1
|
Kwiatkowski A, Weidler C, Habel U, Coverdale NS, Hirad AA, Manning KY, Rauscher A, Bazarian JJ, Cook DJ, Li DKB, Mahon BZ, Menon RS, Taunton J, Reetz K, Romanzetti S, Huppertz C. Uncovering the hidden effects of repetitive subconcussive head impact exposure: A mega-analytic approach characterizing seasonal brain microstructural changes in contact and collision sports athletes. Hum Brain Mapp 2024; 45:e26811. [PMID: 39185683 PMCID: PMC11345636 DOI: 10.1002/hbm.26811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/27/2024] Open
Abstract
Repetitive subconcussive head impacts (RSHI) are believed to induce sub-clinical brain injuries, potentially resulting in cumulative, long-term brain alterations. This study explores patterns of longitudinal brain white matter changes across sports with RSHI-exposure. A systematic literature search identified 22 datasets with longitudinal diffusion magnetic resonance imaging data. Four datasets were centrally pooled to perform uniform quality control and data preprocessing. A total of 131 non-concussed active athletes (American football, rugby, ice hockey; mean age: 20.06 ± 2.06 years) with baseline and post-season data were included. Nonparametric permutation inference (one-sample t tests, one-sided) was applied to analyze the difference maps of multiple diffusion parameters. The analyses revealed widespread lateralized patterns of sports-season-related increases and decreases in mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) across spatially distinct white matter regions. Increases were shown across one MD-cluster (3195 voxels; mean change: 2.34%), one AD-cluster (5740 voxels; mean change: 1.75%), and three RD-clusters (817 total voxels; mean change: 3.11 to 4.70%). Decreases were shown across two MD-clusters (1637 total voxels; mean change: -1.43 to -1.48%), two RD-clusters (1240 total voxels; mean change: -1.92 to -1.93%), and one AD-cluster (724 voxels; mean change: -1.28%). The resulting pattern implies the presence of strain-induced injuries in central and brainstem regions, with comparatively milder physical exercise-induced effects across frontal and superior regions of the left hemisphere, which need further investigation. This article highlights key considerations that need to be addressed in future work to enhance our understanding of the nature of observed white matter changes, improve the comparability of findings across studies, and promote data pooling initiatives to allow more detailed investigations (e.g., exploring sex- and sport-specific effects).
Collapse
Affiliation(s)
- Anna Kwiatkowski
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Carmen Weidler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
- Institute of Neuroscience and Medicine 10, Research Centre JülichJülichGermany
- JARA‐BRAIN Institute Brain Structure Function Relationship, Research Center Jülich and RWTH Aachen UniversityAachenGermany
| | | | - Adnan A. Hirad
- Department of SurgeryUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Department of NeuroscienceUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Del Monte Neuroscience Institute, University of RochesterNew YorkUSA
| | - Kathryn Y. Manning
- Department of RadiologyUniversity of Calgary and Alberta Children's Hospital Research InstituteCalgaryAlbertaCanada
| | - Alexander Rauscher
- Department of Radiology, Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Pediatrics, Division of NeurologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Physics and AstronomyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- UBC MRI Research Centre, University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Jeffrey J. Bazarian
- Department of Emergency MedicineUniversity of Rochester School of Medicine and DentistryRochesterNew YorkUSA
| | - Douglas J. Cook
- Centre for Neuroscience Studies, Queen's UniversityKingstonOntarioCanada
- Division of Neurosurgery, Department of SurgeryQueen's UniversityKingstonOntarioCanada
| | - David K. B. Li
- Department of Radiology, Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Bradford Z. Mahon
- Department of PsychologyCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
- Carnegie Mellon Neuroscience InstitutePittsburghPennsylvaniaUSA
- Department of NeurosurgeryUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Ravi S. Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western OntarioLondonOntarioCanada
| | - Jack Taunton
- Allan McGavin Sports Medicine Centre, Faculty of MedicineUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Kathrin Reetz
- Department of Neurology, Medical FacultyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich and RWTH Aachen UniversityAachenGermany
| | - Sandro Romanzetti
- Department of Neurology, Medical FacultyRWTH Aachen UniversityAachenGermany
- JARA‐BRAIN Institute Molecular Neuroscience and Neuroimaging, Research Center Jülich and RWTH Aachen UniversityAachenGermany
| | - Charlotte Huppertz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical FacultyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
2
|
Urbanik A, Guz W, Brożyna M, Ostrogórska M. Changes in the central nervous system in football players: an MRI study. Acta Radiol 2024; 65:967-974. [PMID: 38767036 DOI: 10.1177/02841851241248410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
BACKGROUND Football (soccer) is the world's most popular team sport. PURPOSE To comprehensively examine the brain in football (soccer) players, with the use of magnetic resonance imaging (MRI) techniques. MATERIAL AND METHODS The study involved 65 football players and 62 controls. The MR examinations were performed using MR 1.5-T system (Optima MR 360; GE Medical Systems). The examinations were carried out in the 3D Bravo, CUBE, FSEpropeller, and diffusion-weighted imaging (DWI) sequences. The 1HMRS signal was obtained from the volume of interest in the frontal and occipital lobes on both sides. RESULTS The present study, based on structural MRI, shows some changes in the brains of the group of football players. The findings show asymmetry of the ventricular system in four football players, arachnoid cysts in the parieto-occipital region, and pineal cysts. NAA/Cr concentration in the right frontal lobe was lower in the football players than in the controls, and the Glx/Cr concentration in the right occipital lobe was higher. The apparent diffusion coefficient value is lower in football players in the occipital lobes. CONCLUSION Playing football can cause measurable changes in the brain, known to occur in patients diagnosed with traumatic brain injury. The present findings fill the gap in the literature by contributing evidence showing that playing football may lead to changes in the brain, without clinical symptoms of concussion.
Collapse
Affiliation(s)
- Andrzej Urbanik
- Department of Radiology, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Wiesław Guz
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| | - Maciej Brożyna
- Institute of Physical Culture Sciences, College of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| | - Monika Ostrogórska
- Department of Radiology, Collegium Medicum, Jagiellonian University, Krakow, Poland
| |
Collapse
|
3
|
Conti F, McCue JJ, DiTuro P, Galpin AJ, Wood TR. Mitigating Traumatic Brain Injury: A Narrative Review of Supplementation and Dietary Protocols. Nutrients 2024; 16:2430. [PMID: 39125311 PMCID: PMC11314487 DOI: 10.3390/nu16152430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Traumatic brain injuries (TBIs) constitute a significant public health issue and a major source of disability and death in the United States and worldwide. TBIs are strongly associated with high morbidity and mortality rates, resulting in a host of negative health outcomes and long-term complications and placing a heavy financial burden on healthcare systems. One promising avenue for the prevention and treatment of brain injuries is the design of TBI-specific supplementation and dietary protocols centred around nutraceuticals and biochemical compounds whose mechanisms of action have been shown to interfere with, and potentially alleviate, some of the neurophysiological processes triggered by TBI. For example, evidence suggests that creatine monohydrate and omega-3 fatty acids (DHA and EPA) help decrease inflammation, reduce neural damage and maintain adequate energy supply to the brain following injury. Similarly, melatonin supplementation may improve some of the sleep disturbances often experienced post-TBI. The scope of this narrative review is to summarise the available literature on the neuroprotective effects of selected nutrients in the context of TBI-related outcomes and provide an evidence-based overview of supplementation and dietary protocols that may be considered in individuals affected by-or at high risk for-concussion and more severe head traumas. Prophylactic and/or therapeutic compounds under investigation include creatine monohydrate, omega-3 fatty acids, BCAAs, riboflavin, choline, magnesium, berry anthocyanins, Boswellia serrata, enzogenol, N-Acetylcysteine and melatonin. Results from this analysis are also placed in the context of assessing and addressing important health-related and physiological parameters in the peri-impact period such as premorbid nutrient and metabolic health status, blood glucose regulation and thermoregulation following injury, caffeine consumption and sleep behaviours. As clinical evidence in this research field is rapidly emerging, a comprehensive approach including appropriate nutritional interventions has the potential to mitigate some of the physical, neurological, and emotional damage inflicted by TBIs, promote timely and effective recovery, and inform policymakers in the development of prevention strategies.
Collapse
Affiliation(s)
- Federica Conti
- School of Physics, University of Sydney, Sydney, NSW 2050, Australia;
| | - Jackson J. McCue
- School of Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Paul DiTuro
- Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA
| | - Andrew J. Galpin
- Center for Sport Performance, California State University, Fullerton, CA 92831, USA;
| | - Thomas R. Wood
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Institute for Human and Machine Cognition, Pensacola, FL 32502, USA
| |
Collapse
|
4
|
Fitzgerald B, Bari S, Vike N, Lee TA, Lycke RJ, Auger JD, Leverenz LJ, Nauman E, Goñi J, Talavage TM. Longitudinal changes in resting state fMRI brain self-similarity of asymptomatic high school American football athletes. Sci Rep 2024; 14:1747. [PMID: 38243048 PMCID: PMC10799081 DOI: 10.1038/s41598-024-51688-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
American football has become the focus of numerous studies highlighting a growing concern that cumulative exposure to repetitive, sports-related head acceleration events (HAEs) may have negative consequences for brain health, even in the absence of a diagnosed concussion. In this longitudinal study, brain functional connectivity was analyzed in a cohort of high school American football athletes over a single play season and compared against participants in non-collision high school sports. Football athletes underwent four resting-state functional magnetic resonance imaging sessions: once before (pre-season), twice during (in-season), and once 34-80 days after the contact activities play season ended (post-season). For each imaging session, functional connectomes (FCs) were computed for each athlete and compared across sessions using a metric reflecting the (self) similarity between two FCs. HAEs were monitored during all practices and games throughout the season using head-mounted sensors. Relative to the pre-season scan session, football athletes exhibited decreased FC self-similarity at the later in-season session, with apparent recovery of self-similarity by the time of the post-season session. In addition, both within and post-season self-similarity was correlated with cumulative exposure to head acceleration events. These results suggest that repetitive exposure to HAEs produces alterations in functional brain connectivity and highlight the necessity of collision-free recovery periods for football athletes.
Collapse
Affiliation(s)
- Bradley Fitzgerald
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA.
| | - Sumra Bari
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
- Department of Computer Science, University of Cincinnati, Cincinnati, OH, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Nicole Vike
- Department of Computer Science, University of Cincinnati, Cincinnati, OH, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA
| | - Taylor A Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Roy J Lycke
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Joshua D Auger
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Larry J Leverenz
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA
| | - Eric Nauman
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Joaquín Goñi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Thomas M Talavage
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
5
|
Delang N, Irwin C, Peek AL, McGregor IS, Desbrow B, McCartney D. The effect of contact/collision sport participation without concussion on neurometabolites: A systematic review and meta-analysis of magnetic resonance spectroscopy studies. J Neurochem 2023; 167:615-632. [PMID: 37908148 DOI: 10.1111/jnc.16000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/22/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
The aim of this study was to systematically review prior research investigating the effects of contact/collision sport participation on neurometabolite levels in the absence of concussion. Four online databases were searched to identify studies that measured neurometabolite levels in contact/collision sport athletes (without concussion) using proton (1 H) or phosphorus (31 P) magnetic resonance spectroscopy (MRS). All study designs were acceptable for inclusion. Meta-analytic procedures were used to quantify the effect of contact/collision sport participation on neurometabolite levels and explore the impact of specific moderating factors (where sufficient data were available). Narrative synthesis was used to describe outcomes that could not be meta-analysed. Nine observational studies involving 300 contact/collision sport athletes were identified. Six studies (providing 112 effect estimates) employed longitudinal (cohort) designs and three (that could not be meta-analysed) employed case-control designs. N-acetylaspartate (NAA; g = -0.331, p = 0.013) and total creatine (tCr; creatine + phosphocreatine; g = -0.524, p = 0.029), but not glutamate-glutamine (Glx), myo-inositol (mI) or total choline (tCho; choline-containing compounds; p's > 0.05), decreased between the pre-season and mid-/post-season period. Several moderators were statistically significant, including: sex (Glx: 6 female/23 male, g = -0.549, p = 0.013), sport played (Glx: 22 American football/4 association football [soccer], g = 0.724, p = 0.031), brain region (mI: 2 corpus callosum/9 motor cortex, g = -0.804, p = 0.015), and the MRS quantification approach (mI: 18 absolute/3 tCr-referenced, g = 0.619, p = 0.003; and tCho: 18 absolute/3 tCr-referenced, g = 0.554, p = 0.005). In case-control studies, contact/collision sport athletes had higher levels of mI, but not NAA or tCr compared to non-contact sport athletes and non-athlete controls. Overall, this review suggests that contact/collision sport participation has the potential to alter neurometabolites measured via 1 H MRS in the absence of concussion. However, further research employing more rigorous and consistent methodologies (e.g. interventional studies with consistent 1 H MRS pulse sequences and quantifications) is required to confirm and better understand the clinical relevance of observed effects.
