1
|
Runyan LA, Kudryashova E, Agrawal R, Mohamed M, Kudryashov DS. Human plastins are novel cytoskeletal pH sensors with a reduced F-actin bundling capacity at basic pH. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645573. [PMID: 40196613 PMCID: PMC11974883 DOI: 10.1101/2025.03.26.645573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Intracellular pH (pHi) is a fundamental component of cell homeostasis. Controlled elevations in pHi precede and accompany cell polarization, cytokinesis, and directional migration. pH dysregulation contributes to cancer, neurodegenerative diseases, diabetes, and other metabolic disorders. While cytoskeletal rearrangements are crucial for these processes, only a few cytoskeletal proteins, namely Cdc42, cofilin, talin, cortactin, α-actinin, and AIP1 have been documented as pH sensors. Here, we report that actin-bundling proteins plastin 2 (PLS2, aka LCP1) and plastin 3 (PLS3) respond to physiological scale pH fluctuations by a reduced F-actin bundling at alkaline pH. The inhibition of PLS2 actin-bundling activity at elevated pH stems from the reduced affinity of the N-terminal actin-binding domain (ABD1) to actin. In fibroblast cells, elevated cytosolic pH caused the dissociation of ectopically expressed PLS2 from actin structures, whereas acidic conditions promoted its tighter association with focal adhesions and stress fibers. We identified His207 as one of the pH-sensing residues whose mutation to Lys and Tyr reduces pH sensitivity by enhancing and inhibiting the bundling ability, respectively. Our results suggest that weaker actin bundling by plastin isoforms at alkaline pH favors higher dynamics of the actin cytoskeleton. Therefore, like other cytoskeleton pH sensors, plastins promote disassembly and faster dynamics of cytoskeletal components during cytokinesis and cell migration. Since both plastins are implemented in cancer, their pH sensitivity may contribute to the accelerated proliferation and enhanced invasive and metastatic potentials of cancer cells at alkaline pHi.
Collapse
Affiliation(s)
- Lucas A. Runyan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA, 43210
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA, 43210
| | - Richa Agrawal
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA, 43210
| | - Mubarik Mohamed
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA, 43210
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA, 43210
| |
Collapse
|
2
|
Yoshihara S, Nakata T, Kashiwazaki J, Aoyama K, Mabuchi I. In Vitro Formation of Actin Ring in the Fission Yeast Cell Extracts. Cytoskeleton (Hoboken) 2025. [PMID: 39835694 DOI: 10.1002/cm.21997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/18/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Cytokinesis in animal and fungal cells requires the contraction of actomyosin-based contractile rings formed in the division cortex of the cell during late mitosis. However, the detailed mechanism remains incompletely understood. Here, we aim to develop a novel cell-free system by encapsulating cell extracts obtained from fission yeast cells within lipid vesicles, which subsequently leads to the formation of a contractile ring-like structure inside the vesicles. Using this system, we found that an actin ring structure formed in vesicles of a size similar to that of fission yeast cells, with the frequency of ring appearance increasing in the presence of PI(4,5)P2 (PIP2). In contrast, larger vesicles tended to form actin bundles, which were sometimes associated with ring structures or network-like structures. The effects of various inhibitors affecting cytoskeleton formation were investigated, revealing that actin polymerization was essential for the formation of these actin structures. Additionally, the involvement of ATP, the Schizosaccharomyces pombe PLK "Plo1," and the small GTPase Rho was suggested to play a crucial role in this process. Examination of mitotic extracts revealed the formation of actin dot structures in phosphatidylethanolamine vesicles. However, most of these structures disappeared in the presence of PIP2, leading to the formation of actin Rings instead. Using extracts from cells expressing α-actinin Ain1 or myosin-II light chain Rlc1, both fused with fluorescent proteins, we found that these proteins colocalized with actin bundles. In summary, we have developed a new semi-in vitro system to investigate mechanisms such as cell division and cytoskeleton formation.
Collapse
Affiliation(s)
- Shogo Yoshihara
- Department of Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- The Center for Brain Integration Research (CBIR), TMDU, Tokyo, Japan
- Department of Life Science, Faculty of Science, Gakushuin University, Mejiro, Tokyo, Japan
| | - Takao Nakata
- Department of Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- The Center for Brain Integration Research (CBIR), TMDU, Tokyo, Japan
| | - Jun Kashiwazaki
- Department of Life Science, Faculty of Science, Gakushuin University, Mejiro, Tokyo, Japan
- Radioisotope Division, Research Facility Center for Science and Technology, Kobe University, Kobe, Hyogo, Japan
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo, Japan
| | - Kazuhiro Aoyama
- NanoPort Japan, Application Laboratory, Thermo Fisher Scientific, Tokyo, Japan
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| | - Issei Mabuchi
- Department of Life Science, Faculty of Science, Gakushuin University, Mejiro, Tokyo, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Institute of Human Culture Studies, Otsuma Women's University, Tokyo, Japan
| |
Collapse
|
3
|
Henson JH, Reyes G, Lo NT, Herrera K, McKim QW, Herzon HY, Galvez-Ceron M, Hershey AE, Kim RS, Shuster CB. Cytokinetic contractile ring structural progression in an early embryo: positioning of scaffolding proteins, recruitment of α-actinin, and effects of myosin II inhibition. Front Cell Dev Biol 2024; 12:1483345. [PMID: 39398481 PMCID: PMC11467475 DOI: 10.3389/fcell.2024.1483345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024] Open
Abstract
Our knowledge of the assembly and dynamics of the cytokinetic contractile ring (CR) in animal cells remains incomplete. We have previously used super-resolution light microscopy and platinum replica electron microscopy to elucidate the ultrastructural organization of the CR in first division sea urchin embryos. To date, our studies indicate that the CR initiates as an equatorial band of clusters containing myosin II, actin, septin and anillin, which then congress over time into patches which coalesce into a linear array characteristic of mature CRs. In the present study, we applied super-resolution interferometric photoactivated localization microscopy to confirm the existence of septin filament-like structures in the developing CR, demonstrate the close associations between septin2, anillin, and myosin II in the CR, as well as to show that septin2 appears consistently submembranous, whereas anillin is more widely distributed in the early CR. We also provide evidence that the major actin cross-linking protein α-actinin only associates with the linearized, late-stage CR and not with the early CR clusters, providing further support to the idea that α-actinin associates with actomyosin structures under tension and can serve as a counterbalance. In addition, we show that inhibition of actomyosin contraction does not stop the assembly of the early CR clusters but does arrest the progression of these structures to the aligned arrays required for functional cytokinesis. Taken together our results reinforce and extend our model for a cluster to patch to linear structural progression of the CR in sea urchin embryos and highlight the evolutionary relationships with cytokinesis in fission yeast.
Collapse
Affiliation(s)
- John H. Henson
- Department of Biology, Dickinson College, Carlisle, PA, United States
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| | - Gabriela Reyes
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Nina T. Lo
- Department of Biology, Dickinson College, Carlisle, PA, United States
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| | - Karina Herrera
- Department of Biology, Dickinson College, Carlisle, PA, United States
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| | - Quenelle W. McKim
- Department of Biology, Dickinson College, Carlisle, PA, United States
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| | - Hannah Y. Herzon
- Department of Biology, Dickinson College, Carlisle, PA, United States
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| | - Maritriny Galvez-Ceron
- Department of Biology, Dickinson College, Carlisle, PA, United States
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| | - Alexandra E. Hershey
- Department of Biology, Dickinson College, Carlisle, PA, United States
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| | - Rachael S. Kim
- Department of Biology, Dickinson College, Carlisle, PA, United States
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
| | - Charles B. Shuster
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, United States
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
4
|
Santella L, Limatola N, Chun JT. Cellular and molecular aspects of oocyte maturation and fertilization: a perspective from the actin cytoskeleton. ZOOLOGICAL LETTERS 2020; 6:5. [PMID: 32313685 PMCID: PMC7158055 DOI: 10.1186/s40851-020-00157-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/26/2020] [Indexed: 05/06/2023]
Abstract
ABSTRACT Much of the scientific knowledge on oocyte maturation, fertilization, and embryonic development has come from the experiments using gametes of marine organisms that reproduce by external fertilization. In particular, echinoderm eggs have enabled the study of structural and biochemical changes related to meiotic maturation and fertilization owing to the abundant availability of large and transparent oocytes and eggs. Thus, in vitro studies of oocyte maturation and sperm-induced egg activation in starfish are carried out under experimental conditions that resemble those occurring in nature. During the maturation process, immature oocytes of starfish are released from the prophase of the first meiotic division, and acquire the competence to be fertilized through a highly programmed sequence of morphological and physiological changes at the oocyte surface. In addition, the changes in the cortical and nuclear regions are essential for normal and monospermic fertilization. This review summarizes the current state of research on the cortical actin cytoskeleton in mediating structural and physiological changes during oocyte maturation and sperm and egg activation in starfish and sea urchin. The common denominator in these studies with echinoderms is that exquisite rearrangements of the egg cortical actin filaments play pivotal roles in gamete interactions, Ca2+ signaling, exocytosis of cortical granules, and control of monospermic fertilization. In this review, we also compare findings from studies using invertebrate eggs with what is known about the contributions made by the actin cytoskeleton in mammalian eggs. Since the cortical actin cytoskeleton affects microvillar morphology, movement, and positioning of organelles and vesicles, and the topography of the egg surface, these changes have impacts on the fertilization process, as has been suggested by recent morphological studies on starfish oocytes and eggs using scanning electron microscopy. Drawing the parallelism between vitelline layer of echinoderm eggs and the zona pellucida of mammalian eggs, we also discuss the importance of the egg surface in mediating monospermic fertilization. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Luigia Santella
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli 80121, Italy
| | - Nunzia Limatola
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli 80121, Italy
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Napoli 80121, Italy
| |
Collapse
|
5
|
Li Y, Christensen JR, Homa KE, Hocky GM, Fok A, Sees JA, Voth GA, Kovar DR. The F-actin bundler α-actinin Ain1 is tailored for ring assembly and constriction during cytokinesis in fission yeast. Mol Biol Cell 2016; 27:1821-33. [PMID: 27075176 PMCID: PMC4884072 DOI: 10.1091/mbc.e16-01-0010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/06/2016] [Indexed: 12/18/2022] Open
Abstract
The actomyosin contractile ring is a network of cross-linked actin filaments that facilitates cytokinesis in dividing cells. Contractile ring formation has been well characterized in Schizosaccharomyces pombe, in which the cross-linking protein α-actinin SpAin1 bundles the actin filament network. However, the specific biochemical properties of SpAin1 and whether they are tailored for cytokinesis are not known. Therefore we purified SpAin1 and quantified its ability to dynamically bind and bundle actin filaments in vitro using a combination of bulk sedimentation assays and direct visualization by two-color total internal reflection fluorescence microscopy. We found that, while SpAin1 bundles actin filaments of mixed polarity like other α-actinins, SpAin1 has lower bundling activity and is more dynamic than human α-actinin HsACTN4. To determine whether dynamic bundling is important for cytokinesis in fission yeast, we created the less dynamic bundling mutant SpAin1(R216E). We found that dynamic bundling is critical for cytokinesis, as cells expressing SpAin1(R216E) display disorganized ring material and delays in both ring formation and constriction. Furthermore, computer simulations of initial actin filament elongation and alignment revealed that an intermediate level of cross-linking best facilitates filament alignment. Together our results demonstrate that dynamic bundling by SpAin1 is important for proper contractile ring formation and constriction.
