1
|
Bacqueville D, Jacques C, Duprat L, Jamin EL, Guiraud B, Perdu E, Bessou-Touya S, Zalko D, Duplan H. Characterization of xenobiotic metabolizing enzymes of a reconstructed human epidermal model from adult hair follicles. Toxicol Appl Pharmacol 2017; 329:190-201. [PMID: 28601433 DOI: 10.1016/j.taap.2017.05.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/10/2017] [Accepted: 05/30/2017] [Indexed: 11/15/2022]
Abstract
In this study, a comprehensive characterization of xenobiotic metabolizing enzymes (XMEs) based on gene expression and enzyme functionality was made in a reconstructed skin epidermal model derived from the outer root sheath (ORS) of hair follicles (ORS-RHE). The ORS-RHE model XME gene profile was consistent with native human skin. Cytochromes P450 (CYPs) consistently reported to be detected in native human skin were also present at the gene level in the ORS-RHE model. The highest Phase I XME gene expression levels were observed for alcohol/aldehyde dehydrogenases and (carboxyl) esterases. The model was responsive to the CYP inducers, 3-methylcholanthrene (3-MC) and β-naphthoflavone (βNF) after topical and systemic applications, evident at the gene and enzyme activity level. Phase II XME levels were generally higher than those of Phase I XMEs, the highest levels were GSTs and transferases, including NAT1. The presence of functional CYPs, UGTs and SULTs was confirmed by incubating the models with 7-ethoxycoumarin, testosterone, benzo(a)pyrene and 3-MC, all of which were rapidly metabolized within 24h after topical application. The extent of metabolism was dependent on saturable and non-saturable metabolism by the XMEs and on the residence time within the model. In conclusion, the ORS-RHE model expresses a number of Phase I and II XMEs, some of which may be induced by AhR ligands. Functional XME activities were also demonstrated using systemic or topical application routes, supporting their use in cutaneous metabolism studies. Such a reproducible model will be of interest when evaluating the cutaneous metabolism and potential toxicity of innovative dermo-cosmetic ingredients.
Collapse
Affiliation(s)
- Daniel Bacqueville
- Pierre Fabre Dermo-cosmétique, Service Pharmacologie Division 2 et Pharmacocinétique Cutané, Département Pharmacologie, Centre R&D Pierre Fabre, 3 avenue Hubert Curien, Toulouse, France.
| | - Carine Jacques
- Pierre Fabre Dermo-cosmétique, Service Pharmacologie Division 2 et Pharmacocinétique Cutané, Département Pharmacologie, Centre R&D Pierre Fabre, 3 avenue Hubert Curien, Toulouse, France
| | - Laure Duprat
- Pierre Fabre Dermo-cosmétique, Service Pharmacologie Division 2 et Pharmacocinétique Cutané, Département Pharmacologie, Centre R&D Pierre Fabre, 3 avenue Hubert Curien, Toulouse, France
| | - Emilien L Jamin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Beatrice Guiraud
- Pierre Fabre Dermo-cosmétique, Service Pharmacologie Division 2 et Pharmacocinétique Cutané, Département Pharmacologie, Centre R&D Pierre Fabre, 3 avenue Hubert Curien, Toulouse, France
| | - Elisabeth Perdu
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Sandrine Bessou-Touya
- Pierre Fabre Dermo-cosmétique, Service Pharmacologie Division 2 et Pharmacocinétique Cutané, Département Pharmacologie, Centre R&D Pierre Fabre, 3 avenue Hubert Curien, Toulouse, France
| | - Daniel Zalko
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Hélène Duplan
- Pierre Fabre Dermo-cosmétique, Service Pharmacologie Division 2 et Pharmacocinétique Cutané, Département Pharmacologie, Centre R&D Pierre Fabre, 3 avenue Hubert Curien, Toulouse, France
| |
Collapse
|
2
|
Xia YL, Liang SC, Zhu LL, Ge GB, He GY, Ning J, Lv X, Ma XC, Yang L, Yang SL. Identification and Characterization of Human UDP-glucuronosyltransferases Responsible for the Glucuronidation of Fraxetin. Drug Metab Pharmacokinet 2014; 29:135-40. [DOI: 10.2133/dmpk.dmpk-13-rg-059] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Azizi J, Ismail S, Mansor SM. Mitragyna speciosa Korth leaves extracts induced the CYP450 catalyzed aminopyrine-N-demethylase (APND) and UDP-glucuronosyl transferase (UGT) activities in male Sprague-Dawley rat livers. ACTA ACUST UNITED AC 2013; 28:95-105. [DOI: 10.1515/dmdi-2012-0039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/23/2013] [Indexed: 12/17/2022]
|
4
|
Catsburg C, Joshi AD, Corral R, Lewinger JP, Koo J, John EM, Ingles SA, Stern MC. Polymorphisms in carcinogen metabolism enzymes, fish intake, and risk of prostate cancer. Carcinogenesis 2012; 33:1352-9. [PMID: 22610071 PMCID: PMC3499053 DOI: 10.1093/carcin/bgs175] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Revised: 05/09/2012] [Accepted: 05/12/2012] [Indexed: 01/24/2023] Open
Abstract
Cooking fish at high temperature can produce potent carcinogens such as heterocyclic amines and polycyclic aromatic hydrocarbons. The effects of these carcinogens may undergo modification by the enzymes responsible for their detoxification and/or activation. In this study, we investigated genetic polymorphisms in nine carcinogen metabolism enzymes and their modifying effects on the association between white or dark fish consumption and prostate cancer (PCA) risk. We genotyped 497 localized and 936 advanced PCA cases and 760 controls from the California Collaborative Case-Control Study of Prostate Cancer. Three polymorphisms, EPHX1 Tyr113His, CYP1B1 Leu432Val and GSTT1 null/present, were associated with localized PCA risk. The PTGS2 765 G/C polymorphism modified the association between white fish consumption and advanced PCA risk (interaction P 5 0.002), with high white fish consumption being positively associated with risk only among carriers of the C allele. This effect modification by PTGS2 genotype was stronger when restricted to consumption of well-done white fish (interaction P 5 0.021). These findings support the hypotheses that changes in white fish brought upon by high-temperature cooking methods, such as carcinogen accumulation and/or fatty acid composition changes, may contribute to prostate carcinogenesis. However, the gene-diet interactions should be interpreted with caution given the limited sample size. Thus, our findings require further validation with additional studies.
Collapse
Affiliation(s)
- Chelsea Catsburg
- Department of Preventive Medicine, University of Southern California Keck School of Medicine, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Kundu R, Dasgupta S, Biswas A, Bhattacharya S, Pal BC, Bhattacharya S, Rao P, Barua N, Bordoloi M, Bhattacharya S. Carlinoside reduces hepatic bilirubin accumulation by stimulating bilirubin-UGT activity through Nrf2 gene expression. Biochem Pharmacol 2011; 82:1186-97. [DOI: 10.1016/j.bcp.2011.07.069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 06/12/2011] [Accepted: 07/07/2011] [Indexed: 01/21/2023]
|
6
|
UGT1A1 genotyping: a predictor of irinotecan-associated side effects and drug efficacy? Anticancer Drugs 2009; 20:867-79. [PMID: 19770637 DOI: 10.1097/cad.0b013e328330c7d2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Irinotecan [Camptosar (CPT-11), Pfizer Pharmaceuticals, New York, USA] is one of the most effective chemotherapeutic agents in the treatment of metastatic colorectal cancer. In vivo, the prodrug CPT-11 is biotransformed by carboxylesterase into its active metabolite SN-38. SN-38 is inactivated by uridine disphosphate glucuronosyl transferase 1 (UGT1A1) into the inactive compound SN-38G, which is excreted with the bile.This review concentrates on a critical evaluation of UGT1A1 gene polymorphism as a predictor of toxicity and treatment efficacy in patients who received irinotecan for metastatic colorectal cancer. Irinotecan is explained with its main toxicities as well as the underlying mechanisms. The enzyme UGT1A1 is shown in the context of other metabolic pathways and different UGT enzymes involved. We will review in detail the controversy of the current literature with regard to the significance of identifying patients carrying the homozygous genotype UGT1A1 28. Racial differences concerning UGT enzymes have to be considered when discussing a pragmatic approach to determine gene polymorphisms as a predictor of treatment efficacy and outcome in patients receiving irinotecan-based chemotherapy. Dose dependency of toxicity and the clinical relevance of various UGT1 enzymes and single nucleotide polymorphisms in different alternative metabolic pathways are clarified to put UGT1A1 genotyping in a broad context with additional and competing strategies of patient-tailored therapy.