Collapse
Affiliation(s)
- Nathan Delang
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Queensland, Australia
- Queensland Academy of Sport, Nathan, Queensland, Australia
| | - Christopher Irwin
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Queensland, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Aimie L Peek
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Iain S McGregor
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Ben Desbrow
- School of Health Sciences and Social Work, Griffith University, Gold Coast, Queensland, Australia
| | - Danielle McCartney
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, New South Wales, Australia
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
McIver KG, Lee P, Bucherl S, Talavage TM, Myer GD, Nauman EA. Design Considerations for the Attenuation of Translational and Rotational Accelerations in American Football Helmets. J Biomech Eng 2023; 145:061008. [PMID: 36628996 PMCID: PMC10782865 DOI: 10.1115/1.4056653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023]
Abstract
Participants in American football experience repetitive head impacts that induce negative changes in neurocognitive function over the course of a single season. This study aimed to quantify the transfer function connecting the force input to the measured output acceleration of the helmet system to provide a comparison of the impact attenuation of various modern American football helmets. Impact mitigation varied considerably between helmet models and with location for each helmet model. The current data indicate that helmet mass is a key variable driving force attenuation, however flexible helmet shells, helmet shell cutouts, and more compliant padding can improve energy absorption.
Collapse
Affiliation(s)
- Kevin G. McIver
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907
| | - Patrick Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907
| | - Sean Bucherl
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907
| | - Thomas M. Talavage
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221; School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907
| | - Gregory D. Myer
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA 30542; Emory Sports Medicine Center, Atlanta, GA 30329; Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329; The Micheli Center for Sports Injury Prevention, Waltham, MA 02452
| | - Eric A. Nauman
- Dane A. and Mary Louise Miller Professor Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, 2901 Woodside Drive, Cincinnati, OH 45221
| |
Collapse
|
7
|
Naskar A, Jayanty D, Head K, Khanna GL, Vatsalya V, Banerjee A. Diagnostic Prospectives with Tau Protein and Imaging Techniques to Detect Development of Chronic Traumatic Encephalopathy. JOURNAL OF BEHAVIORAL AND BRAIN SCIENCE 2023; 13:55-65. [PMID: 37275219 PMCID: PMC10239269 DOI: 10.4236/jbbs.2023.134005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Brain damage sustained from repeated blows in boxing, wrestling, and other combat sports has serious physical and mental health consequences. The degenerative brain disease, chronic traumatic encephalopathy (CTE), presents clinically with memory loss, aggression, difficulty in rational thinking and other cognitive problems. This spectrum, which mimics Alzheimer's disease, is diagnosed post-mortem through a brain biopsy in many professional athletes. However, little is known about the process of development and how to identify vulnerable individuals who may be on course for developing CTE. Boxing is a sport that has a severe toll on athletes' health, primarily on their brain health and function. This review addresses the concerns of brain injury, describes the pathologies that manifest in multiple scales, e.g., molecular and cognitive, and also proposes possible diagnostic and prognostic markers to characterize the early onset of CTE along with the aim to identify a starting point for future precautions and interventions.
Collapse
Affiliation(s)
- Amit Naskar
- Cognitive Brain Dynamics Lab, National Brain Research Centre, Manesar, India
| | - Danielle Jayanty
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Kimberly Head
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Gulshan L. Khanna
- Professor and Pro Vice Chancellor, Manav Rachna International Institute of Research and Studies, Faridabad, India
| | - Vatsalya Vatsalya
- Department of Medicine, University of Louisville, Louisville, KY, USA
- Robley Rex VA Medical Center, Louisville, KY, USA
- National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Arpan Banerjee
- Cognitive Brain Dynamics Lab, National Brain Research Centre, Manesar, India
| |
Collapse
|
8
|
Joyce JM, La PL, Walker R, Harris A. Magnetic resonance spectroscopy of traumatic brain injury and subconcussive hits: A systematic review and meta-analysis. J Neurotrauma 2022; 39:1455-1476. [PMID: 35838132 DOI: 10.1089/neu.2022.0125] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance spectroscopy (MRS) is a non-invasive technique used to study metabolites in the brain. MRS findings in traumatic brain injury (TBI) and subconcussive hit literature have been mixed. The most common observation is a decrease in N-acetyl-aspartate (NAA), traditionally considered a marker of neuronal integrity. Other metabolites, however, such as creatine (Cr), choline (Cho), glutamate+glutamine (Glx) and myo-inositol (mI) have shown inconsistent changes in these populations. The objective of this systematic review and meta-analysis was to synthesize MRS literature in head injury and explore factors (brain region, injury severity, time since injury, demographic, technical imaging factors, etc.) that may contribute to differential findings. One hundred and thirty-eight studies met inclusion criteria for the systematic review and of those, 62 NAA, 24 Cr, 49 Cho, 18 Glx and 21 mI studies met inclusion criteria for meta-analysis. A random effects model was used for meta-analyses with brain region as a subgroup for each of the five metabolites studied. Meta-regression was used to examine the influence of potential moderators including injury severity, time since injury, age, sex, tissue composition and methodological factors. In this analysis of 1428 unique head-injured subjects and 1132 controls, the corpus callosum was identified as a brain region highly susceptible to metabolite alteration. NAA was consistently decreased in TBI of all severity, but not in subconcussive hits. Cho and mI were found to be increased in moderate-to-severe TBI but not mild TBI. Glx and Cr were largely unaffected, however did show alterations in certain conditions.
Collapse
Affiliation(s)
- Julie Michele Joyce
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Parker L La
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Robyn Walker
- University of Calgary, 2129, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| | - Ashley Harris
- University of Calgary, Radiology, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, 157742, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, 157744, Calgary, Alberta, Canada.,Integrated Concussion Research Program, Calgary, Alberta, Canada;
| |
Collapse
|
9
|
Functional, but Minimal Microstructural Brain Changes Present in Aging Canadian Football League Players Years After Retirement. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Vike NL, Bari S, Susnjar A, Lee T, Lycke RJ, Auger J, Music J, Nauman E, Talavage TM, Rispoli J. American football position-specific neurometabolic changes in high school athletes - a magnetic resonance spectroscopic study. J Neurotrauma 2022; 39:1168-1182. [PMID: 35414265 DOI: 10.1089/neu.2021.0186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Reports estimate between 1.6-3.8 million sports-related concussions occur annually, with 30% occurring in youth male American football athletes. Many studies report neurophysiological changes in these athletes, but the exact reasons for these changes remain elusive. Investigation of injury mechanics highlights a need to address how player position might impact these changes. Here, 55 high school American football athletes (20 linemen; 35 non-linemen) underwent magnetic resonance spectroscopy four times over the course of a football season (once prior to the season (Pre), twice during (In1, In2), and once following (Post)) to quantify metabolites (N-acetyl aspartate, choline, creatine, myo-inositol, and glutamate/glutamine) in the dorsolateral prefrontal cortex (DLPFC) and primary motor cortex (M1). Head acceleration events (HAEs) were monitored at each practice and game. Spectroscopic and HAE data were analyzed by imaging session and player position. Linear regression analyses were conducted between metabolite levels and HAEs, and metabolite levels in football athletes were compared to age-and gender-matched non-contact athletes. Across-season (i.e., between Pre and In1, In2, Post), different DLPFC and M1 metabolites decreased (p<0.05) according to player position (i.e., linemen vs. non-linemen). The majority of regression results involved DLPFC metabolites in linemen, where metabolite levels were higher, from Pre to Post, with increasing HAE load. Comparisons with control athletes revealed higher metabolite levels in football athletes both before and after the season. This study highlights the importance of player position when conducting analyses on American football athletes and demonstrates elevated DLPFC and M1 brain metabolites in football athletes compared to control athletes at both Pre and Post, suggesting potential HAE-related neurocompensatory mechanisms.
Collapse
Affiliation(s)
- Nicole L Vike
- Northwestern University, 3270, Chicago, Illinois, United States.,Purdue University, 311308, West Lafayette, Indiana, United States;
| | - Sumra Bari
- Northwestern University, 3270, Chicago, Illinois, United States.,Purdue University, 311308, West Lafayette, Indiana, United States;
| | - Antonia Susnjar
- Purdue University, 311308, West Lafayette, Indiana, United States;
| | - Taylor Lee
- Purdue University, 311308, West Lafayette, Indiana, United States;
| | - Roy J Lycke
- Purdue University, 311308, Weldon School of Biomedical Engineering, West Lafayette, Indiana, United States;
| | - Joshua Auger
- Purdue University, 311308, West Lafayette, Indiana, United States;
| | - Jacob Music
- Purdue University, 311308, West Lafayette, Indiana, United States;
| | - Eric Nauman
- Purdue University, School of Mechanical Engineering, West Lafayette, Indiana, United States.,University of Cincinnati, 2514, Cincinnati, Ohio, United States;
| | - Thomas M Talavage
- Purdue University, 311308, West Lafayette, Indiana, United States.,University of Cincinnati, 2514, Cincinnati, Ohio, United States;
| | - Joseph Rispoli
- Purdue University, 311308, West Lafayette, Indiana, United States;
| |
Collapse
|
11
|
Vike NL, Bari S, Stetsiv K, Talavage TM, Nauman EA, Papa L, Slobounov S, Breiter HC, Cornelis MC. Metabolomic response to collegiate football participation: Pre- and Post-season analysis. Sci Rep 2022; 12:3091. [PMID: 35197541 PMCID: PMC8866500 DOI: 10.1038/s41598-022-07079-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/03/2022] [Indexed: 11/09/2022] Open
Abstract
Contact sports participation has been shown to have both beneficial and detrimental effects on health, however little is known about the metabolic sequelae of these effects. We aimed to identify metabolite alterations across a collegiate American football season. Serum was collected from 23 male collegiate football athletes before the athletic season (Pre) and after the last game (Post). Samples underwent nontargeted metabolomic profiling and 1131 metabolites were included for univariate, pathway enrichment, and multivariate analyses. Significant metabolites were assessed against head acceleration events (HAEs). 200 metabolites changed from Pre to Post (P < 0.05 and Q < 0.05); 160 had known identity and mapped to one of 57 pre-defined biological pathways. There was significant enrichment of metabolites belonging to five pathways (P < 0.05): xanthine, fatty acid (acyl choline), medium chain fatty acid, primary bile acid, and glycolysis, gluconeogenesis, and pyruvate metabolism. A set of 12 metabolites was sufficient to discriminate Pre from Post status, and changes in 64 of the 200 metabolites were also associated with HAEs (P < 0.05). In summary, the identified metabolites, and candidate pathways, argue there are metabolic consequences of both physical training and head impacts with football participation. These findings additionally identify a potential set of objective biomarkers of repetitive head injury.
Collapse
Affiliation(s)
- Nicole L Vike
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sumra Bari
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Khrystyna Stetsiv
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Thomas M Talavage
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Eric A Nauman
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA
| | - Linda Papa
- Department of Emergency Medicine, Orlando Regional Medical Center, Orlando, FL, USA
| | - Semyon Slobounov
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA.
| | - Hans C Breiter
- Warren Wright Adolescent Center Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Laboratory of Neuroimaging and Genetics, Department of Psychiatry, Massachusetts General Hospital and Harvard School of Medicine, Boston, MA, USA
| | - Marilyn C Cornelis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
12
|
Li W, Kong X, Ma J. Effects of combat sports on cerebellar function in adolescents: a resting-state fMRI study. Br J Radiol 2022; 95:20210826. [PMID: 34918548 PMCID: PMC8822571 DOI: 10.1259/bjr.20210826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVES To evaluate the effects of combat sports on cerebellar function in adolescents based on resting-state functional MRI (rs-fMRI). METHODS Rs-fMRI data were acquired from the combat sports (CS) group (n = 32, aged 14.2 ± 1.1 years) and non-athlete healthy control (HC) group (n = 29, aged 14.8 ± 0.9 years). The amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and functional connectivity (FC) within the cerebellum was calculated and then compared between the two groups. RESULTS None of these participants displayed intracranial lesions on conventional MRI and microhemorrhages on SWI. Compared with the HC group, the CS group showed decreased ALFF and ReHo in the bilateral cerebellum, mainly located in the inferior regions of the cerebellum (Cerebellum_8, Cerebellum_9, Cerebellum_7b, and Cerebellum_Crus2). While increased FC was found within the cerebellar network, mainly located in the superior regions near the midline (bilateral Cerebellum_6, Cerebellum_Crus1_R, and Vermis_6). There is no internetwork FC change between the CEN and other networks. CONCLUSION This study confirmed extensive effects of combat sports on cerebellar rs-fMRI in adolescents, which could enhance the understanding of cerebellar regulatory mechanism under combat conditions, and provide additional information about cerebellar protective inhibition and compensatory adaptation. ADVANCES IN KNOWLEDGE Adolescent combat participants are an ideal model to study training-induced brain plasticity and vulnerability. Relative to task-related fMRI, rs-fMRI can bring more information about cerebellar regulation and explain the Central Governor Model more comprehensively.
