1
|
Schwarz AN, Züllig T, Schicher M, Wagner FS, Rechberger GN. Securing food authenticity by translating triacylglycerol profiles of edible oils into a versatile identification method for pumpkin seed oil adulteration. Food Chem 2025; 463:141467. [PMID: 39426242 DOI: 10.1016/j.foodchem.2024.141467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
Edible plant oils provide a crucial source of lipids for human nutrition. Owing to the complex processing of some high-quality variants, including Styrian pumpkin seed oil, edible plant oils have become susceptible to food fraud by adulteration with cheaper vegetable oils, compromising both authenticity and quality. To address this issue, a workflow was developed utilizing QTOF-MS/MS to search for triacylglycerol markers indicative of adulteration and subsequently adapted them for routine analysis using triple quadrupole MS/MS. By developing a transparent classification system utilizing a multi-feature triacylglycerol panel, reliable detection of adulteration down to 3 % (w/w) is possible. Calculating ratios of selected markers and establishing intervals derived from pure oils further enables easy scalability to adjust marker ratios and ensure robustness against permanent or seasonal changes. Our work aims to make advances towards a rapid and accurate detection of oil adulteration in food industry, crucial for maintaining customer trust and safety.
Collapse
Affiliation(s)
- Andreas N Schwarz
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria; Institut Dr. Wagner Lebensmittel Analytik GmbH, Roemerstrasse 19, 8403 Lebring, Austria.
| | - Thomas Züllig
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria.
| | - Maximilian Schicher
- Institut Dr. Wagner Lebensmittel Analytik GmbH, Roemerstrasse 19, 8403 Lebring, Austria.
| | - Franz S Wagner
- Institut Dr. Wagner Lebensmittel Analytik GmbH, Roemerstrasse 19, 8403 Lebring, Austria.
| | - Gerald N Rechberger
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz, Austria; Field of Excellence BioHealth-University of Graz, Universitaetsplatz 3, 8010 Graz, Austria.
| |
Collapse
|
2
|
Cui Y, Zhu L, Li Y, Ge K, Lu W, Ge L, Chen K, Xue J, Zheng F, Dai S, Pan H, Liang J, Ji L, Shen Q. Chemical characterization and classification of vegetable oils using DESI-MS coupled with a neural network. Food Chem 2024; 470:142614. [PMID: 39740437 DOI: 10.1016/j.foodchem.2024.142614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/08/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025]
Abstract
This study tackled mislabeling fraud in vegetable oils, driven by price disparities and profit motives, by developing an approach combining desorption electrospray ionization mass spectrometry (DESI-MS) with a shallow convolutional neural network (SCNN). The method was designed to characterize lipids and distinguish between nine vegetable oils: corn, soybean, peanut, sesame, rice bran, sunflower, camellia, olive, and walnut oils. The optimized DESI-MS method enhanced the ionization of non-polar glycerides and detected ion adducts like [TG + Na]+, [TG + NH4]+. This process identified 53 lipid peaks, forming a robust lipid fingerprint for each oil type. An SCNN model was developed using fingerprints, achieving an impressive classification accuracy of 98.5 ± 2.2 %. The integration of DESI-MS with SCNN provides a fast and reliable tool for identifying and classifying vegetable oils, thereby reducing mislabeling fraud and assuring oil quality. By enabling accurate authentication, it contributes to improved transparency and integrity in food labeling and quality control practices.
Collapse
Affiliation(s)
- Yiwei Cui
- School of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Liangcun Zhu
- School of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yan Li
- School of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Kai Ge
- School of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Weibo Lu
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Lijun Ge
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Kang Chen
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jing Xue
- Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Feiyang Zheng
- Hangzhou Puyu Technology Development Co., Ltd, Hangzhou 310015, China
| | - Shuncong Dai
- Key Laboratory of Medicine-Food Homology Innovation and Transformation, Linping Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou 311110, China
| | - Huafei Pan
- The Third People's Hospital of Yuhang District, Hangzhou 311115, China
| | - Jingjing Liang
- Zhejiang Provincial Institute for Food and Drug Control, Hangzhou 310052, China.
| | - Liting Ji
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310006, China.
| | - Qing Shen
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China; Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou 310012, China.
| |
Collapse
|
3
|
Ten Klooster S, Takeuchi M, Schroën K, Tuinier R, Joosten R, Friedrich H, Berton-Carabin C. Tiny, yet impactful: Detection and oxidative stability of very small oil droplets in surfactant-stabilized emulsions. J Colloid Interface Sci 2023; 652:1994-2004. [PMID: 37690307 DOI: 10.1016/j.jcis.2023.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
HYPOTHESIS The shelf life of multiphase systems, e.g. oil-in-water (O/W) emulsions, is severely limited by physical and/or chemical instabilities, which degrade their texture, macroscopic appearance, sensory and (for edible systems) nutritional quality. One prominent chemical instability is lipid oxidation, which is notoriously complex. The complexity arises from the involvement of many physical structures present at several scales (1-10,000 nm), of which the smallest ones are often overlooked during characterization. EXPERIMENTS We used cryogenic transmission electron microscopy (cryo-TEM) to characterize the coexisting colloidal structures at the nanoscale (10-200 nm) in rapeseed oil-based model emulsions stabilized by different concentrations of a nonionic surfactant. We assessed whether the oxidative and physical instabilities of the smallest colloidal structures in such emulsions may be different from those of larger colloidal structures. FINDINGS By deploying cryo-TEM, we analyzed the size of very small oil droplets and of surfactant micelles, which are typically overlooked by dynamic light scattering when larger structures are concomitantly present. Their size and oil content were shown to be stable over incubation, but lipid oxidation products were overrepresented in these very small droplets. These insights highlight the importance of the fraction of "tiny droplets" for the oxidative stability of O/W emulsions.