Collapse
|
7
|
Lazarus P, Blevins-Primeau AS, Zheng Y, Sun D. Potential role of UGT pharmacogenetics in cancer treatment and prevention: focus on tamoxifen. Ann N Y Acad Sci 2009; 1155:99-111. [PMID: 19250197 DOI: 10.1111/j.1749-6632.2009.04114.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tamoxifen (TAM) is a selective estrogen receptor modulator that is widely used in the prevention and treatment of estrogen receptor-positive (ER(+)) breast cancer. Its use has significantly contributed to a decline in breast cancer mortality, since breast cancer patients treated with TAM for 5 years exhibit a 30-50% reduction in both the rate of disease recurrence after 10 years of patient follow-up and occurrence of contralateral breast cancer. However, in patients treated with TAM there is substantial interindividual variability in the development of resistance to TAM therapy, and in the incidence of TAM-induced adverse events, including deep vein thrombosis, hot flashes, and the development of endometrial cancer. This article will focus on the UDP glucuronosyltransferases, a family of metabolizing enzymes that are responsible for the deactivation and clearance of TAM and TAM metabolites, and how interindividual differences in these enzymes may play a role in patient response to TAM.
Collapse
Affiliation(s)
- Philip Lazarus
- Cancer Control and Population Sciences Program, Penn State Cancer Institute, Department of Pharmacology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | | | |
Collapse
|
8
|
Hanioka N, Takeda Y, Tanaka-Kagawa T, Hayashi K, Jinno H, Narimatsu S. Interaction of bisphenol A with human UDP-glucuronosyltransferase 1A6 enzyme. ENVIRONMENTAL TOXICOLOGY 2008; 23:407-12. [PMID: 18214896 DOI: 10.1002/tox.20345] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The effects of bisphenol A (BPA) on UDP-glucuronosyltransferase 1A6 (UGT1A6) activities in microsomes from human livers and yeast cells expressing human UGT1A6 (humUGT1A6) were investigated. Serotonin (5-HT) and 4-methylumbelliferone (4-MU) were used as the substrates for UGT1A6. BPA dose-dependently inhibited 5-HT and 4-MU glucuronidation activities in both enzyme sources. The IC(50) values of BPA for 5-HT and 4-MU glucuronidation activities were 156 and 163 microM for liver microsomes, and 84.6 and 80.3 microM for yeast cell microsomes expressing humUGT1A6, respectively. The inhibitory pattern of BPA for 5-HT and 4-MU glucuronidation activities in human liver microsomes exhibited a mixture of competitive and noncompetitive components, with K(i) values of 84.9 and 72.3 microM, respectively. In yeast cell microsomes expressing humUGT1A6, 5-HT glucuronidation activities were noncompetitively inhibited by BPA (K(i) value, 65.5 microM), whereas the inhibition of 4-MU glucuronidation activities by BPA exhibited the mixed type (K(i) value, 42.5 microM). These results suggest that BPA interacts with human UGT1A6 enzyme, and that the interaction may contribute to the toxicity, such as hormone disruption and reproductive effects, of BPA.
Collapse
Affiliation(s)
- Nobumitsu Hanioka
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Molecular and cellular effects of food contaminants and secondary plant components and their plausible interactions at the intestinal level. Food Chem Toxicol 2008; 46:813-41. [DOI: 10.1016/j.fct.2007.12.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 10/25/2007] [Accepted: 12/03/2007] [Indexed: 01/16/2023]
|
10
|
Kuno T, Togawa H, Mizutani T. Induction of human UGT1A1 by a complex of dexamethasone-GR dependent on proximal site and independent of PBREM. Mol Biol Rep 2007; 35:361-7. [PMID: 17530442 DOI: 10.1007/s11033-007-9094-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2007] [Accepted: 04/30/2007] [Indexed: 12/20/2022]
Abstract
UDP-glucuronosyltransferase 1A1 (UGT1A1) plays a key role to conjugate bilirubin and prevent jaundice. There are two major elements for the induction of UGT1A1, such as PBREM (-3483/-3194), far from the promoter site, and HNF1 (-75/-63), near to the promoter site. In a previous report, we showed that the proximal HNF1 site is essential for the induction of UGT1A1 by glucocorticoid receptor (GR). In this report, we investigated the influence of PBREM on the induction of the UGT1A1 reporter gene by GR and PXR with dexamethasone (DEX). We confirmed that GR was transferred from cytosol into the nucleus in 15-30 min by DEX stimulation, but HNF1 was not. We constructed a reporter gene containing PBREM to compare the induction of the reporter gene without PBREM by DEX-GR. The results show that induction of the reporter gene with PBREM by DEX at 100 muM is the same level as the induction of the reporter gene without PBREM, although PBREM contains GRE. Co-transfection of hGR with the reporter gene did not show any influence of the induction of the reporter gene between the vector with and without PBREM. Meanwhile, by co-transfection of hPXR, the induction of the reporter gene with PBREM was significantly more than the induction of the reporter gene without PBREM at 100 microM DEX. This supports that hPXR induced UGT1A1 through PBREM by DEX. These results showed that PBREM has no relation with the induction by DEX-GR but the proximal site of UGT1A1 may function in stimulation by DEX-GR.
Collapse
Affiliation(s)
- Takuya Kuno
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | | | | |
Collapse
|
11
|
Hanioka N, Takeda Y, Jinno H, Tanaka-Kagawa T, Naito S, Koeda A, Shimizu T, Nomura M, Narimatsu S. Functional characterization of human and cynomolgus monkey UDP-glucuronosyltransferase 1A6 enzymes. Chem Biol Interact 2006; 164:136-45. [PMID: 17027947 DOI: 10.1016/j.cbi.2006.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 09/11/2006] [Accepted: 09/11/2006] [Indexed: 12/01/2022]
Abstract
UDP-glucuronosyltransferase 1A6 (UGT1A6) is a major isoform in the human liver that glucuronidates numerous drugs, environmental chemicals and endogenous substrates. In this study, human and cynomolgus monkey UGT1A6 cDNAs (humUGT1A6 and monUGT1A6, respectively) were cloned, and the corresponding proteins were heterologously expressed in yeast cells to identify the functions of primate UGT1A6s. The enzymatic properties of UGT1A6 proteins were characterized by the kinetic analysis of serotonin (5-hydroxytryptamine, 5-HT) and 4-methylumbelliferone (4-MU) glucuronidation. humUGT1A6 and monUGT1A6 showed 96% identity in their nucleotide and amino acid sequences. Immunoblotting analysis using an antibody raised against human UGT1A6 showed that protein staining intensities were different between human and cynomolgus monkey UGT1A6 enzymes in microsomal fractions from livers and yeast cells, although both enzymes were detectable. The apparent K(m) value (15 mM) for 5-HT glucuronidation of cynomolgus monkey liver microsomes was significantly higher than that (8.6mM) of human liver microsomes, whereas V(max) values were lower in cynomolgus monkeys (2.8 nmol/min/mg protein) than in humans (8.6 nmol/min/mg protein). No significant species difference was observed in K(m) (approximately 90 microM) or V(max) (approximately 25 nmol/min/mg protein) values for liver microsomal 4-MU glucuronidation. In yeast cell microsomes, K(m) values (approximately 6mM) for 5-HT glucuronidation by recombinant UGT1A6s were similar, while a V(max) value (0.1nmol/min/mg protein) of monUGT1A6 was significantly lower than that (0.7 nmol/min/mg protein) of humUGT1A6. In 4-MU glucuronidation, both K(m) (210 microM) and V(max) (3.5 nmol/min/mg protein) values of monUGT1A6 were significantly higher than those of humUGT1A6 (K(m), 110 microM; V(max), 1.5nmol/min/mg protein). These findings suggest that the enzymatic properties of UGT1A6 were extensively different between humans and cynomolgus monkeys, although humUGT1A6 and monUGT1A6 showed high homology at the amino acid level. The information gained in this study should help with in vivo extrapolation and to assess the toxicity of xenobiotics.
