO) and Cochrane Denmark, University of Southern Denmark, Odense, Denmark
- Open Patient data Explorative Network (OPEN), Odense University Hospital, Odense, Denmark
| | - Philippe Ravaud
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Anna Chaimani
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| | - Isabelle Boutron
- Cochrane France, Paris, France
- Centre of Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Université de Paris, Paris, France
| |
Collapse
|
19
|
Lovell JF, Baik YO, Choi SK, Lee C, Lee JY, Miura K, Huang WC, Park YS, Woo SJ, Seo SH, Kim JO, Song M, Kim CJ, Choi JK, Kim J, Choo EJ, Choi JH. Interim analysis from a phase 2 randomized trial of EuCorVac-19: a recombinant protein SARS-CoV-2 RBD nanoliposome vaccine. BMC Med 2022; 20:462. [PMID: 36447243 PMCID: PMC9708508 DOI: 10.1186/s12916-022-02661-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Numerous vaccine strategies are being advanced to control SARS-CoV-2, the cause of the COVID-19 pandemic. EuCorVac-19 (ECV19) is a recombinant protein nanoparticle vaccine that displays the SARS-CoV-2 receptor-binding domain (RBD) on immunogenic nanoliposomes. METHODS Initial study of a phase 2 randomized, observer-blind, placebo-controlled trial to assess the immunogenicity, safety, and tolerance of ECV19 was carried out between July and October 2021. Two hundred twenty-nine participants were enrolled at 5 hospital sites in South Korea. Healthy adults aged 19-75 without prior known exposure to COVID-19 were vaccinated intramuscularly on day 0 and day 21. Of the participants who received two vaccine doses according to protocol, 100 received high-dose ECV19 (20 μg RBD), 96 received low-dose ECV19 (10 μg RBD), and 27 received placebo. Local and systemic adverse events were monitored. Serum was assessed on days 0, 21, and 42 for immunogenicity analysis by ELISA and neutralizing antibody response by focus reduction neutralization test (FRNT). RESULTS Low-grade injection site tenderness and pain were observed in most participants. Solicited systemic adverse events were less frequent, and mostly involved low-grade fatigue/malaise, myalgia, and headache. No clinical laboratory abnormalities were observed. Adverse events did not increase with the second injection and no serious adverse events were solicited by ECV19. On day 42, Spike IgG geometric mean ELISA titers were 0.8, 211, and 590 Spike binding antibody units (BAU/mL) for placebo, low-dose and high-dose ECV19, respectively (p < 0.001 between groups). Neutralizing antibodies levels of the low-dose and high-dose ECV19 groups had FRNT50 geometric mean values of 129 and 316, respectively. Boosting responses and dose responses were observed. Antibodies against the RBD correlated with antibodies against the Spike and with virus neutralization. CONCLUSIONS ECV19 was generally well-tolerated and induced antibodies in a dose-dependent manner that neutralized SARS-CoV-2. The unique liposome display approach of ECV19, which lacks any immunogenic protein components besides the antigen itself, coupled with the lack of increased adverse events during boosting suggest the vaccine platform may be amenable to multiple boosting regimes in the future. Taken together, these findings motivate further investigation of ECV19 in larger scale clinical testing that is underway. TRIAL REGISTRATION The trial was registered at ClinicalTrials.gov as # NCT04783311.
Collapse
Affiliation(s)
- Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA.
| | - Yeong Ok Baik
- Eubiologics, R&D Center, EuBiologics Co., Ltd., Chuncheon, South Korea
| | - Seuk Keun Choi
- Eubiologics, R&D Center, EuBiologics Co., Ltd., Chuncheon, South Korea
| | - Chankyu Lee
- Eubiologics, R&D Center, EuBiologics Co., Ltd., Chuncheon, South Korea
| | - Jeong-Yoon Lee
- Eubiologics, R&D Center, EuBiologics Co., Ltd., Chuncheon, South Korea
| | - Kazutoyo Miura
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Wei-Chiao Huang
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, USA.,POP Biotechnologies, Buffalo, NY, USA
| | - Young-Shin Park
- International Vaccine Institute, Gwanak-Gu, Seoul, South Korea
| | - Sun-Je Woo
- International Vaccine Institute, Gwanak-Gu, Seoul, South Korea
| | - Sang Hwan Seo
- International Vaccine Institute, Gwanak-Gu, Seoul, South Korea
| | - Jae-Ouk Kim
- International Vaccine Institute, Gwanak-Gu, Seoul, South Korea
| | - Manki Song
- International Vaccine Institute, Gwanak-Gu, Seoul, South Korea
| | - Chung-Jong Kim
- Department of Internal Medicine, Ewha Womans University Seoul Hospital, Seoul, South Korea
| | - Jae-Ki Choi
- Catholic University of Korea, Bucheon St. Mary's Hospital, Bucheon, South Korea
| | - Jieun Kim
- Hanyang University College of Medicine, Seoul, South Korea
| | - Eun Ju Choo
- Soonchunhyang University Bucheon Hospital, Bucheon, South Korea
| | - Jung-Hyun Choi
- Department of Infectious Diseases, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
20
|
Yang B, Huang X, Gao H, Leung NH, Tsang TK, Cowling BJ. Immunogenicity, efficacy, and safety of SARS-CoV-2 vaccine dose fractionation: a systematic review and meta-analysis. BMC Med 2022; 20:409. [PMID: 36284331 PMCID: PMC9595080 DOI: 10.1186/s12916-022-02600-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Dose fractionation of a coronavirus disease 2019 (COVID-19) vaccine could effectively accelerate global vaccine coverage, while supporting evidence of efficacy, immunogenicity, and safety are unavailable, especially with emerging variants. METHODS We systematically reviewed clinical trials that reported dose-finding results and estimated the dose-response relationship of neutralizing antibodies (nAbs) of COVID-19 vaccines using a generalized additive model. We predicted the vaccine efficacy against both ancestral and variants, using previously reported correlates of protection and cross-reactivity. We also reviewed and compared seroconversion to nAbs, T cell responses, and safety profiles between fractional and standard dose groups. RESULTS We found that dose fractionation of mRNA and protein subunit vaccines could induce SARS-CoV-2-specific nAbs and T cells that confer a reasonable level of protection (i.e., vaccine efficacy > 50%) against ancestral strains and variants up to Omicron. Safety profiles of fractional doses were non-inferior to the standard dose. CONCLUSIONS Dose fractionation of mRNA and protein subunit vaccines may be safe and effective, which would also vary depending on the characteristics of emerging variants and updated vaccine formulations.