Collapse
Affiliation(s)
- Wei Li
- Department of Medical Imaging, Affiliated Hospital Of Yangzhou University, Yangzhou, China
| | - Xin Kong
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jun Ma
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Career Head Impact Exposure Profile of Canadian University Football Players. J Appl Biomech 2022; 38:47-57. [PMID: 35045388 DOI: 10.1123/jab.2020-0228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/03/2021] [Accepted: 12/08/2021] [Indexed: 11/18/2022]
Abstract
This study quantified head impact exposures for Canadian university football players over their varsity career. Participants included 63 players from one team that participated in a minimum of 3 seasons between 2013 and 2018. A total of 127,192 head impacts were recorded from 258 practices and 65 games. The mean (SD) number of career impacts across all positions was 2023.1 (1296.4), with an average of 37.1 (20.3) impacts per game and 7.4 (4.4) impacts per practice. The number of head impacts that players experienced during their careers increased proportionally to the number of athletic exposures (P < .001, r = .57). Linebackers and defensive and offensive linemen experienced significantly more head impacts than defensive backs, quarterbacks, and wide receivers (P ≤ .014). Seniority did not significantly affect the number of head impacts a player experienced. Mean linear acceleration increased with years of seniority within defensive backs and offensive linemen (P ≤ .01). Rotational velocity increased with years of seniority within defensive backs, defensive and offensive linemen, running backs, and wide receivers (P < .05). These data characterize career metrics of head impact exposure for Canadian university football players and provide insights to reduce head impacts through rule modifications and contact regulations.
Collapse
|
14
|
Kashyap P, Shenk TE, Svaldi DO, Lycke RJ, Lee TA, Tamer GG, Nauman EA, Talavage TM. Normalized Brain Tissue–Level Evaluation of Volumetric Changes of Youth Athletes Participating in Collision Sports. Neurotrauma Rep 2022; 3:57-69. [PMID: 35112108 PMCID: PMC8804236 DOI: 10.1089/neur.2021.0060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Observations of short-term changes in the neural health of youth athletes participating in collision sports (e.g., football and soccer) have highlighted a need to explore potential structural alterations in brain tissue volumes for these persons. Studies have shown biochemical, vascular, functional connectivity, and white matter diffusivity changes in the brain physiology of these athletes that are strongly correlated with repetitive head acceleration exposure. Here, research is presented that highlights regional anatomical volumetric measures that change longitudinally with accrued subconcussive trauma. A novel pipeline is introduced that provides simplified data analysis on standard-space template to quantify group-level longitudinal volumetric changes within these populations. For both sports, results highlight incremental relative regional volumetric changes in the subcortical cerebrospinal fluid that are strongly correlated with head exposure events greater than a 50-G threshold at the short-term post-season assessment. Moreover, longitudinal regional gray matter volumes are observed to decrease with time, only returning to baseline/pre-participation levels after sufficient (5–6 months) rest from collision-based exposure. These temporal structural volumetric alterations are significantly different from normal aging observed in sex- and age-matched controls participating in non-collision sports. Future work involves modeling repetitive head exposure thresholds with multi-modal image analysis and understanding the underlying physiological reason. A possible pathophysiological pathway is presented, highlighting the probable metabolic regulatory mechanisms. Continual participation in collision-based activities may represent a risk wherein recovery cannot occur. Even when present, the degree of the eventual recovery remains to be explored, but has strong implications for the well-being of collision-sport participants.
Collapse
Affiliation(s)
- Pratik Kashyap
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Trey E. Shenk
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Diana O. Svaldi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Roy J. Lycke
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Taylor A. Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Gregory G. Tamer
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Eric A. Nauman
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Thomas M. Talavage
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
15
|
Cournoyer J, Karton C, Koncan D, Gilchrist MD, Cantu RC, Hoshizaki TB. Brain trauma exposure for American tackle football players 5 to 9 and 9 to 14 years of age. J Biomech 2021; 127:110689. [PMID: 34416530 DOI: 10.1016/j.jbiomech.2021.110689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/28/2021] [Accepted: 08/09/2021] [Indexed: 01/13/2023]
Abstract
American football helmets used by youth players are currently designed and tested to the same standards as professionals. The National Operating Committee on Standard and Safety requested research aiming at understanding the differences in brain trauma in youth American football for players aged five to nine and nine to fourteen years old to inform a youth specific American football standard. Video analysis and laboratory reconstructions of head impacts were undertaken to measure differences in head impact frequency, event types, and magnitudes of maximum principal strain (MPS) for the two age groups. Overall frequencies and frequencies for five categories of MPS representing different magnitudes of risk were tabulated. The MPS categories were very low (<0.08), low (0.08-0.169), medium (0.17-0.259), high (0.26-0.349) and very high (>0.35). Both cohorts experienced a majority of head impacts (>56%) at very low magnitude of MPS. Youth American football players aged 9-14 yrs. sustained a greater frequency of head impacts at MPS between 0.08 and 0.169 % associated with changes in brain structure and function. There were no differences in overall frequency, or in frequency of head impacts in other categories of MPS. The proportion of impacts considered injurious (MPS > 0.08) was greater in the 5-9 group (44%), than the 9-14 group (39%), and impacts above 0.35 % were only reported for the younger age group. The larger helmet-to-shoulder ratio in the younger age groups may have contributed to this finding suggesting that youth American football players under the age of nine would benefit from a child-specific football helmet.
Collapse
Affiliation(s)
- J Cournoyer
- University of Ottawa, School of Human Kinetics, Ottawa, Canada.
| | - C Karton
- University of Ottawa, School of Human Kinetics, Ottawa, Canada
| | - D Koncan
- University of Ottawa, School of Human Kinetics, Ottawa, Canada
| | - M D Gilchrist
- University College Dublin, School of Mechanical and Materials Engineering
| | - R C Cantu
- Boston University Alzheimer's Disease and Chronic Encephalopathy Center, Boston University School of Medicine, Boston, MA, USA; Department of Neurology, Boston University School of Medicine, Boston, MA, USA; Department of neurosurgery, Boston University School of Medicine, Boston, MA, USA; Department of neurosurgery, Emerson Hospital, Concord, MA, USA; Concussion Legacy Foundation, Boston, MA, USA
| | - T B Hoshizaki
- University of Ottawa, School of Human Kinetics, Ottawa, Canada
| |
Collapse
|
16
|
Bartnik-Olson BL, Alger JR, Babikian T, Harris AD, Holshouser B, Kirov II, Maudsley AA, Thompson PM, Dennis EL, Tate DF, Wilde EA, Lin A. The clinical utility of proton magnetic resonance spectroscopy in traumatic brain injury: recommendations from the ENIGMA MRS working group. Brain Imaging Behav 2021; 15:504-525. [PMID: 32797399 PMCID: PMC7882010 DOI: 10.1007/s11682-020-00330-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proton (1H) magnetic resonance spectroscopy provides a non-invasive and quantitative measure of brain metabolites. Traumatic brain injury impacts cerebral metabolism and a number of research groups have successfully used this technique as a biomarker of injury and/or outcome in both pediatric and adult TBI populations. However, this technique is underutilized, with studies being performed primarily at centers with access to MR research support. In this paper we present a technical introduction to the acquisition and analysis of in vivo 1H magnetic resonance spectroscopy and review 1H magnetic resonance spectroscopy findings in different injury populations. In addition, we propose a basic 1H magnetic resonance spectroscopy data acquisition scheme (Supplemental Information) that can be added to any imaging protocol, regardless of clinical magnetic resonance platform. We outline a number of considerations for study design as a way of encouraging the use of 1H magnetic resonance spectroscopy in the study of traumatic brain injury, as well as recommendations to improve data harmonization across groups already using this technique.
Collapse
Affiliation(s)
| | - Jeffry R Alger
- Departments of Neurology and Radiology, University of California Los Angeles, Los Angeles, CA, USA
- NeuroSpectroScopics LLC, Sherman Oaks, Los Angeles, CA, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Talin Babikian
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
- UCLA Steve Tisch BrainSPORT Program, Los Angeles, CA, USA
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, Canada
- Child and Adolescent Imaging Research Program, Alberta Children's Hospital Research Institute and the Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Barbara Holshouser
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Ivan I Kirov
- Bernard and Irene Schwartz Center for Biomedical Imaging, Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Andrew A Maudsley
- Department of Radiology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
- Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and Ophthalmology, USC, Los Angeles, CA, USA
| | - Emily L Dennis
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, Los Angeles, CA, USA
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Boston, MA, USA
| | - David F Tate
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Alexander Lin
- Center for Clinical Spectroscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
|
18
|
Schranz AL, Dekaban GA, Fischer L, Blackney K, Barreira C, Doherty TJ, Fraser DD, Brown A, Holmes J, Menon RS, Bartha R. Brain Metabolite Levels in Sedentary Women and Non-contact Athletes Differ From Contact Athletes. Front Hum Neurosci 2020; 14:593498. [PMID: 33324185 PMCID: PMC7726472 DOI: 10.3389/fnhum.2020.593498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/28/2020] [Indexed: 01/31/2023] Open
Abstract
White matter tracts are known to be susceptible to injury following concussion. The objective of this study was to determine whether contact play in sport could alter white matter metabolite levels in female varsity athletes independent of changes induced by long-term exercise. Metabolite levels were measured by single voxel proton magnetic resonance spectroscopy (MRS) in the prefrontal white matter at the beginning (In-Season) and end (Off-Season) of season in contact (N = 54, rugby players) and non-contact (N = 23, swimmers and rowers) varsity athletes. Sedentary women (N = 23) were scanned once, at a time equivalent to the Off-Season time point. Metabolite levels in non-contact athletes did not change over a season of play, or differ from age matched sedentary women except that non-contact athletes had a slightly lower myo-inositol level. The contact athletes had lower levels of myo-inositol and glutamate, and higher levels of glutamine compared to both sedentary women and non-contact athletes. Lower levels of myo-inositol in non-contact athletes compared to sedentary women indicates long-term exercise may alter glial cell profiles in these athletes. The metabolite differences observed between contact and non-contact athletes suggest that non-contact athletes should not be used as controls in studies of concussion in high-impact sports because repetitive impacts from physical contact can alter white matter metabolite level profiles. It is imperative to use athletes engaged in the same contact sport as controls to ensure a matched metabolite profile at baseline.
Collapse
Affiliation(s)
- Amy L Schranz
- Department of Medical Biophysics, Robarts Research Institute, Centre for Functional and Metabolic Mapping, Western University, London, ON, Canada
| | - Gregory A Dekaban
- Molecular Medicine Research Laboratories, Robarts Research Institute, Western University, London, ON, Canada.,Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Lisa Fischer
- Fowler Kennedy Sport Medicine Clinic, Department of Family Medicine, Western University, London, ON, Canada
| | - Kevin Blackney
- Molecular Medicine Research Laboratories, Robarts Research Institute, Western University, London, ON, Canada.,Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Christy Barreira
- Molecular Medicine Research Laboratories, Robarts Research Institute, Western University, London, ON, Canada
| | - Timothy J Doherty
- Physical Medicine and Rehabilitation, Western University, London, ON, Canada
| | - Douglas D Fraser
- Paediatrics Critical Care Medicine, London Health Sciences Centre, London, ON, Canada
| | - Arthur Brown
- Molecular Medicine Research Laboratories, Robarts Research Institute, Western University, London, ON, Canada.,Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Jeff Holmes
- School of Occupational Therapy, Western University, London, ON, Canada
| | - Ravi S Menon
- Department of Medical Biophysics, Robarts Research Institute, Centre for Functional and Metabolic Mapping, Western University, London, ON, Canada
| | - Robert Bartha
- Department of Medical Biophysics, Robarts Research Institute, Centre for Functional and Metabolic Mapping, Western University, London, ON, Canada
| |
Collapse
|
19
|
Lee T, Lycke R, Auger J, Music J, Dziekan M, Newman S, Talavage T, Leverenz L, Nauman E. Head acceleration event metrics in youth contact sports more dependent on sport than level of play. Proc Inst Mech Eng H 2020; 235:208-221. [PMID: 33183139 DOI: 10.1177/0954411920970812] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The goal of the study was to evaluate how repetitive head traumas sustained by athletes in contact sports depend on sport and level of play. A total of 16 middle school football players, 107 high school football players, and 65 high school female soccer players participated. Players were separated into levels of play: middle school (MS), freshman (FR), junior varsity (JV), junior varsity-varsity (JV-V), and varsity (V). xPatch sensors were used to measure peak translational and angular accelerations (PTA and PAA, respectively) for each head acceleration event (HAE) during practice and game sessions. Data were analyzed using a custom MATLAB program to compare metrics that have been correlated with functional neurological changes: session metrics (median HAEs per contact session), season metrics (total HAEs, cumulative PTA/PAA), and regressions (cumulative PTA/PAA versus total HAEs, total HAEs versus median HAEs per contact session). Football players had greater session (p<.001) and season (p<.001) metrics than soccer players, but soccer players had a significantly greater player average PAA per HAE than football players (p<.001). Middle school football players had similar session and season metrics to high school level athletes. In conclusion, sport has a greater influence on HAE characteristics than level of play.