Collapse
Affiliation(s)
- Yujie Li
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637
| | - Jenna R Christensen
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Kaitlin E Homa
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Glen M Hocky
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, University of Chicago, Chicago, IL 60637
| | - Alice Fok
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Jennifer A Sees
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Gregory A Voth
- Department of Chemistry, James Franck Institute, Institute for Biophysical Dynamics, and Computation Institute, University of Chicago, Chicago, IL 60637
| | - David R Kovar
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL 60637 Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637 Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
6
|
Addario B, Sandblad L, Persson K, Backman L. Characterisation of Schizosaccharomyces pombe α-actinin. PeerJ 2016; 4:e1858. [PMID: 27069798 PMCID: PMC4824898 DOI: 10.7717/peerj.1858] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 03/08/2016] [Indexed: 11/27/2022] Open
Abstract
The actin cytoskeleton plays a fundamental role in eukaryotic cells. Its reorganization is regulated by a plethora of actin-modulating proteins, such as a-actinin. In higher organisms, α-actinin is characterized by the presence of three distinct structural domains: an N-terminal actin-binding domain and a C-terminal region with EF-hand motif separated by a central rod domain with four spectrin repeats. Sequence analysis has revealed that the central rod domain of α-actinin from the fission yeast Schizosaccharomyces pombe consists of only two spectrin repeats. To obtain a firmer understanding of the structure and function of this unconventional α-actinin, we have cloned and characterized each structural domain. Our results show that this a-actinin isoform is capable of forming dimers and that the rod domain is required for this. However, its actin-binding and cross-linking activity appears less efficient compared to conventional α-actinins. The solved crystal structure of the actin-binding domain indicates that the closed state is stabilised by hydrogen bonds and a salt bridge not present in other α-actinins, which may reduce the affinity for actin.
Collapse
Affiliation(s)
- Barbara Addario
- Cell Biology Laboratory, School of Biochemistry and Cell Biology, BioScience Institute, University College Cork , Cork , Ireland
| | - Linda Sandblad
- Department of Molecular Biology, UmeåUniversity , Umeå , Sweden
| | - Karina Persson
- Department of Chemistry, Biological Chemistry , Umeå , Sweden
| | - Lars Backman
- Department of Chemistry, Biological Chemistry , Umeå , Sweden
| |
Collapse
|
7
|
Cell-sized spherical confinement induces the spontaneous formation of contractile actomyosin rings in vitro. Nat Cell Biol 2015; 17:480-9. [DOI: 10.1038/ncb3142] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 02/19/2015] [Indexed: 12/13/2022]
|
8
|
An equatorial contractile mechanism drives cell elongation but not cell division. PLoS Biol 2014; 12:e1001781. [PMID: 24503569 PMCID: PMC3913557 DOI: 10.1371/journal.pbio.1001781] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 12/20/2013] [Indexed: 11/19/2022] Open
Abstract
A cytokinesis-like contractile mechanism is co-opted in a different developmental scenario to achieve cell elongation instead of cell division in Ciona intestinalis. Cell shape changes and proliferation are two fundamental strategies for morphogenesis in animal development. During embryogenesis of the simple chordate Ciona intestinalis, elongation of individual notochord cells constitutes a crucial stage of notochord growth, which contributes to the establishment of the larval body plan. The mechanism of cell elongation is elusive. Here we show that although notochord cells do not divide, they use a cytokinesis-like actomyosin mechanism to drive cell elongation. The actomyosin network forming at the equator of each notochord cell includes phosphorylated myosin regulatory light chain, α-actinin, cofilin, tropomyosin, and talin. We demonstrate that cofilin and α-actinin are two crucial components for cell elongation. Cortical flow contributes to the assembly of the actomyosin ring. Similar to cytokinetic cells, membrane blebs that cause local contractions form at the basal cortex next to the equator and participate in force generation. We present a model in which the cooperation of equatorial actomyosin ring-based constriction and bleb-associated contractions at the basal cortex promotes cell elongation. Our results demonstrate that a cytokinesis-like contractile mechanism is co-opted in a completely different developmental scenario to achieve cell shape change instead of cell division. We discuss the occurrences of actomyosin rings aside from cell division, suggesting that circumferential contraction is an evolutionally conserved mechanism to drive cell or tissue elongation. The actomyosin cytoskeleton is the primary force that drives cell shape changes. These fibers are organized in elaborate structures that form sarcomeres in the muscle and the contractile ring during cytokinesis. In cytokinesis, the establishment of an equatorial actomyosin ring is preceded and regulated by many cell cycle events, and the ring itself is a complex and dynamic structure. Here we report the presence of an equatorial circumferential actomyosin structure with remarkable similarities to the cytokinetic ring formed in postmitotic notochord cells of sea squirt Ciona intestinalis. The notochord is a transient rod-like structure found in all embryos that belong to the phylum Chordata, and in Ciona, a simple chordate, it consists of only 40 cylindrical cells arranged in a single file, which elongate individually during development. Our study shows that the activity of the equatorial actomyosin ring is required for the elongation of the notochord cells. We also find that cortical flow contributes significantly to the formation of the ring at the equator. Similar to cytokinetic cells, we observe the formation of membrane blebs outside the equatorial region. Our analyses suggest that cooperation of actomyosin ring-based circumferential constriction and bleb-associated contractions drive cell elongation in Ciona. We conclude that cells can utilize a cytokinesis-like force generation mechanism to promote cell shape change instead of cell division.
Collapse
|
9
|
Laporte D, Ojkic N, Vavylonis D, Wu JQ. α-Actinin and fimbrin cooperate with myosin II to organize actomyosin bundles during contractile-ring assembly. Mol Biol Cell 2012; 23:3094-110. [PMID: 22740629 PMCID: PMC3418305 DOI: 10.1091/mbc.e12-02-0123] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During cytokinesis in Schizosaccharomyces pombe, the transient connections between nodes allow them to condense into the contractile ring. We find that α-actinin and fimbrin, two actin cross-linking proteins, are critical for node condensation as they stabilize transient linear actomyosin structures and thus modulate the morphology of the actomyosin network. The actomyosin contractile ring assembles through the condensation of a broad band of nodes that forms at the cell equator in fission yeast cytokinesis. The condensation process depends on actin filaments that interconnect nodes. By mutating or titrating actin cross-linkers α-actinin Ain1 and fimbrin Fim1 in live cells, we reveal that both proteins are involved in node condensation. Ain1 and Fim1 stabilize the actin cytoskeleton and modulate node movement, which prevents nodes and linear structures from aggregating into clumps and allows normal ring formation. Our computer simulations modeling actin filaments as semiflexible polymers reproduce the experimental observations and provide a model of how actin cross-linkers work with other proteins to regulate actin-filament orientations inside actin bundles and organize the actin network. As predicted by the simulations, doubling myosin II Myo2 level rescues the node condensation defects caused by Ain1 overexpression. Taken together, our work supports a cooperative process of ring self-organization driven by the interaction between actin filaments and myosin II, which is progressively stabilized by the cross-linking proteins.
Collapse
Affiliation(s)
- Damien Laporte
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
10
|
Laporte D, Zhao R, Wu JQ. Mechanisms of contractile-ring assembly in fission yeast and beyond. Semin Cell Dev Biol 2010; 21:892-8. [PMID: 20708088 PMCID: PMC2991471 DOI: 10.1016/j.semcdb.2010.08.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/28/2010] [Accepted: 08/03/2010] [Indexed: 11/18/2022]
Abstract
Most eukaryotes including fungi, amoebas, and animal cells assemble an actin/myosin-based contractile ring during cytokinesis. The majority of proteins implied in ring formation, maturation, and constriction are evolutionarily conserved, suggesting that common mechanisms exist among these divergent eukaryotes. Here, we review the recent advances in positioning and assembly of the actomyosin ring in the fission yeast Schizosaccharomyces pombe, the budding yeast Saccharomyces cerevisiae, and animal cells. In particular, major findings have been made recently in understanding ring formation in genetically tractable S. pombe, revealing a dynamic and robust search, capture, pull, and release mechanism.