Collapse
Affiliation(s)
- Nobumitsu Hanioka
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hanioka N, Obika N, Nishimura M, Jinno H, Tanaka-Kagawa T, Saito K, Kiryu K, Naito S, Narimatsu S. Inducibility of UDP-glucuronosyltransferase 1As by β-naphthoflavone in HepG2 cells. Food Chem Toxicol 2006; 44:1251-60. [PMID: 16545899 DOI: 10.1016/j.fct.2006.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Revised: 01/17/2006] [Accepted: 01/31/2006] [Indexed: 11/18/2022]
Abstract
UDP-glucuronosyltransferases (UGTs) are conjugation enzymes, which are regulated in a tissue-specific manner by endogenous and environmental factors. In this study, we focused on UGT1A isoforms (UGT1A1, UGT1A6 and UGT1A9), mainly expressed in the human liver, and examined the inducibility of UGT1As by beta-naphthoflavone (BNF) in human hepatoma HepG2 cells. The cells were pretreated for 72 h with BNF at concentrations of 25, 50 and 100 microM. 7-Ethyl-10-hydroxycamptothecin (SN-38) glucuronidation, used as a probe for UGT1A1, showed sigmoidal kinetics with a Hill coefficient (n) of 1.2-1.3 in control and BNF-pretreated HepG2 cells. The Vmax values were significantly increased 3.6- to 4.3-fold by BNF, whereas there was no significant change in the S50 values by BNF at any concentration examined. On the other hand, 4-methylumbelliferone (4-MU) glucuronidation as a probe for UGT1A6 and UGT1A9 in the control and BNF-pretreated HepG2 cells exhibited a biphasic kinetic pattern. Although Km1 values for the low-Km phase were similar between the control and BNF-pretreated HepG2 cells, Km2 values for the high-Km phase of BNF-pretreated HepG2 cells were reduced to 54-69% of control HepG2 cells. The values of Vmax1 and Vmax2 for the low- and high-Km phases, respectively, were significantly increased 1.9- to 2.6-fold by BNF at 25 and/or 50 microM but not 100 microM. With respect to Vmax (Vmax1 and Vmax2) and Vmax/Km (Vmax1/Km1 and Vmax2/Km2), the values were significantly increased 2.0- to 3.2-fold by BNF at all concentrations examined. Furthermore, real-time reverse transcription polymerase chain reaction using TaqMan probes demonstrated that BNF concentration-dependently induced mRNA levels of UGT1A1 but not UGT1A6 or UGT1A9 in HepG2 cells (1.3- to 6.0-fold). These results suggest that the inducibility of UGT1A isoforms in HepG2 cells by BNF is different from other aryl hydrocarbon receptor agonists previously reported, and should provide useful information for the prediction of drug-drug interactions and toxicological assessment of environmental chemicals.
Collapse
Affiliation(s)
- Nobumitsu Hanioka
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Usui T, Kuno T, Ueyama H, Ohkubo I, Mizutani T. Proximal HNF1 element is essential for the induction of human UDP-glucuronosyltransferase 1A1 by glucocorticoid receptor. Biochem Pharmacol 2005; 71:693-701. [PMID: 16360646 DOI: 10.1016/j.bcp.2005.11.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 11/16/2005] [Accepted: 11/16/2005] [Indexed: 11/16/2022]
Abstract
Previous study showed noinduction of the reporter gene (-3174/+14) of UGT1A1 in HepG2 by bilirubin, but induction by dexamethasone (DEX). This induction was enhanced seven-fold by the co-expression of human glucocorticoid receptor (GR) and was inhibited by a GR antagonist, RU486, indicating stimulation by DEX-GR. Meanwhile, we could not detect stimulation by beta-estradiol, phenobarbital or rifampicin (RIF) in the presence of GR. We investigated the position playing a role in this induction by GR in the promoter region of UGT1A1 using deletion mutants, and clarified the essential sequence (-75/-63) for the binding site of hepatocyte nuclear factor 1 (HNF1). However, GR did not bind directly to this sequence, because UGT-PE2 did not compete for binding to a glucocorticoid responsive element (GRE) probe in an electrophoretic mobility shift assay (EMSA) method. Labeled [(32)P]DNA probe of HNF1 binds with nuclear extracts as shown by the EMSA. This shift of the complex of probe-protein was not inhibited by unlabeled GRE but was inhibited by unlabeled HNF1 element. This shift was not influenced by the addition of anti-GR, but was super-shifted by the addition of anti-HNF1. GR did not stimulate the induction of HNF1, because we detected no-elevation of the mRNA level of HNF1 by reverse transcription-polymerase chain reaction (RT-PCR). Therefore, the induction of UGT1A1 by DEX-GR did not depend on the elevation of HNF1 but on the interaction of GR with HNF1 or the activation of HNF1 through the transcription of other proteins. Also given the lack of evidence of binding of DEX-GR to HNF1 in the EMSA, the data suggest that the mechanism of DEX-GRE effect on HNF1 is indirect by whatever mechanisms.
Collapse
Affiliation(s)
- Toru Usui
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Tababe-dori 3, Mizuhoku, Nagoya 467-8603, Japan
| | | | | | | | | |
Collapse
|
14
|
Lampen A, Ebert B, Stumkat L, Jacob J, Seidel A. Induction of gene expression of xenobiotic metabolism enzymes and ABC-transport proteins by PAH and a reconstituted PAH mixture in human Caco-2 cells. ACTA ACUST UNITED AC 2005; 1681:38-46. [PMID: 15566942 DOI: 10.1016/j.bbaexp.2004.09.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Revised: 09/28/2004] [Accepted: 09/28/2004] [Indexed: 10/26/2022]
Abstract
It was shown recently that in epithelial Caco-2 cells the food contaminant benzo[a]pyrene (B[a]P) is metabolized and B[a]P-sulfate metabolites were transported out of the cells. The aim of this study was to investigate whether B[a]P and other polycyclic aromatic hydrocarbons (PAH) such as chrysene, phenanthrene, benzo[k]fluoranthene (B[k]F), dibenzo[a,l]pyrene (DB[a,l]P), and pyrene alone or in a mixture in a ratio as they occur in tobacco smoke have effects on gene expression of intestinal cytochrome P450 enzymes (CYP), Phase II enzymes and ATP-binding cassette (ABC)-transport proteins in the human Caco-2 cells. B[a]P induced its own metabolism. Treatment of the Caco-2 cells with B[a]P, chrysene, B[k]F, or DB[a,l]P induced mRNA expression of CYP1A1 and CYP1B1 specifically as measured by RT-PCR. In contrast, the mRNA expression of the microsomal epoxide hydrolase (mEH) was not affected by PAH. The gene expression of the Phase II enzymes UDP-glucuronosyltransferase 1A6 (UGT1A6) and UGT1A7 was also induced by these PAH but treatment with them had no effect on gene expression of sulfotransferases (SULT) at all. Of the ABC-transport proteins, MDR1 mRNA expression was induced by treatment with carcinogenic PAH, whereas MRP2 mRNA expression was not changed. The mixture of PAH also induced CYP1A1, CYP1B1, UGT1A6, and UGT1A7 mRNA expression. We conclude that B[a]P, chrysene, B[k]F, and DB[a,l]P have specific effects on intestinal CYP1A1, CYP1B1, UGT1A6, and UDP1A7 mRNA expression but no effects on the expression of SULT.
Collapse
Affiliation(s)
- A Lampen
- Institut für Lebensmitteltoxikologie, Tierärztliche Hochschule Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany.
| | | | | | | | | |
Collapse
|
15
|
Nakajima M, Yokoi T. Interindividual Variability in Nicotine Metabolism: C-Oxidation and Glucuronidation. Drug Metab Pharmacokinet 2005; 20:227-35. [PMID: 16141602 DOI: 10.2133/dmpk.20.227] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nicotine has roles in the addiction to smoking, replacement therapy for smoking cessation, as a potential medication for several diseases such as Parkinson's disease, Alzheimer's disease, and ulcerative colitis. The absorbed nicotine is rapidly and extensively metabolized and eliminated to urine. A major pathway of nicotine metabolism is C-oxidation to cotinine, which is catalyzed by CYP2A6 in human livers. Cotinine is subsequently metabolized to trans-3'-hydroxycotinine by CYP2A6. Nicotine and cotinine are glucuronidated to N-glucuronides mainly by UGT1A4 and partly by UGT1A9. Trans-3'-hydroxycotinine is glucuronidated to O-glucuronide mainly by UGT2B7 and partly by UGT1A9. Approximately 90% of the total nicotine uptake is eliminated as these metabolites and nicotine itself. The nicotine metabolism is an important determinant of the clearance of nicotine. Recently, advances in the understanding of the interindividual variability in nicotine metabolism have been made. There are substantial data suggesting that the large interindividual differences in cotinine formation are associated with genetic polymorphisms of the CYP2A6 gene. Interethnic differences have also been observed in the cotinine formation and the allele frequencies of the CYP2A6 alleles. Since the genetic polymorphisms of the CYP2A6 gene have a major impact on nicotine clearance, its relationships with smoking behavior or the risk of lung cancer have been suggested. The metabolic pathways of the glucuronidation of nicotine, cotinine, and trans-3'-hydroxycotinine in humans would be one of the causal factors for the interindividual differences in nicotine metabolism. This review mainly summarizes recent results from our studies.