Collapse
Affiliation(s)
- Taylor Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Roy Lycke
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Joshua Auger
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jacob Music
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Michael Dziekan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Sharlene Newman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Thomas Talavage
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.,Department of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Larry Leverenz
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA
| | - Eric Nauman
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.,Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
20
|
Kmush BL, Mackowski M, Ehrlich J, Walia B, Owora A, Sanders S. Association of Professional Football Cumulative Head Impact Index Scores With All-Cause Mortality Among National Football League Players. JAMA Netw Open 2020; 3:e204442. [PMID: 32391891 PMCID: PMC7215260 DOI: 10.1001/jamanetworkopen.2020.4442] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/05/2020] [Indexed: 01/16/2023] Open
Abstract
Importance Long-term adverse health outcomes, particularly those associated with repetitive head impacts, are of growing concern among US-style football players in the US and Canada. Objective To assess whether exposure to repetitive head impacts during a professional football career is associated with an increase in the risk of all-cause mortality. Design, Setting, and Participants This retrospective cohort study included 13 912 players in the 1969 to 2017 National Football League (NFL) seasons. All cause-mortality up until July 1, 2018, was included. Data collection was performed from July 13, 2017, to July 1, 2018, as reported in the Pro Football Reference. Exposures The main exposure was a professional football cumulative head impact index (pfCHII). The pfCHII was measured by combining cumulative padded practice time and games played summed during seasons of play reported in the Pro Football Reference and a player position risk adjustment from helmet accelerometer studies. Main Outcomes and Measures Demographic characteristics except for the pfCHII were calculated for 14 366 players with complete follow-up. The pfCHII was calculated for 13 912 players (eliminating the 454 specials teams players). Cox proportional hazards regression was used to compare hazard ratios (HRs) of death by repetitive head impacts. Analyses were unadjusted and adjusted for birth year, body mass index, and height. Results Among 14 366 NFL players who had follow-up for analysis, the mean (SD) age was 47.3 (14.8) years, the mean (SD) body mass index was 29.6 (3.9), and 763 of 14 366 players (5.3%) had died. Among 13 912 players in the pfCHII analysis, the median pfCHII was 32.63 (interquartile range, 13.71-66.12). A 1-log increase in pfCHII was significantly associated with an increased hazard of death for the 1969 to 2017 seasons (HR, 2.02; 95% CI, 1.21-3.37; P = .01) after adjustment. The quadratic pfCHII was also statistically significant (HR, 0.91; 95% CI, 0.85-0.98; P = .01), indicating that the hazard of death increased at a decreasing rate, whereas the pfCHII increased. Conclusions and Relevance The findings suggest that an increase in repetitive head impacts is associated with an increased hazard of death among NFL players. Reduction in repetitive head impacts from playing football or other activities through additional rule and equipment changes may be associated with reduced mortality.
Collapse
Affiliation(s)
- Brittany L. Kmush
- Department of Public Health, Syracuse University, Syracuse, New York
| | | | - Justin Ehrlich
- Department of Sport Analytics, Syracuse University, Syracuse, New York
| | - Bhavneet Walia
- Department of Public Health, Syracuse University, Syracuse, New York
| | - Arthur Owora
- Department of Public Health, Syracuse University, Syracuse, New York
- Currently with Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington
| | - Shane Sanders
- Department of Sport Analytics, Syracuse University, Syracuse, New York
| |
Collapse
|
21
|
Abstract
Subconcussive head injury represents a pathophysiology that spans the expertise of both clinical neurology and biomechanical engineering. From both viewpoints, the terms injury and damage, presented without qualifiers, are synonymously taken to mean a tissue alteration that may be recoverable. For clinicians, concussion is evolving from a purely clinical diagnosis to one that requires objective measurement, to be achieved by biomedical engineers. Subconcussive injury is defined as subclinical pathophysiology in which underlying cellular- or tissue-level damage (here, to the brain) is not severe enough to present readily observable symptoms. Our concern is not whether an individual has a (clinically diagnosed) concussion, but rather, how much accumulative damage an individual can tolerate before they will experience long-term deficit(s) in neurological health. This concern leads us to look for the history of damage-inducing events, while evaluating multiple approaches for avoiding injury through reduction or prevention of the associated mechanically induced damage.
Collapse
Affiliation(s)
- Eric A Nauman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA; .,School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.,Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Thomas M Talavage
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA; .,School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Paul S Auerbach
- Department of Emergency Medicine, Stanford University, Palo Alto, California 94304, USA
| |
Collapse
|
22
|
Harriss A, Johnson AM, Thompson JWG, Walton DM, Dickey JP. Cumulative soccer heading amplifies the effects of brain activity observed during concurrent moderate exercise and continuous performance task in female youth soccer players. JOURNAL OF CONCUSSION 2020. [DOI: 10.1177/2059700220912654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Alexandra Harriss
- Health and Rehabilitation Sciences, The University of Western Ontario, London, Ontario, Canada
| | - Andrew M Johnson
- School of Health Studies, The University of Western Ontario, London, Ontario, Canada
| | | | - David M Walton
- Health and Rehabilitation Sciences, The University of Western Ontario, London, Ontario, Canada
- School of Health Studies, The University of Western Ontario, London, Ontario, Canada
- School of Physical Therapy, The University of Western Ontario, London, Ontario, Canada
| | - James P Dickey
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
23
|
Sparks P, Lawrence T, Hinze S. Neuroimaging in the Diagnosis of Chronic Traumatic Encephalopathy: A Systematic Review. Clin J Sport Med 2020; 30 Suppl 1:S1-S10. [PMID: 32132472 DOI: 10.1097/jsm.0000000000000541] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Chronic traumatic encephalopathy (CTE) is a neurodegenerative tauopathy associated with repeated subconcussive and concussive head injury. Clinical features include cognitive, behavioral, mood, and motor impairments. Definitive diagnosis is only possible at postmortem. Here, the utility of neuroimaging in the diagnosis of CTE is evaluated by systematically reviewing recent evidence for changes in neuroimaging biomarkers in suspected cases of CTE compared with controls. DATA SOURCES Providing an update on a previous systematic review of articles published until December 2014, we searched for articles published between December 2014 and July 2016. We searched PubMed for studies assessing neuroimaging changes in symptomatic suspected cases of CTE with a history of repeated subconcussive or concussive head injury or participation in contact sports involving direct impact to the head. Exclusion criteria were case studies, review articles, and articles focusing on repetitive head trauma from military service, head banging, epilepsy, physical abuse, or animal models. MAIN RESULTS Seven articles met the review criteria, almost all of which studied professional athletes. The range of modalities were categorized into structural magnetic resonance imaging (MRI), diffusion MRI, and radionuclide studies. Biomarkers which differed significantly between suspected CTE and controls were Evans index (P = 0.05), cavum septum pellucidum (CSP) rate (P < 0.0006), length (P < 0.03) and ratio of CSP length to septum length (P < 0.03), regional differences in axial diffusivity (P < 0.05) and free/intracellular water fractions (P < 0.005), single-photon emission computed tomography perfusion abnormalities (P < 0.01), positron emission tomography (PET) signals from tau-binding, glucose-binding, and GABA receptor-binding radionuclides (P < 0.0001, P < 0.005, and P < 0.005, respectively). Important limitations include low specificity in identification of suspected cases of CTE across studies, the need for postmortem validation, and a lack of generalizability to nonprofessional athletes. CONCLUSIONS The most promising biomarker is tau-binding radionuclide PET signal because it is most specific to the underlying neuropathology and differentiated CTE from both controls and patients with Alzheimer disease (P < 0.0001). Multimodal imaging will improve specificity further. Future research should minimize variability in identification of suspected cases of CTE using published clinical criteria.
Collapse
|
24
|
Wright AD, Smirl JD, Bryk K, Jakovac M, van Donkelaar P. A Prospective Transcranial Doppler Ultrasound-Based Evaluation of the Effects of Repetitive Subconcussive Head Trauma on Neurovascular Coupling Dynamics. Clin J Sport Med 2020; 30 Suppl 1:S53-S60. [PMID: 32132478 DOI: 10.1097/jsm.0000000000000578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the effects of repetitive subconcussive head trauma on neurovascular coupling (NVC) responses. DESIGN Prospective cohort study collected between September 2013 and December 2016. SETTING University laboratory. PARTICIPANTS One hundred seventy-nine elite, junior-level (age, 19.6 ± 1.5 years) contact sport (ice hockey, American football) athletes recruited for preseason testing. Fifty-two nonconcussed athletes returned for postseason testing. Fifteen noncontact sport athletes (age, 20.4 ± 2.2 years) also completed preseason and postseason testing. EXPOSURE(S) Subconcussive sport-related head trauma. MAIN OUTCOME MEASURES Dynamics of NVC were estimated during cycles of 20 seconds eyes closed and 40 seconds eyes open to a visual stimulus (reading) by measuring cerebral blood flow (CBF) velocity in the posterior (PCA) and middle (MCA) cerebral arteries via transcranial Doppler ultrasound. RESULTS Both athlete groups demonstrated no significant differences in PCA or MCA NVC dynamics between preseason and postseason, despite exposure to a median of 353.5 (range, 295.0-587.3) head impacts (>2g) over the course of the season for contact sport athletes. CONCLUSIONS Within the context of growing concern over detrimental effects of repetitive subconcussive trauma, the current results encouragingly suggest that the dynamics of NVC responses are not affected by 1 season of participation in junior-level ice hockey or American football. This is an important finding because it indicates an appropriate postseason CBF response to elevated metabolic demand with increases in neural activity.
Collapse
Affiliation(s)
- Alexander D Wright
- MD/PhD Program, University of British Columbia, Vancouver, BC, Canada
- Southern Medical Program, Reichwald Health Sciences Centre, University of British Columbia Okanagan, Kelowna, BC, Canada
- Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada; and
| | - Jonathan D Smirl
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada; and
| | - Kelsey Bryk
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada; and
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE
| | - Michael Jakovac
- Southern Medical Program, Reichwald Health Sciences Centre, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Paul van Donkelaar
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada; and
| |
Collapse
|
25
|
A novel repetitive head impact exposure measurement tool differentiates player position in National Football League. Sci Rep 2020; 10:1200. [PMID: 31992719 PMCID: PMC6987098 DOI: 10.1038/s41598-019-54874-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 11/18/2019] [Indexed: 01/05/2023] Open
Abstract
American-style football participation poses a high risk of repetitive head impact (RHI) exposure leading to acute and chronic brain injury. The complex nature of symptom expression, human predisposition, and neurological consequences of RHI limits our understanding of what constitutes as an injurious impact affecting the integrity of brain tissue. Video footage of professional football games was reviewed and documentation made of all head contact. Frequency of impact, tissue strain magnitude, and time interval between impacts was used to quantify RHI exposure, specific to player field position. Differences in exposure characteristics were found between eight different positions; where three unique profiles can be observed. Exposure profiles provide interpretation of the relationship between the traumatic event(s) and how tissue injury is manifested and expressed. This study illustrates and captures an objective measurement of RHI on the field, a critical component in guiding public policy and guidelines for managing exposure.
Collapse
|
26
|
Dependence on subconcussive impacts of brain metabolism in collision sport athletes: an MR spectroscopic study. Brain Imaging Behav 2019; 13:735-749. [PMID: 29802602 DOI: 10.1007/s11682-018-9861-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Long term neurological impairments due to repetitive head trauma are a growing concern for collision sport athletes. American Football has the highest rate of reported concussions among male high school athletes, a position held by soccer for female high school athletes. Recent research has shown that subconcussive events experienced by collision sport athletes can be a further significant source of accrued damage. Collision sport athletes experience hundreds of subconcussive events in a single season, and these largely go uninvestigated as they produce no overt clinical symptoms. Continued participation by these seemingly uninjured athletes is hypothesized to increase susceptibility to diagnoseable brain injury. This study paired magnetic resonance spectroscopy with head impact monitoring to quantify the relationship between metabolic changes and head acceleration event characteristics in high school-aged male football and female soccer collision sport athletes. During the period of exposure to subconcussive events, asymptomatic male (football) collision sport athletes exhibited statistically significant changes in concentrations of glutamate+glutamine (Glx) and total choline containing compounds (tCho) in dorsolateral prefrontal cortex, and female (soccer) collision sport athletes exhibited changes in glutamate+glutamine (Glx) in primary motor cortex. Neurometabolic alterations observed in football athletes during the second half of the season were found to be significantly associated with the average acceleration per head acceleration events, being best predicted by the accumulation of events exceeding 50 g. These marked deviations in neurometabolism, in the absence of overt symptoms, raise concern about the neural health of adolescent collision-sport athletes and suggest limiting exposure to head acceleration events may help to ameliorate the risk of subsequent cognitive impairment.
Collapse
|
27
|
Eckner JT, Wang J, Nelson LD, Bancroft R, Pohorence M, He X, Broglio SP, Giza CC, Guskiewicz KM, Kutcher JS, McCrea M. Effect of Routine Sport Participation on Short-Term Clinical Neurological Outcomes: A Comparison of Non-Contact, Contact, and Collision Sport Athletes. Sports Med 2019; 50:1027-1038. [PMID: 31637659 DOI: 10.1007/s40279-019-01200-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVES To compare pre-season to post-season changes on a battery of clinical neurological outcome measures between non-contact, contact, and collision sport athletes over multiple seasons of play. METHODS 244 high school and collegiate athletes participating in multiple non-contact, contact, and collision sports completed standardized annual pre-season and post-season assessments over 1-4 years. Pre/post-season changes in 10 outcome measures assessing concussion symptoms, neurocognitive performance, and balance were compared between the groups using linear mixed models. RESULTS Small, but statistically significant overall pre/post-season change differences were present between the groups for Axon computerized neurocognitive test processing speed, attention, and working memory speed scores (Axon-PS, Axon-Att, Axon-WMS), as well as Balance Error Scoring System (BESS) total score. Small seasonal declines not exceeding reliable-change thresholds were observed in the collision sport group relative to the contact and non-contact groups for Axon-PS and Axon-Att scores. The collision and contact sport groups demonstrated less pre-/post-season improvement than the non-contact sport group for Axon-WMA and BESS, with less BESS improvement also observed in the collision sport group relative to the contact sport group. Overall, longitudinal performance on all 10 outcome measures remained stable in all 3 groups over 4 years. CONCLUSION Our findings do not necessarily support the notion that participation in sports associated with exposure to repetitive head impacts has clinically meaningful cumulative effects over the course of a season, nor over four consecutive seasons in high school and collegiate athletes.