Collapse
Affiliation(s)
- Bingyi Yang
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Xiaotong Huang
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Huizhi Gao
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Nancy H Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tim K Tsang
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong, China
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong, China.
| |
Collapse
|
21
|
Li Z, Liu S, Li F, Li Y, Li Y, Peng P, Li S, He L, Liu T. Efficacy, immunogenicity and safety of COVID-19 vaccines in older adults: a systematic review and meta-analysis. Front Immunol 2022; 13:965971. [PMID: 36177017 PMCID: PMC9513208 DOI: 10.3389/fimmu.2022.965971] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/24/2022] [Indexed: 01/08/2023] Open
Abstract
BackgroundOlder adults are more susceptible to severe health outcomes for coronavirus disease 2019 (COVID-19). Universal vaccination has become a trend, but there are still doubts and research gaps regarding the COVID-19 vaccination in the elderly. This study aimed to investigate the efficacy, immunogenicity, and safety of COVID-19 vaccines in older people aged ≥ 55 years and their influencing factors.MethodsRandomized controlled trials from inception to April 9, 2022, were systematically searched in PubMed, EMBASE, the Cochrane Library, and Web of Science. We estimated summary relative risk (RR), rates, or standardized mean difference (SMD) with 95% confidence interval (CI) using random-effects meta-analysis. This study was registered with PROSPERO (CRD42022314456).ResultsOf the 32 eligible studies, 9, 21, and 25 were analyzed for efficacy, immunogenicity, and safety, respectively. In older adults, vaccination was efficacious against COVID-19 (79.49%, 95% CI: 60.55−89.34), with excellent seroconversion rate (92.64%, 95% CI: 86.77−96.91) and geometric mean titer (GMT) (SMD 3.56, 95% CI: 2.80−4.31) of neutralizing antibodies, and provided a significant protection rate against severe disease (87.01%, 50.80−96.57). Subgroup and meta-regression analyses consistently found vaccine types and the number of doses to be primary influencing factors for efficacy and immunogenicity. Specifically, mRNA vaccines showed the best efficacy (90.72%, 95% CI: 86.82−93.46), consistent with its highest seroconversion rate (98.52%, 95% CI: 93.45−99.98) and GMT (SMD 6.20, 95% CI: 2.02−10.39). Compared to the control groups, vaccination significantly increased the incidence of total adverse events (AEs) (RR 1.59, 95% CI: 1.38−1.83), including most local and systemic AEs, such as pain, fever, chill, etc. For inactivated and DNA vaccines, the incidence of any AEs was similar between vaccination and control groups (p > 0.1), while mRNA vaccines had the highest risk of most AEs (RR range from 1.74 to 7.22).ConclusionCOVID-19 vaccines showed acceptable efficacy, immunogenicity and safety in older people, especially providing a high protection rate against severe disease. The mRNA vaccine was the most efficacious, but it is worth surveillance for some AEs it caused. Increased booster coverage in older adults is warranted, and additional studies are urgently required for longer follow-up periods and variant strains.
Collapse
Affiliation(s)
- Zejun Li
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shouhuan Liu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fengming Li
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yifeng Li
- College of Pediatrics, Chongqing Medical University, Chongqing, China
| | - Yilin Li
- College of Pediatrics, Chongqing Medical University, Chongqing, China
| | - Pu Peng
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Sai Li
- College of Pediatrics, Chongqing Medical University, Chongqing, China
| | - Li He
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Tieqiao Liu, ; Li He,
| | - Tieqiao Liu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Tieqiao Liu, ; Li He,
| |
Collapse
|
22
|
Chen L, Qi X, Liang D, Li G, Peng X, Li X, Ke B, Zheng H, Liu Z, Ke C, Liao G, Liu L, Feng Q. Human Fc-Conjugated Receptor Binding Domain-Based Recombinant Subunit Vaccines with Short Linker Induce Potent Neutralizing Antibodies against Multiple SARS-CoV-2 Variants. Vaccines (Basel) 2022; 10:vaccines10091502. [PMID: 36146579 PMCID: PMC9505662 DOI: 10.3390/vaccines10091502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
The coronavirus disease-19 (COVID-19) pandemic has been ongoing since December 2019, with more than 6.3 million deaths reported globally as of August 2022. Despite the success of several SARS-CoV-2 vaccines, the rise in variants, some of which are resistant to the effects of vaccination, highlights the need for a so-called pan-coronavirus (universal) vaccine. Here, we performed an immunogenicity comparison of prototype vaccines containing spike protein receptor-binding domain (RBD) residues 319–541, or spike protein regions S1, S2 and S fused to a histidine-tagged or human IgG1 Fc (hFC) fragment with either a longer (six residues) or shorter (three residues) linker. While all recombinant protein vaccines developed were effective in eliciting humoral immunity, the RBD-hFc vaccine was able to generate a potent neutralizing antibody response as well as a cellular immune response. We then compared the effects of recombinant protein length and linker size on immunogenicity in vivo. We found that a longer recombinant RBD protein (residues 319–583; RBD-Plus-hFc) containing a small alanine linker (AAA) was able to trigger long-lasting, high-titer neutralizing antibodies in mice. Finally, we evaluated cross-neutralization of wild-type and mutant RBD-Plus-hFc vaccines against wild-type, Alpha, Beta, Delta and Omicron SARS-CoV-2 variants. Significantly, at the same antigen dose, wild-type RBD-Plus-hFc immune sera induced broadly neutralizing antibodies against wild-type, Alpha, Beta, Delta and Omicron variants. Taken together, our findings provide valuable information for the continued development of recombinant protein-based SARS-CoV-2 vaccines and a basic foundation for booster vaccinations to avoid reinfection with SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Liqing Chen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaoxiao Qi
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Dan Liang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 510006, China
| | - Guiqi Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaofang Peng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 510006, China
| | - Xiaohui Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Bixia Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 510006, China
| | - Huanying Zheng
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 510006, China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Changwen Ke
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 510006, China
| | - Guochao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Guangdong Hengda Biomedical Technology Co., Ltd., Guangzhou 510006, China
- Correspondence: (G.L.); (L.L.); (Q.F.)