Collapse
Affiliation(s)
- Miki Nakajima
- Drug Metabolism and Toxicology, Division of Pharmaceutical Sciences, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | | |
Collapse
|
16
|
Yueh MF, Bonzo JA, Tukey RH. The Role of Ah Receptor in Induction of Human UDP‐Glucuronosyltransferase 1A1. Methods Enzymol 2005; 400:75-91. [PMID: 16399344 DOI: 10.1016/s0076-6879(05)00005-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
UDP-glucuronosyltransferases (UGTs) catalyze a major metabolic pathway initiating the transfer of glucuronic acid from uridine 5'-diphosphoglucuronic acid to endogenous and exogenous substances. Endogenous substances include bile acids, steroids, phenolic neurotransmitters, and bilirubin. Xenobiotic substances include dietary substances, therapeutics, and environmental compounds. The versatility in the selection of substrates for glucuronidation results from the multiplicity of the UGTs in addition to the ability of these genes to be regulated. UDP-glucuronosyltransferase 1A1 (UGT1A1), responsible for the glucuronidation of bilirubin, is controlled in a tissue-specific manner and can be regulated following environmental exposure. This chapter describes materials and methods for the examination of molecular interactions that control UGT1A1 expression and induction in response to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Using an in vitro cell culture system, we mapped a regulatory sequence that contains a xenobiotic response element core sequence in the enhancer region of the UGT1A1 gene. Similar to regulation of CYP1A1, the transcriptional activation of UGT1A1 by TCDD is mediated through the aryl hydrocarbon receptor.
Collapse
Affiliation(s)
- Mei-Fei Yueh
- Department of Pharmacology, Chemistry & Biochemistry, Laboratory of Environmental Toxicology, University of California, San Diego, La Jolla, USA
| | | | | |
Collapse
|
17
|
Elovaara E, Mikkola J, Luukkanen L, Antonio L, Fournel-Gigleux S, Burchell B, Magdalou J, Taskinen J. ASSESSMENT OF CATECHOL INDUCTION AND GLUCURONIDATION IN RAT LIVER MICROSOMES. Drug Metab Dispos 2004; 32:1426-33. [PMID: 15371300 DOI: 10.1124/dmd.104.000992] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Catechols are substances with a 1,2-dihydroxybenzene group from natural or synthetic origin. The aim of this study was to determine whether catechols (4-methylcatechol, 4-nitrocatechol, 2,3-dihydroxynaphthalene) and the antiparkinsonian drugs, entacapone and tolcapone, at doses 150 to 300 mg/kg/day, for 3 days, are able to enhance their own glucuronidation. The induction potency of catechols on rat liver UDP-glucuronosyltransferases (UGTs) was compared with that of a standard polychlorinated biphenyl (PCB) inducer, Aroclor 1254. The glucuronidation rate of these catechols was enhanced up to 15-fold in the liver microsomes of PCB-treated rats, whereas treatment with catechols had little effect. Entacapone, tolcapone, 4-methylcatechol, catechol, 2,3-dihydroxynaphthalene, and 4-nitrocatechol were glucuronidated in control microsomes at rates ranging from 0.12 for entacapone to 22.0 nmol/min/mg for 4-nitrocatechol. Using 1-naphthol, entacapone, and 1-hydroxypyrene as substrates, a 5-, 8-, and 16-fold induction was detected in the PCB rats, respectively, whereas the catechol-induced activities were 1.1- to 1.5-fold only. Entacapone was glucuronidated more efficiently by PCB microsomes than by control microsomes (Vmax/Km, 0.0125 and 0.0016 ml/min/mg protein, respectively). Similar kinetic results were obtained for 1-hydroxypyrene. The Eadie-Hofstee plots suggested the contribution of multiple UGTs for the glucuronidation of 1-hydroxypyrene (Km1, Km2, Km3 = 0.8, 9.7, and 63 microM, and Vmax1, Vmax2, Vmax3 = 11, 24, and 55 nmol/min/mg, respectively), whereas only one UGT could be implicated in the glucuronidation of entacapone (Km = 130 microM, Vmax = 1.6 nmol/min/mg). In conclusion, catechols are poor inducers of their own glucuronidation supported by several UGT isoforms. Their administration is unlikely to affect the glucuronidation of other drugs administered concomitantly.
Collapse
Affiliation(s)
- Eivor Elovaara
- Department of Industrial Hygiene and Toxicology, Finnish Institute of Occupational Health, FIN-00250 Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Barbier O, Villeneuve L, Bocher V, Fontaine C, Torra IP, Duhem C, Kosykh V, Fruchart JC, Guillemette C, Staels B. The UDP-glucuronosyltransferase 1A9 enzyme is a peroxisome proliferator-activated receptor alpha and gamma target gene. J Biol Chem 2003; 278:13975-83. [PMID: 12582161 DOI: 10.1074/jbc.m300749200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) alpha and gamma are ligand-activated transcription factors belonging to the nuclear receptor family. PPAR alpha mediates the hypolipidemic action of the fibrates, whereas PPAR gamma is a receptor for the antidiabetic glitazones. In the present study, the UDP-glucuronosyltransferase (UGT) 1A9 enzyme is identified as a PPAR alpha and PPAR gamma target gene. UGTs catalyze the glucuronidation reaction, which is a major pathway in the catabolism and elimination of numerous endo- and xenobiotics. Among the UGT1A family enzymes, UGT1A9 metabolizes endogenous compounds, including catecholestrogens, and xenobiotics, such as fibrates and to a lesser extent troglitazone. Treatment of human hepatocytes and macrophages and murine adipocytes with activators of PPAR alpha or PPAR gamma resulted in an enhanced UGT1A9 expression and activity. In addition, disruption of the PPAR alpha gene in mice completely abolished the PPAR alpha agonist-induced UGT1A9 mRNA and activity levels. A PPAR response element was identified in the promoter of UGT1A9 at positions -719 to -706 bp by transient transfection and electromobility shift assays. Considering the role of UGT1A9 in catecholestrogen metabolism, PPAR alpha and PPAR gamma activation may contribute to the protection against genotoxic catecholestrogens by stimulating their inactivation in glucuronide derivatives. Furthermore, since UGT1A9 is involved in the catabolism of fibrates, these results suggest that PPAR alpha and PPAR gamma may control the intracellular level of active fibrates.
Collapse
Affiliation(s)
- Olivier Barbier
- UR 545 INSERM, Département d'Athérosclérose, Institut Pasteur de Lille and the Faculté de Pharmacie, Université de Lille II, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Antonio L, Xu J, Little JM, Burchell B, Magdalou J, Radominska-Pandya A. Glucuronidation of catechols by human hepatic, gastric, and intestinal microsomal UDP-glucuronosyltransferases (UGT) and recombinant UGT1A6, UGT1A9, and UGT2B7. Arch Biochem Biophys 2003; 411:251-61. [PMID: 12623074 DOI: 10.1016/s0003-9861(02)00748-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The substrate specificity of human gastric and intestinal UDP-glucuronosyltransferases (UGTs) toward catechols was investigated and compared to that of liver UGTs. Small catechols were efficiently glucuronidated by stomach (0.8-10.2 nmol/mgprotein x min) and intestine (0.9-7.7 nmol/mgprotein x min) with activities in a range similar to those found in liver (2.9-19 nmol/mgprotein x min). Large interindividual variations were observed among the samples. Immunoblot analysis demonstrated the presence of UGT1A6 and UGT2B7 in stomach and throughout the intestine. Recombinant human UGT1A6, 1A9, and 2B7, stably expressed in mammalian cells, all effectively catalyzed catechol glucuronidation. K(m) values (0.09-13.6mM) indicated low affinity for UGTs and V(max) values ranged from 0.51 to 64.0 nmol/mgprotein x min. These results demonstrate for the first time glucuronidation of catechols by gastric and intestinal microsomal UGTs and three human recombinant UGT isoforms.