Collapse
Affiliation(s)
- James T Eckner
- Physical Medicine and Rehabilitation, University of Michigan, 325 E. Eisenhower Parkway, Ann Arbor, MI, 48108, USA.
| | | | | | | | | | - Xuming He
- Statistics, University of Michigan, Ann Arbor, USA
| | | | | | - Kevin M Guskiewicz
- Exercise and Sport Science, University of North Carolina, Chapel Hill, USA
| | - Jeffrey S Kutcher
- Neurology, University of Michigan, Ann Arbor, USA.,The Sports Neurology Clinic, Brighton, USA
| | - Michael McCrea
- Neurosurgery, Medical College of Wisconsin, Milwaukee, USA
| |
Collapse
|
28
|
Schneider DK, Galloway R, Bazarian JJ, Diekfuss JA, Dudley J, Leach JL, Mannix R, Talavage TM, Yuan W, Myer GD. Diffusion Tensor Imaging in Athletes Sustaining Repetitive Head Impacts: A Systematic Review of Prospective Studies. J Neurotrauma 2019; 36:2831-2849. [PMID: 31062655 DOI: 10.1089/neu.2019.6398] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Daniel K. Schneider
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Medical Education, Riverside Methodist Hospital, Columbus, Ohio
| | - Ryan Galloway
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Duke University School of Medicine, Durham, North Carolina
| | - Jeffrey J. Bazarian
- Department of Emergency Medicine, University of Rochester School of Medicine, Rochester, New York
| | - Jed A. Diekfuss
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jon Dudley
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - James L. Leach
- Division of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Rebekah Mannix
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Thomas M. Talavage
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Weihong Yuan
- Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Gregory D. Myer
- The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Departments of Pediatrics and Orthopaedic Surgery, University of Cincinnati, Cincinnati, Ohio
- The Micheli Center for Sports Injury Prevention, Waltham, Massachusetts
| |
Collapse
|
29
|
Chan DD, Knutsen AK, Lu YC, Yang SH, Magrath E, Wang WT, Bayly PV, Butman JA, Pham DL. Statistical Characterization of Human Brain Deformation During Mild Angular Acceleration Measured In Vivo by Tagged Magnetic Resonance Imaging. J Biomech Eng 2019; 140:2681445. [PMID: 30029236 DOI: 10.1115/1.4040230] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Indexed: 01/17/2023]
Abstract
Understanding of in vivo brain biomechanical behavior is critical in the study of traumatic brain injury (TBI) mechanisms and prevention. Using tagged magnetic resonance imaging, we measured spatiotemporal brain deformations in 34 healthy human volunteers under mild angular accelerations of the head. Two-dimensional (2D) Lagrangian strains were examined throughout the brain in each subject. Strain metrics peaked shortly after contact with a padded stop, corresponding to the inertial response of the brain after head deceleration. Maximum shear strain of at least 3% was experienced at peak deformation by an area fraction (median±standard error) of 23.5±1.8% of cortical gray matter, 15.9±1.4% of white matter, and 4.0±1.5% of deep gray matter. Cortical gray matter strains were greater in the temporal cortex on the side of the initial contact with the padded stop and also in the contralateral temporal, frontal, and parietal cortex. These tissue-level deformations from a population of healthy volunteers provide the first in vivo measurements of full-volume brain deformation in response to known kinematics. Although strains differed in different tissue type and cortical lobes, no significant differences between male and female head accelerations or strain metrics were found. These cumulative results highlight important kinematic features of the brain's mechanical response and can be used to facilitate the evaluation of computational simulations of TBI.
Collapse
Affiliation(s)
- Deva D Chan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Andrew K Knutsen
- Center for Neuroscience and Regenerative Medicine, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892
| | - Yuan-Chiao Lu
- Center for Neuroscience and Regenerative Medicine, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892
| | - Sarah H Yang
- Center for Neuroscience and Regenerative Medicine, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892
| | - Elizabeth Magrath
- Center for Neuroscience and Regenerative Medicine, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892
| | - Wen-Tung Wang
- Center for Neuroscience and Regenerative Medicine, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20892
| | - Philip V Bayly
- Professor Department of Mechanical Engineering and Materials Science, Washington University at St. Louis, St. Louis, MO 63130
| | - John A Butman
- Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD 20892
| | - Dzung L Pham
- Center for Neuroscience and Regenerative Medicine, The Henry M. Jackson Foundation for the Advancement of Military Medicine, , Bethesda, MD 20892-1182 e-mail:
| |
Collapse
|
30
|
Dallmeier JD, Meysami S, Merrill DA, Raji CA. Emerging advances of in vivo detection of chronic traumatic encephalopathy and traumatic brain injury. Br J Radiol 2019; 92:20180925. [PMID: 31287716 PMCID: PMC6732918 DOI: 10.1259/bjr.20180925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disorder that is of epidemic proportions in contact sports athletes and is linked to subconcussive and concussive repetitive head impacts (RHI). Although postmortem analysis is currently the only confirmatory method to diagnose CTE, there has been progress in early detection techniques of fluid biomarkers as well as in advanced neuroimaging techniques. Specifically, promising new methods of diffusion MRI and radionucleotide PET scans could aid in the early detection of CTE.The authors examine early detection methods focusing on various neuroimaging techniques. Advances in structural and diffusion MRI have demonstrated the ability to measure volumetric and white matter abnormalities associated with CTE. Recent studies using radionucleotides such as flortaucipir and 18F-FDDNP have shown binding patterns that are consistent with the four stages of neurofibrillary tangle (NFT) distribution postmortem. Additional research undertakings focusing on fMRI, MR spectroscopy, susceptibility-weighted imaging, and singlephoton emission CT are also discussed as are advanced MRI methods such as diffusiontensor imaging and arterial spin labeled. Neuroimaging is fast becoming a key instrument in early detection and could prove essential for CTE quantification. This review explores a global approach to in vivo early detection.Limited data of in vivo CTE biomarkers with postmortem confirmation are available. While some data exist, they are limited by selection bias. It is unlikely that a single test will be sufficient to properly diagnosis and distinguish CTE from other neurodegenerative diseases such as Alzheimer disease or Frontotemporal Dementia. However, with a combination of fluid biomarkers, neuroimaging, and genetic testing, early detection may become possible.
Collapse
Affiliation(s)
- Julian D. Dallmeier
- Department of Neuroscience, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Somayeh Meysami
- Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - David A. Merrill
- Psychiatry and Biobehavioral Sciences and Pacific Brain Health Center, UCLA and Pacific Neuroscience Institute, Los Angeles, California, United States
| | - Cyrus A. Raji
- Radiology, Washington University Mallinckrodt Institute of Radiology, St. Louis, Missouri, United States
| |
Collapse
|
31
|
Jang I, Chun IY, Brosch JR, Bari S, Zou Y, Cummiskey BR, Lee TA, Lycke RJ, Poole VN, Shenk TE, Svaldi DO, Tamer GG, Dydak U, Leverenz LJ, Nauman EA, Talavage TM. Every hit matters: White matter diffusivity changes in high school football athletes are correlated with repetitive head acceleration event exposure. NEUROIMAGE-CLINICAL 2019; 24:101930. [PMID: 31630026 PMCID: PMC6807364 DOI: 10.1016/j.nicl.2019.101930] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 06/29/2019] [Accepted: 07/09/2019] [Indexed: 11/29/2022]
Abstract
Recent evidence of short-term alterations in brain physiology associated with repeated exposure to moderate intensity subconcussive head acceleration events (HAEs), prompts the question whether these alterations represent an underlying neural injury. A retrospective analysis combining counts of experienced HAEs and longitudinal diffusion-weighted imaging explored whether greater exposure to incident mechanical forces was associated with traditional diffusion-based measures of neural injury—reduced fractional anisotropy (FA) and increased mean diffusivity (MD). Brains of high school athletes (N = 61) participating in American football exhibited greater spatial extents (or volumes) experiencing substantial changes (increases and decreases) in both FA and MD than brains of peers who do not participate in collision-based sports (N = 15). Further, the spatial extents of the football athlete brain exhibiting traditional diffusion-based markers of neural injury were found to be significantly correlated with the cumulative exposure to HAEs having peak translational acceleration exceeding 20 g. This finding demonstrates that subconcussive HAEs induce low-level neurotrauma, with prolonged exposure producing greater accumulation of neural damage. The duration and extent of recovery associated with periods in which athletes do not experience subconcussive HAEs now represents a priority for future study, such that appropriate participation and training schedules may be developed to minimize the risk of long-term neurological dysfunction. Brain volumes evidencing injury are larger in football athletes than controls. Spatial extent of decreased FA correlates with head acceleration event exposure. Spatial extent of increased MD correlates with head acceleration event exposure.
Collapse
Affiliation(s)
- Ikbeom Jang
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States of America.
| | - Il Yong Chun
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Jared R Brosch
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Sumra Bari
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Yukai Zou
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America; College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States of America
| | - Brian R Cummiskey
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Taylor A Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Roy J Lycke
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Victoria N Poole
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Trey E Shenk
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Diana O Svaldi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Gregory G Tamer
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, West Lafayette, IN, United States of America
| | - Larry J Leverenz
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States of America
| | - Eric A Nauman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America; School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States of America; Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States of America
| | - Thomas M Talavage
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States of America; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| |
Collapse
|
32
|
Haran FJ, Handy JD, Servatius RJ, Rhea CK, Tsao JW. Acute neurocognitive deficits in active duty service members following subconcussive blast exposure. APPLIED NEUROPSYCHOLOGY-ADULT 2019; 28:297-309. [PMID: 31269805 DOI: 10.1080/23279095.2019.1630627] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Military service members are frequently subjected to subconcussive blast events during training and deployment. Emerging evidence suggests blast exposures of these magnitudes may have long-term consequences for dimensions of cognitive function. Less is known about cognitive sequelae acutely following deployment-related subconcussive blast events. The current study addressed this knowledge gap by assessing the extent to which subconcussive blast exposure affected performance on the Automated Neuropsychological Assessment Metrics 4 TBI-MIL (ANAM). Baseline-referenced and normative comparisons of archival ANAM data were analyzed for a cohort of personnel who were exposed to blast (blast group; n = 27) and personnel who were not exposed to blast (no-blast group; n = 36) that were otherwise asymptomatic for a concussion. The blast group exhibited statistically significant lower scores compared to the no-blast group (between-subjects), baseline assessments (within-subjects), and an age-matched normative population. Normative comparisons revealed that the scores for the reaction time subtests (i.e., procedural and both simple reaction time tasks) were outside the range of normal functioning (1 SD) and reliable change indices revealed clinically meaningful change only for simple reaction time. The results highlight covert effects of subconcussive blast exposure that may warrant further monitoring in the immediate aftermath of a blast event.