| | - Liang Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Guangdong Hengda Biomedical Technology Co., Ltd., Guangzhou 510006, China
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou 510006, China
- Correspondence: (G.L.); (L.L.); (Q.F.)
| | - Qian Feng
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People’s Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Correspondence: (G.L.); (L.L.); (Q.F.)
| |
Collapse
|
23
|
Ghaemi A, Roshani Asl P, Zargaran H, Ahmadi D, Hashimi AA, Abdolalipour E, Bathaeian S, Miri SM. Recombinant COVID-19 vaccine based on recombinant RBD/Nucleoprotein and saponin adjuvant induces long-lasting neutralizing antibodies and cellular immunity. Front Immunol 2022; 13:974364. [PMID: 36159845 PMCID: PMC9494508 DOI: 10.3389/fimmu.2022.974364] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022] Open
Abstract
SARS-CoV-2 has caused a global pandemic, infecting millions of people. An effective preventive vaccine against this virus is urgently needed. Here, we designed and developed a novel formulated recombinant receptor-binding domain (RBD) nucleocapsid (N) recombinant vaccine candidates. The RBD and N were separately expressed in E. coli and purified using column chromatography. The female Balb/c mice were immunized subcutaneously with the combination of purified RBD and N alone or formulated with saponin adjuvant in a two-week interval in three doses. Neutralization antibody (Nabs) titers against the SARS-CoV-2 were detected by a Surrogate Virus Neutralization (sVNT) Test. Also, total IgG and IgG1, and IgG2a isotypes and the balance of cytokines in the spleen (IFN-γ, Granzyme B, IL-4, and IL-12) were measured by ELISA. The percentages of CD4+ and CD8+ T cells were quantified by flow cytometry. The lymphoproliferative activity of restimulated spleen cells was also determined. The findings showed that the combination of RBD and N proteins formulated with saponin significantly promoted specific total IgG and neutralization antibodies, elicited robust specific lymphoproliferative and T cell response responses. Moreover, marked increase in CD4+ and CD8+ T cells were observed in the adjuvanted RBD and N vaccine group compared with other groups. The results suggest that the formulations are able to elicit a specific long-lasting mixed Th1/Th2 balanced immune response. Our data indicate the significance of the saponin-adjuvanted RBD/N vaccine in the design of SARS-CoV-2 vaccines and provide a rationale for the development of a protective long-lasting and strong vaccine.
Collapse
Affiliation(s)
- Amir Ghaemi
- Department of Influenza and other respiratory viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Parisa Roshani Asl
- Department of Influenza and other respiratory viruses, Pasteur Institute of Iran, Tehran, Iran
| | | | - Delaram Ahmadi
- Department of Influenza and other respiratory viruses, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Sahar Bathaeian
- Department of Influenza and other respiratory viruses, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
24
|
Toubasi AA, Al‐Sayegh TN, Obaid YY, Al‐Harasis SM, AlRyalat SAS. Efficacy and safety of COVID-19 vaccines: A network meta-analysis. J Evid Based Med 2022; 15:245-262. [PMID: 36000160 PMCID: PMC9538745 DOI: 10.1111/jebm.12492] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 07/27/2022] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Several vaccines showed a good safety profile and significant efficacy against COVID-19. Moreover, in the absence of direct head to head comparison between COVID-19 vaccines, a network meta-analysis that indirectly compares between them is needed. METHODS Databases PubMed, CENTRAL, medRxiv, and clinicaltrials.gov were searched. Studies were included if they were placebo-controlled clinical trials and reported the safety profile and/or effectiveness of COVID-19 vaccines. The quality of the included studies was assessed using the Revised Cochrane risk-of-bias tool for randomized trials and the Revised Cochrane risk-of-bias tool for nonrandomized trials. RESULTS Forty-nine clinical trials that included 421,173 participants and assessed 28 vaccines were included in this network meta-analysis. The network meta-analysis showed that Pfizer is the most effective in preventing COVID-19 infection whereas the Sputnik Vaccine was the most effective in preventing severe COVID-19 infection. In terms of the local and systemic side, the Sinopharm and V-01 vaccines were the safest. CONCLUSION We found that almost all of the vaccines included in this study crossed the threshold of 50% efficacy. However, some of them did not reach the previously mentioned threshold against the B.1.351 variant while the remainder have not yet investigated vaccine efficacy against this variant. Since each vaccine has its own strong and weak points, we strongly advocate continued vaccination efforts in individualized manner that recommend the best vaccine for each group in the community which is abundantly required to save lives and to avert the emergence of future variants.