Collapse
Affiliation(s)
- Laurence Antonio
- UMR 7561 CNRS-University Henri Poincaré-Nancy I, Vandoeuvre-les-Nancy, France
| | | | | | | | | | | |
Collapse
|
20
|
Kanou M, Saeki KI, Kato TA, Takahashi K, Mizutani T. Study of in vitro glucuronidation of hydroxyquinolines with bovine liver microsomes. Fundam Clin Pharmacol 2002; 16:513-7. [PMID: 12685510 DOI: 10.1046/j.1472-8206.2002.00097.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glucuronidation of drugs by UDP-glucuronosyltransferase (UGT) is a major phase II conjugation reaction. Defects in UGT are associated with Crigler-Najjar syndrome and Gilbert's syndrome with severe hyperbilirubinaemias and jaundice. We analysed the reactivities of some hydroxyquinoline derivatives, which are naturally produced from quinoline by cytochrome P450. The analyses were carried out using a microassay system for UGT activity in bovine liver microsomes in the range 0.5-100 pmol/assay with the highly sensitive radio-image analyser Fuji BAS2500 (Fujifilm, Tokyo, Japan). 3-Hydroxylquinoline is a good substrate for glucuronidation, and the relative Kcat values were 3.1-fold higher than the values for p-nitrophenol. 5,6-Dihydroquinoline-5,6-trans-diol gave a similar Km value to that of 3-hydroxyquinoline, but the Vmax value was approximately 1/15 of that of p-nitrophenol and showed weak reactivity. Quinoline N-oxide gave a low Vmax value and showed marginal activity. The Kcat values of 6-hydroxyquinoline and 5-hydroxyquinoline were 2.1- and 1.2-fold higher than that of p-nitrophenol, respectively. Fluoroquinoline (FQ) derivatives, such as 3FQ, 7.8diFQ and 6,7,8triFQ, did not show any substrate activities. These results suggest that there are therapeutic problems in administration of some quinoline drugs to patients with jaundice.
Collapse
Affiliation(s)
- Masanobu Kanou
- Department of Drug Metabolism and Disposition, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | | | | | | | | |
Collapse
|
21
|
Watanabe Y, Nakajima M, Yokoi T. Troglitazone glucuronidation in human liver and intestine microsomes: high catalytic activity of UGT1A8 and UGT1A10. Drug Metab Dispos 2002; 30:1462-9. [PMID: 12433820 DOI: 10.1124/dmd.30.12.1462] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Troglitazone glucuronidation in human liver and intestine microsomes and recombinant UDP-glucuronosyltransferases (UGTs) were thoroughly characterized. All recombinant UGT isoforms in baculovirus-infected insect cells (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, UGT2B7, and UGT2B15) exhibited troglitazone glucuronosyltransferase activity. Especially UGT1A8 and UGT1A10, which are expressed in extrahepatic tissues such as stomach, intestine, and colon, showed high catalytic activity, followed by UGT1A1 and UGT1A9. The kinetics of the troglitazone glucuronidation in the recombinant UGT1A10 and UGT1A1 exhibited an atypical pattern of substrate inhibition when the substrate concentration was over 200 micro M. With a Michaelis-Menten equation at 6 to 200 micro M troglitazone, the K(m) value was 11.1 +/- 5.8 micro M and the V(max) value was 33.6 +/- 3.7 pmol/min/mg protein in recombinant UGT1A10. In recombinant UGT1A1, the K(m) value was 58.3 +/- 29.2 micro M and the V(max) value was 12.3 +/- 2.5 pmol/min/mg protein. The kinetics of the troglitazone glucuronidation in human liver and jejunum microsomes also exhibited an atypical pattern. The K(m) value was 13.5 +/- 2.0 micro M and the V(max) value was 34.8 +/- 1.2 pmol/min/mg for troglitazone glucuronidation in human liver microsomes, and the K(m) value was 8.1 +/- 0.3 micro M and the V(max) was 700.9 +/- 4.3 pmol/min/mg protein in human jejunum microsomes. When the intrinsic clearance was estimated with the in vitro kinetic parameter, microsomal protein content, and weight of tissue, troglitazone glucuronidation in human intestine was 3-fold higher than that in human livers. Interindividual differences in the troglitazone glucuronosyltransferase activity in liver microsomes from 13 humans were at most 2.2-fold. The troglitazone glucuronosyltransferase activity was significantly (r = 0.579, p < 0.05) correlated with the beta-estradiol 3-glucuronosyltransferase activity, which is mainly catalyzed by UGT1A1. The troglitazone glucuronosyltransferase activity in pooled human liver microsomes was strongly inhibited by bilirubin (IC(50) = 1.9 micro M), a typical substrate of UGT1A1. These results suggested that the troglitazone glucuronidation in human liver would be mainly catalyzed by UGT1A1. Interindividual differences in the troglitazone glucuronosyltransferase activity in S-9 samples from five human intestines was 8.2-fold. The troglitazone glucuronosyltransferase activity in human jejunum microsomes was strongly inhibited by emodin (IC(50) = 15.6 micro M), a typical substrate of UGT1A8 and UGT1A10, rather than by bilirubin (IC(50) = 154.0 micro M). Therefore, it is suggested that the troglitazone glucuronidation in human intestine might be mainly catalyzed by UGT1A8 and UGT1A10.
Collapse
Affiliation(s)
- Yuichiro Watanabe
- Division of Drug Metabolism, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | | | | |
Collapse
|
22
|
Nakajima M, Tanaka E, Kwon JT, Yokoi T. Characterization of nicotine and cotinine N-glucuronidations in human liver microsomes. Drug Metab Dispos 2002; 30:1484-90. [PMID: 12433823 DOI: 10.1124/dmd.30.12.1484] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nicotine and cotinine N-glucuronidations in human liver microsomes were characterized. The Eadie-Hofstee plots of nicotine N-glucuronidation in human liver microsomes were clearly biphasic, indicating the involvement of multiple enzymes. The apparent K(m) and V(max) values were 33.1 +/- 28.1 micro M and 60.0 +/- 21.0 pmol/min/mg and 284.7 +/- 122.0 micro M and 124.0 +/- 44.0 pmol/min/mg for the high- and low-affinity components, respectively, in human liver microsomes (n = 4). However, the Eadie-Hofstee plots of cotinine N-glucuronidation in human liver microsomes were monophasic (apparent K(m) = 1.9 +/- 0.3 mM, V(max) = 655.6 +/- 312.3 pmol/min/mg). The nicotine and cotinine N-glucuronidations in the recombinant human UDP-glucuronosyltransferases (UGTs) (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, UGT2B7, and UGT2B15) expressed in baculovirus-infected insect cells or human B-lymphoblastoid cells that are commercially available were determined. However, no recombinant UGT isoforms showed detectable nicotine and cotinine N-glucuronides (the concentrations of nicotine and cotinine were 0.5 and 2 mM, respectively). Nicotine and cotinine N-glucuronidations in pooled human liver microsomes were competitively inhibited by bilirubin as a substrate for UGT1A1 (K(i) = 3.9 and 3.3 micro M), imipramine as a substrate for UGT1A4 (K(i) = 6.1 and 2.7 micro M), and propofol as a substrate for UGT1A9 (K(i) = 6.0 and 12.0 micro M). The nicotine N-glucuronidation (50 micro M nicotine) in 14 human liver microsomes was significantly (r = 0.950, P < 0.0001) correlated with the cotinine N-glucuronidation (0.2 mM cotinine), indicating that the same isoform(s) is involved in both glucuronidations. Furthermore, weak correlations between imipramine N-glucuronidation and nicotine N-glucuronidation (r = 0.425) or cotinine N-glucuronidation (r = 0.517) were observed. In conclusion, the involvement of UGT1A1 and UGT1A9 as well as UGT1A4 in nicotine and cotinine N-glucuronidations in human liver microsomes was suggested, although the contributions of each UGT isoform could not be determined conclusively.
Collapse
Affiliation(s)
- Miki Nakajima
- Division of Drug Metabolism, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan.
| | | | | | | |
Collapse
|
23
|
Nakajima M, Sakata N, Ohashi N, Kume T, Yokoi T. Involvement of multiple UDP-glucuronosyltransferase 1A isoforms in glucuronidation of 5-(4'-hydroxyphenyl)-5-phenylhydantoin in human liver microsomes. Drug Metab Dispos 2002; 30:1250-6. [PMID: 12386132 DOI: 10.1124/dmd.30.11.1250] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In humans, orally administered phenytoin, 5,5-diphenylhydantoin, is mainly excreted as 5-(4'-hydroxyphenyl)-5-phenylhydantoin (4'-HPPH) O-glucuronide. Phenytoin is oxidized to 4'-HPPH by CYP2C9 and to a minor extent by CYP2C19, and then 4'-HPPH is metabolized to 4'-HPPH O-glucuronide by UDP-glucuronosyltransferase (UGT). In the present study, 4'-HPPH O-glucuronidation in human liver microsomes was investigated. The metabolite formed by incubation with human liver microsomes, 4'-HPPH, and UDP-glucuronic acid was identified as 4'-HPPH O-glucuronide by liquid chromatography-tandem mass spectrometry analysis. The 4'-HPPH O-glucuronosyltransferase activity in human liver microsomes was not saturated at concentrations up to 500 microM of 4'-HPPH. Any commercially available recombinant human UGTs (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B7, and UGT2B15) expressed in baculovirus-infected insect cells did not show detectable 4'-HPPH O-glucuronide. The 4'-HPPH O-glucuronidation in pooled human liver microsomes was inhibited by beta-estradiol as a typical substrate for UGT1A1 (IC(50) = 21.1 microM) and imipramine as a typical substrate for UGT1A4 (IC(50) = 57.7 microM). The inhibitory effects of propofol as a specific substrate for UGT1A9 (IC(50) = 167.1 microM) and emodin as a substrate for UGT1A8 and UGT1A10 (IC(50) = 287.6 microM) were not prominent. The interindividual difference in the 4'-HPPH O-glucuronidation in 14 human liver microsomes was 28.5-fold (0.023-0.656 nmol/min/mg of protein). The 4'-HPPH O-glucuronosyltransferase activity in 11 human liver microsomes was significantly (r = 0.609, P < 0.05) correlated with the 4-nitrophenol glucuronosyltransferase activity, which is catalyzed by UGT1A6 and UGT1A9. These results suggest that multiple UGT1As such as UGT1A1, UGT1A4, UGT1A6, and UGT1A9 are involved in 4'-HPPH O-glucuronidation in human liver microsomes, although the percentage contribution of each UGT1A could not be estimated. Large interindividual differences in the glucuronidation of 4'-HPPH might be responsible for the nonlinearity of the phenytoin plasma concentration or adverse reactions in humans.
