1
|
Elghazy E, Syed Mohamed SMD, Wianglor K, Tetali S, Raut M, Roy I, Pandhal J. Large-scale cultivation of Synechocystis sp. PCC6803 for the production of Poly(3-hydroxybutyrate) and its potential applications in the manufacturing of bulk and medical prototypes. N Biotechnol 2024; 83:133-141. [PMID: 39128542 DOI: 10.1016/j.nbt.2024.08.497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Polyhydroxyalkanoates (PHAs) are biopolymers produced by microorganisms under nutrient limiting conditions and in the presence of excess carbon source. PHAs have gained popularity as a sustainable alternative to traditional plastics. However, large scale production of PHAs is economically challenging due to the relatively high costs of organic carbon. Alternative options include using organisms capable of phototrophic or mixotrophic growth. This study aimed at the production of poly(3-hydroxybutyrate) P(3HB), a type of PHA, at pilot scale using the freshwater cyanobacterium Synechocystis sp. PCC6803. First, to identify optimal conditions for P(3HB) production from Synechocystis sp. PCC6803, different supplemental carbon source concentrations and salinity levels were tested at laboratory scale. The addition of 4 g/L acetate with no added NaCl led to P(3HB) accumulation of 10.7 % dry cell weight on the 28th day of cultivation. Although acetate additions were replicated in an outdoor 400 L serpentine photobioreactor, P(3HB) content was lower, implying uncontrolled conditions impact on biopolymer production efficiency. An optimized P(3HB) extraction methodology was developed to remove pigments, and the biopolymer was characterized and subjected to 3D printing (fused deposition modelling) to confirm its processability. This study thus successfully led to the large-scale production of P(3HB) using sustainable and environmentally friendly cyanobacterial fermentation.
Collapse
Affiliation(s)
- Elbaraa Elghazy
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, United Kingdom; Department of Construction and Building Engineering, Arab Academy for Science, Technology, and Maritime Transport, Cairo, Egypt
| | | | - Kamonchanok Wianglor
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Santosh Tetali
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Mahendra Raut
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Ipsita Roy
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield, United Kingdom; Insigneo Institute of In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom.
| | - Jagroop Pandhal
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
2
|
PHB Processability and Property Improvement with Linear-Chain Polyester Oligomers Used as Plasticizers. Polymers (Basel) 2022; 14:polym14194197. [PMID: 36236144 PMCID: PMC9573169 DOI: 10.3390/polym14194197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022] Open
Abstract
In 2021, global petroleum-based plastic production reached over 400 million metric tons (Mt), and the accumulation of these non-biodegradable plastics in the environment is a worldwide concern. Polyhydroxybutyrate (PHB) offers many advantages over traditional petroleum-based plastics, being biobased, completely biodegradable, and non-toxic. However, its production and use are still challenging due to its low deformation capacity and narrow processing window. In this work, two linear-chain polyester oligomers were used as plasticizers to improve the processability and properties of PHB. Thermal analyses, XRD, and polarized optical microscopy were performed to evaluate the plasticizing effect on the PHB and the reflection on the mechanical behavior. Both oligomers acted as PHB plasticizers, with a reduction in Tg and Tm as a function of the plasticizer concentration, which can make it easier to handle the material in thermal processing and reduce the probability of thermal degradation. Plasticizer 2 proved to be the most promising between the two with an optimized condition of 20%, in which there was a decrease in elastic modulus of up to 72% and an increase in the maximum elongation of 467%.
Collapse
|
3
|
Liang SY, Wan SC, Ho YP, Horng YT, Soo PC, Peng WP. Rapid Quantification of Polyhydroxybutyrate Polymer from Single Bacterial Cells with Mass Spectrometry. Anal Chem 2022; 94:11734-11738. [PMID: 35977070 DOI: 10.1021/acs.analchem.2c02807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polyhydroxyalkanoate (PHA) is one of the biocompatible and biodegradable plastics that can be produced and accumulated as granules inside microorganisms. In this study, a new approach to rapidly quantify a short-chain-length PHA, polyhydroxybutyrate (PHB), produced from genetically engineered Escherichia coli containing phaCAB is presented. The mass of each bacterial cell was measured using a laser-induced radio frequency (rf) plasma charge detection quadrupole ion trap mass spectrometer (LIRFP CD QIT-MS), and then, the PHB contents were determined by calculating the change in cellular mass. The quantitative results showed that the PHB contents measured by LIRFP CD QIT-MS were consistent with those by reference analysis, gas chromatography (GC). The PHB content of each bacterial sample can be obtained within 20 min from sampling using LIRFP CD QIT-MS while GC analysis takes 2 days. In addition, LIRFP CD QIT-MS does not use any hazardous chemicals in cellular mass quantification as compared to GC. This indicates that LIRFP CD QIT-MS has potential in routine monitoring of PHB production.