Collapse
|
25
|
Zhang Z, He Q, Zhao W, Li Y, Yang J, Hu Z, Chen X, Peng H, Fu YX, Chen L, Lu L. A Heterologous V-01 or Variant-Matched Bivalent V-01D-351 Booster following Primary Series of Inactivated Vaccine Enhances the Neutralizing Capacity against SARS-CoV-2 Delta and Omicron Strains. J Clin Med 2022; 11:4164. [PMID: 35887928 PMCID: PMC9317108 DOI: 10.3390/jcm11144164] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/06/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023] Open
Abstract
Immune escape of emerging SARS-CoV-2 variants of concern (VOCs) and waning immunity over time following the primary series suggest the importance and necessity of booster shot of COVID-19 vaccines. With the aim to preliminarily evaluate the potential of heterologous boosting, we conducted two pilot studies to evaluate the safety and immunogenicity of the V-01 or a bivalent V-01D-351 (targeting Delta and Beta strain) booster after 5-7 months of the primary series of inactivated COVID-9 vaccine (ICV). A total of 77 participants were enrolled, with 20 participants in the V-01D-351 booster study, and 27, 30 participants in the age stratified participants of V-01 booster study. The safety results showed that V-01 or V-01D-351 was safe and well-tolerated as a heterologous booster shot, with overall adverse reactions predominantly being absent or mild in severity. The immunogenicity results showed that the heterologous prime-boost immunization with V-01 or bivalent V-01D-351 booster induced stronger humoral immune response as compared with the homologous booster with ICV. In particular, V-01D-351 booster showed the highest pseudovirus neutralizing antibody titers against prototype SARS-CoV-2, Delta and Omicron BA.1 strains at day 14 post boosting, with GMTs 22.7, 18.3, 14.3 times higher than ICV booster, 6.2, 6.1, 3.8 times higher than V-01 booster (10 μg), and 5.2, 3.8, 3.5 times higher than V-01 booster (25 μg), respectively. The heterologous V-01 booster also achieved a favorable safety and immunogenicity profile in older participants. Our study has provided evidence for a flexible roll-out of heterologous boosters and referential approaches for variant-specific vaccine boosters, with rationally conserved but diversified epitopes relative to primary series, to build herd immunity against the ongoing pandemic.
Collapse
Affiliation(s)
- Zhiren Zhang
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai 519000, China; (Z.Z.); (W.Z.); (Y.L.)
| | - Qiaren He
- The Outpatient Department, Shaoguan Hospital of Traditional Chinese Medicine, Shaoguan 512026, China;
| | - Wei Zhao
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai 519000, China; (Z.Z.); (W.Z.); (Y.L.)
| | - Yong Li
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai 519000, China; (Z.Z.); (W.Z.); (Y.L.)
| | - Jiaming Yang
- Livzon Bio Inc., Zhuhai 519045, China; (J.Y.); (Z.H.); (X.C.)
| | - Zhenxiang Hu
- Livzon Bio Inc., Zhuhai 519045, China; (J.Y.); (Z.H.); (X.C.)
| | - Xi Chen
- Livzon Bio Inc., Zhuhai 519045, China; (J.Y.); (Z.H.); (X.C.)
| | - Hua Peng
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Yang-Xin Fu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
| | - Long Chen
- The Outpatient Department, Shaoguan Hospital of Traditional Chinese Medicine, Shaoguan 512026, China;
| | - Ligong Lu
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai 519000, China; (Z.Z.); (W.Z.); (Y.L.)
| |
Collapse
|
26
|
Sutton N, San Francisco Ramos A, Beales E, Smith D, Ikram S, Galiza E, Hsia Y, Heath PT. Comparing Reactogenicity of COVID-19 vaccines: a systematic review and meta-analysis. Expert Rev Vaccines 2022; 21:1301-1318. [PMID: 35796029 DOI: 10.1080/14760584.2022.2098719] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES A number of vaccines have now been developed against COVID-19. Differences in reactogenicity and safety profiles according to the vaccine technologies employed are becoming apparent from clinical trials. METHODS Five databases (Medline, EMBASE, Science Citation Index, Cochrane Central Register of Controlled Trials, London School of Hygiene and Tropical Medicine COVID-19 vaccine tracker) were searched for relevant randomised controlled trials between 1 January 2020 and 12 January 2022 according to predetermined criteria with no language limitations. RESULTS Forty-two datasets were identified, with 20 vaccines using four different technologies (viral vector, inactivated, mRNA and protein sub-unit). Adults and adolescents over 12 years were included. Control groups used saline placebos, adjuvants, and comparator vaccines. The most consistently reported solicited adverse events were fever, fatigue, headache, pain at injection site, redness, and swelling. Both doses of mRNA vaccines, the second dose of protein subunit and the first dose of adenovirus vectored vaccines were the most reactogenic, while the inactivated vaccines were the least reactogenic. CONCLUSIONS The different COVID-19 vaccines currently available appear to have distinct reactogenicity profiles, dependent on the vaccine technology employed. Awareness of these differences may allow targeted recommendations for specific populations. Greater standardization of methods for adverse event reporting will aid future research in this field.