Collapse
Affiliation(s)
- Sten Ten Klooster
- Laboratory of Food Process engineering, Wageningen University, P.O. Box 17, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| | - Machi Takeuchi
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands.
| | - Karin Schroën
- Laboratory of Food Process engineering, Wageningen University, P.O. Box 17, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| | - Remco Tuinier
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands.
| | - Rick Joosten
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands; Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands.
| | - Heiner Friedrich
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands; Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands; Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands.
| | - Claire Berton-Carabin
- Laboratory of Food Process engineering, Wageningen University, P.O. Box 17, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands; INRAE, BIA, 44000 Nantes, France.
| |
Collapse
|
4
|
Zhou Z, Crilley LR, Ditto JC, VandenBoer TC, Abbatt JPD. Chemical Fate of Oils on Indoor Surfaces: Ozonolysis and Peroxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15546-15557. [PMID: 37647222 DOI: 10.1021/acs.est.3c04009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Unsaturated triglycerides found in food and skin oils are reactive in ambient air. However, the chemical fate of such compounds has not been well characterized in genuine indoor environments. Here, we monitored the aging of oil coatings on glass surfaces over a range of environmental conditions, using mass spectrometry, nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR) techniques. Upon room air exposure (up to 17 ppb ozone), the characteristic ozonolysis products, secondary ozonides, were observed on surfaces near the cooking area of a commercial kitchen, along with condensed-phase aldehydes. In an office setting, ozonolysis is also the dominant degradation pathway for oil films exposed to air. However, for indoor enclosed spaces such as drawers, the depleted air flow makes lipid autoxidation more favorable after an induction period of a few days. Forming hydroperoxides as the major primary products, this radical-mediated peroxidation behavior is accelerated by indoor direct sunlight, but the initiation step in dark settings is still unclear. These results are in accord with radical measurements, indicating that indoor photooxidation facilitates radical formation on surfaces. Overall, many intermediate and end products observed are reactive oxygen species (ROS) that may induce oxidative stress in human bodies. Given that these species can be widely found on both food and household surfaces, their toxicological properties are worth further attention.
Collapse
Affiliation(s)
- Zilin Zhou
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Leigh R Crilley
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | - Jenna C Ditto
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | | | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
5
|
Zhang J, Zhang M, Chen K, Deng D. Improvement strategies for fats and oils used in future food processing based on health orientation and sustainability: research progress, challenges and solutions. Crit Rev Food Sci Nutr 2023; 65:47-63. [PMID: 39722463 DOI: 10.1080/10408398.2023.2266835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
As the third largest source of energy in addition to carbohydrates and proteins, lipids provide the body with more than twice as much energy as carbohydrates and proteins and are the accumulated "fuel bank" of the body. They are widely stored in animals, plants and microorganisms and are effectively extracted for dietary use by improved and novel technologies. Under the pressure of the current environment, we should immediately look for new strategies to improve or develop dietary lipids that are compatible with the development of the future food industry, in order to mitigate the environmental and climatic degradation caused by the lipid-producing activities of the animal husbandry industry, to avoid the contradiction between the demand for high quality of human beings and the strain on the resources, and to reduce the health risks caused by saturated fats and trans-fats in meat products. At present, workers concerned are opening up new avenues for the future edible lipids, for example, researches into fat and oil substitutes, the use of biotechnology in lipids and the value-added reuse of waste products is in full swing. The article therefore began with a detailed overview of the known lipids available, understanding their origins and the ways in which they were classified by region. Secondly, possible trends and potential strategies for dietary lipids for use in future foods were presented. Finally, constructive comments are made on the problems and challenges that may be encountered in the research and subsequent industrialization process.
Collapse
Affiliation(s)
- Jiong Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, Jiangsu, China
| | - Kai Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Dewei Deng
- Zhengzhou Xuemailong Food Flavor Co. R&D Center, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Li T, Guo Q, Qu Y, Liu H, Liu L, Zhang Y, Wang Q. Inhibition mechanism of trans-resveratrol on thermally induced trans fatty acids in peanut oil. Food Chem 2023; 406:134863. [PMID: 36470078 DOI: 10.1016/j.foodchem.2022.134863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
The unanticipated inhibitory effect of trans-resveratrol (trans-Res) on the formation of trans fatty acids (TFAs) by thermal isomerization of peanut oil (PO) and its mechanism were investigated by experiment and density functional theory. Results showed that trans-Res inhibited the amount and formation rate of TFAs. trans-Res first inhibited the formation of C18:2, then C18:1, by the mechanism of proton transfer isomerism. The most active reaction site of trans-Res (4'-OH free radical) preferentially combined with the OOL-L-C11• (di-allyl) and then with OOL-O-C11• (mono-allyl) allyl groups in PO, resulting in the higher reaction energy barrier of speed control steps in OOL-L (transition state 1) and OOL-O (transition state 2), and the lower reaction rate of OOL-L and OOL-O (both decreased by 1-103 times), to reduce the formation of TFAs. Our study provided a theoretical foundation for the precise regulation of natural hydroxy compound to TFAs in oil.
Collapse
Affiliation(s)
- Tian Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China
| | - Qin Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China
| | - Yang Qu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China
| | - Hongzhi Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China
| | - Li Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China
| | - Yu Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, PR China.
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China.
| |
Collapse
|
7
|
Lee J, Wang M, Zhao J, Ali Z, Hawwal MF, Khan IA. Chemical Characterization and Quality Assessment of Copaiba Oil-Resin Using GC/MS and SFC/MS. PLANTS (BASEL, SWITZERLAND) 2023; 12:1619. [PMID: 37111842 PMCID: PMC10144763 DOI: 10.3390/plants12081619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
In recent years, the popularity of copaiba oil-resin has increased worldwide due to its medicinal value and wide applications in industry. Despite its popularity, the oil has not been standardized by industry or regulatory agencies. Product adulteration in order to maximize profits has become a problem. To address these issues, the current study describes the chemical and chemometric characterization of forty copaiba oil-resin samples by GC/MS. The results demonstrated, with the exception of commercial samples, that all sample groups contained six characteristic compounds (β-caryophyllene, α-copaene, trans-α-bergamotene, α-humulene, γ-muurolene, and β-bisabolene) in varying concentrations. Furthermore, compositional patterns were observed in individual groups which corresponded to sample origin. Within the commercial group, two samples did not contain or contained only one of the characteristic compounds. Principal component analysis (PCA) revealed distinct groups which largely corresponded to sample origin. Moreover, commercial samples were detected by PCA as outliers, and formed a group far removed from the other samples. These samples were further subjected to analysis using a SFC/MS method. Product adulteration with soybean oil was clearly detected, with each individual triglyceride in soybean oil being unambiguously identified. By combining these analytical techniques, the overall quality of copaiba oil-resin can be assessed.