Collapse
Affiliation(s)
- Shao-Yu Liang
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, Taiwan 974
| | - Shih-Chih Wan
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, Taiwan 974
| | - Yen-Peng Ho
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien, Taiwan 974
| | - Yu-Tze Horng
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Hualien, Taiwan 970
| | - Po-Chi Soo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Hualien, Taiwan 970
| | - Wen-Ping Peng
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, Taiwan 974
| |
Collapse
|
4
|
Mourão MM, Xavier LP, Urbatzka R, Figueiroa LB, da Costa CEF, Dias CGBT, Schneider MPC, Vasconcelos V, Santos AV. Characterization and Biotechnological Potential of Intracellular Polyhydroxybutyrate by Stigeoclonium sp. B23 Using Cassava Peel as Carbon Source. Polymers (Basel) 2021; 13:polym13050687. [PMID: 33668862 PMCID: PMC7956423 DOI: 10.3390/polym13050687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022] Open
Abstract
The possibility of utilizing lignocellulosic agro-industrial waste products such as cassava peel hydrolysate (CPH) as carbon sources for polyhydroxybutyrate (PHB) biosynthesis and characterization by Amazonian microalga Stigeoclonium sp. B23. was investigated. Cassava peel was hydrolyzed to reducing sugars to obtain increased glucose content with 2.56 ± 0.07 mmol/L. Prior to obtaining PHB, Stigeoclonium sp. B23 was grown in BG-11 for characterization and Z8 media for evaluation of PHB nanoparticles' cytotoxicity in zebrafish embryos. As results, microalga produced the highest amount of dry weight of PHB with 12.16 ± 1.28 (%) in modified Z8 medium, and PHB nanoparticles exerted some toxicity on zebrafish embryos at concentrations of 6.25-100 µg/mL, increased mortality (<35%) and lethality indicators as lack of somite formation (<25%), non-detachment of tail, and lack of heartbeat (both <15%). Characterization of PHB by scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimeter (DSC), and thermogravimetry (TGA) analysis revealed the polymer obtained from CPH cultivation to be morphologically, thermally, physically, and biologically acceptable and promising for its use as a biomaterial and confirmed the structure of the polymer as PHB. The findings revealed that microalgal PHB from Stigeoclonium sp. B23 was a promising and biologically feasible new option with high commercial value, potential for biomaterial applications, and also suggested the use of cassava peel as an alternative renewable resource of carbon for PHB biosynthesis and the non-use of agro-industrial waste and dumping concerns.
Collapse
Affiliation(s)
- Murilo Moraes Mourão
- Laboratory of Biotechnology of Enzymes and Biotransformations, Institute of Biological Sciences, Federal University of Pará, 66075-110 Belém, Pará, Brazil;
- Correspondence: (M.M.M.); (A.V.S.)
| | - Luciana Pereira Xavier
- Laboratory of Biotechnology of Enzymes and Biotransformations, Institute of Biological Sciences, Federal University of Pará, 66075-110 Belém, Pará, Brazil;
| | - Ralph Urbatzka
- Interdisciplinary Centre of Marine and Environmental Research—CIIMAR, University of Porto, 4450-208 Porto, Portugal; (R.U.); (V.V.)
| | - Lucas Barbosa Figueiroa
- Laboratory of Oils of the Amazon, Guamá Science and Technology Park, Federal University of Pará, 66075-750 Belém, Pará, Brazil; (L.B.F.); (C.E.F.d.C.)
| | - Carlos Emmerson Ferreira da Costa
- Laboratory of Oils of the Amazon, Guamá Science and Technology Park, Federal University of Pará, 66075-750 Belém, Pará, Brazil; (L.B.F.); (C.E.F.d.C.)
| | | | | | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research—CIIMAR, University of Porto, 4450-208 Porto, Portugal; (R.U.); (V.V.)