Collapse
Affiliation(s)
- Damien Laporte
- Department of Molecular Genetics, and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Ran Zhao
- Department of Molecular Genetics, and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Jian-Qiu Wu
- Department of Molecular Genetics, and Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
11
|
The domain structure of Entamoeba α-actinin2. Cell Mol Biol Lett 2010; 15:665-78. [PMID: 20865366 PMCID: PMC6275957 DOI: 10.2478/s11658-010-0035-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 09/10/2010] [Indexed: 11/26/2022] Open
Abstract
Entamoeba histolytica, a major agent of human amoebiasis, expresses two distinct forms of α-actinin, a ubiquitous actin-binding protein that is present in most eukaryotic organisms. In contrast to all metazoan α-actinins, in both isoforms the intervening rod domain that connects the N-terminal actin-binding domain with the C-terminal EF-hands is much shorter. It is suggested that these α-actinins may be involved in amoeboid motility and phagocytosis, so we cloned and characterised each domain of one of these α-actinins to better understand their functional role. The results clearly showed that the domains have properties very similar to those of conventional α-actinins.
Collapse
|
12
|
Abstract
Cleavage furrows (CFs) have been isolated from dividing sea urchin eggs and the protein constituents have been analyzed by two-dimensional gel electrophoresis (Fujimoto & Mabuchi, J. Biochem. 122, 518-524, 1997). Two proteins of 51 and 32 kDa, respectively, have been found to be enriched in the CF preparation. Here, we show that these proteins are identical to the protein elongation factor 1alpha (EF-1alpha) and 1beta (EF-1beta), respectively. Furthermore, the CF 51-kDa protein is identical to the 51-kDa protein which had been isolated as a component of the microtubule organizing granules of mitotic sea urchin eggs. The 51-kDa protein bundles F-actin in vitro. This activity is suppressed by Ca(2+)/calmodulin or GTPgammaS. The 32-kDa protein binds EF-1alpha both in vitro and in cell extract, and is shown to suppress the F-actin-bundling activity of the 51-kDa protein. Microinjection of a monoclonal antibody against the 51-kDa protein or that of His-tagged 32-kDa protein into dividing sea urchin eggs at the onset of cleavage leads to failure of cytokinesis. These results strongly suggest that EF-1alpha is involved in maintenance of the structure of the contractile ring and EF-1beta regulates the F-actin-bundling activity of EF-1alpha.
Collapse
Affiliation(s)
- Hirotaka Fujimoto
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | | |
Collapse
|
13
|
Wang J, Hu H, Wang S, Shi J, Chen S, Wei H, Xu X, Lu L. The important role of actinin-like protein (AcnA) in cytokinesis and apical dominance of hyphal cells in Aspergillus nidulans. Microbiology (Reading) 2009; 155:2714-2725. [DOI: 10.1099/mic.0.029215-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The actin cytoskeleton is involved in many processes in eukaryotic cells, including interaction with a wide variety of actin-binding proteins such as the actin-capping proteins, the actin filament nucleators and the actin cross-linking proteins. Here, we report the identification and characterization of an actinin-like protein (AcnA) from the filamentous fungus Aspergillus nidulans. Not only did the depletion of AcnA by alcA(p) promoter repression or the deletion of AcnA result in explicit abnormalities in septation and conidiation, but also the acnA mutants induced a loss of apical dominance in cells with dichotomous branching, in which a new branch was formed by splitting the existing tip in two. Consequently, the colony showed flabellate edges. Moreover, we found that the localization of the GFP–AcnA fusion was quite dynamic. In the isotropic expansion phase of the germinated spore, GFP–AcnA was organized as cortical patches with cables lining the cell wall. Subsequently, GFP–AcnA was localized to the actively growing hyphal tips and to the sites of septation in the form of combined double contractile rings. Our data suggest that AcnA plays an important role in cytokinesis and apical dominance of hyphal cells, possibly via actin-dependent polarization maintenance and medial ring establishment in A. nidulans. This is the first report, to our knowledge, of the function of an actinin-like protein in filamentous fungi.
Collapse
Affiliation(s)
- Jinjun Wang
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Hongqin Hu
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Sha Wang
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Jie Shi
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Shaochun Chen
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Hua Wei
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Xushi Xu
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| | - Ling Lu
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Bioresource Technology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, PR China
| |
Collapse
|
14
|
Roux MM, Radeke MJ, Goel M, Mushegian A, Foltz KR. 2DE identification of proteins exhibiting turnover and phosphorylation dynamics during sea urchin egg activation. Dev Biol 2008; 313:630-47. [DOI: 10.1016/j.ydbio.2007.10.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2007] [Revised: 10/29/2007] [Accepted: 10/31/2007] [Indexed: 10/22/2022]
|
15
|
Mukhina S, Wang YL, Murata-Hori M. Alpha-actinin is required for tightly regulated remodeling of the actin cortical network during cytokinesis. Dev Cell 2007; 13:554-65. [PMID: 17925230 PMCID: PMC2093944 DOI: 10.1016/j.devcel.2007.08.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 06/12/2007] [Accepted: 08/06/2007] [Indexed: 11/29/2022]
Abstract
Localization of the actin crosslinking protein, alpha-actinin, to the cleavage furrow has been previously reported. However, its functions during cytokinesis remain poorly understood. We have analyzed the functions of alpha-actinin during cytokinesis by a combination of molecular manipulations and imaging-based techniques. alpha-actinin gradually dissipated from the cleavage furrow as cytokinesis progressed. Overexpression of alpha-actinin caused increased accumulation of actin filaments because of inhibition of actin turnover, leading to cytokinesis failure. Global depletion of alpha-actinin by siRNA caused a decrease in the density of actin filaments throughout the cell cortex, surprisingly inducing accelerated cytokinesis and ectopic furrows. Local ablation of alpha-actinin induced accelerated cytokinesis specifically at the site of irradiation. Neither overexpression nor depletion of alpha-actinin had an apparent effect on myosin II organization. We conclude that cytokinesis in mammalian cells requires tightly regulated remodeling of the cortical actin network mediated by alpha-actinin in coordination with actomyosin-based cortical contractions.
Collapse
Affiliation(s)
- Svetlana Mukhina
- Mammalian Cell Biology Group, Temasek Life Sciences Laboratory, The National University of Singapore, 1 Research Link, 117604, Singapore
| | - Yu-li Wang
- Department of Physiology, University of Massachusetts Medical School, 377 Plantation St., Worcester, MA, 01605, USA
| | - Maki Murata-Hori
- Mammalian Cell Biology Group, Temasek Life Sciences Laboratory, The National University of Singapore, 1 Research Link, 117604, Singapore
- Department of Biological Sciences, The National University of Singapore, 1 Research Link, 117604, Singapore
| |
Collapse
|
16
|
Takaine M, Mabuchi I. Properties of actin from the fission yeast Schizosaccharomyces pombe and interaction with fission yeast profilin. J Biol Chem 2007; 282:21683-94. [PMID: 17533155 DOI: 10.1074/jbc.m611371200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe serves as a model system for studying role of actin cytoskeleton, since it has simple actin cytoskeletons and is genetically tractable. In contrast, biochemical approaches using this organism are still developing; fission yeast actin has so far not been isolated in its native form and characterized, and therefore, biochemical assays of fission yeast actin-binding proteins (ABPs) or myosin have been performed using rabbit skeletal muscle actin that may interact with the fission yeast ABPs in a manner different from fission yeast actin. Here, we report a novel method for isolating functionally active actin from fission yeast cells. The highly purified fission yeast actin polymerized with kinetics somewhat different from those of muscle actin and forms filaments that are structurally indistinguishable from skeletal muscle actin filaments. The fission yeast actin was a significantly weaker activator of Mg(2+)-ATPase of HMM of skeletal muscle myosin than muscle actin. The fission yeast profilin Cdc3 suppressed polymerization of fission yeast actin more effectively than that of muscle actin and showed an affinity for fission yeast actin higher than for muscle actin. The establishment of purification of fission yeast actin will enable reconstruction of physiologically relevant interactions between the actin and fission yeast ABPs or myosins and contribute to clarification of function of actin cytoskeleton in various cellular activities.
Collapse
Affiliation(s)
- Masak Takaine
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Hongo, Tokyo, Japan
| | | |
Collapse
|
17
|
Bunai F, Ando K, Ueno H, Numata O. Tetrahymena Eukaryotic Translation Elongation Factor 1A (eEF1A) Bundles Filamentous Actin through Dimer Formation. ACTA ACUST UNITED AC 2006; 140:393-9. [PMID: 16877446 DOI: 10.1093/jb/mvj169] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Eukaryotic translation elongation factor 1A (eEF1A) is known to be a multifunctional protein. In Tetrahymena, eEF1A is localized to the division furrow and has the character to bundle filamentous actin (F-actin). eEF1A binds F-actin and the ratio of eEF1A and actin is approximately 1:1 (Kurasawa et al., 1996). In this study, we revealed that eEF1A itself exists as monomer and dimer, using gel filtration column chromatography. Next, eEF1A monomer and eEF1A dimer were separated using gel filtration column, and their interaction with F-actin was examined with cosedimentation assay and electron microscopy. In the absence of Ca2+/calmodulin (CaM), eEF1A dimer bundled F-actin and coprecipitated with F-actin at low-speed centrifugation, but eEF1A monomer did not. In the presence of Ca2+/CaM, eEF1A monomer increased, while dimer decreased. To examine that Ca2+/CaM alters eEF1A dimer into monomer and inhibits bundle formation of F-actin, Ca2+/CaM was added to F-actin bundles formed by eEF1A dimer. Ca2+/CaM separated eEF1A dimer to monomer, loosened F-actin bundles and then dispersed actin filaments. Simultaneously, Ca2+/CaM/ eEF1A monomer complexes were dissociated from actin filaments. Therefore, Ca2+/CaM reversibly regulates the F-actin bundling activity of eEF1A.