Collapse
Affiliation(s)
- Natalina Sutton
- Centre for Neonatal and Paediatric Infection & Vaccine Institute, Institute for Infection and Immunity, St George's, University of London, Jenner Wing, Cranmer Terrace, London SW17 0RE
| | - Alberto San Francisco Ramos
- Centre for Neonatal and Paediatric Infection & Vaccine Institute, Institute for Infection and Immunity, St George's, University of London, Jenner Wing, Cranmer Terrace, London SW17 0RE
| | - Emily Beales
- Centre for Neonatal and Paediatric Infection & Vaccine Institute, Institute for Infection and Immunity, St George's, University of London, Jenner Wing, Cranmer Terrace, London SW17 0RE
| | - David Smith
- Centre for Neonatal and Paediatric Infection & Vaccine Institute, Institute for Infection and Immunity, St George's, University of London, Jenner Wing, Cranmer Terrace, London SW17 0RE
| | - Sabina Ikram
- Centre for Neonatal and Paediatric Infection & Vaccine Institute, Institute for Infection and Immunity, St George's, University of London, Jenner Wing, Cranmer Terrace, London SW17 0RE
| | - Eva Galiza
- Centre for Neonatal and Paediatric Infection & Vaccine Institute, Institute for Infection and Immunity, St George's, University of London, Jenner Wing, Cranmer Terrace, London SW17 0RE
| | - Yingfen Hsia
- Centre for Neonatal and Paediatric Infection & Vaccine Institute, Institute for Infection and Immunity, St George's, University of London, Jenner Wing, Cranmer Terrace, London SW17 0RE.,Queen's University Belfast, School of Pharmacy 97 Lisburn Rd Belfast BT9 7BL Northern Ireland
| | - Paul T Heath
- Centre for Neonatal and Paediatric Infection & Vaccine Institute, Institute for Infection and Immunity, St George's, University of London, Jenner Wing, Cranmer Terrace, London SW17 0RE
| |
Collapse
|
27
|
Kumar M, James MM, Kumawat M, Nabi B, Sharma P, Pal N, Shubham S, Tiwari RR, Sarma DK, Nagpal R. Aging and Microbiome in the Modulation of Vaccine Efficacy. Biomedicines 2022; 10:biomedicines10071545. [PMID: 35884849 PMCID: PMC9313064 DOI: 10.3390/biomedicines10071545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/29/2022] Open
Abstract
From infancy through to old age, the microbiome plays an important role in modulating the host-immune system. As we age, our immune system and our gut microbiota change significantly in composition and function, which is linked to an increased vulnerability to infectious diseases and a decrease in vaccine responses. Our microbiome remains largely stable throughout adulthood; however, aging causes a major shift in the composition and function of the gut microbiome, as well as a decrease in diversity. Considering the critical role of the gut microbiome in the host-immune system, it is important to address, prevent, and ameliorate age-related dysbiosis, which could be an effective strategy for preventing/restoring functional deficits in immune responses as we grow older. Several factors, such as the host’s genetics and nutritional state, along with the gut microbiome, can influence vaccine efficacy or reaction. Emerging evidence suggests that the microbiome could be a significant determinant of vaccine immunity. Physiological mechanisms such as senescence, or the steady loss of cellular functions, which affect the aging process and vaccination responses, have yet to be comprehended. Recent studies on several COVID-19 vaccines worldwide have provided a considerable amount of data to support the hypothesis that aging plays a crucial role in modulating COVID-19 vaccination efficacy across different populations.
Collapse
Affiliation(s)
- Manoj Kumar
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Meenu Mariya James
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Manoj Kumawat
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Bilkees Nabi
- Department of Biochemistry and Biochemical Engineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad 211007, India;
| | - Poonam Sharma
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Namrata Pal
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Swasti Shubham
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Rajnarayan R. Tiwari
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
| | - Devojit Kumar Sarma
- National Institute for Research in Environmental Health, Bhopal 462030, India; (M.K.); (M.M.J.); (M.K.); (P.S.); (N.P.); (S.S.); (R.R.T.)
- Correspondence: (D.K.S.); (R.N.)
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32302, USA
- Correspondence: (D.K.S.); (R.N.)
| |
Collapse
|
28
|
Wang XY, Mahmood SF, Jin F, Cheah WK, Ahmad M, Sohail MA, Ahmad W, Suppan VK, Sayeed MA, Luxmi S, Teo AH, Lee LY, Qi YY, Pei RJ, Deng W, Xu ZH, Yang JM, Zhang Y, Guan WX, Yu X. Efficacy of heterologous boosting against SARS-CoV-2 using a recombinant interferon-armed fusion protein vaccine (V-01): a randomized, double-blind and placebo-controlled phase III trial. Emerg Microbes Infect 2022; 11:1910-1919. [PMID: 35686572 PMCID: PMC9347473 DOI: 10.1080/22221751.2022.2088406] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Waning of neutralizing titres along with decline of protection efficacy after the second dose of COVID-19 vaccines was observed, including China-made inactivated vaccines. Efficacy of a heterologous boosting using one dose of a recombinant SARS-CoV-2 fusion protein vaccine (V-01) in inactivated vaccine-primed population was studied, aimed to restore the immunity. A randomized, double-blind and placebo-controlled phase III trial was conducted in healthy people aged 18 years or older in Pakistan and Malaysia. Each eligible participant received one dose of the V-01 vaccine developed by Livzon Mabpharm Inc. or placebo within the 3-6 months after the two-dose primary regimen, and was monitored for safety and efficacy. The primary endpoint was protection against confirmed symptomatic SARS-CoV-2 infection. A total of 10,218 participants were randomly assigned to receive a vaccine or placebo. Virus-neutralizing antibodies were assessed in 419 participants. A dramatic increase (11.3-fold; 128.3–1452.8) of neutralizing titres was measured in the V-01 group at 14 days after the booster. Over two months of surveillance, vaccine efficacy was 47.8% (95%CI: 22.6–64.7) according to the intention-to-treat principle. The most common adverse events were transient, mild-to-moderate pain at the injection site, fever, headache, and fatigue. Serious adverse events occurred almost equally in V-01 (0.12%) and placebo (0.16%) groups. The heterologous boosting with the V-01 vaccine was safe and efficacious, which could elicit robust humoral immunity under the epidemic of the Omicron variant. Trial registration:ClinicalTrials.gov identifier: NCT05096832.