Collapse
Affiliation(s)
- Miki Nakajima
- Division of Drug Metabolism, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | | | | | | | | |
Collapse
|
24
|
Yamashiki N, Yokota H, Sakamoto M, Yuasa A. Presence of phenol UDP-glucuronosyltransferase in bovine alveolar macrophages and bronchial epithelial cells. Toxicology 2002; 176:221-7. [PMID: 12093618 DOI: 10.1016/s0300-483x(02)00140-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pulmonary organ and cells are the primary target of atmospheric pollutants. Phenol UDP-glucuronosyltransferase (UGT) was found in bovine alveolar macrophage cells by immunohistochemical staining and also was observed in bronchial epithelial cells of the lung. A high level of activity of UGT, which is one of the phase II drug-metabolizing enzymes, toward 1-naphthol was observed in the microsomes of both cell types. By Western blotting analysis, a 54-kDa band was detected in alveolar macrophage cells and in bovine lung using polyclonal antibodies against a purified rat UGT, which catalyze the glucuronidation of various phenolic xenobiotics such as 1-naphthol and have the same molecular mass (54 kDa). Reverse transcriptase-polymerase chain reaction (RT-PCR) amplified the common cDNA region in UGT1A subfamily isoforms, indicating that UGT1A subfamily isoform was expressed in alveolar macrophages and in bronchial epithelial cells of the lung. These results suggest that phenol UGT act as a primary barrier against various phenolic chemicals in the lung.
Collapse
Affiliation(s)
- Naoko Yamashiki
- Department of Biology, Faculty of Environmental System, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | | | | | | |
Collapse
|
25
|
Jemnitz K, Veres Z, Vereczkey L. Coordinate regulation of UDP-glucuronosyltransferase UGT1A6 induction by 3-methylcholanthrene and multidrug resistance protein MRP2 expression by dexamethasone in primary rat hepatocytes. Biochem Pharmacol 2002; 63:2137-44. [PMID: 12110372 DOI: 10.1016/s0006-2952(02)01022-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Concentration-dependent regulation of 3-methylcholanthrene (MC) inducibility of UDP-glucuronosyltransferase UGT1A6 by the synthetic glucocorticoid, dexamethasone (DEX) was studied. Treatment of cultured rat hepatocytes with MC, 0.1, 1, and 10 microM DEX, and MC combined with DEX, resulted in different induction patterns measured in the intact cells compared to that observed in the microsomes prepared from the same cells. DEX treatment in various concentrations caused a concentration-dependent increase in p-nitrophenol (p-NP) conjugation in intact cells (3-, 4-, and 5-fold over control, respectively), and it positively regulated MC induction (4-, 5-, and 6-fold over control, respectively). In contrast, DEX had smaller effect on microsomal p-NP conjugation (115, 200, 220% of control, respectively) and although MC induction was increased significantly by 0.1 microM DEX (520% of control), but higher concentrations of DEX (10 microM) decreased the degree of induction to 410%. Similar results obtained from in vivo experiments showed that at high DEX concentration (100mg/kg), the rate of MC induction (540%) decreased (420%). Permeabilization of the plasma membrane resulted in a 15-fold increase of p-NP conjugation indicating the importance of transport in the rate of overall p-NP elimination, and the induction pattern was similar to that observed in microsomes isolated from cells. Hyper-osmolarity (405 mOsmol/L) led to a 3-fold decrease of p-NP conjugation, the loss of DEX inducibility and reduction of the MRP2 protein level. Our results suggest coordinated regulation of UGT1A6 inducibility and substrate or product transport by DEX.
Collapse
Affiliation(s)
- Katalin Jemnitz
- Chemical Research Center, Institute of Chemistry, Hungarian Academy of Sciences, P.O. Box 17, H-1525 Budapest, Hungary.
| | | | | |
Collapse
|
26
|
Embola CW, Sohn OS, Fiala ES, Weisburger JH. Induction of UDP-glucuronosyltransferase 1 (UDP-GT1) gene complex by green tea in male F344 rats. Food Chem Toxicol 2002; 40:841-4. [PMID: 11983278 DOI: 10.1016/s0278-6915(02)00022-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Tea is one of the most frequently consumed beverages in the world, second only to water. Epidemiological studies have associated the consumption of green tea with a lower risk of several types of cancers, including stomach, oral cavity, esophagus, and lung. This paper deals with the mechanism of action of tea as an effective chemopreventive agent for toxic chemicals and especially carcinogens. UDP-glucuronosyltransferase (UDP-GT) activities towards p-nitrophenol were markedly increased (51.8% or 1.5-fold) in rats that consumed tea compared with the control animals on water. Induction of UDP-glucuronosyltransferase activity by tea may involve the UDP-GT1 (UGT1A) gene complex of the UDP-GT multigene family. Therefore, a major mechanism of tea as a chemopreventive agent is induction of the microsomal detoxification enzyme, UDP-glucuronosyltransferase.
Collapse
Affiliation(s)
- C W Embola
- Department of Pathology, New York Medical College, 10595, Valhalla 10595, USA
| | | | | | | |
Collapse
|
27
|
Walle UK, Walle T. Induction of human UDP-glucuronosyltransferase UGT1A1 by flavonoids-structural requirements. Drug Metab Dispos 2002; 30:564-9. [PMID: 11950788 DOI: 10.1124/dmd.30.5.564] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies in our laboratory in the human hepatic and intestinal cell lines Hep G2 and Caco-2 have demonstrated induction of UGT1A1 by the flavonoid chrysin (5,7-dihydroxyflavone) using catalytic activity assays and Western and Northern blotting. In the present study, we examined which features of the flavonoid structures were associated with induction of UGT1A1 and whether common drug-metabolizing enzyme inducers also produce this induction. We also determined whether flavonoid treatment affected sulfate conjugation and CYP1A1 activity. We used intact Hep G2 cells for these studies, with chrysin as the model substrate. Both glucuronidation and sulfation were measured. Hep G2 cells were pretreated for 3 days with 25 microM concentrations of 22 flavonoids (n = 4-12). Only four flavonoids demonstrated induction of glucuronidation similar to that of chrysin (i.e., 3-5-fold in the intact cells). These were acacetin, apigenin, luteolin, and diosmetin, all of which, like chrysin, are 5,7-dihydroxyflavones with varying substituents in the B-ring. 5-Hydroxy-7-methoxyflavone and 5-methyl-7-hydroxyflavone produced a modest 1.5 to 2-fold induction, whereas all other flavonoids examined were without effect. None of the flavonoids caused more than a modest change in sulfation activity (60-140% of control). In contrast, all tested 5,7-dihydroxyflavones and -flavonols induced CYP1A1 activity (ethoxyresorufin deethylation). Of seven common drug-metabolizing enzyme inducers only 3-methylcholanthrene and oltipraz showed modest induction of chrysin glucuronidation but not 2,3,7,8-tetrachlorodibenzo-p-dioxin or phenobarbital. Together, these results strongly suggest that the flavonoid induction of UGT1A1 is through a novel nonaryl hydrocarbon receptor-mediated mechanism.