Collapse
Affiliation(s)
- Fumihide Bunai
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572
| | | | | | | |
Collapse
|
18
|
Hibbert JE, Butt RH, Coorssen JR. Actin is not an essential component in the mechanism of calcium-triggered vesicle fusion. Int J Biochem Cell Biol 2005; 38:461-71. [PMID: 16309945 DOI: 10.1016/j.biocel.2005.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2005] [Accepted: 10/17/2005] [Indexed: 10/25/2022]
Abstract
Actin has been suggested as an essential component in the membrane fusion stage of exocytosis. In some model systems disruption of the actin filament network associated with exocytotic membranes results in a decrease in secretion. Here we analyze the fast Ca2+-triggered membrane fusion steps of regulated exocytosis using a stage-specific preparation of native secretory vesicles (SV) to directly test whether actin plays an essential role in this mechanism. Although present on secretory vesicles, selective pharmacological inhibition of actin did not affect the Ca2+-sensitivity, extent, or kinetics of membrane fusion, nor did the addition of exogenous actin or an anti-actin antibody. There was also no discernable affect on inter-vesicle contact (docking). Overall, the results do not support a direct role for actin in the fast, Ca2+-triggered steps of regulated membrane fusion. It would appear that actin acts elsewhere within the exocytotic cycle.
Collapse
Affiliation(s)
- Julie E Hibbert
- Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alta., Canada T2N 4N1
| | | | | |
Collapse
|
19
|
Gonda K, Numata O. p85 binds to G-actin in a Ca(2+)/calmodulin-dependent manner, thus regulating the initiation of cytokinesis in tetrahymena. Biochem Biophys Res Commun 2002; 292:1098-103. [PMID: 11944929 DOI: 10.1006/bbrc.2002.6777] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tetrahymena p85 is localized to the presumptive division plane before the formation of contractile ring microfilaments. p85 binds to calmodulin in a Ca(2+)-dependent manner and both proteins colocalize to the division furrow. Inhibition of the binding of p85 and Ca(2+)/calmodulin prevents both the localization of p85 and calmodulin to the division plane and the formation of the contractile ring, suggesting that the interaction of p85 and Ca(2+)/calmodulin is important in the formation of the contractile ring. We investigated the mechanisms of the formation of contractile ring, and the relationship among p85, CaM, and actin using co-sedimentation assay: p85 binds to G-actin in a Ca(2+)/calmodulin-dependent manner, but does not bind to F-actin. Therefore, we propose that a Ca(2+)/calmodulin signal and its target protein p85 are cooperatively involved in the recruitment of G-actin to the division plane and the formation of the contractile ring.
Collapse
Affiliation(s)
- Kohsuke Gonda
- Institute of Biological Sciences, University of Tsukuba, Ibaraki, Tsukuba, 305-8572, Japan
| | | |
Collapse
|
20
|
Cline CA, Schatten G. Microfilaments during sea urchin fertilization: fluorescence detection with rhodaminyl phalloidin. GAMETE RESEARCH 2001; 14:277-91. [PMID: 11540931 DOI: 10.1002/mrd.1120140402] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rhodaminyl-labeled phalloidin is used to demonstrate the distribution of microfilaments during fertilization and early development in eggs of the sea urchins Arbacia punctulata and Lytechinus variegatus. The surface of unfertilized eggs have numerous punctate fluorescence sites at which rhodaminyl phalloidin binds, indicating the presence of actin oligomers or polymers. During fertilization this punctate pattern of fluorescence begins to change. Within thirty seconds of insemination, the fertilization cone is first detectable with this technique as an erect structure on the surface of the egg. The fertilization cone grows to a maximum size by 8-9 minutes, and is resorbed by 16 minutes after insemination. The surface of the fertilized egg displays numerous fluorescent fibers by 10 minutes after rather than the punctate fluorescence observed in unfertilized eggs, indicative of the burst of microfilament assembly resulting in microvillar elongation. The elongated microfilaments persist through cytokinesis. Staining is also detected throughout the cortices of unfertilized, fertilized, and cleaving eggs. Cytochalasin E (10 micromoles, 30 min) prevents microfilament elongation and cytokinesis and reduces the cortical staining intensity after fertilization. At cleavage, contractile rings, appearing as narrow equatorial bundles of fibers, have been detected in Lytechinus variegatus as transient structures.
Collapse
Affiliation(s)
- C A Cline
- Department of Biological Science, Florida State University, Tallahassee, USA
| | | |
Collapse
|
21
|
Wu JQ, Bähler J, Pringle JR. Roles of a fimbrin and an alpha-actinin-like protein in fission yeast cell polarization and cytokinesis. Mol Biol Cell 2001; 12:1061-77. [PMID: 11294907 PMCID: PMC32287 DOI: 10.1091/mbc.12.4.1061] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Eukaryotic cells contain many actin-interacting proteins, including the alpha-actinins and the fimbrins, both of which have actin cross-linking activity in vitro. We report here the identification and characterization of both an alpha-actinin-like protein (Ain1p) and a fimbrin (Fim1p) in the fission yeast Schizosaccharomyces pombe. Ain1p localizes to the actomyosin-containing medial ring in an F-actin-dependent manner, and the Ain1p ring contracts during cytokinesis. ain1 deletion cells have no obvious defects under normal growth conditions but display severe cytokinesis defects, associated with defects in medial-ring and septum formation, under certain stress conditions. Overexpression of Ain1p also causes cytokinesis defects, and the ain1 deletion shows synthetic effects with other mutations known to affect medial-ring positioning and/or organization. Fim1p localizes both to the cortical actin patches and to the medial ring in an F-actin-dependent manner, and several lines of evidence suggest that Fim1p is involved in polarization of the actin cytoskeleton. Although a fim1 deletion strain has no detectable defect in cytokinesis, overexpression of Fim1p causes a lethal cytokinesis defect associated with a failure to form the medial ring and concentrate actin patches at the cell middle. Moreover, an ain1 fim1 double mutant has a synthetical-lethal defect in medial-ring assembly and cell division. Thus, Ain1p and Fim1p appear to have an overlapping and essential function in fission yeast cytokinesis. In addition, protein-localization and mutant-phenotype data suggest that Fim1p, but not Ain1p, plays important roles in mating and in spore formation.
Collapse
Affiliation(s)
- J Q Wu
- Department of Biology and Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill 27599, USA
| | | | | |
Collapse
|
22
|
Gonda K, Katoh M, Hanyu K, Watanabe Y, Numata O. Ca(2+)/calmodulin and p85 cooperatively regulate an initiation of cytokinesis in Tetrahymena. J Cell Sci 1999; 112 ( Pt 21):3619-26. [PMID: 10523498 DOI: 10.1242/jcs.112.21.3619] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tetrahymena p85 differs in mobility in two-dimensional SDS-polyacrylamide gel electrophoresis between wild-type and temperature-sensitive cell-division-arrest mutant cdaA1 cell extracts, and is localized to the presumptive division plane before the formation of the division furrow. The p85 contained three identical sequences which show homology to the calmodulin binding site of Ca(2+)/calmodulin dependent protein kinase Type II in Saccharomyces cerevisiae. We found the p85 directly interacts with Tetrahymena calmodulin in a Ca(2+)-dependent manner, using a co-sedimentation assay. We next examined the localization of p85 and calmodulin during cytokinesis using indirect immunofluorescence. The results showed that both proteins colocalize in the division furrow. This is the first observation that calmodulin is localized in the division furrow. Moreover, the direct interaction between p85 and Ca(2+)/calmodulin was inhibited by Ca(2+)/calmodulin inhibitor N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide HCl. When the cells were treated with the drug just before the beginning of cytokinesis, the drug also inhibited the localization of p85 and calmodulin to the division plane, and the formation of the contractile ring and division furrow. Therefore, we propose that the Ca(2+)/calmodulin signal and its target protein p85 cooperatively regulate an initiation of cytokinesis and may be also concerned with the progression of cytokinesis in Tetrahymena.
Collapse
Affiliation(s)
- K Gonda
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | |
Collapse
|
23
|
Gonda K, Nishibori K, Ohba H, Watanabe A, Numata O. Molecular cloning of the gene for p85 that regulates the initiation of cytokinesis in Tetrahymena. Biochem Biophys Res Commun 1999; 264:112-8. [PMID: 10527850 DOI: 10.1006/bbrc.1999.1354] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tetrahymena p85 is localized to the presumptive division plane before division furrow formation; its molecular weight in SDS-polyacrylamide gel electrophoresis differs in wild-type and temperature-sensitive cell-division-arrest mutant cdaA1 cells. At the restrictive temperature, p85 localization and division furrow formation are not observed in cdaA1 cells. In this study, we purified p85 and cloned a wild-type p85 cDNA. The deduced amino acid sequence of p85 was composed mainly of two kinds of repeat sequences. One of these contained regions homologous to a calmodulin-binding site and a part of actin, and the other contained a region homologous to a part of a cdc2 kinase homologue. Moreover, we cloned a cDNA encoding the cdaA1 p85. There was no difference in the predicted amino acid sequences of wild-type and cdaA1 p85, suggesting that the difference in molecular weight between p85 in wild-type and mutant cells is caused by a disorder of posttranslational-modification mechanisms of p85 in the cdaA1 cell.