Collapse
Affiliation(s)
- F J Haran
- Neurotrauma Department, Naval Medical Research Center, Silver Spring, Maryland, USA.,Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Justin D Handy
- Stress and Motivated Behavior Institute, Syracuse, New York, USA
| | - Richard J Servatius
- Stress and Motivated Behavior Institute, Syracuse, New York, USA.,Research & Development, Syracuse VA Medical Center, Syracuse, New York, USA.,Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Christopher K Rhea
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Jack W Tsao
- Department of Neurology, University of Tennessee Health Science Center, Memphis, Tennessee, USA.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee, USA.,Department of Neurology, Memphis Veterans Affairs Medical Center, Memphis, Tennessee, USA
| |
Collapse
|
33
|
Walter A, Herrold AA, Gallagher VT, Lee R, Scaramuzzo M, Bream T, Seidenberg PH, Vandenbergh D, O'Connor K, Talavage TM, Nauman EA, Slobounov SM, Breiter HC. KIAA0319 Genotype Predicts the Number of Past Concussions in a Division I Football Team: A Pilot Study. J Neurotrauma 2019; 36:1115-1124. [DOI: 10.1089/neu.2017.5622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Alexa Walter
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
- Concussion Neuroimaging Consortium, Florida State University, Florida; Harvard University, Massachusetts; Michigan State University, Michigan; Northwestern University, Illinois; Ohio State University, Ohio; Purdue University, Indiana; The Pennsylvania State University, Pennsylvania; University of Central Florida, Florida; University of Nebraska, Nebraska
| | - Amy A. Herrold
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Edward Hines Jr., VA Hospital, Hines, Illinois
- Concussion Neuroimaging Consortium, Florida State University, Florida; Harvard University, Massachusetts; Michigan State University, Michigan; Northwestern University, Illinois; Ohio State University, Ohio; Purdue University, Indiana; The Pennsylvania State University, Pennsylvania; University of Central Florida, Florida; University of Nebraska, Nebraska
| | - Virginia T. Gallagher
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Concussion Neuroimaging Consortium, Florida State University, Florida; Harvard University, Massachusetts; Michigan State University, Michigan; Northwestern University, Illinois; Ohio State University, Ohio; Purdue University, Indiana; The Pennsylvania State University, Pennsylvania; University of Central Florida, Florida; University of Nebraska, Nebraska
| | - Rosa Lee
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Concussion Neuroimaging Consortium, Florida State University, Florida; Harvard University, Massachusetts; Michigan State University, Michigan; Northwestern University, Illinois; Ohio State University, Ohio; Purdue University, Indiana; The Pennsylvania State University, Pennsylvania; University of Central Florida, Florida; University of Nebraska, Nebraska
| | - Madeleine Scaramuzzo
- Athletic Department, The Pennsylvania State University, University Park, Pennsylvania
| | - Tim Bream
- Athletic Department, The Pennsylvania State University, University Park, Pennsylvania
| | - Peter H. Seidenberg
- Athletic Department, The Pennsylvania State University, University Park, Pennsylvania
| | - David Vandenbergh
- Department of Biobehavioral Health, Molecular and Cellular Biosciences Program and Institute for the Neurosciences, The Pennsylvania State University, University Park, Pennsylvania
| | - Kailyn O'Connor
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Thomas M. Talavage
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana
- Concussion Neuroimaging Consortium, Florida State University, Florida; Harvard University, Massachusetts; Michigan State University, Michigan; Northwestern University, Illinois; Ohio State University, Ohio; Purdue University, Indiana; The Pennsylvania State University, Pennsylvania; University of Central Florida, Florida; University of Nebraska, Nebraska
| | - Eric A. Nauman
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana
- Concussion Neuroimaging Consortium, Florida State University, Florida; Harvard University, Massachusetts; Michigan State University, Michigan; Northwestern University, Illinois; Ohio State University, Ohio; Purdue University, Indiana; The Pennsylvania State University, Pennsylvania; University of Central Florida, Florida; University of Nebraska, Nebraska
| | - Semyon M. Slobounov
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
- Concussion Neuroimaging Consortium, Florida State University, Florida; Harvard University, Massachusetts; Michigan State University, Michigan; Northwestern University, Illinois; Ohio State University, Ohio; Purdue University, Indiana; The Pennsylvania State University, Pennsylvania; University of Central Florida, Florida; University of Nebraska, Nebraska
| | - Hans C. Breiter
- Warren Wright Adolescent Center, Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Laboratory of Neuroimaging and Genetics, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
- Concussion Neuroimaging Consortium, Florida State University, Florida; Harvard University, Massachusetts; Michigan State University, Michigan; Northwestern University, Illinois; Ohio State University, Ohio; Purdue University, Indiana; The Pennsylvania State University, Pennsylvania; University of Central Florida, Florida; University of Nebraska, Nebraska
| |
Collapse
|
34
|
Harriss A, Johnson AM, Walton DM, Dickey JP. Head impact magnitudes that occur from purposeful soccer heading depend on the game scenario and head impact location. Musculoskelet Sci Pract 2019; 40:53-57. [PMID: 30708266 DOI: 10.1016/j.msksp.2019.01.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/07/2019] [Accepted: 01/21/2019] [Indexed: 01/12/2023]
Abstract
PURPOSE This study quantified the linear and angular kinematics that result from purposeful heading during youth soccer games, and the influence of game scenario and head impact location on these magnitudes. METHOD This observational study recruited thirty-six female soccer players (13.4 ± 0.9 years old) from three elite youth soccer teams (U13, U14, U15) and followed for an entire soccer season. Players wore wireless sensors during each game to quantify head impact magnitudes. A total of 60 regular season games (20 games per team) were video recorded, and purposeful heading events were categorized by game scenario (e.g. throw in), and head impact location (e.g. front of head). RESULTS Game scenario had a statistically significant effect on the linear head acceleration, and rotational head velocity, that resulted from purposeful headers. Rotational velocity from purposeful headers varied significantly between head impact locations, with impacts to the top of the head (improper technique) resulting in larger peak rotational velocities than impacts to the front of the head (proper technique); this was also the case for the linear acceleration for punts. CONCLUSION Our findings suggest that the magnitude for both linear and angular head impact kinematics depend on the game scenario and head impact location. Headers performed with the top of the head (improper technique) result in larger rotational velocities compared to the front of the head (proper technique). Accordingly, youth players should be educated on how to execute proper heading technique to reduce head impact accelerations.
Collapse
Affiliation(s)
- Alexandra Harriss
- Health and Rehabilitation Sciences, The University of Western Ontario, London, Ontario, Canada
| | - Andrew M Johnson
- Health and Rehabilitation Sciences, The University of Western Ontario, London, Ontario, Canada; School of Health Studies, The University of Western Ontario, London, Ontario, Canada
| | - David M Walton
- School of Health Studies, The University of Western Ontario, London, Ontario, Canada; School of Physical Therapy, The University of Western Ontario, London, Ontario, Canada
| | - James P Dickey
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
35
|
Hunter LE, Branch CA, Lipton ML. The neurobiological effects of repetitive head impacts in collision sports. Neurobiol Dis 2019; 123:122-126. [PMID: 29936233 PMCID: PMC6453577 DOI: 10.1016/j.nbd.2018.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/30/2018] [Accepted: 06/20/2018] [Indexed: 12/20/2022] Open
Abstract
It is now recognized that repetitive head impacts (RHI) in sport have the potential for long-term neurological impairments. In order to identify targets for intervention and/or pharmacological treatment, it is necessary to characterize the neurobiological mechanisms associated with RHI. This review aims to summarize animal and human studies that specifically address Blood Brain Barrier (BBB) dysfunction, abnormal neuro-metabolic and neuro-inflammatory processes as well as Tau aggregation associated with RHI in collision sports. Additionally, we examine the influence of physical activity and genetics on outcomes of RHI, discuss methodological considerations, and provide suggestions for future directions of this burgeoning area of research.
Collapse
Affiliation(s)
- Liane E Hunter
- The Gruss Magnetic Resonance Imaging Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA.
| | - Craig A Branch
- The Gruss Magnetic Resonance Imaging Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA; Departments of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA; Departments of Physiology and Biophysics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Michael L Lipton
- The Gruss Magnetic Resonance Imaging Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA; Departments of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA; Departments of Psychiatry & Behavioral Sciences, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA; The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
36
|
Satarasinghe P, Hamilton DK, Buchanan RJ, Koltz MT. Unifying Pathophysiological Explanations for Sports-Related Concussion and Concussion Protocol Management: Literature Review. J Exp Neurosci 2019; 13:1179069518824125. [PMID: 30675103 PMCID: PMC6330734 DOI: 10.1177/1179069518824125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/19/2018] [Indexed: 11/15/2022] Open
Abstract
Objective There is a plethora of theories about the pathophysiology behind a sport-related concussion. In this review of the literature, the authors evaluated studies on the pathophysiology of sport-related concussion and professional athlete return-to-play guidelines. The goal of this article is to summarize the most common hypotheses for sport-related concussion, evaluate if there are common underlying mechanisms, and determine if correlations are seen between published mechanisms and the most current return-to-play recommendations. Methods Two authors selected papers from the past 5 years for literature review involving discussion of sport-related concussion and pathophysiology, pathology, or physiology of concussion using mutually agreed-upon search criteria. After the articles were filtered based on search criteria, pathophysiological explanations for concussion were organized into tables. Following analysis of pathophysiology, concussion protocols and return-to-play guidelines were obtained via a Google search for the major professional sports leagues and synthesized into a summary table. Results Out of 1112 initially identified publications, 53 met our criteria for qualitative analysis. The 53 studies revealed 5 primary neuropathological explanations for sport-related concussion, regardless of the many theories talked about in the different papers. These 5 explanations, in order of predominance in the articles analyzed, were (1) tauopathy, (2) white matter changes, (3) neural connectivity alterations, (4) reduction in cerebral perfusion, and (5) gray matter atrophy. Pathology may be sport specific: white matter changes are seen in 47% of football reports, tauopathy is seen in 50% of hockey reports, and soccer reports 50% tauopathy as well as 50% neural connectivity alterations. Analysis of the return-to-play guidelines across professional sports indicated commonalities in concussion management despite individual policies. Conclusions Current evidence on pathophysiology for sport-related concussion does not yet support one unifying mechanism, but published hypotheses may potentially be simplified into 5 primary groups. The unification of the complex, likely multifactorial mechanisms for sport-related concussion to a few common explanations, combined with unique findings within individual sports presented in this report, may help filter and link concussion pathophysiology in sport. By doing so, the authors hope that this review will help guide future concussion research, treatment, and management.
Collapse
Affiliation(s)
- Praveen Satarasinghe
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - D Kojo Hamilton
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert J Buchanan
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Neurosurgery, Seton Brain and Spine Institute, Austin, TX, USA
| | - Michael T Koltz
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Department of Neurosurgery, Seton Brain and Spine Institute, Austin, TX, USA
- Michael T Koltz, Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
37
|
Svaldi DO, Joshi C, McCuen EC, Music JP, Hannemann R, Leverenz LJ, Nauman EA, Talavage TM. Accumulation of high magnitude acceleration events predicts cerebrovascular reactivity changes in female high school soccer athletes. Brain Imaging Behav 2018; 14:164-174. [DOI: 10.1007/s11682-018-9983-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Wright AD, Smirl JD, Bryk K, Fraser S, Jakovac M, van Donkelaar P. Cerebral Autoregulation Is Disrupted Following a Season of Contact Sports Participation. Front Neurol 2018; 9:868. [PMID: 30405514 PMCID: PMC6204380 DOI: 10.3389/fneur.2018.00868] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/26/2018] [Indexed: 12/02/2022] Open
Abstract
Repetitive subconcussive head impacts across a season of contact sports participation are associated with a number of deficits in brain function. To date, no research has investigated the effect of such head impact exposure on dynamic cerebral autoregulation (dCA). To address this issue, 179 elite, junior-level (age 19.6 ± 1.5 years) contact sport (ice hockey, American football) athletes were recruited for pre-season testing. Fifty-two non-concussed athletes returned for post-season testing. Fifteen non-contact sport athletes (age 20.4 ± 2.2) also completed pre- and postseason testing. dCA was assessed via recordings of beat-by-beat mean arterial pressure (MAP) and middle cerebral artery blood velocity (MCAv) using finger photoplethysmography and transcranial Doppler ultrasound, respectively, during repetitive squat-stand maneuvers at 0.05 and 0.10 Hz. Transfer function analysis was used to determine Coherence (correlation), Gain (response amplitude), and Phase (response latency) of the MAP-MCAv relationship. Results showed that in contact sport athletes, Phase was reduced (p = 0.027) and Gain increased (p < 0.001) at post-season compared to pre-season during the 0.10 Hz squat-stand maneuvers, indicating cerebral autoregulatory impairment in both the latency and magnitude of the response. Changes in Phase were greater in athletes experiencing higher numbers and severity of head impacts. By contrast, no changes in dCA were observed in non-contact sport controls. Taken together, these results demonstrate that repetitive subconcussive head impacts occurring across a season of contact sports participation are associated with exposure-dependent impairments in the cerebrovascular pressure-buffering system capacity. It is unknown how long these deficits persist or if they accumulate year-over-year.
Collapse
Affiliation(s)
- Alexander D Wright
- MD/PhD Program, University of British Columbia, Vancouver, BC, Canada.,Southern Medical Program, Reichwald Health Sciences Centre, University of British Columbia Okanagan, Kelowna, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Jonathan D Smirl
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Kelsey Bryk
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada.,Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Sarah Fraser
- Southern Medical Program, Reichwald Health Sciences Centre, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Michael Jakovac
- Southern Medical Program, Reichwald Health Sciences Centre, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Paul van Donkelaar
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
39
|
Mainwaring L, Ferdinand Pennock KM, Mylabathula S, Alavie BZ. Subconcussive head impacts in sport: A systematic review of the evidence. Int J Psychophysiol 2018; 132:39-54. [DOI: 10.1016/j.ijpsycho.2018.01.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/18/2022]
|
40
|
Panchal H, Sollmann N, Pasternak O, Alosco ML, Kinzel P, Kaufmann D, Hartl E, Forwell LA, Johnson AM, Skopelja EN, Shenton ME, Koerte IK, Echlin PS, Lin AP. Neuro-Metabolite Changes in a Single Season of University Ice Hockey Using Magnetic Resonance Spectroscopy. Front Neurol 2018; 9:616. [PMID: 30177905 PMCID: PMC6109794 DOI: 10.3389/fneur.2018.00616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 07/09/2018] [Indexed: 01/13/2023] Open
Abstract
Background: Previous research has shown evidence for transient neuronal loss after repetitive head impacts (RHI) as demonstrated by a decrease in N-acetylaspartate (NAA). However, few studies have investigated other neuro-metabolites that may be altered in the presence of RHI; furthermore, the relationship of neuro-metabolite changes to neurocognitive outcome and potential sex differences remain largely unknown. Objective: The aim of this study was to identify alterations in brain metabolites and their potential association with neurocognitive performance over time as well as to characterize sex-specific differences in response to RHI. Methods: 33 collegiate ice hockey players (17 males and 16 females) underwent 3T magnetic resonance spectroscopy (MRS) and neurocognitive evaluation before and after the Canadian Interuniversity Sports (CIS) ice hockey season 2011–2012. The MRS voxel was placed in the corpus callosum. Pre- and postseason neurocognitive performances were assessed using the Immediate Post-Concussion Assessment and Cognitive Test (ImPACT). Absolute neuro-metabolite concentrations were then compared between pre- and postseason MRS were (level of statistical significance after correction for multiple comparisons: p < 0.007) and correlated to ImPACT scores for both sexes. Results: A significant decrease in NAA was observed from preseason to postseason (p = 0.001). Furthermore, a trend toward a decrease in total choline (Cho) was observed (p = 0.044). Although no overall effect was observed for glutamate (Glu) over the season, a difference was observed with females showing a decrease in Glu and males showing an increase in Glu, though this was not statistically significant (p = 0.039). In both males and females, a negative correlation was observed between changes in Glu and changes in verbal memory (p = 0.008). Conclusion: The results of this study demonstrate changes in absolute concentrations of neuro-metabolites following exposure to RHI. Results suggest that changes in Glu are correlated with changes in verbal memory. Future studies need to investigate further the association between brain metabolites and clinical outcome as well as sex-specific differences in the brain's response to RHI.