Collapse
Affiliation(s)
- Xuan-Yi Wang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology of MoE & MoH, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Children's Hospital, Fudan University, Shanghai, China
| | | | - Fang Jin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, Guangzhou, China.,Guangzhou Joincare Respiratory Medicine Co., Ltd, Guangzhou, China
| | - Wee Kooi Cheah
- Department of Medicine and Clinical Research Centre, Taiping Hospital, Perak, Malaysia
| | - Muhammad Ahmad
- Pulmonology & Critical care, Central Park Teaching Hospital, Lahore, Pakistan
| | | | | | - Vijaya K Suppan
- Clinical Research Center, Sultan Abdul Halim Hospital, Kedah, Malaysia
| | - Muneeba Ahsan Sayeed
- Department of Infectious Diseases, Sindh Infectious Diseases Hospital and Research Centre, Dow University of Health Sciences, Karachi, Pakistan
| | - Shobha Luxmi
- Dow University of Health Sciences, Karachi, Pakistan
| | - Aik-Howe Teo
- Penang General Hospital and Info Kinetics Clinical Research Centre, Pulau Pinang, Malaysia
| | | | - Yang-Yang Qi
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.,Key Laboratory of Medical Molecular Virology of MoE & MoH, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Rong-Juan Pei
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Deng
- Guangzhou Joincare Respiratory Medicine Co., Ltd, Guangzhou, China
| | | | | | | | - Wu-Xiang Guan
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xiong Yu
- Joincare Pharmaceutical Group Industry Co., Ltd., Shenzhen, China
| |
Collapse
|
29
|
Seirafianpour F, Pourriyahi H, Gholizadeh Mesgarha M, Pour Mohammad A, Shaka Z, Goodarzi A. A systematic review on mucocutaneous presentations after COVID-19 vaccination and expert recommendations about vaccination of important immune-mediated dermatologic disorders. Dermatol Ther 2022; 35:e15461. [PMID: 35316551 PMCID: PMC9111423 DOI: 10.1111/dth.15461] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022]
Abstract
With dermatologic side effects being fairly prevalent following vaccination against COVID-19, and the multitude of studies aiming to report and analyze these adverse events, the need for an extensive investigation on previous studies seemed urgent, in order to provide a thorough body of information about these post-COVID-19 immunization mucocutaneous reactions. To achieve this goal, a comprehensive electronic search was performed through the international databases including Medline (PubMed), Scopus, Cochrane, Web of science, and Google scholar on July 12, 2021, and all articles regarding mucocutaneous manifestations and considerations after COVID-19 vaccine administration were retrieved using the following keywords: COVID-19 vaccine, dermatology considerations and mucocutaneous manifestations. A total of 917 records were retrieved and a final number of 180 articles were included in data extraction. Mild, moderate, severe and potentially life-threatening adverse events have been reported following immunization with COVID vaccines, through case reports, case series, observational studies, randomized clinical trials, and further recommendations and consensus position papers regarding vaccination. In this systematic review, we categorized these results in detail into five elaborate tables, making what we believe to be an extensively informative, unprecedented set of data on this topic. Based on our findings, in the viewpoint of the pros and cons of vaccination, mucocutaneous adverse events were mostly non-significant, self-limiting reactions, and for the more uncommon moderate to severe reactions, guidelines and consensus position papers could be of great importance to provide those at higher risks and those with specific worries of flare-ups or inefficient immunization, with sufficient recommendations to safely schedule their vaccine doses, or avoid vaccination if they have the discussed contra-indications.
Collapse
Affiliation(s)
- Farnoosh Seirafianpour
- Student Research Committee, School of MedicineIran University of Medical SciencesTehranIran
| | - Homa Pourriyahi
- Student Research Committee, School of MedicineIran University of Medical SciencesTehranIran
| | | | - Arash Pour Mohammad
- Student Research Committee, School of MedicineIran University of Medical SciencesTehranIran
| | - Zoha Shaka
- Faculty of MedicineIran University of Medical SciencesTehranIran
- Systematic Review and Meta‐Analysis Expert Group (SRMEG)Universal Scientific Education and Research NetworkTehranIran
| | - Azadeh Goodarzi
- Department of DermatologyRasool Akram Medical Complex Clinical Research Development Center (RCRDC), School of Medicine, Iran University of Medical SciencesTehranIran
| |
Collapse
|
30
|
Alagheband Bahrami A, Azargoonjahromi A, Sadraei S, Aarabi A, Payandeh Z, Rajabibazl M. An overview of current drugs and prophylactic vaccines for coronavirus disease 2019 (COVID-19). Cell Mol Biol Lett 2022; 27:38. [PMID: 35562685 PMCID: PMC9100302 DOI: 10.1186/s11658-022-00339-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Designing and producing an effective vaccine is the best possible way to reduce the burden and spread of a disease. During the coronavirus disease 2019 (COVID-19) pandemic, many large pharmaceutical and biotechnology companies invested a great deal of time and money in trying to control and combat the disease. In this regard, due to the urgent need, many vaccines are now available earlier than scheduled. Based on their manufacturing technology, the vaccines available for COVID-19 (severe acute respiratory syndrome coronavirus 2 (SAR-CoV2)) infection can be classified into four platforms: RNA vaccines, adenovirus vector vaccines, subunit (protein-based) vaccines, and inactivated virus vaccines. Moreover, various drugs have been deemed to negatively affect the progression of the infection via various actions. However, adaptive variants of the SARS-CoV-2 genome can alter the pathogenic potential of the virus and increase the difficulty of both drug and vaccine development. In this review, along with drugs used in COVID-19 treatment, currently authorized COVID-19 vaccines as well as variants of the virus are described and evaluated, considering all platforms.