Collapse
Affiliation(s)
- Joseph Lee
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Mei Wang
- Natural Products Utilization Research Unit, Agricultural Research Service, U.S. Department of Agriculture, University, MS 38677, USA
| | - Jianping Zhao
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Mohammed F. Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 4545, Saudi Arabia
| | - Ikhlas A. Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
8
|
Tsuzuki S. A point of view on human fat olfaction - do fatty derivatives serve as cues for awareness of dietary fats? Biomed Res 2023; 44:127-146. [PMID: 37544735 DOI: 10.2220/biomedres.44.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Fat (triglycerides) consumption is critical for the survival of animals, including humans. Being able to smell fat can be advantageous in judging food value. However, fat has poor volatility; thus, olfaction of fat seems impossible. What about fatty acids that comprise fat? Humans smell and discriminate medium-chain fatty acids. However, no conclusive evidence has been provided for the olfactory sense of long-chain fatty acids, including essential acids such as linoleic acid (LA). Instead, humans likely perceive the presence of essential fatty acids through the olfaction of volatile compounds generated by their oxidative breakdown (e.g., hexanal and γ-decalactone). For some people, such scents are pleasing, especially when they come from fruit. Nonetheless, it remains unclear whether the olfaction of these volatiles leads to the recognition of fat per se. Nowadays, people often smell LA-borne aldehydes such as E,E-2,4-decadienal that occur appreciably, for example, from edible oils during deep frying, and are pronely captivated by their characteristic "fatty" note, which can be considered a "pseudo-perception" of fat. However, our preference for such LA-borne aldehyde odors may be a potential cause behind the modern overdose of n-6 fatty acids. This review aims to provide a view of whether and, if any, how we olfactorily perceive dietary fats and raises future purposes related to human fat olfaction, such as investigating sub-olfactory systems for detecting long-chain fatty acids.
Collapse
Affiliation(s)
- Satoshi Tsuzuki
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
9
|
Hood C, Ghazani SM, Marangoni AG, Pensini E. Flexible polymeric biomaterials from epoxidized soybean oil, epoxidized oleic acid, and citric acid as both a hardener and acid catalyst. J Appl Polym Sci 2022. [DOI: 10.1002/app.53011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Christine Hood
- School of Engineering University of Guelph Guelph Ontario Canada
| | | | | | - Erica Pensini
- School of Engineering University of Guelph Guelph Ontario Canada
| |
Collapse
|
10
|
Zhou Z, Lakey PSJ, von Domaros M, Wise N, Tobias DJ, Shiraiwa M, Abbatt JPD. Multiphase Ozonolysis of Oleic Acid-Based Lipids: Quantitation of Major Products and Kinetic Multilayer Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7716-7728. [PMID: 35671499 DOI: 10.1021/acs.est.2c01163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Commonly found in atmospheric aerosols, cooking oils, and human sebum, unsaturated lipids rapidly decay upon exposure to ozone, following the Criegee mechanism. Here, the gas-surface ozonolysis of three oleic acid-based compounds was studied in a reactor and indoors. Under dry conditions, quantitative product analyses by 1H NMR indicate up to 79% molar yield of stable secondary ozonides (SOZs) in oxidized triolein and methyl oleate coatings. Elevated relative humidity (RH) significantly suppresses the SOZ yields, enhancing the formation of condensed-phase aldehydes and volatile C9 products. Along with kinetic parameters informed by molecular dynamics simulations, these results were used as constraints in a kinetic multilayer model (KM-GAP) simulating triolein ozonolysis. Covering a wide range of coating thicknesses and ozone levels, the model predicts a much faster decay near the gas-lipid interface compared to the bulk. Although the dependence of RH on SOZ yields is well predicted, the model overestimates the production of H2O2 and aldehydes. With negligible dependence on RH, the product composition for oxidized oleic acid is substantially affected by a competitive reaction between Criegee intermediates (CIs) and carboxylic acids. The resulting α-acyloxyalkyl hydroperoxides (α-AAHPs) have much higher molar yields (29-38%) than SOZs (12-16%). Overall, the ozone-lipid chemistry could affect the indoor environment through "crust" accumulation on surfaces and volatile organic compound (VOC) emission. In the atmosphere, the peroxide formation and changes in particle hygroscopicity may have effects on climate. The related health impacts are also discussed.
Collapse
Affiliation(s)
- Zilin Zhou
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Pascale S J Lakey
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Michael von Domaros
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Natsuko Wise
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Douglas J Tobias
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
11
|
Wang S, Li X, Li M, Li X, Zhang Q, Li H. Emulsification/demulsification method coupled to GC–MS/MS for analysis of multiclass pesticide residues in edible oils. Food Chem 2022; 379:132098. [DOI: 10.1016/j.foodchem.2022.132098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/13/2021] [Accepted: 01/05/2022] [Indexed: 11/25/2022]
|
12
|
Mahrt F, Huang Y, Zaks J, Devi A, Peng L, Ohno PE, Qin YM, Martin ST, Ammann M, Bertram AK. Phase Behavior of Internal Mixtures of Hydrocarbon-like Primary Organic Aerosol and Secondary Aerosol Based on Their Differences in Oxygen-to-Carbon Ratios. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3960-3973. [PMID: 35294833 PMCID: PMC8988305 DOI: 10.1021/acs.est.1c07691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The phase behavior, the number and type of phases, in atmospheric particles containing mixtures of hydrocarbon-like organic aerosol (HOA) and secondary organic aerosol (SOA) is important for predicting their impacts on air pollution, human health, and climate. Using a solvatochromic dye and fluorescence microscopy, we determined the phase behavior of 11 HOA proxies (O/C = 0-0.29) each mixed with 7 different SOA materials generated in environmental chambers (O/C 0.4-1.08), where O/C represents the average oxygen-to-carbon atomic ratio. Out of the 77 different HOA + SOA mixtures studied, we observed two phases in 88% of the cases. The phase behavior was independent of relative humidity over the range between 90% and <5%. A clear trend was observed between the number of phases and the difference between the average O/C ratios of the HOA and SOA components (ΔO/C). Using a threshold ΔO/C of 0.265, we were able to predict the phase behavior of 92% of the HOA + SOA mixtures studied here, with one-phase particles predicted for ΔO/C < 0.265 and two-phase particles predicted for ΔO/C ≥ 0.265. The threshold ΔO/C value provides a relatively simple and computationally inexpensive framework for predicting the number of phases in internal SOA and HOA mixtures in atmospheric models.