Collapse
Affiliation(s)
- U Kristina Walle
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | |
Collapse
|
28
|
Kessler FK, Kessler MR, Auyeung DJ, Ritter JK. Glucuronidation of acetaminophen catalyzed by multiple rat phenol UDP-glucuronosyltransferases. Drug Metab Dispos 2002; 30:324-30. [PMID: 11854153 DOI: 10.1124/dmd.30.3.324] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gunn rats glucuronidate acetaminophen (APAP) at reduced rates and show increased susceptibility to APAP-induced hepatotoxicity. This defect is presumed to involve UDP-glucuronosyltransferase (UGT) 1A6, which is nonfunctional in Gunn rats, but it is currently unclear whether other 1A family members are also involved. In humans, two 1A isoforms are known to be active (1A6 and 1A9) but 1A6 form has a 25-fold lower apparent K(m) (2 mM). Rat liver microsomal APAP UGT activity is induced by in vivo treatment with beta-naphthoflavone or oltipraz, an effect correlating with induction of 1A6 and 1A7. To address a possible role of 1A7 in APAP glucuronidation relative to other 1A forms, cDNAs encoding UGTs 1A1, 1A5, 1A6, 1A7, and 1A8 were expressed in human embryonic kidney cells and the contents of expressed enzyme in prepared membrane fractions determined by quantitative immunoblotting. At 2.5 mM APAP, 1A7 showed the highest specific activity (2.8 nmol/min/nmol 1A7 protein), followed by 1A6 (1.1 nmol/min/nmol), and 1A8 (0.27 nmol/min/nmol). 1A1 and 1A5 were essentially inactive. Kinetic comparisons indicated 1A7 had a similar apparent K(m) as 1A6 (4.7 versus 3.9 mM, respectively) but a 2.4-fold higher catalytic activity. These data suggest that in rats, 1A7 plays a major role in APAP glucuronidation and contributes to protection against APAP-induced hepatotoxicity. The involvement of other UGTs besides 1A6 is further underscored by the presence of significant residual APAP-glucuronidating activity by Gunn rat hepatocytes, indicating the activity of an unknown UGT2 family member.
Collapse
Affiliation(s)
- Fay K Kessler
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298-0613, USA
| | | | | | | |
Collapse
|
29
|
Radominska-Pandya A, Pokrovskaya ID, Xu J, Little JM, Jude AR, Kurten RC, Czernik PJ. Nuclear UDP-glucuronosyltransferases: identification of UGT2B7 and UGT1A6 in human liver nuclear membranes. Arch Biochem Biophys 2002; 399:37-48. [PMID: 11883901 DOI: 10.1006/abbi.2001.2743] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have demonstrated the subcellular localization of the human UDP-glucuronosyltransferases (UGTs), UGT2B7 and UGT1A6, in endoplasmic reticulum (ER) and nuclear membrane from human hepatocytes and cell lines, by in situ immunostaining and Western blot. Double immunostaining for UGT2B7 and calnexin, an ER resident protein, showed that UGT2B7 was equally present in ER and nuclear membrane whereas calnexin was present almost exclusively in ER. Immunogold labeling of HK293 cells expressing UGT2B7 established the presence of UGT2B7 in both nuclear membranes. Enzymatic assays with UGT2B7 substrates confirmed the presence of functional UGT2B7 protein in ER, whole nuclei, and both outer and inner nuclear membranes. This study has identified, for the first time, the presence of UGT2B7 and UGT1A6 in the nucleus and of UGT2B7 in the inner and outer nuclear membranes. This localization may play an important functional role within nuclei: protection from toxic compounds and/or control of steady-state concentrations of nuclear receptor ligands.
Collapse
Affiliation(s)
- Anna Radominska-Pandya
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 77205, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Collier AC, Ganley NA, Tingle MD, Blumenstein M, Marvin KW, Paxton JW, Mitchell MD, Keelan JA. UDP-glucuronosyltransferase activity, expression and cellular localization in human placenta at term. Biochem Pharmacol 2002; 63:409-19. [PMID: 11853692 DOI: 10.1016/s0006-2952(01)00890-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The activity, expression and localization of the UDP-glucuronosyltransferases (UGTs) were investigated in human placenta at term. UGT activity (measured with the substrate 4-methylumbelliferone (4-MU)) was observed in all 25 placentas sampled and maximum velocity (V(max)) ranged 13-fold from 5.1+/-0.9 to 66.9+/-17.5 nmol/min/mg protein (mean+/-SD). Substrate affinity (K(m)) ranged 5-fold from 246+/-24 to 1124+/-422 microM. Using reverse transcriptase-polymerase chain reaction (RT-PCR), expression of the isoforms UGT2B4, 2B7, 2B10, 2B11 and 2B15 was observed in all (12/12) placentas sampled and expression of UGT2B17 was noted in 8/12 placentas. Northern analysis of the UGT2B7 isoform in 12 placentas revealed a 10-fold difference in expression with RT-PCR variability and the 13-fold variation observed in UGT activity. The presence of UGT2B4 and 2B7 proteins (52 and 56kDa, respectively) was demonstrated by Western blotting. The sites of placental UGT2B transcription (in situ hybridization) and protein expression (immunohistochemistry) were located in the syncytium of the placental trophoblasts bordering the placental villi. UGT1A proteins could not be observed with immunohistochemistry or Western blotting and expression could not be observed with RT-PCR. Our discovery of UGT expression and activity at the site of maternal-fetal exchange is consistent with a role for UGTs in detoxification of exogenous and endogenous ligands and the maintenance of placental function through clearance and regulation of steroid hormones.
Collapse
Affiliation(s)
- Abby C Collier
- Department of Pharmacology and Clinical Pharmacology, University of Auckland Medical School, Private Bag 92019 Auckland, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
AIM: To clone the cDNA of UGT1A9 from a Chinese human liver and establish the Chinese hamster lung (CHL) cell line expressing human UGT1A9.
METHODS: cDNA of UGT1A9 was transcripted from mRNA by reverse transcriptase-ploymerase chain reaction, and was cloned into the pGEM-T vector which was amplified in the host bacteric E. coli DH5α. The inserted fragment, verified by DNA sequencing, was subcloned into the Hind III/Not I site of a mammalian expression vector pREP9 to construct the plasmid termed pREP9-UGT1A9. CHL cells were transfected with the resultant recombinants, pREP9-UGT1A9, and selected by G418 (400 mg•L¯¹) for one month. The surviving clone (CHL-UGT1A9) was harvested as a pool and sub-cultured in medium containing G418 to obtain samples for UGT1A9 assays. The enzyme activity of CHL-UGT1A9 towards propranolol in S9 protein of the cell was determined by HPL C.
RESULTS: The sequence of the cDNA segment cloned, which was 1666 bp in length, was id entical to that released by GeneBank (GenBank accession number: AF056188) in co ding region. The recombinant constructed, pREP9-UGT1A9, contains the entire coding region, along with 18 bp of the 5’ and 55 bp of the 3’ untranslated region of the UGT1A9 cDNA, respectively. The cell lines established expressed the protein of UGT1A9, and the enzyme activity towards propranolol in S9 protein was found to be 101 ± 24 pmol•min-1•mg-1 protein (n = 3), but was not detectable in parental CHL cells.
CONCLUSION: The cDNA of UGT1A9 was successfully cloned from a Chinese human liver and transfected into CHL cells. The CHL-UGT1A9 cell lines established efficiently expressed the protein of UGT1A9 for the further enzyme study of drug glucuronidation.
Collapse
Affiliation(s)
- X Li
- Department of Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | |
Collapse
|
32
|
Wong JM, Okey AB, Harper PA. Human aryl hydrocarbon receptor polymorphisms that result in loss of CYP1A1 induction. Biochem Biophys Res Commun 2001; 288:990-6. [PMID: 11689007 DOI: 10.1006/bbrc.2001.5861] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aryl hydrocarbon receptor (AHR) binds xenobiotic chemicals such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and regulates transcription of the P4501 subfamily that metabolizes many carcinogens. In humans, the most frequent polymorphism is R554L. We report here an additional two polymorphisms in AHR that show apparent linkage disequilibrium with the codon 554 polymorphism: the first is a previously described polymorphism, V570I; the second is a novel human AHR polymorphism, P571S. In vitro expression of these variant forms showed normal ligand binding and DNA binding activities. However, transient expression experiments revealed that the combined Ile(570) + Lys(554) variant failed to support TCDD-dependent induction of CYP1A1 expression. It is possible that the abrogation of CYP1A1 induction in the combined Lys(554) + Ile(570) variant may reduce susceptibility of the host to the carcinogenic effects of polycyclic aromatic hydrocarbons. This combination of variant genotypes is rare and appears to be confined primarily to persons of African descent.