Collapse
Affiliation(s)
- Hemali Panchal
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Center for Clinical Spectroscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Nico Sollmann
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Michael L Alosco
- Boston University Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, United States.,Department of Neurology, Boston University School of Medicine, Boston, MA, United States
| | - Philipp Kinzel
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - David Kaufmann
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Elisabeth Hartl
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Neurology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Lorie A Forwell
- 3M Centre, The University of Western Ontario, London, ON, Canada
| | - Andrew M Johnson
- School of Health Studies, The University of Western Ontario, London, ON, Canada
| | - Elaine N Skopelja
- Ruth Lilly Medical Library, Indiana University, Indianapolis, IN, United States
| | - Martha E Shenton
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,VA Boston Healthcare System, Brockton, MA, United States
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Paul S Echlin
- Elliott Sports Medicine Clinic, Burlington, ON, Canada
| | - Alexander P Lin
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Center for Clinical Spectroscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
41
|
Lyons DN, Vekaria H, Macheda T, Bakshi V, Powell DK, Gold BT, Lin AL, Sullivan PG, Bachstetter AD. A Mild Traumatic Brain Injury in Mice Produces Lasting Deficits in Brain Metabolism. J Neurotrauma 2018; 35:2435-2447. [PMID: 29808778 PMCID: PMC6196750 DOI: 10.1089/neu.2018.5663] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Metabolic uncoupling has been well-characterized during the first minutes-to-days after a traumatic brain injury (TBI), yet mitochondrial bioenergetics during the weeks-to-months after a brain injury is poorly defined, particularly after a mild TBI. We hypothesized that a closed head injury (CHI) would be associated with deficits in mitochondrial bioenergetics at one month after the injury. A significant decrease in state-III (adenosine triphosphate production) and state-V (complex-I) driven mitochondrial respiration was found at one month post-injury in adult C57Bl/6J mice. Isolation of synaptic mitochondria demonstrated that the deficit in state-III and state-V was primarily neuronal. Injured mice had a temporally consistent deficit in memory recall at one month post-injury. Using proton magnetic resonance spectroscopy (1H MRS) at 7-Tesla, we found significant decreases in phosphocreatine, N-Acetylaspartic acid, and total choline. We also found regional variations in cerebral blood flow, including both hypo- and hyperperfusion, as measured by a pseudocontinuous arterial spin labeling MR sequence. Our results highlight a chronic deficit in mitochondrial bioenergetics associated with a CHI that may lead toward a novel approach for neurorestoration after a mild TBI. MRS provides a potential biomarker for assessing the efficacy of candidate treatments targeted at improving mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Danielle N Lyons
- 1 Spinal Cord & Brain Injury Research Center, University of Kentucky , Lexington Kentucky.,2 Department of Neuroscience, University of Kentucky , Lexington Kentucky
| | - Hemendra Vekaria
- 1 Spinal Cord & Brain Injury Research Center, University of Kentucky , Lexington Kentucky.,2 Department of Neuroscience, University of Kentucky , Lexington Kentucky
| | - Teresa Macheda
- 1 Spinal Cord & Brain Injury Research Center, University of Kentucky , Lexington Kentucky.,2 Department of Neuroscience, University of Kentucky , Lexington Kentucky
| | - Vikas Bakshi
- 4 Sanders-Brown Center on Aging, University of Kentucky , Lexington Kentucky.,5 Department of Pharmacology and Nutritional Sciences, University of Kentucky , Lexington Kentucky
| | - David K Powell
- 2 Department of Neuroscience, University of Kentucky , Lexington Kentucky.,3 Department of Biomedical Engineering, University of Kentucky , Lexington Kentucky
| | - Brian T Gold
- 2 Department of Neuroscience, University of Kentucky , Lexington Kentucky
| | - Ai-Ling Lin
- 4 Sanders-Brown Center on Aging, University of Kentucky , Lexington Kentucky.,5 Department of Pharmacology and Nutritional Sciences, University of Kentucky , Lexington Kentucky
| | - Patrick G Sullivan
- 1 Spinal Cord & Brain Injury Research Center, University of Kentucky , Lexington Kentucky.,2 Department of Neuroscience, University of Kentucky , Lexington Kentucky
| | - Adam D Bachstetter
- 1 Spinal Cord & Brain Injury Research Center, University of Kentucky , Lexington Kentucky.,2 Department of Neuroscience, University of Kentucky , Lexington Kentucky
| |
Collapse
|
42
|
Colello RJ, Colello IA, Abdelhameid D, Cresswell KG, Merchant R, Beckett E. Making Football Safer: Assessing the Current National Football League Policy on the Type of Helmets Allowed on the Playing Field. J Neurotrauma 2018; 35:1213-1223. [DOI: 10.1089/neu.2017.5446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Raymond J. Colello
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
| | - Ian A. Colello
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
| | - Duaa Abdelhameid
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
| | - Kellen G. Cresswell
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
| | - Randall Merchant
- Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia
| | - Ethan Beckett
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
43
|
Chamard E, Lichtenstein JD. A systematic review of neuroimaging findings in children and adolescents with sports-related concussion. Brain Inj 2018; 32:816-831. [PMID: 29648462 DOI: 10.1080/02699052.2018.1463106] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Sport-related concussion (SRC) generally does not result in structural anomalies revealed through clinical imaging techniques such as MRI and CT. While advanced neuroimaging techniques offer another avenue to investigate the subtle alterations following SRC, the current pediatric literature in this area has yet to be reviewed. The aim of this review is to systematically explore the literature on magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI), functional magnetic resonance imaging (fMRI), and cortical thickness following SRC in children and adolescents. METHODS A systematic Pubmed search using the preferred reporting items for systematic reviews and meta-analysis guidelines was conducted independently for each neuroimaging method. Studies were screened for inclusion based on pre-determined criteria. RESULTS A total of 26 studies were included (MRS = 4, DTI = 10, fMRI = 11, cortical thickness = 1). A total of 16 studies were conducted solely with male athletes, while 10 studies recruited an unequal number of male and female athletes. CONCLUSIONS While MRI and CT are generally unrevealing, advanced neuroimaging techniques demonstrated neurometabolic, microstructural, and functional alterations following SRC in athletes younger than 19 years of age in the acute, subacute, and chronic phases of recovery. However, more studies are needed to fully understand the impact of SRC on the developing brain in children and adolescents.
Collapse
Affiliation(s)
- Emilie Chamard
- a Department of Psychiatry, Geisel School of Medicine at Dartmouth , Dartmouth-Hitchcock Medical Center , Lebanon , NH , USA
| | - Jonathan D Lichtenstein
- a Department of Psychiatry, Geisel School of Medicine at Dartmouth , Dartmouth-Hitchcock Medical Center , Lebanon , NH , USA
| |
Collapse
|
44
|
Kuznetsov NA, Robins RK, Long B, Jakiela JT, Haran FJ, Ross SE, Wright WG, Rhea CK. Validity and reliability of smartphone orientation measurement to quantify dynamic balance function. Physiol Meas 2018; 39:02NT01. [DOI: 10.1088/1361-6579/aaa3c2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Abstract
Even impacts that do not immediately elicit symptoms of a concussion can induce changes in neural integrity. Because these so-called "subconcussive" head acceleration events, or head impact exposures, do not elicit identifiable symptoms, athletes continue to participate with unclear consequences. Neuroimaging studies reveal that neurologic changes, including inflammation, are associated with repetitive head impact exposures. Given that brain changes have been observed in athletes following repetitive head impact exposure, it is important to understand better and mitigate against this phenomenon. It is important to transition from the metric of concussion alone to one that includes repetitive head impact exposure, including the development of models that address why brain integrity may be compromised, who is at risk, and how to mitigate the risk of such exposure. Future work can include a health-monitoring framework to effect change and promote athlete safety.
Collapse
|
46
|
Manning KY, Schranz A, Bartha R, Dekaban GA, Barreira C, Brown A, Fischer L, Asem K, Doherty TJ, Fraser DD, Holmes J, Menon RS. Multiparametric MRI changes persist beyond recovery in concussed adolescent hockey players. Neurology 2017; 89:2157-2166. [PMID: 29070666 PMCID: PMC5696642 DOI: 10.1212/wnl.0000000000004669] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/06/2017] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE To determine whether multiparametric MRI data can provide insight into the acute and long-lasting neuronal sequelae after a concussion in adolescent athletes. METHODS Players were recruited from Bantam hockey leagues in which body checking is first introduced (male, age 11-14 years). Clinical measures, diffusion metrics, resting-state network and region-to-region functional connectivity patterns, and magnetic resonance spectroscopy absolute metabolite concentrations were analyzed from an independent, age-matched control group of hockey players (n = 26) and longitudinally in concussed athletes within 24 to 72 hours (n = 17) and 3 months (n = 14) after a diagnosed concussion. RESULTS There were diffusion abnormalities within multiple white matter tracts, functional hyperconnectivity, and decreases in choline 3 months after concussion. Tract-specific spatial statistics revealed a large region along the superior longitudinal fasciculus with the largest decreases in diffusivity measures, which significantly correlated with clinical deficits. This region also spatially intersected with probabilistic tracts connecting cortical regions where we found acute functional connectivity changes. Hyperconnectivity patterns at 3 months after concussion were present only in players with relatively less severe clinical outcomes, higher choline concentrations, and diffusivity indicative of relatively less axonal disruption. CONCLUSIONS Changes persisted well after players' clinical scores had returned to normal and they had been cleared to return to play. Ongoing white matter maturation may make adolescent athletes particularly vulnerable to brain injury, and they may require extended recovery periods. The consequences of early brain injury for ongoing brain development and risk of more serious conditions such as second impact syndrome or neural degenerative processes need to be elucidated.