Collapse
Affiliation(s)
- Fabian Mahrt
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T1Z1, Canada
- Laboratory
of Environmental Chemistry, Paul Scherrer
Institute, 5232 Villigen, Switzerland
| | - Yuanzhou Huang
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T1Z1, Canada
| | - Julia Zaks
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T1Z1, Canada
| | - Annesha Devi
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T1Z1, Canada
| | - Long Peng
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T1Z1, Canada
- Institute
for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Paul E. Ohno
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Center
for the Environment, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yi Ming Qin
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Scot T. Martin
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department
of Earth and Planetary Sciences, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Markus Ammann
- Laboratory
of Environmental Chemistry, Paul Scherrer
Institute, 5232 Villigen, Switzerland
| | - Allan K. Bertram
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T1Z1, Canada
| |
Collapse
|
13
|
Chbani M, El Harkaoui S, Willenberg I, Matthäus B. Review: Analytical Extraction Methods, Physicochemical Properties and Chemical Composition of Cactus (Opuntia ficus-indica) Seed Oil and Its Biological Activity. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2027437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Malika Chbani
- Department of Safety and Quality of Cereals, Max Rubner-Institut (MRI) - Federal Research Institute of Food and Nutrition, Detmold, Germany
| | - Said El Harkaoui
- Department of Safety and Quality of Cereals, Max Rubner-Institut (MRI) - Federal Research Institute of Food and Nutrition, Detmold, Germany
| | - Ina Willenberg
- Department of Safety and Quality of Cereals, Max Rubner-Institut (MRI) - Federal Research Institute of Food and Nutrition, Detmold, Germany
| | - Bertrand Matthäus
- Department of Safety and Quality of Cereals, Max Rubner-Institut (MRI) - Federal Research Institute of Food and Nutrition, Detmold, Germany
| |
Collapse
|
14
|
|
15
|
Filipe HAL, Almeida MCF, Teixeira RR, Esteves MIM, Henriques CA, Antunes FE. Dancing with oils - the interaction of lipases with different oil/water interfaces. SOFT MATTER 2021; 17:7086-7098. [PMID: 34155497 DOI: 10.1039/d1sm00590a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of enzymes as biocatalysts in industrial applications has received much attention during the last few years. Lipases are widely employed in the food and cosmetic industry, for the synthesis of novel biomaterials and as a greener solution for the treatment of waste cooking oils (WCO). The latter topic has been widely explored with the use of enzymes from several origins and types, for the treatment of different used and non-used cooking oils. The experimental conditions of such works are also quite broad, hampering the detailed understanding of the process. In this work we present a detailed characterization of the interaction of several commonly used lipases with different types of vegetal oils and food fats through coarse-grained molecular dynamics simulations. First, the molecular details of the oil/water (O/W) mixtures, namely at the O/W interface, are described. The O/W interface was found to be enriched in triglyceride molecules with higher polarity. Then, the interaction of lipases with oil mixtures is characterized from different perspectives, including the identification of the most important protein residues for this process. The lipases from Thermomyces lanuginosus (TLL), Rhizomucor miehei (RML) and Candida antarctica (CALB) were found to bind to the O/W interface in a manner that makes the protein binding site more available for the oil molecules. These enzymes were also found to efficiently bind to the O/W interface of all oil mixtures, which in addition to reactivity factors, may explain the efficient applicability of these enzymes to a large variety of edible oils and WCO.
Collapse
Affiliation(s)
- Hugo A L Filipe
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal.
| | - Maëva C F Almeida
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal.
| | - Rafaela R Teixeira
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal.
| | - Margarida I M Esteves
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal.
| | - César A Henriques
- EcoXperience, HIESE, Quinta Vale do Espinhal, 3230-343, Penela, Portugal
| | - Filipe E Antunes
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, 3004-535, Coimbra, Portugal.
| |
Collapse
|
16
|
Espinosa-Dzib A, Vyazovkin S. Nanoconfined gelation in systems based on stearic and 12-hydroxystearic acids: A calorimetric study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Mota MFS, Waktola HD, Nolvachai Y, Marriott PJ. Gas chromatography ‒ mass spectrometry for characterisation, assessment of quality and authentication of seed and vegetable oils. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Liao S, Dillon JT, Huang C, Santos E, Huang Y. Silver (I)-dimercaptotriazine functionalized silica: A highly selective liquid chromatography stationary phase targeting unsaturated molecules. J Chromatogr A 2021; 1645:462122. [PMID: 33853010 DOI: 10.1016/j.chroma.2021.462122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 11/26/2022]
Abstract
Silver(I)-mercaptopropyl (Ag-MP) functionalized silica gel has demonstrated its effectiveness in separating various unsaturated organic compounds including unsaturated fatty acid ethyl esters (FAEEs), triglycerols (TAGs) and long-chain alkyl ketones (alkenones). While Ag-MP stationary phase displays many advantages over the conventional silver ion-impregnated silica gel (e.g., stability, high recovery, etc.), potential drawbacks of Ag-MP include relatively low retentions for unsaturated molecules, which could limit chromatographic resolutions under certain circumstances. In this study, we evaluate a new silver-thiolate stationary phase: silver(I)-dimercaptotriazine (Ag-DMT) functionalized silica gel targeting the separation of unsaturated compounds. We show Ag-DMT affords substantially higher retention factors, peak resolutions and capacities for TAGs and FAEEs than Ag-MP does. Ag-DMT also yields higher purity eicosapentaenoic acid (EPA) from fish oil FAEE mixtures than Ag-MP. In addition, Ag-DMT resolves double bond positional and cis/trans-isomers of C18:1 fatty acid methyl esters (FAMEs) as well as unsaturated methyl/ethyl alkenones with different number of double bonds. Based on van't Hoff plots, enthalpy changes during the adsorption of unsaturated FAEEs onto Ag-DMT are ~2 times higher than those on Ag-MP. Such difference may be attributed to the stronger electron-withdrawing effect of the thiol group on DMT, which results in more positively charged silver ions hence greater interactions with unsaturated molecules. The stronger interaction between double bonds and Ag-DMT is further corroborated by density-functional theory (DFT) calculations. Ag-DMT shows its high stability for repeated uses in the separation of TAGs over 319 runs, with peak resolutions decreasing by < 3%. Collectively, our data demonstrate the exceptionally high efficiency of Ag-DMT column for separating unsaturated molecules.