Collapse
Affiliation(s)
- K Gonda
- Institute of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | | | | | | | | |
Collapse
|
24
|
Okubo MA, Chiba S, Nishikata T, Matsuno A, Hosoya H. Generation and characterization of a monoclonal antibody, mH1, raised against mitotic HeLa cells. Dev Growth Differ 1999; 41:381-9. [PMID: 10466925 DOI: 10.1046/j.1440-169x.1999.00438.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hybridoma cell lines were prepared from spleen cells of mouse immunized with mitotic HeLa cells. A monoclonal antibody (mH1), which intensively reacted with cleavage furrows of dividing HeLa cells in immunofluorescence, was obtained. In interphase, this antibody diffusely stained whole HeLa cells. Immunoelectron microscopy showed that mH1 antigens were localized at microvillus projections at the surface of dividing HeLa cells, but definite localization of that antigen was not observed in interphasic cells. Immunoblot analysis showed that mH1 is reactive to 42-kDa and 130-kDa components. Further, the 42-kDa component was identified as a gamma-actin homolog by N-terminal amino acid sequence analysis.
Collapse
Affiliation(s)
- M A Okubo
- Department of Biological Science, Faculty of Science, Hiroshima University, Higashi-Hiroshima, Japan
| | | | | | | | | |
Collapse
|
25
|
Luikart S, Wahl D, Hinkel T, Masri M, Oegema T. A fragment of alpha-actinin promotes monocyte/macrophage maturation in vitro. Exp Hematol 1999; 27:337-44. [PMID: 10029173 DOI: 10.1016/s0301-472x(98)00020-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Conditioned media (CM) from cultures of HL-60 myeloid leukemia cells grown on extracellular bone marrow matrix contains a factor that induces macrophage-like maturation of HL-60 cells. This factor was purified from the CM of HL-60 cells grown on bone marrow stroma by ammonium sulfate precipitation, then sequential chromatography on DEAE, affi-gel blue affinity, gel exclusion, and wheat germ affinity columns, followed by C-4 reverse phase HPLC, and SDS-PAGE. The maturation promoting activity of the CM was identified in a single 31 kD protein. Amino acid sequence analysis of four internal tryptic peptides of this protein confirmed significant homology with amino acid residues 48-60, 138-147, 215-220, and 221-236 of human cytoskeletal alpha-actinin. An immunoaffinity purified rabbit polyclonal anti-chicken alpha-actinin inhibited the activity of HL-60 conditioned media. A 27 kD amino-terminal fragment of alpha-actinin produced by thermolysin digestion of chicken gizzard alpha-actinin, but not intact alpha-actinin, had maturation promoting activity on several cell types, including blood monocytes, as measured by lysozyme secretion and tartrate-resistant acid phosphatase staining. We conclude that an extracellular alpha-actinin fragment can promote monocyte/macrophage maturation. This represents the first example of a fragment of a cytoskeletal component, which may be released during tissue remodeling and repair, playing a role in phagocyte maturation.
Collapse
Affiliation(s)
- S Luikart
- Veterans Affairs Medical Center, Department of Medicine, University of Minnesota, Minneapolis 55417, USA
| | | | | | | | | |
Collapse
|
26
|
Tanaka K, Itoh K. Reorganization of stress fiber-like structures in spreading platelets during surface activation. J Struct Biol 1998; 124:13-41. [PMID: 9931271 DOI: 10.1006/jsbi.1998.4051] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alpha-Actinin and myosin were associated into reorganized actin cable networks and partly formed stress fiber-like structures in platelets during surface activation. Double-label immunofluorescence staining using antibodies against alpha-actinin and platelet myosin heavy chain (MHC) showed that alpha-actinin and myosin were colocalized in the cell center at the early stage of activation and dynamically redistributed with shape change. In the later stage, two proteins were colocalized around the granulomeres. alpha-Actinin was also seen beneath the surface membrane while myosin was not. Occasionally, both proteins were segregated, revealed granular staining in the cell body of flattened platelets and often aligned irregular alternate arrangement in the actin cables. Immunoelectron microscopy (immunogold) employing antibodies against MHC and myosin light chain (MLC) demonstrated that myosin, associated with actin cytoskeleton was precisely filamentous (328 nm in average length, 15 nm in width) and bipolar with a central bare zone, since MLCs were located at both ends. Myosin formed a cluster composed of several filaments with repeating alignment, suggesting each cluster corresponded to the granular staining pattern of immunofluorescence. These observations indicated that the organization of alpha-actinin and myosin in actin cables in activated platelets resembled that in stress fibers in various cultured cells.
Collapse
Affiliation(s)
- K Tanaka
- Research Institute, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3 Nakamichi, Osaka, Higashinari-ku, 537-8511, Japan
| | | |
Collapse
|
27
|
Yokota E, Shimmen K. Actin-bundling protein isolated from pollen tubes of lily. Biochemical and immunocytochemical characterization. PLANT PHYSIOLOGY 1998; 116:1421-9. [PMID: 9536060 PMCID: PMC35050 DOI: 10.1104/pp.116.4.1421] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A 135-kD actin-bundling protein was purified from pollen tubes of lily (Lilium longiflorum) using its affinity to F-actin. From a crude extract of the pollen tubes, this protein was coprecipitated with exogenously added F-actin and then dissociated from F-actin by treating it with high-ionic-strength solution. The protein was further purified sequentially by chromatography on a hydroxylapatite column, a gel-filtration column, and a diethylaminoethyl-cellulose ion-exchange column. In the present study, this protein is tentatively referred to as P-135-ABP (Plant 135-kD Actin-Bundling Protein). By the elution position from a gel-filtration column, we estimated the native molecular mass of purified P-135-ABP to be 260 kD, indicating that it existed in a dimeric form under physiological conditions. This protein bound to and bundled F-actin prepared from chicken breast muscle in a Ca2+-independent manner. The binding of 135-P-ABP to actin was saturated at an approximate stoichiometry of 26 actin monomers to 1 dimer of P-135-ABP. By transmission electron microscopy of thin sections, we observed cross-bridges between F-actins with a longitudinal periodicity of 31 nm. Immunofluorescence microscopy using rhodamine-phalloidin and antibodies against the 135-kD polypeptide showed that P-135-ABP was colocalized with bundles of actin filaments in lily pollen tubes, leading us to conclude that it is the factor responsible for bundling the filaments.
Collapse
Affiliation(s)
- E Yokota
- Department of Life Science, Faculty of Science, Himeji Institute of Technology, Harima Science Park City, Hyogo 678-12, Japan
| | | |
Collapse
|
28
|
Carroll DJ, Ramarao CS, Mehlmann LM, Roche S, Terasaki M, Jaffe LA. Calcium release at fertilization in starfish eggs is mediated by phospholipase Cgamma. J Cell Biol 1997; 138:1303-11. [PMID: 9298985 PMCID: PMC2132564 DOI: 10.1083/jcb.138.6.1303] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/1997] [Revised: 07/07/1997] [Indexed: 02/05/2023] Open
Abstract
Although inositol trisphosphate (IP3) functions in releasing Ca2+ in eggs at fertilization, it is not known how fertilization activates the phospholipase C that produces IP3. To distinguish between a role for PLCgamma, which is activated when its two src homology-2 (SH2) domains bind to an activated tyrosine kinase, and PLCbeta, which is activated by a G protein, we injected starfish eggs with a PLCgamma SH2 domain fusion protein that inhibits activation of PLCgamma. In these eggs, Ca2+ release at fertilization was delayed, or with a high concentration of protein and a low concentration of sperm, completely inhibited. The PLCgammaSH2 protein is a specific inhibitor of PLCgamma in the egg, since it did not inhibit PLCbeta activation of Ca2+ release initiated by the serotonin 2c receptor, or activation of Ca2+ release by IP3 injection. Furthermore, injection of a PLCgamma SH2 domain protein mutated at its phosphotyrosine binding site, or the SH2 domains of another protein (the phosphatase SHP2), did not inhibit Ca2+ release at fertilization. These results indicate that during fertilization of starfish eggs, activation of phospholipase Cgamma by an SH2 domain-mediated process stimulates the production of IP3 that causes intracellular Ca2+ release.
Collapse
Affiliation(s)
- D J Carroll
- Department of Physiology, University of Connecticut Health Center, Farmington, Connecticut 06032, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Furukawa R, Fechheimer M. The structure, function, and assembly of actin filament bundles. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 175:29-90. [PMID: 9203356 DOI: 10.1016/s0074-7696(08)62125-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cellular organization, function, and molecular composition of selected biological systems with prominent actin filament bundles are reviewed. An overall picture of the great variety of functions served by actin bundles emerges from this overview. A unifying theme is that the actin cross-linking proteins are conserved throughout the eukaryotic kingdom and yet assembled in a variety of combinations to produce actin bundles of differing functions. Mechanisms of actin bundle formation in vitro are considered illustrating the variety of physical and chemical driving forces in this exceedingly complex process. Our limited knowledge regarding the formation of actin filament bundles in vivo is contrasted with the elegant biophysical studies performed in vitro but nonetheless reveals that interactions with membranes, nucleation sites, and other organizational components must contribute to formation of actin bundles in vivo.