- Department of Biology, Faculty of Sciences, University of Porto, 4069-007 Porto, Portugal
| | - Agenor Valadares Santos
- Laboratory of Biotechnology of Enzymes and Biotransformations, Institute of Biological Sciences, Federal University of Pará, 66075-110 Belém, Pará, Brazil;
- Correspondence: (M.M.M.); (A.V.S.)
| |
Collapse
|
5
|
Aaliya B, Sunooj KV, Lackner M. Biopolymer composites: a review. INTERNATIONAL JOURNAL OF BIOBASED PLASTICS 2021. [DOI: 10.1080/24759651.2021.1881214] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Basheer Aaliya
- Department of Food Science and Technology, Pondicherry University , Puducherry, India
| | | | - Maximilian Lackner
- University of Applied Sciences FH Technikum Wien , Höchstädtplatz, Vienna, Austria
| |
Collapse
|
6
|
Mittermair S, Richter J, Doppler P, Trenzinger K, Nicoletti C, Forsich C, Spadiut O, Herwig C, Lackner M. Impact ofexoDgene knockout on the polyhydroxybutyrate overaccumulating mutant Mt_a24. INTERNATIONAL JOURNAL OF BIOBASED PLASTICS 2021. [DOI: 10.1080/24759651.2020.1863020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Sandra Mittermair
- Department of Chemistry and Biology, University of Applied Sciences Upper Austria, AG Biosciences , Wels, Austria
| | - Juliane Richter
- Department of Chemistry and Biology, University of Applied Sciences Upper Austria, AG Biosciences , Wels, Austria
| | - Philipp Doppler
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien , Vienna, Austria
| | - Kevin Trenzinger
- Department of Chemistry and Biology, University of Applied Sciences Upper Austria, AG Biosciences , Wels, Austria
| | - Cecilia Nicoletti
- Department of Chemistry and Biology, University of Applied Sciences Upper Austria, AG Biosciences , Wels, Austria
| | - Christian Forsich
- Department of Materials Technology, University of Applied Sciences Upper Austria , Wels, Austria
| | - Oliver Spadiut
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien , Vienna, Austria
| | - Christoph Herwig
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien , Vienna, Austria
| | - Maximilian Lackner
- Lackner Ventures & Consulting GmbH , Vienna, Austria
- University of Applied Sciences Technikum Wien , Vienna, Austria
| |
Collapse
|
7
|
Koch M, Bruckmoser J, Scholl J, Hauf W, Rieger B, Forchhammer K. Maximizing PHB content in Synechocystis sp. PCC 6803: a new metabolic engineering strategy based on the regulator PirC. Microb Cell Fact 2020; 19:231. [PMID: 33353555 PMCID: PMC7756911 DOI: 10.1186/s12934-020-01491-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/02/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND PHB (poly-hydroxy-butyrate) represents a promising bioplastic alternative with good biodegradation properties. Furthermore, PHB can be produced in a completely carbon-neutral fashion in the natural producer cyanobacterium Synechocystis sp. PCC 6803. This strain has been used as model system in past attempts to boost the intracellular production of PHB above ~ 15% per cell-dry-weight (CDW). RESULTS We have created a new strain that lacks the regulatory protein PirC (product of sll0944), which exhibits a higher activity of the phosphoglycerate mutase resulting in increased PHB pools under nutrient limiting conditions. To further improve the intracellular PHB content, two genes involved in PHB metabolism, phaA and phaB, from the known producer strain Cupriavidus necator, were introduced under the control of the strong promotor PpsbA2. The resulting strain, termed PPT1 (ΔpirC-REphaAB), produced high amounts of PHB under continuous light as well under a day-night regime. When grown in nitrogen and phosphorus depleted medium, the cells produced up to 63% per CDW. Upon the addition of acetate, the content was further increased to 81% per CDW. The produced polymer consists of pure PHB, which is highly isotactic. CONCLUSION The amounts of PHB achieved with PPT1 are the highest ever reported in any known cyanobacterium and demonstrate the potential of cyanobacteria for a sustainable, industrial production of PHB.
Collapse
Affiliation(s)
- Moritz Koch
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Jonas Bruckmoser
- Wacker-Chair of Macromolecular Chemistry, TUM Department of Chemistry, Technical University of Munich, Munich, Germany
| | - Jörg Scholl
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Waldemar Hauf
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Bernhard Rieger
- Wacker-Chair of Macromolecular Chemistry, TUM Department of Chemistry, Technical University of Munich, Munich, Germany
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Eberhard-Karls-Universität Tübingen, Tübingen, Germany.
| |
Collapse
|