Collapse
Affiliation(s)
- Sian Liao
- Department of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, USA
| | - James T Dillon
- Department of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, USA
| | - Cancan Huang
- Department of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, USA
| | - Ewerton Santos
- Department of Earth, Environmental and Planetary Sciences, Brown University, 324 Brook Street, Providence, Rhode Island 02912, USA
| | - Yongsong Huang
- Department of Earth, Environmental and Planetary Sciences, Brown University, 324 Brook Street, Providence, Rhode Island 02912, USA.
| |
Collapse
|
19
|
Foams of vegetable oils containing long-chain triglycerides. J Colloid Interface Sci 2021; 583:522-534. [DOI: 10.1016/j.jcis.2020.09.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 01/09/2023]
|
20
|
Yoshinaga K. Development of Analytical Methods and Nutritional Studies Using Synthetic Fatty Acids and Triacylglycerols. J Oleo Sci 2021; 70:1-9. [PMID: 33431763 DOI: 10.5650/jos.ess20196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The metabolism of fatty acids or triacylglycerol (TAG) is affected by their molecular structures. Several methods to separate and quantify TAG isomers in natural fats and oils were developed. For instance, an analytical method of TAG molecular species using a gas chromatograph-flame ionization detector and the analytical method to separate and quantify TAG positional isomers and enantiomers using a high performance liquid chromatograph-mass spectrometer were established. Furthermore, using these analytical methods, the relationship between molecular structure and metabolism of fatty acid and TAG were investigated. Using the CO2 breath test in ddY mice revealed that saturated fatty acids such as palmitic acid bound to the sn-2 (β) position of TAG were highly catabolized in the presence of calcium, whereas saturated fatty acids bound to the sn-1, 3 (α) position of TAG were not well catabolized. Recently, the distribution of dietary fatty acids in the body were visualized by combining a stable isotope labeling technique with imaging mass spectrometry, which revealed that the administered arachidonic and docosahexaenoic acid accumulated as phospholipid in the mouse brain. The methods developed can assess food quality and create new functional foods.
Collapse
|
21
|
Bryant CM, Warnica JM, Chen R, Shepard C. Identification of triglycerides in liquid and fire debris samples by triple quadrupole liquid chromatography-mass spectrometry. J Forensic Sci 2020; 66:534-546. [PMID: 33136299 DOI: 10.1111/1556-4029.14612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 11/27/2022]
Abstract
Analysis of fire debris for triglyceride-based oils may be of interest to fire investigators depending on the circumstances of a particular fire. Such circumstances include accidental or intentionally set cooking oil fires, fires involving triglyceride-based "eco" fire log products, and spontaneous ignition fires that involve drying oils on rags. Many forensic laboratories utilize gas chromatography-mass spectrometry following fatty acid methyl esterification to identify triglyceride residues in fire debris extracts. This study explores an alternate approach, which involves the identification of intact triglycerides by liquid chromatography-mass spectrometry-mass spectrometry (LC-MS/MS). 52 triglyceride-based oils and fats (22 different types) were analyzed by LC-MS/MS using multiple reaction monitoring to investigate variation in triglyceride content between different brands and types of oil and fat. Selected oils were then degraded by exposure to air, typical cooking conditions and/or fire conditions to simulate samples that are typically encountered by Fire Debris Analysts in fire investigation cases. Triglycerides were identified in all pristine and degraded oil samples, and relative peak areas for degraded samples often resembled their pristine oil counterparts. In samples where relative peak area differences were noted, more predominant degradation was observed for triglycerides with a higher proportion of poly-unsaturated fatty acids. Variability in triglyceride content between different brands and types of oil are discussed, as well as factors affecting the identification of triglyceride peaks in commercial oil samples, as compared to the corresponding analytical standard.
Collapse
Affiliation(s)
| | | | - Rachel Chen
- Centre of Forensic Sciences, Toronto, Ontario, Canada
| | - Cara Shepard
- Centre of Forensic Sciences, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Multidimensional gas chromatographic‒Mass spectrometric method for separation and identification of triacylglycerols in olive oil. J Chromatogr A 2020; 1629:461474. [PMID: 32823012 DOI: 10.1016/j.chroma.2020.461474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/10/2020] [Accepted: 08/10/2020] [Indexed: 11/22/2022]
Abstract
A 'heart-cut' multidimensional gas chromatography‒mass spectrometry (H/C MDGC‒MS) method for separation and identification of triacylglycerols (TAGs) in extra virgin olive oil was developed. A GC configuration, comprising a non-polar first dimension (1D) column (15 m length) and a mid-polarity second dimension (2D) column (9 m length), was employed. Standard TAGs were used to test and demonstrate the H/C MDGC method, for identification of TAG components and to validate the method. Various chromatographic conditions such as column flow and temperature program were evaluated. The 1D separation resulted in overlap of some standard TAG peaks. These overlapped 1D regions of the standard TAGs were H/C to 2D for further separation and resulted in clearly distinguished individual TAG component peaks. The 1D separation of olive oil TAGs displayed three major peaks and four minor peaks. The application of the H/C MDGC method to olive oil TAGs resulted in the separation of each sampled 1D region into two or more TAG peaks. TAG components in olive oil resolved on the 2D column were identified based on characteristic mass fragment ions such as [M-RCO2]+, [RCO+128]+, [RCO+74]+ and RCO+ and comparison of their mass spectra with that of the standard TAGs. Sixteen olive oil TAGs were identified by MS after 2D separation. The repeatability of the H/C method was evaluated in terms of retention time shift and area response in the 2D and found to be <0.02% and <8% RSD respectively.