Collapse
Affiliation(s)
- J M Wong
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
33
|
Abstract
Glucuronidation is a phase II metabolic process and one of the most common pathways in the formation of hydrophilic drug metabolites. At least 33 families of uridine diphosphate-glucuronosyltransferases have been identified in vitro, and specific nomenclature similar to that used to classify the cytochrome (CYP) P450 system has been established. The UGT1 and UGT2 subfamilies represent the most important of these enzymes in human drug metabolism. Factors affecting glucuronidation include the following: cigarette smoking, obesity, age, and gender. In addition, several drugs have been found in vitro to be substrates, inhibitors, or inducers of UGT enzymes. Induction or inhibition of both UGT and CYP isoforms may occur simultaneously. Some important drug interactions involving glucuronidation have been documented and others can be postulated. This review summarizes the relevant literature pertaining to drug glucuronidation and its implications for clinical psychopharmacology.
Collapse
Affiliation(s)
- H L Liston
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, USA.
| | | | | |
Collapse
|
34
|
Tanaka A, Leung PS, Kenny TP, Au-Young J, Prindiville T, Coppel RL, Ansari AA, Gershwin ME. Genomic analysis of differentially expressed genes in liver and biliary epithelial cells of patients with primary biliary cirrhosis. J Autoimmun 2001; 17:89-98. [PMID: 11488641 DOI: 10.1006/jaut.2001.0522] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The characterization of differentially expressed genes provides a powerful tool for identifying molecules that may be involved in the pathogenesis of disease. We have used two independent techniques to identify overexpressed transcripts in bile duct cells and in liver from patients with primary biliary cirrhosis (PBC). In the first method, we used suppressive subtractive hybridization to compare mRNA from isolated PBC bile duct epithelial cells (BECs) to normal BECs and identified 71 clones as transcribed at higher levels in PBC-BECs. Amongst these clones, 62/71 had matches in a non-redundant nucleotide database and 9/71 had matches in an EST database. Of the 62 clones, 51/62 include a complexity of genes involved in cell proliferation, signal transduction, transcription regulation, RNA processing, carbohydrate metabolism and hypothetical/unknown proteins; 4/62 were identified as interstitial collagenase and collagenase precursors, 4/62 as ribosomal proteins, 3/62 as mitochondrial DNA. The mitochondrial cDNA sequences included cytochrome c oxidase, Wnt-13, and the pHL gene, a c-myc oncogene containing coxIII sequence. In the second method, we constructed cDNA libraries from three different PBC livers and sequenced a total of 12,324 independent clones. These 12,324 clones underwent virtual subtraction with 2,814,148 independent clones from Incyte LifeSeq libraries. Twenty one sequences were identified as unique to PBC liver. Collectively, these approaches identified a number of genes involved in signalling, RNA processing, mitochondrial function, inflammation, and fibrosis. Interestingly, both Wnt-13 and Notch transcripts are overexpressed in PBC liver. Further studies are needed to focus on the significance of these genes during the natural history of disease.
Collapse
Affiliation(s)
- A Tanaka
- Division of Rheumatology, Allergy and Clinical Immunology, Department of Internal Medicine, University of California at Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Fisher MB, Vandenbranden M, Findlay K, Burchell B, Thummel KE, Hall SD, Wrighton SA. Tissue distribution and interindividual variation in human UDP-glucuronosyltransferase activity: relationship between UGT1A1 promoter genotype and variability in a liver bank. PHARMACOGENETICS 2000; 10:727-39. [PMID: 11186135 DOI: 10.1097/00008571-200011000-00007] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The variability in a liver bank and tissue distribution of three probe UDP-glucuronosyltransferase (UGT) activities were determined as a means to predict interindividual differences in expression and the contribution of extrahepatic metabolism to presystemic and systemic clearance. Formation rates of acetaminophen-O-glucuronide (APAPG), morphine-3-glucuronide (M3G), and oestradiol-3-glucuronide (E3G) as probes for UGT1A6, 2B7, and 1A1, respectively, were determined in human kidney, liver, and lung microsomes, and in microsomes from intestinal mucosa corresponding to duodenum, jejunum and ileum. While formation of E3G and APAPG were detectable in human kidney microsomes, M3G formation rates from kidney microsomes approached the levels seen in liver, indicating significant expression of UGT2B7. Interestingly, rates of E3G formation in human intestine exceeded the hepatic rates by several fold, while APAPG and M3G formation rates were low. The intestinal apparent Km value for E3G formation was essentially identical to that seen in liver, consistent with intestinal UGT1A1 expression. No UGT activities were observed in lung. Variability in APAPG and M3G activity across a bank of 20 human livers was modest (< or = 7-fold), compared to E3G formation, which varied approximately 30-fold. The E3G formation rates were found to segregate by UGT1A1 promoter genotype, with wild-type (TA)6 rates significantly greater than homozygous mutant (TA)7 individuals. Kinetic analyses were performed to demonstrate that the promoter mutation altered apparent Vmax without significantly affecting apparent Km. These results suggest that glucuronidation, and specifically UGT1A1 activity, can profoundly contribute to intestinal first pass metabolism and interindividual variability due to the expression of common allelic variants.
Collapse
Affiliation(s)
- M B Fisher
- Department of Drug Disposition, Eli Lilly and Co., Indianapolis, IN 46285, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Paine MF, Fisher MB. Immunochemical identification of UGT isoforms in human small bowel and in caco-2 cell monolayers. Biochem Biophys Res Commun 2000; 273:1053-7. [PMID: 10891370 DOI: 10.1006/bbrc.2000.3064] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Previous work had suggested the presence of significant levels of UDP-glucuronosyltransferase 1A1 (UGT1A1) catalytic activity in human small intestinal microsomes, with undetectable to low UGT1A6 and 2B7 activities. To confirm the presence of UGT1A1 isoform in human small bowel, to explore the possible absence of UGT1A6 and 2B7 in the organ, and to examine induced Caco-2 cells as a potential model for human intestinal metabolism, Western blot analysis was performed using specific antibodies to the relevant UGT isoforms. Significant expression of UGT1A1 protein was observed in all samples of human small intestinal microsomes, while UGT1A6 expression was undetectable to faint and UGT2B7 immunoreactivity was faint to detectable. Caco-2 cells treated with typical enzyme-inducing agents resulted in low UGT2B7 expression but failed to mimic the UGT1A1 levels found in human small bowel. Further work needs to be performed to develop a comprehensive in vitro model for human small intestinal first-pass metabolism.
Collapse
Affiliation(s)
- M F Paine
- General Clinical Research Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
37
|
Ekins S, Ring BJ, Grace J, McRobie-Belle DJ, Wrighton SA. Present and future in vitro approaches for drug metabolism. J Pharmacol Toxicol Methods 2000; 44:313-24. [PMID: 11274898 DOI: 10.1016/s1056-8719(00)00110-6] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The 1980s through 1990s witnessed the widespread incorporation of in vitro absorption, distribution, metabolism, and excretion (ADME) approaches into drug development by drug companies. This has been exemplified by the integration of the basic science of cytochrome P450s (CYPs) into most drug metabolism departments so that information on the metabolic pathways of drugs and drug-drug interactions (DDIs) is no longer an academic exercise, but essential for regulatory submission. This has come about due to the application of a variety of new technologies and in vitro models. For example, subcellular fractions have been widely used in metabolism studies since the 1960s. The last two decades has seen the increased use of hepatocytes as the reproducibility of cell isolations improved. The 1990s saw the rejuvenation of liver slices (as new slicers were developed) and the utilization of cDNA expressed enzymes as these technologies matured. In addition, there has been considerable interest in extrapolating in vitro data to in vivo for parameters such as absorption, clearance and DDIs. The current philosophy of drug development is moving to a 'fail early--fail cheaply' paradigm. Therefore, in vitro ADME approaches are being applied to drug candidates earlier in development since they are essential for identifying compounds likely to present ADME challenges in the latter stages of drug development. These in vitro tools are also being used earlier in lead optimization biology, in parallel with approaches for optimizing target structure activity relationships, as well as identification of DDI and the involvement of metabolic pathways that demonstrate genetic polymorphisms. This would suggest that the line between discovery and development drug metabolism has blurred. In vitro approaches to ADME are increasingly being linked with high-throughput automation and analysis. Further, if we think of perhaps the fastest available way to screen for successful drugs with optimal ADME characteristics, then we arrive at predictive computational algorithms, which are only now being generated and validated in parallel with in vitro and in vivo methods. In addition, as we increase the number of ADME parameters determined early, the overall amount of data generated for both discovery and development will increase. This will present challenges for the efficient and fast interpretation of such data, as well as incorporation and communication to chemistry, biology, and clinical colleagues. This review will focus on and assess the nature of present in vitro metabolism approaches and indicate how they are likely to develop in the future.
Collapse
Affiliation(s)
- S Ekins
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Drop Code 0730, Indianapolis, IN 46285, USA.
| | | | | | | | | |
Collapse
|