Collapse
Affiliation(s)
- Armina Alagheband Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Samin Sadraei
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Aarabi
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Sadeghalvad M, Mansourabadi AH, Noori M, Nejadghaderi SA, Masoomikarimi M, Alimohammadi M, Rezaei N. Recent developments in SARS-CoV-2 vaccines: A systematic review of the current studies. Rev Med Virol 2022; 33:e2359. [PMID: 35491495 PMCID: PMC9348268 DOI: 10.1002/rmv.2359] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 01/28/2023]
Abstract
Designing and manufacturing efficient vaccines against coronavirus disease 2019 (COVID-19) is a major objective. In this systematic review, we aimed to evaluate the most important vaccines under construction worldwide, their efficiencies and clinical results in healthy individuals and in those with specific underlying diseases. We conducted a comprehensive search in PubMed, Scopus, EMBASE, and Web of Sciences by 1 December 2021 to identify published research studies. The inclusion criteria were publications that evaluated the immune responses and safety of COVID-19 vaccines in healthy individuals and in those with pre-existing diseases. We also searched the VAERS database to estimate the incidence of adverse events of special interest (AESI) post COVID-19 vaccination. Almost all investigated vaccines were well tolerated and developed good levels of both humoural and cellular responses. A protective and efficient humoural immune response develops after the second or third dose of vaccine and a longer interval (about 28 days) between the first and second injections of vaccine could induce higher antibody responses. The vaccines were less immunogenic in immunocompromised patients, particularly those with haematological malignancies. In addition, we found that venous and arterial thrombotic events, Bell's palsy, and myocarditis/pericarditis were the most common AESI. The results showed the potency of the SARS-CoV-2 vaccines to protect subjects against disease. The provision of further effective and safe vaccines is necessary in order to reach a high coverage of immunisation programs across the globe and to provide protection against infection itself.
Collapse
Affiliation(s)
- Mona Sadeghalvad
- Department of ImmunologySchool of MedicineTehran University of Medical SciencesTehranIran
| | | | - Maryam Noori
- Student Research Committee, School of MedicineIran University of Medical SciencesTehranIran,Urology Research CenterTehran University of Medical SciencesTehranIran
| | - Seyed Aria Nejadghaderi
- Systematic Review and Meta‐Analysis Expert Group (SRMEG)Universal Scientific Education and Research Network (USERN)TehranIran,School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Masoomeh Masoomikarimi
- Department of ImmunologySchool of MedicineTehran University of Medical SciencesTehranIran
| | - Masoumeh Alimohammadi
- Department of ImmunologySchool of MedicineTehran University of Medical SciencesTehranIran,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran,Research Center for ImmunodeficienciesChildren's Medical CenterTehran University of Medical SciencesTehranIran
| | - Nima Rezaei
- Department of ImmunologySchool of MedicineTehran University of Medical SciencesTehranIran,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran,Research Center for ImmunodeficienciesChildren's Medical CenterTehran University of Medical SciencesTehranIran
| |
Collapse
|
32
|
Zhang Y, Wang R, He C, Zhang YF, Luo Z, Luo J, Chen S, Jin Y, Xie B, Liu Y. Amantadine-assembled nanostimulator enhances dimeric RBD antigen-elicited cross-neutralization against SARS-CoV-2 strains. NANO TODAY 2022; 43:101393. [PMID: 35035515 PMCID: PMC8752318 DOI: 10.1016/j.nantod.2022.101393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/15/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
There is an urgent need to develop new vaccination strategies to elevate the cross-neutralization against different SARS-CoV-2 strains. In this study, we construct the spherical amantadine-assembled nanostimulator (AAS). Amantadine as immunostimulating molecules are displayed on the outermost layer of AAS. Molecular mechanism analysis reveals that AAS can activate RIG-I-like receptor (RLR) signaling pathway to increase the expression of type I interferons in vivo. AAS-mediated activation of RLR signaling pathway further promotes the maturation and proliferation of dendritic cells (DCs) and T helper cells (Ths), finally activating B cells to produce potent antibody responses. In performance evaluation experiments, the mixture of AAS and dimeric RBD significantly enhances RBD-specific humoral responses (4-fold IgG, 3.5-fold IgG2a, 3.3-fold IgG2b, 3.8-fold IgG3 and 1.3-fold IgM), in comparison to aluminum adjuvant-assistant dimeric RBD. Importantly, AAS dramatically elevates dimeric RBD-elicited cross-neutralization against different SARS-CoV-2 strains such as Wuhan-Hu-1 (9-fold), B.1.1.7 (UK variant, 15-fold), B.1.351 (South African variant, 4-fold) and B.1.617.2 (India variant, 7-fold). Our study verifies the mechanism of AAS in activating RLR signaling pathway in host immune system and highlights the power of AAS in improving antigen-elicited cross-neutralization against different SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Ye Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650000, China
| | - Ruixin Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650000, China
| | - Chunyan He
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650000, China
| | - Yu-Fang Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650000, China
| | - Zhongrui Luo
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650000, China
| | - Jia Luo
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650000, China
| | - Sisi Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650000, China
| | - Yu Jin
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650000, China
| | - Bowen Xie
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650000, China
| | - Ye Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650000, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control and Evaluation of Vaccines and Biological Products, Kunming, Yunnan 650000, China
| |
Collapse
|
33
|
Castaldo M, Waliszewska-Prosół M, Koutsokera M, Robotti M, Straburzyński M, Apostolakopoulou L, Capizzi M, Çibuku O, Ambat FDF, Frattale I, Gadzhieva Z, Gallo E, Gryglas-Dworak A, Halili G, Jusupova A, Koperskaya Y, Leheste AR, Manzo ML, Marcinnò A, Marino A, Mikulenka P, Ong BE, Polat B, Popovic Z, Rivera-Mancilla E, Roceanu AM, Rollo E, Romozzi M, Ruscitto C, Scotto di Clemente F, Strauss S, Taranta V, Terhart M, Tychenko I, Vigneri S, Misiak B, Martelletti P, Raggi A. Headache onset after vaccination against SARS-CoV-2: a systematic literature review and meta-analysis. J Headache Pain 2022; 23:41. [PMID: 35361131 PMCID: PMC8969402 DOI: 10.1186/s10194-022-01400-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/05/2022] [Indexed: 12/15/2022] Open