Collapse
|
23
|
Shao L, Song H, Li X, Huang J, Jin Q, Wang X. Correlations between transisomers of α‐linolenic acid and polar components in linseed oil during heating. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Linya Shao
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Huiyu Song
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Xu Li
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Jianhua Huang
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Qingzhe Jin
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Xingguo Wang
- International Joint Research Laboratory for Lipid Nutrition and Safety Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province School of Food Science and Technology Jiangnan University Wuxi 214122 China
| |
Collapse
|
24
|
Filipe HAL, Esteves MIM, Henriques CA, Antunes FE. Effect of Protein Flexibility from Coarse-Grained Elastic Network Parameterizations on the Calculation of Free Energy Profiles of Ligand Binding. J Chem Theory Comput 2020; 16:4734-4743. [PMID: 32496775 DOI: 10.1021/acs.jctc.0c00418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The characterization of the affinity and binding mechanism of specific molecules to a protein active site is scientifically and industrially relevant for many applications. In principle, this information can be obtained using molecular dynamics (MD) simulations by calculating the free energy profile of the process. However, this is a computationally demanding calculation. Currently, coarse-grained (CG) force fields are very well implemented for MD simulations of biomolecular systems. These computationally efficient force fields are a major advantage to the study of large model systems and/or those requiring long simulation times. The Martini model is currently one of the most popular CG force fields for these systems. For the specific case of protein simulations, to correctly maintain the macromolecular three-dimensional structure, the Martini model needs to include an elastic network (EN). In this work, the effect of protein flexibility, as induced by three EN models compatible with the Martini force field, was tested on the calculation of free energy profiles for protein-ligand binding. The EN models used were ElNeDyn, GoMartini, and GEN. The binding of triolein (TOG) and triacetin (TAG) to a lipase protein (thermomyces lanuginosa lipase-TLL) was used as a case study. The results show that inclusion of greater flexibility in the CG parameterization of proteins is of high importance in the calculation of the free energy profiles of protein-ligand systems. However, care must be taken in order to avoid unjustified large protein deformations. In addition, due to molecular flexibility there may be no absolute need for the center of the ligand to reach the center of the protein-binding site. The calculation of the energy profile to a distance of about 0.5 nm from the active site center can be sufficient to differentiate the affinity of different ligands to a protein.
Collapse
Affiliation(s)
- Hugo A L Filipe
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, Coimbra 3004-535, Portugal
| | - Margarida I M Esteves
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, Coimbra 3004-535, Portugal
| | - César A Henriques
- EcoXperience, HIESE, Quinta Vale do Espinhal, Penela 3230-343, Portugal
| | - Filipe E Antunes
- Coimbra Chemistry Centre, Dept. of Chemistry, University of Coimbra, Rua Larga, Coimbra 3004-535, Portugal
| |
Collapse
|
25
|
Enantiomeric separation of triacylglycerols containing fatty acids with a ring (cyclofatty acids). J Chromatogr A 2020; 1622:461103. [DOI: 10.1016/j.chroma.2020.461103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/05/2020] [Accepted: 04/02/2020] [Indexed: 01/09/2023]
|
26
|
Vergallo C. Nutraceutical Vegetable Oil Nanoformulations for Prevention and Management of Diseases. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1232. [PMID: 32599957 PMCID: PMC7353093 DOI: 10.3390/nano10061232] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
The scientific community is becoming increasingly interested in identifying, characterizing, and delivering nutraceuticals, which constitutes a multi-billion-dollar business. These bioactive agents are claimed to exhibit several health benefits, including the prevention and treatment of diseases such as arthritis, cancer, osteoporosis, cataracts, Alzheimer's, and Huntington's diseases, heart, brain and metabolic disorders, etc. Nutraceuticals are typically consumed as part of a regular human diet and are usually present within foods, comprising vegetable oil, although at low levels and variable composition. Thus, it is difficult to control the type, amount and frequency of their ingestion by individuals. Nanoformulations about vegetable oil-based bioactive compounds with nutraceutical properties are useful for overcoming these issues, while improving the uptake, absorption, and bioavailability in the body. The purpose of this current study is to review papers on such nanoformulations, particularly those relevant for health benefits and the prevention and management of diseases, as well as bioactives extracted from vegetable oils enhancing the drug effectiveness, retrieved through bibliographic databases by setting a timespan from January 2000 to April 2020 (about 1758 records).
Collapse
Affiliation(s)
- Cristian Vergallo
- Department of Biological and Environmental Science and Technology (Di.S.Te.B.A.), University of Salento, 73010 Lecce, Italy
| |
Collapse
|
27
|
Alberdi-Cedeño J, Ibargoitia ML, Guillén MD. Study of the In Vitro Digestion of Olive Oil Enriched or Not with Antioxidant Phenolic Compounds. Relationships between Bioaccessibility of Main Components of Different Oils and Their Composition. Antioxidants (Basel) 2020; 9:antiox9060543. [PMID: 32575754 PMCID: PMC7346224 DOI: 10.3390/antiox9060543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
The changes provoked by in vitro digestion in the lipids of olive oil enriched or not with different phenolic compounds were studied by proton nuclear magnetic resonance (1H NMR) and solid phase microextraction followed by gas chromatography/mass spectrometry (SPME-GC/MS). These changes were compared with those provoked in the lipids of corn oil and of virgin flaxseed oil submitted to the same digestive conditions. Lipolysis and oxidation were the two reactions under consideration. The bioaccessibility of main and minor components of olive oil, of phenolic compounds added, and of compounds formed as consequence of the oxidation, if any, were matters of attention. Enrichment of olive oil with antioxidant phenolic compounds does not affect the extent of lipolysis, but reduces the oxidation degree to minimum values or avoids it almost entirely. The in vitro bioaccessibility of nutritional and bioactive compounds was greater in the olive oil digestate than in those of other oils, whereas that of compounds formed in oxidation was minimal, if any. Very close quantitative relationships were found between the composition of the oils in main components and their in vitro bioaccessibility. These relationships, some of which have predictive value, can help to design lipid diets for different nutritional purposes.
Collapse
|
28
|
Tang J, Qian Z, Wu H. Enhancing cordycepin production in liquid static cultivation of Cordyceps militaris by adding vegetable oils as the secondary carbon source. BIORESOURCE TECHNOLOGY 2018; 268:60-67. [PMID: 30071414 DOI: 10.1016/j.biortech.2018.07.128] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
This study evaluated different vegetable oils as the second carbon source in liquid static culture of Cordyceps militaris in terms of mycelial growth and cordycepin production. The maximum mycelial concentration and cordycepin production were observed under cottonseed oil and peanut oil induction, respectively. In the condition of adding 20 g/L of peanut oil at Day 0, the final concentration of cordycepin reached to the highest, about 5.29 g/L, which was about 3.17 times higher than that of the control. The qRT-PCR and enzyme activity analysis confirmed that addition of peanut oil up-regulated the expression of the genes encoding glucose-6-phosphate dehydrogenase and isocitrate lyase, as well as the genes in the cordycepin biosynthesis pathway, cns1 and cns2, during the cultivation in C. militaris.