Collapse
Affiliation(s)
- R Furukawa
- Department of Cellular Biology, University of Georgia, Athens 30602, USA
| | | |
Collapse
|
30
|
CIAPA BRIGITTE, DE NADAI CÉLINE. Role of integrins and polyphosphoinositide metabolism during fertilization in sea urchin egg and hamster oocyte. INVERTEBR REPROD DEV 1996. [DOI: 10.1080/07924259.1996.9672535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Becker KA, Hart NH. The cortical actin cytoskeleton of unactivated zebrafish eggs: spatial organization and distribution of filamentous actin, nonfilamentous actin, and myosin-II. Mol Reprod Dev 1996; 43:536-47. [PMID: 9052946 DOI: 10.1002/(sici)1098-2795(199604)43:4<536::aid-mrd17>3.0.co;2-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Actin and nonmuscle myosin heavy chain (myosin-II) have been identified and localized in the cortex of unfertilized zebrafish eggs using techniques of SDS-polyacrylamide gel electrophoresis, immunoblotting, and fluorescence microscopy. Whole egg mounts, egg fragments, cryosections, and cortical membrane patches probed with rhodamine phalloidin, fluorescent DNase-I, or anti-actin antibody showed the cortical cytoskeleton to contain two domains of actin: filamentous and nonfilamentous. Filamentous actin was restricted to microplicae and the cytoplasmic face of the plasma membrane where it was organized as an extensive meshwork of interconnecting filaments. The cortical cytoplasm deep to the plasma membrane contained cortical granules and sequestered actin in nonfilamentous form. The cytoplasmic surface (membrane?) of cortical granules displayed an enrichment of nonfilamentous actin. An antibody against human platelet myosin was used to detect myosin-II in whole mounts and egg fragments. Myosin-II colocalized with both filamentous and nonfilamentous actin domains of the cortical cytoskeleton. It was not determined if egg myosin was organized into filaments. Similar to nonfilamentous actin, myosin-II appeared to be concentrated over the surface of cortical granules where staining was in the form of patches and punctate foci. The identification of organized and interconnected domains of filamentous actin, nonfilamentous actin, and myosin-II provides insight into possible functions of these proteins before and after fertilization.
Collapse
Affiliation(s)
- K A Becker
- Department of Biological Sciences, Nelson Biological Laboratory, Rutgers University, Piscataway, New Jersey 08855-1059, USA
| | | |
Collapse
|
32
|
de Nadai C, Fenichel P, Donzeau M, Epel D, Ciapa B. Characterisation and role of integrins during gametic interaction and egg activation. ZYGOTE 1996; 4:31-40. [PMID: 8735368 DOI: 10.1017/s0967199400002860] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
It has recently been proposed that some of the processes induced by fertilisation in mammals may be mediated by integrins. By performing immunofluorescence labelling and Western blots with antibodies directed against some of the alpha and beta subunits of integrins, we show here the presence of some of these proteins in human and hamster oocytes. Among them, alpha 2 and alpha 5 were also present on in vitro preparations of sea urchin egg cortices. In addition, antibodies raised against these two proteins were the most effective at inhibiting attachment and fusion of human spermatozoa with hamster oocytes. We suggest that alpha 2 and alpha 5 integrin chains may be common mediators in adhesion-fusion mechanisms triggered by fertilisation. Using similar techniques, we show that eggs are rich in three cytoskeletal proteins known to be linked to the beta chain of integrins: talin, vinculin and alpha-actinin. Moreover, we found that talin and alpha-actinin were associated with proteins phosphorylated on tyrosine after fertilisation in sea urchin eggs. We suggest that integrins might be involved during fertilisation and trigger egg activation through cytoskeletal structures.
Collapse
Affiliation(s)
- C de Nadai
- Faculté de Médecine, Groupe de Recherche Sur l'Interaction Gamétique, Nice, France
| | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- E M Bonder
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102, USA
| | | |
Collapse
|
34
|
Kreimer DI. Cytoplasm calcium-binding proteins of germ cells and embryos of the sea urchin. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART A, PHYSIOLOGY 1995; 110:95-105. [PMID: 7704628 DOI: 10.1016/0300-9629(94)00161-l] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Synchronous, demonstrative, easily reproducible fertilization with the following embryonic development makes the process in the sea urchin extremely attractive for studying many biological enigmas. In particular, germ and embryonic cells of the sea urchin present a wide opportunity for investigating different associated phenomena launched by an increase in concentration of Ca2+ in cells ([Ca2+]i). Ca2+ ions participate in the activation of diverse processes of respiration and sperm motility (Shapiro et al., 1990; Brokaw, 1991), chemotaxis of spermatozoa to components of the egg jelly (Ward et al., 1985), acrosomal reaction (Trimmer et al., 1986; Shapiro et al., 1990), cortical reaction, formation of the fertilization membrane (Sasaki, 1984; Sardet and Chang, 1987), cellular division in the embryo (Poenie et al., 1985; Silver, 1986; Whitaker and Patel, 1990), their adhesion (McClay and Matranga, 1986), differentiation and formation of spicules (Mitsunaga et al., 1988) and metamorphosis (Carpenter et al., 1984). The present review combines information on the function of calcium-binding proteins and their targets, calmodulin regulation of NAD-kinase, exocytosis of cortical granules, Ca(2+)- and calmodulin-dependent protein phosphatase, Ca(2+)-dependent protein phosphorylation, regulation of ion-exchanger in the germ and embryonic cells as well as Ca(2+)- and calmodulin control of sperm motility in sea urchins.
Collapse
Affiliation(s)
- D I Kreimer
- Laboratory of Cellular Physiology and Pharmacology, Institute of Marine Biology, Russian Academy of Sciences, Vladivostok
| |
Collapse
|
35
|
Bachman ES, McClay DR. Characterization of moesin in the sea urchin Lytechinus variegatus: redistribution to the plasma membrane following fertilization is inhibited by cytochalasin B. J Cell Sci 1995; 108 ( Pt 1):161-71. [PMID: 7738093 DOI: 10.1242/jcs.108.1.161] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have investigated the distribution and function of an ezrin-radixin-moesin-like (ERM) molecule in the sea urchin. A sea urchin homologue of moesin was cloned that shares 75% amino acid similarity in the conserved N-terminal region to other moesin molecules. A 6.3 kb message is transcribed late in embryogenesis and is present in adult tissues. Polyclonal antibodies were generated to proteins expressed by a bacterial expression vector, and affinity purified. These antibodies recognize a single 75 kDa protein that is present throughout development in approximately equal abundance, and specifically they immuno-precipitate a single protein. We show by immunolocalization that SUmoesin has two predominant patterns during development. First, SUmoesin is rapidly redistributed after fertilization from a location throughout the egg cytoplasm to a location in the egg cortex. Later in embryogenesis, SUmoesin is localized to the apical ends of cells in the regions of cell-cell junctions. We show that SUmoesin is present in actin-rich regions of the embryo. Finally, we show that the location of SUmoesin requires an intact actin-based cytoskeleton. SUmoesin fails to localize to the plasma membrane after fertilization in the presence of cytochalasin B. Furthermore, SUmoesin loses its apical position in the region of cell-cell junctions in the presence of cytochalasin B in later stages of embryogenesis. This effect is reversible, and the microtubule inhibitor colchicine has no effect. These results show that SUmoesin becomes associated with apical plasma membrane structures early in development, and that SUmoesin is both coincident with actin and requires the assembly of actin filaments to maintain its localization.
Collapse
|
36
|
Walker GR, Kane R, Burgess DR. Isolation and characterization of a sea urchin zygote cortex that supports in vitro contraction and reactivation of furrowing. J Cell Sci 1994; 107 ( Pt 8):2239-48. [PMID: 7983183 DOI: 10.1242/jcs.107.8.2239] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The isolation of the cortex of the sea urchin blastomere by detergent lysis was explored with the aim of analyzing components important in the structure and function of the cortical cytoskeleton, and their relationship to such phenomena as contraction. Buffered EGTA medium supplemented with isotonic glycerol and with magnesium, at a level close to the reported internal cellular concentration, yields stable cytoskeletal cortices that retain their spherical shape. Cortices prepared this way contain actin, myosin, fascin and spectrin, components normally associated with the cortical cytoskeleton in a similar distribution to that in intact zygotes. They retain the organized cortical filamentous structure, including the actin-fascin bundles that form cores of microvilli. ATP and NaCl caused changes in cortical shape, described as either contraction or expansion, respectively. Spectrin, but not myosin, was partially extracted by NaCl, resulting in expansion of the cortex that suggests a role for spectrin in maintenance of cortical structure. ATP (but not ADP nor ATP gamma S), which caused the partial removal of myosin and spectrin, led to the contraction of the cortex, consistent with a role for myosin in cortical tension. In cortices isolated from dividing eggs, the zygotes retained their cleavage furrows and ATP induced continuation of furrow progression. This preparation appears to be a useful in vitro model for cytokinesis.