Collapse
Affiliation(s)
- Kathryn Y Manning
- From the Department of Medical Biophysics (K.Y.M., A.S., R.B., R.S.M.), Department of Microbiology and Immunology (G.A.D., C.B.), Department of Anatomy and Cell Biology (A.B), Department of Physical Medicine and Rehabilitation (T.J.D.), and School of Occupational Therapy (J.H.), University of Western Ontario; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine (G.A.D., C.B., A.B.), Robarts Research Institute; Primary Care Sport Medicine (L.F., K.A.), Family Medicine, Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.D.F.), London Health Sciences Centre, London, Ontario, Canada
| | - Amy Schranz
- From the Department of Medical Biophysics (K.Y.M., A.S., R.B., R.S.M.), Department of Microbiology and Immunology (G.A.D., C.B.), Department of Anatomy and Cell Biology (A.B), Department of Physical Medicine and Rehabilitation (T.J.D.), and School of Occupational Therapy (J.H.), University of Western Ontario; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine (G.A.D., C.B., A.B.), Robarts Research Institute; Primary Care Sport Medicine (L.F., K.A.), Family Medicine, Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.D.F.), London Health Sciences Centre, London, Ontario, Canada
| | - Robert Bartha
- From the Department of Medical Biophysics (K.Y.M., A.S., R.B., R.S.M.), Department of Microbiology and Immunology (G.A.D., C.B.), Department of Anatomy and Cell Biology (A.B), Department of Physical Medicine and Rehabilitation (T.J.D.), and School of Occupational Therapy (J.H.), University of Western Ontario; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine (G.A.D., C.B., A.B.), Robarts Research Institute; Primary Care Sport Medicine (L.F., K.A.), Family Medicine, Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.D.F.), London Health Sciences Centre, London, Ontario, Canada
| | - Gregory A Dekaban
- From the Department of Medical Biophysics (K.Y.M., A.S., R.B., R.S.M.), Department of Microbiology and Immunology (G.A.D., C.B.), Department of Anatomy and Cell Biology (A.B), Department of Physical Medicine and Rehabilitation (T.J.D.), and School of Occupational Therapy (J.H.), University of Western Ontario; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine (G.A.D., C.B., A.B.), Robarts Research Institute; Primary Care Sport Medicine (L.F., K.A.), Family Medicine, Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.D.F.), London Health Sciences Centre, London, Ontario, Canada
| | - Christy Barreira
- From the Department of Medical Biophysics (K.Y.M., A.S., R.B., R.S.M.), Department of Microbiology and Immunology (G.A.D., C.B.), Department of Anatomy and Cell Biology (A.B), Department of Physical Medicine and Rehabilitation (T.J.D.), and School of Occupational Therapy (J.H.), University of Western Ontario; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine (G.A.D., C.B., A.B.), Robarts Research Institute; Primary Care Sport Medicine (L.F., K.A.), Family Medicine, Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.D.F.), London Health Sciences Centre, London, Ontario, Canada
| | - Arthur Brown
- From the Department of Medical Biophysics (K.Y.M., A.S., R.B., R.S.M.), Department of Microbiology and Immunology (G.A.D., C.B.), Department of Anatomy and Cell Biology (A.B), Department of Physical Medicine and Rehabilitation (T.J.D.), and School of Occupational Therapy (J.H.), University of Western Ontario; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine (G.A.D., C.B., A.B.), Robarts Research Institute; Primary Care Sport Medicine (L.F., K.A.), Family Medicine, Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.D.F.), London Health Sciences Centre, London, Ontario, Canada
| | - Lisa Fischer
- From the Department of Medical Biophysics (K.Y.M., A.S., R.B., R.S.M.), Department of Microbiology and Immunology (G.A.D., C.B.), Department of Anatomy and Cell Biology (A.B), Department of Physical Medicine and Rehabilitation (T.J.D.), and School of Occupational Therapy (J.H.), University of Western Ontario; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine (G.A.D., C.B., A.B.), Robarts Research Institute; Primary Care Sport Medicine (L.F., K.A.), Family Medicine, Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.D.F.), London Health Sciences Centre, London, Ontario, Canada
| | - Kevin Asem
- From the Department of Medical Biophysics (K.Y.M., A.S., R.B., R.S.M.), Department of Microbiology and Immunology (G.A.D., C.B.), Department of Anatomy and Cell Biology (A.B), Department of Physical Medicine and Rehabilitation (T.J.D.), and School of Occupational Therapy (J.H.), University of Western Ontario; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine (G.A.D., C.B., A.B.), Robarts Research Institute; Primary Care Sport Medicine (L.F., K.A.), Family Medicine, Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.D.F.), London Health Sciences Centre, London, Ontario, Canada
| | - Timothy J Doherty
- From the Department of Medical Biophysics (K.Y.M., A.S., R.B., R.S.M.), Department of Microbiology and Immunology (G.A.D., C.B.), Department of Anatomy and Cell Biology (A.B), Department of Physical Medicine and Rehabilitation (T.J.D.), and School of Occupational Therapy (J.H.), University of Western Ontario; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine (G.A.D., C.B., A.B.), Robarts Research Institute; Primary Care Sport Medicine (L.F., K.A.), Family Medicine, Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.D.F.), London Health Sciences Centre, London, Ontario, Canada
| | - Douglas D Fraser
- From the Department of Medical Biophysics (K.Y.M., A.S., R.B., R.S.M.), Department of Microbiology and Immunology (G.A.D., C.B.), Department of Anatomy and Cell Biology (A.B), Department of Physical Medicine and Rehabilitation (T.J.D.), and School of Occupational Therapy (J.H.), University of Western Ontario; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine (G.A.D., C.B., A.B.), Robarts Research Institute; Primary Care Sport Medicine (L.F., K.A.), Family Medicine, Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.D.F.), London Health Sciences Centre, London, Ontario, Canada
| | - Jeff Holmes
- From the Department of Medical Biophysics (K.Y.M., A.S., R.B., R.S.M.), Department of Microbiology and Immunology (G.A.D., C.B.), Department of Anatomy and Cell Biology (A.B), Department of Physical Medicine and Rehabilitation (T.J.D.), and School of Occupational Therapy (J.H.), University of Western Ontario; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine (G.A.D., C.B., A.B.), Robarts Research Institute; Primary Care Sport Medicine (L.F., K.A.), Family Medicine, Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.D.F.), London Health Sciences Centre, London, Ontario, Canada
| | - Ravi S Menon
- From the Department of Medical Biophysics (K.Y.M., A.S., R.B., R.S.M.), Department of Microbiology and Immunology (G.A.D., C.B.), Department of Anatomy and Cell Biology (A.B), Department of Physical Medicine and Rehabilitation (T.J.D.), and School of Occupational Therapy (J.H.), University of Western Ontario; Centre for Functional and Metabolic Mapping (K.Y.M., R.B., R.S.M.) and Molecular Medicine (G.A.D., C.B., A.B.), Robarts Research Institute; Primary Care Sport Medicine (L.F., K.A.), Family Medicine, Fowler Kennedy Sport Medicine; and Paediatrics Critical Care Medicine (D.D.F.), London Health Sciences Centre, London, Ontario, Canada.
| |
Collapse
|
47
|
Age of first exposure to American football and long-term neuropsychiatric and cognitive outcomes. Transl Psychiatry 2017; 7:e1236. [PMID: 28926003 PMCID: PMC5639242 DOI: 10.1038/tp.2017.197] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/16/2017] [Accepted: 07/30/2017] [Indexed: 12/14/2022] Open
Abstract
Previous research suggests that age of first exposure (AFE) to football before age 12 may have long-term clinical implications; however, this relationship has only been examined in small samples of former professional football players. We examined the association between AFE to football and behavior, mood and cognition in a large cohort of former amateur and professional football players. The sample included 214 former football players without other contact sport history. Participants completed the Brief Test of Adult Cognition by Telephone (BTACT), and self-reported measures of executive function and behavioral regulation (Behavior Rating Inventory of Executive Function-Adult Version Metacognition Index (MI), Behavioral Regulation Index (BRI)), depression (Center for Epidemiologic Studies Depression Scale (CES-D)) and apathy (Apathy Evaluation Scale (AES)). Outcomes were continuous and dichotomized as clinically impaired. AFE was dichotomized into <12 and ⩾12, and examined continuously. Multivariate mixed-effect regressions controlling for age, education and duration of play showed AFE to football before age 12 corresponded with >2 × increased odds for clinically impaired scores on all measures but BTACT: (odds ratio (OR), 95% confidence interval (CI): BRI, 2.16,1.19-3.91; MI, 2.10,1.17-3.76; CES-D, 3.08,1.65-5.76; AES, 2.39,1.32-4.32). Younger AFE predicted increased odds for clinical impairment on the AES (OR, 95% CI: 0.86, 0.76-0.97) and CES-D (OR, 95% CI: 0.85, 0.74-0.97). There was no interaction between AFE and highest level of play. Younger AFE to football, before age 12 in particular, was associated with increased odds for impairment in self-reported neuropsychiatric and executive function in 214 former American football players. Longitudinal studies will inform youth football policy and safety decisions.
Collapse
|
48
|
Slobounov SM, Walter A, Breiter HC, Zhu DC, Bai X, Bream T, Seidenberg P, Mao X, Johnson B, Talavage TM. The effect of repetitive subconcussive collisions on brain integrity in collegiate football players over a single football season: A multi-modal neuroimaging study. NEUROIMAGE-CLINICAL 2017; 14:708-718. [PMID: 28393012 PMCID: PMC5377433 DOI: 10.1016/j.nicl.2017.03.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 01/14/2023]
Abstract
The cumulative effect of repetitive subconcussive collisions on the structural and functional integrity of the brain remains largely unknown. Athletes in collision sports, like football, experience a large number of impacts across a single season of play. The majority of these impacts, however, are generally overlooked, and their long-term consequences remain poorly understood. This study sought to examine the effects of repetitive collisions across a single competitive season in NCAA Football Bowl Subdivision athletes using advanced neuroimaging approaches. Players were evaluated before and after the season using multiple MRI sequences, including T1-weighted imaging, diffusion tensor imaging (DTI), arterial spin labeling (ASL), resting-state functional MRI (rs-fMRI), and susceptibility weighted imaging (SWI). While no significant differences were found between pre- and post-season for DTI metrics or cortical volumes, seed-based analysis of rs-fMRI revealed significant (p < 0.05) changes in functional connections to right isthmus of the cingulate cortex (ICC), left ICC, and left hippocampus. ASL data revealed significant (p < 0.05) increases in global cerebral blood flow (CBF), with a specific regional increase in right postcentral gyrus. SWI data revealed that 44% of the players exhibited outlier rates (p < 0.05) of regional decreases in SWI signal. Of key interest, athletes in whom changes in rs-fMRI, CBF and SWI were observed were more likely to have experienced high G impacts on a daily basis. These findings are indicative of potential pathophysiological changes in brain integrity arising from only a single season of participation in the NCAA Football Bowl Subdivision, even in the absence of clinical symptoms or a diagnosis of concussion. Whether these changes reflect compensatory adaptation to cumulative head impacts or more lasting alteration of brain integrity remains to be further explored.
Collapse
Affiliation(s)
- Semyon M. Slobounov
- Concussion Neuroimaging Consortium, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Alexa Walter
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, United States
- Corresponding author: 25 Recreation Hall University Park, PA 16802, United States.25 Recreation Hall University ParkPA16802United States
| | - Hans C. Breiter
- Concussion Neuroimaging Consortium, Department of Psychiatry and Behavioral Sciences, Northwestern University, Evanston, IL 60208, United States
| | - David C. Zhu
- Concussion Neuroimaging Consortium, Department of Radiology and Psychology, Michigan State University, East Lansing, MI 48824, United States
| | - Xiaoxiao Bai
- Social, Life, and Engineering Sciences Imaging Center, The Pennsylvania State University, University Park, PA 16802, United States
| | - Tim Bream
- Athletic Department, The Pennsylvania State University, University Park, PA 16802, United States
| | - Peter Seidenberg
- Athletic Department, The Pennsylvania State University, University Park, PA 16802, United States
| | - Xianglun Mao
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Brian Johnson
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Thomas M. Talavage
- Concussion Neuroimaging Consortium, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, United States
| |
Collapse
|
49
|
Ainsley Dean PJ, Arikan G, Opitz B, Sterr A. Potential for use of creatine supplementation following mild traumatic brain injury. ACTA ACUST UNITED AC 2017; 2:CNC34. [PMID: 30202575 PMCID: PMC6094347 DOI: 10.2217/cnc-2016-0016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 02/07/2017] [Indexed: 01/27/2023]
Abstract
There is significant overlap between the neuropathology of mild traumatic brain injury (mTBI) and the cellular role of creatine, as well as evidence of neural creatine alterations after mTBI. Creatine supplementation has not been researched in mTBI, but shows some potential as a neuroprotective when administered prior to or after TBI. Consistent with creatine’s cellular role, supplementation reduced neuronal damage, protected against the effects of cellular energy crisis and improved cognitive and somatic symptoms. A variety of factors influencing the efficacy of creatine supplementation are highlighted, as well as avenues for future research into the potential of supplementation as an intervention for mTBI. In particular, the slow neural uptake of creatine may mean that greater effects are achieved by pre-emptive supplementation in at-risk groups.
Collapse
Affiliation(s)
- Philip John Ainsley Dean
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Gozdem Arikan
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Bertram Opitz
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Annette Sterr
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| |
Collapse
|
50
|
Semple BD, Sadjadi R, Carlson J, Chen Y, Xu D, Ferriero DM, Noble-Haeusslein LJ. Long-Term Anesthetic-Dependent Hypoactivity after Repetitive Mild Traumatic Brain Injuries in Adolescent Mice. Dev Neurosci 2016; 38:220-238. [PMID: 27548472 DOI: 10.1159/000448089] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/28/2016] [Indexed: 11/19/2022] Open
Abstract
Recent evidence supports the hypothesis that repetitive mild traumatic brain injuries (rmTBIs) culminate in neurological impairments and chronic neurodegeneration, which have wide-ranging implications for patient management and return-to-play decisions for athletes. Adolescents show a high prevalence of sports-related head injuries and may be particularly vulnerable to rmTBIs due to ongoing brain maturation. However, it remains unclear whether rmTBIs, below the threshold for acute neuronal injury or symptomology, influence long-term outcomes. To address this issue, we first defined a very mild injury in adolescent mice (postnatal day 35) as evidenced by an increase in Iba-1- labeled microglia in white matter in the acutely injured brain, in the absence of indices of cell death, axonal injury, and vasogenic edema. Using this level of injury severity and Avertin (2,2,2-tribromoethanol) as the anesthetic, we compared mice subjected to either a single mTBI or 2 rmTBIs, each separated by 48 h. Neurobehavioral assessments were conducted at 1 week and at 1 and 3 months postimpact. Mice subjected to rmTBIs showed transient anxiety and persistent and pronounced hypoactivity compared to sham control mice, alongside normal sensorimotor, cognitive, social, and emotional function. As isoflurane is more commonly used than Avertin in animal models of TBI, we next examined long-term outcomes after rmTBIs in mice that were anesthetized with this agent. However, there was no evidence of abnormal behaviors even with the addition of a third rmTBI. To determine whether isoflurane may be neuroprotective, we compared the acute pathology after a single mTBI in mice anesthetized with either Avertin or isoflurane. Pathological findings were more pronounced in the group exposed to Avertin compared to the isoflurane group. These collective findings reveal distinct behavioral phenotypes (transient anxiety and prolonged hypoactivity) that emerge in response to rmTBIs. Our findings further suggest that selected anesthetics may confer early neuroprotection after rmTBIs, and as such mask long-term abnormal phenotypes that may otherwise emerge as a consequence of acute pathogenesis.
Collapse
Affiliation(s)
- Bridgette D Semple
- Department of Neurological Surgery, University of California San Francisco, San Francisco, Calif., USA
| | | | | | | | | | | | | |
Collapse
|