Collapse
Affiliation(s)
- Jiapeng Tang
- Department of Biochemistry and Pharmacy, Institute of Nautical Medicine, Nantong University, Nantong 226001, PR China
| | - Zhenqing Qian
- Department of Biochemistry and Pharmacy, Institute of Nautical Medicine, Nantong University, Nantong 226001, PR China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, PR China; Key Laboratory of Bio-based Material Engineering of China National Light Industry Council, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
29
|
Waktola HD, Kulsing C, Nolvachai Y, Marriott PJ. High temperature multidimensional gas chromatographic approach for improved separation of triacylglycerols in olive oil. J Chromatogr A 2018; 1549:77-84. [DOI: 10.1016/j.chroma.2018.03.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/06/2018] [Accepted: 03/17/2018] [Indexed: 11/25/2022]
|
30
|
Abstract
Lipid is the general name given to fats and oils, which are the basic components of cooking oils, shortening, ghee, margarine, and other edible fats. The chosen term depends on the physical state at ambient temperature; fats are solids and oils are liquids. The chemical properties of the lipids, including degree of saturation, fatty acid chain length, and acylglycerol molecule composition are the basic determinants of physical characteristics such as melting point, cloud point, solid fat content, and thermal behavior. This review will discuss the major lipid modification strategies, hydrogenation, and chemical and enzymatic interesterification, describing the catalysts used mechanisms, kinetics, and impacts on the health-related properties of the final products. Enzymatic interesterification will be emphasized as method that produces a final product with good taste, zero trans fatty acids, and a low number of calories, requires less contact with chemicals, and is cost efficient.
Collapse
Affiliation(s)
- Abdul Amir H Kadhum
- a Department of Chemical and Process Engineering , Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia , Bangi Selangor , Malaysia
| | - M Najeeb Shamma
- a Department of Chemical and Process Engineering , Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia , Bangi Selangor , Malaysia
| |
Collapse
|
31
|
Yoshinaga K, Obi J, Nagai T, Iioka H, Yoshida A, Beppu F, Gotoh N. Quantification of Triacylglycerol Molecular Species in Edible Fats and Oils by Gas Chromatography-Flame Ionization Detector Using Correction Factors. J Oleo Sci 2017; 66:259-268. [DOI: 10.5650/jos.ess16180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Junji Obi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| | | | | | | | - Fumiaki Beppu
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| | - Naohiro Gotoh
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology
| |
Collapse
|
32
|
Rohman A. Infrared spectroscopy for quantitative analysis and oil parameters of olive oil and virgin coconut oil: A review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2016. [DOI: 10.1080/10942912.2016.1213742] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Miyasaki EK, Santos CAD, Vieira LR, Ming CC, Calligaris GA, Cardoso LP, Gonçalves LAG. Acceleration of polymorphic transition of cocoa butter and cocoa butter equivalent by addition ofd-limonene. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Eriksen Koji Miyasaki
- Department of Materials Engineering and Bioprocess; Faculty of Chemical Engineering; University of Campinas; Campinas Brazil
| | | | - Luana Reis Vieira
- Department of Food Technology; Faculty of Food Engineering; University of Campinas; Campinas Brazil
| | - Chiu Chih Ming
- Department of Food Technology; Faculty of Food Engineering; University of Campinas; Campinas Brazil
| | - Guilherme A. Calligaris
- Department of Applied Physics; Gleb Watagh in Institute of Physics; University of Campinas; Campinas Brazil
| | - Lisandro Pavie Cardoso
- Department of Applied Physics; Gleb Watagh in Institute of Physics; University of Campinas; Campinas Brazil
| | | |
Collapse
|
34
|
Trabelsi H, Renaud J, Mayer P, Boukhchina S. Triacylglycerol and Glycerophospholipid Identification and Accumulation During Ripening of Pistacia lentiscus L. (Lentisc) Fruit. J AM OIL CHEM SOC 2014. [DOI: 10.1007/s11746-014-2453-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Parker T, Limer E, Watson AD, Defernez M, Williamson D, Kemsley EK. 60 MHz 1H NMR spectroscopy for the analysis of edible oils. Trends Analyt Chem 2014; 57:147-158. [PMID: 24850979 PMCID: PMC4024201 DOI: 10.1016/j.trac.2014.02.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We present the first results from a new 60 MHz 1H NMR bench-top spectrometer. Using chemometrics, we detected hazelnut oil adulteration of olive oil at 11.2%w/w. Bench-top 60 MHz NMR performs at least as well as FTIR for this type of application.
We report the first results from a new 60 MHz 1H nuclear magnetic resonance (NMR) bench-top spectrometer, Pulsar, in a study simulating the adulteration of olive oil with hazelnut oil. There were qualitative differences between spectra from the two oil types. A single internal ratio of two isolated groups of peaks could detect hazelnut oil in olive oil at the level of ∼13%w/w, whereas a whole-spectrum chemometric approach brought the limit of detection down to 11.2%w/w for a set of independent test samples. The Pulsar’s performance was compared to that of Fourier transform infrared (FTIR) spectroscopy. The Pulsar delivered comparable sensitivity and improved specificity, making it a superior screening tool. We also mapped NMR onto FTIR spectra using a correlation-matrix approach. Interpretation of this heat-map combined with the established annotations of the NMR spectra suggested a hitherto undocumented feature in the IR spectrum at ∼1130 cm−1, attributable to a double-bond vibration.
Collapse
Affiliation(s)
- T Parker
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - E Limer
- Oriel College, University of Oxford, Oxford OX1 4EW, UK
| | - A D Watson
- Analytical Sciences Unit, Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK
| | - M Defernez
- Analytical Sciences Unit, Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK
| | - D Williamson
- Oxford Instruments Industrial Analysis, Tubney Woods, Abingdon, Oxford, UK
| | - E Kate Kemsley
- Analytical Sciences Unit, Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK
| |
Collapse
|
36
|
|
37
|
Ruiz-Samblás C, González-Casado A, Cuadros-Rodríguez L. Triacylglycerols Determination by High-temperature Gas Chromatography in the Analysis of Vegetable Oils and Foods: A Review of the Past 10 Years. Crit Rev Food Sci Nutr 2013; 55:1618-31. [DOI: 10.1080/10408398.2012.713045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Orozco MI, Priego-Capote F, Luque de Castro MD. Influence of deep frying on the unsaponifiable fraction of vegetable edible oils enriched with natural antioxidants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:7194-7202. [PMID: 21644588 DOI: 10.1021/jf2015792] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The influence of deep frying, mimicked by 20 heating cycles at 180 °C (each cycle from ambient temperature to 180 °C maintained for 5 min), on the unsaponifiable fraction of vegetable edible oils represented by three characteristic families of compounds (namely, phytosterols, aliphatic alcohols, and triterpenic compounds) has been studied. The target oils were extra virgin olive oil (with intrinsic content of phenolic antioxidants), refined sunflower oil enriched with antioxidant phenolic compounds isolated from olive pomace, refined sunflower oil enriched with an autoxidation inhibitor (dimethylpolysiloxane), and refined sunflower oil without enrichment. Monitoring of the target analytes as a function of both heating cycle and the presence of natural antioxidants was also evaluated by comparison of the profiles after each heating cycle. Identification and quantitation of the target compounds were performed by gas cromatography-mass spectrometry in single ion monitoring mode. Analysis of the heated oils revealed that the addition of natural antioxidants could be an excellent strategy to decrease degradation of lipidic components of the unsaponifiable fraction with the consequent improvement of stability.