Collapse
Affiliation(s)
- G R Walker
- Department of Biological Sciences, University of Pittsburgh, PA 15260
| | | | | |
Collapse
|
37
|
Smith LC, Harrington MG, Britten RJ, Davidson EH. The sea urchin profilin gene is specifically expressed in mesenchyme cells during gastrulation. Dev Biol 1994; 164:463-74. [PMID: 8045349 DOI: 10.1006/dbio.1994.1216] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Eggs and embryos of the purple sea urchin (Strongylocentrotus purpuratus) contain profilin that is partly supplied from maternal sources and partly produced by the gastrula. The maternal profilin protein content is about 13 microM and it persists in the embryo at least through gastrulation. Transcript quantitation from probe excess titrations show that very few profilin gene transcripts are present in the embryo during cleavage, but that they increase at the onset of gastrulation. By in situ hybridization, the newly synthesized profilin transcripts are localized in mesenchyme cells. Profilin gene expression increases when mesenchyme cells initiate migration and filopodial extension and retraction. We show that there are three isoforms of maternal profilin protein produced from the single copy gene during oogenesis. However, the blastula stage embryo only produces the major isoform, whereas the acidic isoform is produced in the early stages of gastrulation and the basic isoform appears by the end of gastrulation. Based on transcript prevalence and protein production rates, our calculations indicate that the amount of new protein produced in the mesenchyme cells in 12 hr is at maximum < 2% of that supplied from maternal sources. Because of the large amount of maternally supplied profilin present in the egg and embryo, we suggest that it may be used in the cytokinetic processes of cleavage. Alternatively, because of the small amount of embryonically produced profilin, we suggest that it may function in the cytoskeletal shape changes required for filopodial extension and motility in the mesenchyme cells during gastrulation.
Collapse
Affiliation(s)
- L C Smith
- Division of Biology, California Institute of Technology, Pasadena 91125
| | | | | | | |
Collapse
|
38
|
Imamura M, Sakurai T, Ogawa Y, Ishikawa T, Goto K, Masaki T. Molecular cloning of low-Ca(2+)-sensitive-type non-muscle alpha-actinin. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 223:395-401. [PMID: 8055908 DOI: 10.1111/j.1432-1033.1994.tb19006.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We previously reported the purification and characterization of a novel non-muscle alpha-actinin from chicken lung [Imamura, M. & Masaki, T, (1992) J. Biol. Chem. 267, 25927-25933]. The Ca2+ sensitivity of the lung alpha-actinin for the interaction with polymerized actin (F-actin) was much lower than those of the other reported non-muscle alpha-actinins. Here, we isolated a cDNA clone encoding the novel alpha-actinin by screening a chicken lung lambda g11 cDNA library with antibody specific for the low-Ca(2+)-sensitive alpha-actinin. The deduced amino acid sequence of the lung alpha-actinin showed 76%, 82% and 83% identity to those of chicken skeletal muscle, smooth-muscle and fibroblast-type alpha-actinin, respectively. Marked difference in the structure between the lung-type and the other alpha-actinins was found in the extreme NH2-terminal and in the COOH-terminal half; in the third and fourth regions of four spectrin-like repeats, and in two Ca(2+)-binding EF-hand consensus regions. The NH2-terminal-side EF-hand contained a notable defect in one of the five oxygen-containing amino acid side chains involved in chelating Ca2+, suggesting that the lower Ca2+ sensitivity of the lung alpha-actinin is ascribable to this defect. Northern blot analysis showed that the expression pattern of lung-type alpha-actinin mRNA in various non-muscle tissues differed from that of the other known non-muscle-type (fibroblast-type) alpha-actinin. The present results clearly demonstrate the existence of two structurally and functionally different types of non-muscle alpha-actinin; high-Ca(2+)-sensitive-type (NM1) and low-Ca(2+)-sensitive-type (NM2) alpha-actinin.
Collapse
Affiliation(s)
- M Imamura
- Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Mabuchi I. Cleavage furrow: timing of emergence of contractile ring actin filaments and establishment of the contractile ring by filament bundling in sea urchin eggs. J Cell Sci 1994; 107 ( Pt 7):1853-62. [PMID: 7983152 DOI: 10.1242/jcs.107.7.1853] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cleavage furrow formation at the first cell division of sea urchin and sand dollar eggs was investigated in detail by fluorescence staining of actin filaments with rhodamine-phalloidin of either whole eggs or isolated egg cortices. Cortical actin filaments were clustered at anaphase and then the clusters became fibrillar at the end of anaphase. The timing when the contractile ring actin filaments appear was precisely determined in the course of mitosis: accumulation of the contractile ring actin filaments at the equatorial cell cortex is first noticed at the beginning of telophase (shortly before furrow formation), when the chromosomal vesicles are fusing with each other. The accumulated actin filaments were not well organized at the early stage but were organized into parallel bundles as the furrowing progressed. The bundles were finally fused into a tightly packed filament belt. Wheat germ agglutinin (WGA)-binding sites were distributed on the surface of the egg in a manner similar to the actin filaments after anaphase. The WGA-binding sites became accumulated in the contractile ring together with the contractile ring actin filaments, indicating an intimate relationship between these sites and actin filament-anchoring sites on the plasma membrane. Myosin also appeared in the contractile ring together with the actin filaments. The ‘cleavage stimulus’, a signal hypothesized by Rappaport (reviewed by R. Rappaport (1986) Int. Rev. Cytol. 105, 245–281) was suggested to induce aggregation or bundling of the actin filaments in the cortical layer.
Collapse
Affiliation(s)
- I Mabuchi
- Department of Biology, College of Arts and Sciences, University of Tokyo, Japan
| |
Collapse
|
40
|
Furukawa R, Fechheimer M. Differential localization of alpha-actinin and the 30 kD actin-bundling protein in the cleavage furrow, phagocytic cup, and contractile vacuole of Dictyostelium discoideum. CELL MOTILITY AND THE CYTOSKELETON 1994; 29:46-56. [PMID: 7820857 DOI: 10.1002/cm.970290105] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Dictyostelium discoideum amoebae possess eight different actin crosslinking proteins. Immunofluorescence microscopy has been employed in this study to investigate the intracellular localization of two of these proteins, alpha-actinin and the 30 kD actin-bundling protein, to investigate whether they are redundant, or alternatively, make distinct contributions to cell structure and movement. The 30 kD protein is concentrated in the cleavage furrow of dividing cells, while enhanced staining for alpha-actinin is not apparent in this region. By contrast, alpha-actinin is concentrated around the contractile vacuole, while the 30 kD protein is not preferentially localized in the area of this organelle. Association of alpha-actinin with the contractile vacuole was confirmed by colocalization with calmodulin, a marker of this organelle. There are temporal differences in the localization of the 30 kD protein and alpha-actinin during phagocytosis. The 30 kD protein is localized in the phagocytic cup, but disassociates from phagosomes soon after internalization [Furukawa et al., 1992: Protoplasma 169: 18-27]. alpha-actinin enters the phagocytic cup after the 30 kD protein, and remains associated with the phagosome after the 30 kD protein has disassociated. These results support the hypothesis that alpha-actinin and the 30 kD protein play distinct roles in cell structure and movement in Dictyostelium.
Collapse
Affiliation(s)
- R Furukawa
- Department of Zoology, University of Georgia, Athens 30602
| | | |
Collapse
|
41
|
Imamura M, Masaki T. A novel nonmuscle alpha-actinin. Purification and characterization of chicken lung alpha-actinin. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35697-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
42
|
Tokuue Y, Goto S, Imamura M, Obinata T, Masaki T, Endo T. Transfection of chicken skeletal muscle alpha-actinin cDNA into nonmuscle and myogenic cells: dimerization is not essential for alpha-actinin to bind to microfilaments. Exp Cell Res 1991; 197:158-67. [PMID: 1720388 DOI: 10.1016/0014-4827(91)90418-t] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
alpha-Actinins from striated muscle, smooth muscle, and nonmuscle cells are distinctive in their primary structure and Ca2+ sensitivity for the binding to F-actin. We isolated alpha-actinin cDNA clones from a cDNA library constructed from poly(A)+ RNA of embryonic chicken skeletal muscle. The amino acid sequence deduced from the nucleotide sequence of these cDNAs was identical to that of adult chicken skeletal muscle alpha-actinin. To examine whether the differences in the structure and Ca2+ sensitivity of alpha-actinin molecules from various tissues are responsible for their tissue-specific localization, the cDNA cloned into a mammarian expression vector was transfected into cell lines of mouse fibroblasts and skeletal muscle myoblasts. Immunofluorescence microscopy located the exogenous alpha-actinin by use of an antibody specific for skeletal muscle alpha-actinin. When the protein was expressed at moderate levels, it coexisted with endogenous alpha-actinin in microfilament bundles in the fibroblasts or myoblasts and in Z-bands of sarcomeres in the myotubes. These results indicate that Ca2+ sensitivity or insensitivity of the molecules does not determine the tissue-specific localization. In the cells expressing high levels of the exogenous protein, however, the protein was diffusely present and few microfilament bundles were found. Transfection with cDNAs deleted in their 3' portions showed that the expressed truncated proteins, which contained the actin-binding domain but lacked the domain responsible for dimerization, were able to localize, though less efficiently in microfilament bundles. Thus, dimer formation is not essential for alpha-actinin molecules to bind to microfilaments.