Abstract
Background Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are used to reduce the risk of developing Coronavirus Disease 2019 (COVID-19). Despite the significant benefits in terms of reduced risk of hospitalization and death, different adverse events may present after vaccination: among them, headache is one of the most common, but nowadays there is no summary presentation of its incidence and no description of its main features. Methods We searched PubMed and EMBASE covering the period between January 1st 2020 and August 6th, 2021, looking for record in English and with an abstract and using three main search terms (with specific variations): COVID-19/SARS-CoV-2; Vaccination; headache/adverse events. We selected manuscript including information on subjects developing headache after injection, and such information had to be derived from a structured form (i.e. no free reporting). Pooled estimates and 95% confidence intervals were calculated. Analyses were carried out by vaccine vs. placebo, by first vs. second dose, and by mRNA-based vs. “traditional” vaccines; finally, we addressed the impact of age and gender on post-vaccine headache onset. Results Out of 9338 records, 84 papers were included in the review, accounting for 1.57 million participants, 94% of whom received BNT162b2 or ChAdOx1. Headache was generally the third most common AE: it was detected in 22% (95% CI 18–27%) of subjects after the first dose of vaccine and in 29% (95% CI 23–35%) after the second, with an extreme heterogeneity. Those receiving placebo reported headache in 10–12% of cases. No differences were detected across different vaccines or by mRNA-based vs. “traditional” ones. None of the studies reported information on headache features. A lower prevalence of headache after the first injection of BNT162b2 among older participants was shown. Conclusions Our results show that vaccines are associated to a two-fold risk of developing headache within 7 days from injection, and the lack of difference between vaccine types enable to hypothesize that headache is secondary to systemic immunological reaction than to a vaccine-type specific reaction. Some descriptions report onset within the first 24 h and that in around one-third of the cases, headache has migraine-like features with pulsating quality, phono and photophobia; in 40–60% of the cases aggravation with activity is observed. The majority of patients used some medication to treat headache, the one perceived as the most effective being acetylsalicylic acid. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-022-01400-4.
Collapse
|
34
|
Yuniar CT, Pratiwi B, Ihsan AF, Laksono BT, Risfayanti I, Fathadina A, Jeong Y, Kim E. Adverse Events Reporting Quality of Randomized Controlled Trials of COVID-19 Vaccine Using the CONSORT Criteria for Reporting Harms: A Systematic Review. Vaccines (Basel) 2022; 10:vaccines10020313. [PMID: 35214773 PMCID: PMC8875800 DOI: 10.3390/vaccines10020313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 02/06/2023] Open
Abstract
Background: Assessing the quality of evidence from vaccine clinical trials is essential to ensure the safety and efficacy of the vaccine and further enhance public acceptance. This study aims to summarize and critically evaluate the quality of harm reporting on randomized controlled trials for the COVID-19 vaccine and determine the factors associated with reporting quality. Methods: We systematically searched the literature using PRISMA guidelines for randomized controlled trials (RCT) on COVID-19 Vaccine until 30 December 2021. Published articles were searched from electronic databases such as PubMed, Science Direct, Google Scholar, and Bibliovid. Bias analysis was performed using RoB-2 tools. The quality of reporting was assessed by the Consolidated Standards of Reporting Trials (CONSORT) harm extension modified into 21 items. Results: A total of 61 RCT studies (402,014 patients) were analyzed. Over half the studies demonstrated adequate reporting (59.02%), and 21 studies (34.4%) reported a low risk of bias. All studies reported death and serious adverse events (AEs), but only six studies mentioned how to handle the recurrent AEs. Reporting of AEs in subgroup analysis was also poor (25%). Conclusion: The RCTs on the COVID-19 vaccine were less biased with good quality on reporting harm based on the modified CONSORT harm extension. However, study quality must be considered, especially for a balance of information between effectivity and safety.
Collapse
Affiliation(s)
- Cindra Tri Yuniar
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia; (C.T.Y.); (B.P.); (A.F.I.); (B.T.L.); (I.R.); (A.F.)
| | - Bhekti Pratiwi
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia; (C.T.Y.); (B.P.); (A.F.I.); (B.T.L.); (I.R.); (A.F.)
| | - Ardika Fajrul Ihsan
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia; (C.T.Y.); (B.P.); (A.F.I.); (B.T.L.); (I.R.); (A.F.)
| | - Bambang Tri Laksono
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia; (C.T.Y.); (B.P.); (A.F.I.); (B.T.L.); (I.R.); (A.F.)
| | - Iffa Risfayanti
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia; (C.T.Y.); (B.P.); (A.F.I.); (B.T.L.); (I.R.); (A.F.)
| | - Annisa Fathadina
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, Institut Teknologi Bandung, Bandung 40132, Indonesia; (C.T.Y.); (B.P.); (A.F.I.); (B.T.L.); (I.R.); (A.F.)
| | - Yeonseon Jeong
- Clinical Data Analysis, Evidence-Based Clinical Research Laboratory, Department of Health Science & Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea;
| | - Eunyoung Kim
- Clinical Data Analysis, Evidence-Based Clinical Research Laboratory, Department of Health Science & Clinical Pharmacy, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea;
- Correspondence: ; Tel.: +82-2-820-5791
| |
Collapse
|
35
|
Sun S, Chen X, Lin J, Ai J, Yang J, Hu Z, Fu YX, Peng H. Broad neutralization against SARS-CoV-2 variants induced by a next-generation protein vaccine V-01. Cell Discov 2021; 7:114. [PMID: 34845195 PMCID: PMC8630016 DOI: 10.1038/s41421-021-00350-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/29/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Shiyu Sun
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xi Chen
- LivzonBio Inc., Zhuhai, Guangdong, China
| | | | - Junwen Ai
- LivzonBio Inc., Zhuhai, Guangdong, China
| | | | | | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Hua Peng
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China. .,Guangzhou Laboratory, and Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China.
| |
Collapse
|