Collapse
Affiliation(s)
- Mara I Orozco
- Department of Analytical Chemistry, University of Córdoba , E-14071 Córdoba, Spain
| | | | | |
Collapse
|
39
|
de la Mata-Espinosa P, Bosque-Sendra J, Bro R, Cuadros-Rodríguez L. Olive oil quantification of edible vegetable oil blends using triacylglycerols chromatographic fingerprints and chemometric tools. Talanta 2011; 85:177-82. [DOI: 10.1016/j.talanta.2011.03.049] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 03/05/2011] [Accepted: 03/20/2011] [Indexed: 11/24/2022]
|
40
|
|
41
|
|
42
|
Multivariate analysis of HT/GC-(IT)MS chromatographic profiles of triacylglycerol for classification of olive oil varieties. Anal Bioanal Chem 2010; 399:2093-103. [DOI: 10.1007/s00216-010-4423-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/28/2010] [Accepted: 11/04/2010] [Indexed: 11/26/2022]
|
43
|
|
44
|
Optimization and application of methods of triacylglycerol evaluation for characterization of olive oil adulteration by soybean oil with HPLC–APCI-MS–MS. Talanta 2010; 81:1116-25. [DOI: 10.1016/j.talanta.2010.02.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 02/02/2010] [Accepted: 02/03/2010] [Indexed: 11/19/2022]
|
45
|
Ruiz-Samblás C, González-Casado A, Cuadros-Rodríguez L, García FPR. Application of selected ion monitoring to the analysis of triacylglycerols in olive oil by high temperature-gas chromatography/mass spectrometry. Talanta 2010; 82:255-60. [PMID: 20685464 DOI: 10.1016/j.talanta.2010.04.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 04/07/2010] [Accepted: 04/16/2010] [Indexed: 11/30/2022]
Abstract
The analysis of the triacylglycerol (TAG) composition of oils is a very challenging task, since the TAGs have very similar physico-chemical properties. In this work, a high temperature-gas chromatographic method coupled to electron ionization-mass spectrometry (HT-GC/EI-MS), in the Selected Ion Monitoring (SIM) mode, method was developed for the analysis of TAGs in the olive oil; this is a method suitable for routine analysis. This method was developed using commercially available standard TAGs. The TAGs studied were separated according to their equivalent carbon number and degree of unsaturation. The peak assignment was carried out by locating the characteristic fragment ions having the same retention time on the SIM profile such as [RCO+74](+) and [RCO+128](+) ions, due to the fatty acyl residues on sn-1, sn-2 and sn-3 positions of the TAG molecule and the [M-OCOR](+) ions corresponding to the acyl ions. The developed method was very useful to eliminate the interferences that appeared in the mass spectrum since electron ionization can prevent satisfactory interpretation of spectra.
Collapse
Affiliation(s)
- C Ruiz-Samblás
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s.n., E-18071 Granada, Spain
| | | | | | | |
Collapse
|
46
|
Branco PC, Castilho PC, Rosa MF, Ferreira J. Characterization of Annona cherimola Mill. Seed Oil from Madeira Island: a Possible Biodiesel Feedstock. J AM OIL CHEM SOC 2009. [DOI: 10.1007/s11746-009-1513-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
RIBEIRO ANAPAULABADAN, BASSO RODRIGOCORRÊA, GRIMALDI RENATO, GIOIELLI LUIZANTONIO, GONÇALVES LIRENYAPARECIDAGUARALDO. EFFECT OF CHEMICAL INTERESTERIFICATION ON PHYSICOCHEMICAL PROPERTIES AND INDUSTRIAL APPLICATIONS OF CANOLA OIL AND FULLY HYDROGENATED COTTONSEED OIL BLENDS. ACTA ACUST UNITED AC 2009. [DOI: 10.1111/j.1745-4522.2009.01152.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Pham PJ, Pittman CU, Li T, Li M. Selective extraction of polyunsaturated triacylglycerols using a novel ionic liquid precursor immobilized on a mesoporous complexing adsorbent. Biotechnol Prog 2009; 25:1419-26. [DOI: 10.1002/btpr.219] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Wu Y. Retention Mechanism Studies on Packed Column Supercritical Fluid Chromatography (pSFC) and Related Unified Chromatography Techniques. J LIQ CHROMATOGR R T 2007. [DOI: 10.1081/jlc-120030602] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yan Wu
- a Analytical Research , Merck Research Laboratories , P.O. Box 2000, Rahway , New Jersey , 07065 , USA
| |
Collapse
|
50
|
Stavarache C, Vinatoru M, Maeda Y. Aspects of ultrasonically assisted transesterification of various vegetable oils with methanol. ULTRASONICS SONOCHEMISTRY 2007; 14:380-6. [PMID: 17079181 DOI: 10.1016/j.ultsonch.2006.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Accepted: 08/22/2006] [Indexed: 05/12/2023]
Abstract
The batch transesterification of vegetable oil with methanol, in the presence of potassium hydroxide as catalyst, by means of low frequency ultrasound (40 kHz) was studied with the aim of gaining more knowledge on intimate reaction mechanism. The concentration of fatty acid methyl esters, of mono-, di- and triglycerides of the actual reaction mixture were determined at short reaction time by HPLC. The effect of ultrasounds on the lipids transesterification correlated with triglyceride structures is discussed. It was found that under ultrasonic activation the rate-determining reaction switches from DG-->MG (classical mechanic agitation) to MG+ROH-->Gly+ME (ultrasonically driven transesterification).
Collapse
Affiliation(s)
- Carmen Stavarache
- Costin D Nenitzescu, Institute of Organic Chemistry, 060023 Bucharest, Romania.
| | | | | |
Collapse
|