Collapse
Affiliation(s)
- Y Tokuue
- Department of Biology, Chiba University, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Sato N, Yonemura S, Obinata T, Tsukita S, Tsukita S. Radixin, a barbed end-capping actin-modulating protein, is concentrated at the cleavage furrow during cytokinesis. J Biophys Biochem Cytol 1991; 113:321-30. [PMID: 1707055 PMCID: PMC2288944 DOI: 10.1083/jcb.113.2.321] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Radixin is a barbed end-capping actin-modulating protein which was first identified in isolated cell-to-cell adherens junctions from rat liver (Tsukita, Sa., Y. Hieda, and Sh. Tsukita, 1989. J. Cell Biol. 108:2369-2382). In the present study, we have analyzed the distribution of radixin in dividing cells. For this purpose, an mAb specific for radixin was obtained using chicken gizzard radixin as an antigen. By immunofluorescence microscopy with this mAb and a polyclonal antibody obtained previously, it was clearly shown in rat fibroblastic cells (3Y1 cells) that radixin was highly concentrated at the cleavage furrow during cytokinesis. Radixin appeared to accumulate rapidly at the cleavage furrow at the onset of furrowing, continued to be concentrated at the furrow during anaphase and telophase, and was finally enriched at the midbody. This concentration of radixin at the cleavage furrow was detected in all other cultured cells we examined: bovine epithelial cells (MDBK cells), mouse myeloma cells (P3 cells), rat kangaroo Ptk2 cells, mouse teratocarcinoma cells, and chicken fibroblasts. Furthermore, it became clear that the epitope for the mAb was immunofluorescently masked in the cell-to-cell adherens junctions. Together, these results lead us to conclude that radixin is present in the undercoat of the cell-to-cell adherens junctions and that of the cleavage furrow, although their respective molecular architectures are distinct. The possible roles of radixin at the cleavage furrow are discussed with special reference to the molecular mechanism of the actin filament-plasma membrane interaction at the furrow.
Collapse
Affiliation(s)
- N Sato
- Department of Information Physiology, National Institute for Physiological Sciences, Aichi, Japan
| | | | | | | | | |
Collapse
|
44
|
Youssoufian H, McAfee M, Kwiatkowski DJ. Cloning and chromosomal localization of the human cytoskeletal alpha-actinin gene reveals linkage to the beta-spectrin gene. Am J Hum Genet 1990; 47:62-72. [PMID: 2349951 PMCID: PMC1683765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We report the cloning and characterization of a full-length cDNA encoding the human cytoskeletal isoform of alpha-actinin (alpha A), a ubiquitous actin-binding protein that shares structural homology with spectrin and dystrophin. The gene encodes 891 amino acids with 96%-98% sequence identity at the amino acid level to chicken nonskeletal muscle alpha A. Transient expression in COS cells produces a protein of approximately 104 kD that comigrates on SDS-PAGE with native alpha A. This alpha A gene is localized to chromosome 14q22-q24 by somatic cell hybrid and in situ hybridization analyses. Pulsed-field gel analysis of human genomic DNA revealed identically sized fragments when cDNA probes for alpha A and erythroid beta-spectrin were used; the latter gene has been previously localized to chromosome 14, band q22. These observations indicate that the genes for cytoskeletal alpha A and beta-spectrin are, in all likelihood, closely physically linked and that, in accordance with their similar structural features, they arose by partial duplication of an ancestral gene.
Collapse
Affiliation(s)
- H Youssoufian
- Whitehead Institute for Biomedical Research, Cambridge, MA
| | | | | |
Collapse
|
45
|
Affiliation(s)
- I Mabuchi
- Department of Biology, College of Arts and Sciences, University of Tokyo, Japan
| |
Collapse
|
46
|
Bonder EM, Fishkind DJ, Cotran NM, Begg DA. The cortical actin-membrane cytoskeleton of unfertilized sea urchin eggs: analysis of the spatial organization and relationship of filamentous actin, nonfilamentous actin, and egg spectrin. Dev Biol 1989; 134:327-41. [PMID: 2663573 DOI: 10.1016/0012-1606(89)90105-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Whole mounts, cryosections, and isolated cortices of unfertilized sea urchin eggs were probed with fluorescent phalloidin, anti-actin and anti-egg spectrin antibodies to investigate the organizational state of the cortically associated actin-membrane cytoskeleton. Filamentous actin and egg spectrin were localized to the plasma membrane, within microvillar and nonmicrovillar domains. The nonmicrovillar filamentous actin was located immediately subjacent to the microvilli forming an extensive interconnecting network along the inner surface of the plasma membrane. The organization of this filamentous actin network precisely correlated with the positioning of the underlying cortical granules. The cortical cytoplasm did not contain any detectable filamentous actin, but instead contained a sequestered domain of nonfilamentous actin. Spectrin was localized to the cytoplasmic surface of the plasma membrane with concentrated foci co-localized with the filamentous actin present in microvilli. Spectrin was also observed to coat the surfaces of cortical granules as well as other populations of intracellular vesicles. On the basis of light microscopic morphology, intracellular distribution, and co-isolation with the egg cortex, some of these spectrin-coated organelles represent acidic vesicles. Identification of an elaborate organization of inter-related domains of actin (filamentous and nonfilamentous) and spectrin forming the cortical membrane cytoskeleton provides insight into the fundamental mechanisms for early membrane restructuring during embryogenesis. Additionally, the localization of spectrin to the surface of intracellular vesicles is indicative of its newly identified functional roles in membrane trafficking, membrane biogenesis and cellular differentiation.
Collapse
Affiliation(s)
- E M Bonder
- Department of Anatomy and Cellular Biology, Harvard Medical School, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
47
|
Usui N, Yoneda M. Regional Response to Cytochalasin B of the Equatorial Cell Cortex in Sea-Urchin Eggs during the First Mitosis. (surface architecture/cortical microfilaments/cytochalasin B/sea-urchin egg/first mitosis). Dev Growth Differ 1989. [DOI: 10.1111/j.1440-169x.1989.00257.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Davison MD, Baron MD, Critchley DR, Wootton JC. Structural analysis of homologous repeated domains in alpha-actinin and spectrin. Int J Biol Macromol 1989; 11:81-90. [PMID: 2489070 DOI: 10.1016/0141-8130(89)90047-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The amino acid sequences of chick and slime mould alpha-actinin each contain four repeats of approximately 122 residues. These repeats are homologous to the 18-22 repeats, each of approximately 106 residues, found in the alpha and beta subunits of spectrin and fodrin, and to the multiple repeats of approximately 110 residues found in the Duchenne muscular dystrophy protein (dystrophin). The repeats correspond to the elongated rod-like portion of these molecules. We present a multiple sequence alignment of 21 repeats from this superfamily (8 alpha-actinin and 13 spectrin/fodrin), based on optimal pairwise alignments, from which a characteristic consensus pattern of amino acid types is deduced. Trp 46 is invariant in all but one repeat, and physicochemical classes of amino acids are conserved at 25 other positions. Secondary structure prediction on both the alpha-actinin and spectrin repeats taken together with the distribution of proline residues in the sequences, strongly suggest that each repeated domain consists of a four-helix structure. Our predictions differ significantly from previous three-helix models based on analyses of fewer sequences. To determine possible interdomain regions, sites of limited proteolysis of the native chick alpha-actinin dimer were determined and located in the amino acid sequence. The majority of these sites were in corresponding positions in different repeats within a segment predicted as a long helix. We propose a model, consistent with the overall dimensions of the rod-like portions of the molecules, in which these long, probably interrupted helices, link adjacent domains.
Collapse
Affiliation(s)
- M D Davison
- Department of Biochemistry, University of Leicester, UK
| | | | | | | |
Collapse
|
49
|
Maekawa S, Toriyama M, Sakai H. Tropomyosin in the sea urchin egg cortex. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 178:657-62. [PMID: 2912726 DOI: 10.1111/j.1432-1033.1989.tb14495.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Tropomyosin was purified from the Triton-treated cortex fraction of fertilized sea urchin egg. Egg tropomyosin showed characteristics typical of nonmuscle tropomyosins such as low molecular mass, short periodicity of Mg2+-paracrystals, low lysine/arginine ratio, high Mg2+ requirement in binding to F-actin, in addition to the properties of all tropomyosins, namely, stability to high temperature, anomalous migration of SDS/urea gel, dissociation from F-actin under high ionic conditions and very acidic isoelectric point. Co-sedimentation assay of egg tropomyosin with actin in the presence of the previously purified high-molecular-mass actin binding protein (260-kDa protein) showed that these two proteins bind to actin filaments in a non-competitive manner. This suggested that both the proteins play a cooperative role in the formation of actin-filament-based cytoskeletal structure in the cortex.
Collapse
Affiliation(s)
- S Maekawa
- Department of Biophysics and Biochemistry, Faculty of Science, University of Tokyo, Japan
| | | | | |
Collapse
|
50
|
Arimura C, Suzuki T, Yanagisawa M, Imamura M, Hamada Y, Masaki T. Primary structure of chicken skeletal muscle and fibroblast alpha-actinins deduced from cDNA sequences. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 177:649-55. [PMID: 3197725 DOI: 10.1111/j.1432-1033.1988.tb14419.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The complete 897-amino-acid sequence of chicken skeletal muscle alpha-actinin and the 856-amino-acid sequence (97% of the entire sequence) of chicken fibroblast alpha-actinin have been determined by cloning and sequencing the cDNAs. Genomic Southern analysis with the cDNA sequences shows that skeletal and fibroblast alpha-actinins are encoded by separate single-copy genes. RNA blot analyzes show that the skeletal alpha-actinin gene is expressed in the pectoralis muscle and that the fibroblast gene is expressed in the gizzard smooth muscle as well as in the fibroblast. The deduced skeletal alpha-actinin molecule has a calculated Mr of 104 x 10(3), and each alpha-actinin can be divided into three domains: (1) the NH2-terminal highly conserved actin-binding domain, which shows similarity to the product of the Duchenne's muscular dystrophy locus; (2) the middle rod-shaped dimer-forming domain, which contains the spectrin-type repeat units; and (3) the COOH-terminal two EF-hand consensus regions. Comparison of the skeletal alpha-actinin sequence with the fibroblast and smooth muscle alpha-actinin sequences demonstrated that the EF-hand structure was conserved in all of these alpha-actinin sequences, despite the reported variability of the Ca2+ sensitivities of the actin-gelation by various alpha-actinin isoforms.
Collapse
Affiliation(s)
- C Arimura
- Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|