1
|
Wellman SM, Forrest AM, Douglas MM, Subbaraman A, Zhang G, Kozai TDY. Dynamic changes in the structure and function of brain mural cells around chronically implanted microelectrodes. Biomaterials 2025; 315:122963. [PMID: 39547137 DOI: 10.1016/j.biomaterials.2024.122963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/25/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Integration of neural interfaces with minimal tissue disruption in the brain is ideal to develop robust tools that can address essential neuroscience questions and combat neurological disorders. However, implantation of intracortical devices provokes severe tissue inflammation within the brain, which requires a high metabolic demand to support a complex series of cellular events mediating tissue degeneration and wound healing. Pericytes, peri-vascular cells involved in blood-brain barrier maintenance, vascular permeability, waste clearance, and angiogenesis, have recently been implicated as potential perpetuators of neurodegeneration in brain injury and disease. While the intimate relationship between pericytes and the cortical microvasculature have been explored in other disease states, their behavior following microelectrode implantation, which is responsible for direct blood vessel disruption and dysfunction, is currently unknown. Using two-photon microscopy we observed dynamic changes in the structure and function of pericytes during implantation of a microelectrode array over a 4-week implantation period. Pericytes respond to electrode insertion through transient increases in intracellular calcium and underlying constriction of capillary vessels. Within days following the initial insertion, we observed an influx of new, proliferating pericytes which contribute to new blood vessel formation. Additionally, we discovered a potentially novel population of reactive immune cells in close proximity to the electrode-tissue interface actively engaging in encapsulation of the microelectrode array. Finally, we determined that intracellular pericyte calcium can be modulated by intracortical microstimulation in an amplitude- and frequency-dependent manner. This study provides a new perspective on the complex biological sequelae occurring at the electrode-tissue interface and will foster new avenues of potential research consideration and lead to development of more advanced therapeutic interventions towards improving the biocompatibility of neural electrode technology.
Collapse
Affiliation(s)
- Steven M Wellman
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Adam M Forrest
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Madeline M Douglas
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ashwat Subbaraman
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guangfeng Zhang
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Del Toro K, Licon-Munoz Y, Crabtree W, Oper T, Robbins C, Hines WC. Breast pericytes: a newly identified driver of tumor cell proliferation. Front Oncol 2024; 14:1455484. [PMID: 39741968 PMCID: PMC11685225 DOI: 10.3389/fonc.2024.1455484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/27/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Effective treatment of breast cancer remains a formidable challenge, partly due to our limited understanding of the complex microenvironmental factors that contribute to disease pathology. Among these factors are tissue-resident perivascular cells, which play crucial roles in shaping vascular basement membranes, maintaining vessel integrity, and communicating with adjacent endothelial cells. Despite their essential functions, perivascular cells have been relatively overlooked. Identifying them by immunostaining has been challenging due to their low abundance, inherent heterogeneity, and shared marker expression with other cell types. These challenges have hindered efforts to purify pericytes and generate primary cell models for studying their biology. Methods Using a recently developed FACS method, we successfully identified and purified each cell type from breast tissues, allowing us to deep-sequence their transcriptomes and generate primary cell models of each cell type-including pericytes. Here, we used these data to analyze cell-type-specific gene expression in tumors, which revealed a strong association between pericyte-specific genes and breast cancer patient mortality. To explore this association, we defined the heterogeneity of breast pericytes using single-cell RNA sequencing and identified a broad marker for visualizing perivascular cells in breast tumors. Results Remarkably, we discovered perivascular cells dissociated from vessels and emerged as a dominant mesenchymal cell type in a subset of breast tumors that contrasted with their normal perivascular location. Moreover, when we purified pericytes from the breast and cultured them alongside breast tumor cells, we discovered that they induced rapid tumor cell growth significantly greater than isogenic fibroblast controls. Discussion These findings identify perivascular cells as a key microenvironmental factor in breast cancer, highlighting the critical need for further research to explore their biology and identify specific stimulatory mechanisms that could be targeted therapeutically.
Collapse
Affiliation(s)
| | | | | | | | | | - William C. Hines
- Department of Biochemistry and Molecular Biology, University of New Mexico School of
Medicine, 1 University of New Mexico MSC08 4670, Albuquerque, NM, United States
| |
Collapse
|
3
|
Thi K, Del Toro K, Licon-Munoz Y, Sayaman RW, Hines WC. Comprehensive identification, isolation, and culture of human breast cell types. J Biol Chem 2024; 300:107637. [PMID: 39122004 PMCID: PMC11459906 DOI: 10.1016/j.jbc.2024.107637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Tissues are formed and shaped by cells of many different types and are orchestrated through countless interactions. Deciphering a tissue's biological complexity thus requires studying it at cell-level resolution, where molecular and biochemical features of different cell types can be explored and thoroughly dissected. Unfortunately, the lack of comprehensive methods to identify, isolate, and culture each cell type from many tissues has impeded progress. Here, we present a method for the breadth of cell types composing the human breast. Our goal has long been to understand the essence of each of these different breast cell types, to reveal the underlying biology explaining their intrinsic features, the consequences of interactions, and their contributions to the tissue. This biological exploration has required cell purification, deep-RNA sequencing, and a thorough dissection of the genes and pathways defining each cell type. While the molecular analysis is presented in an adjoining article, we present here an exhaustive cellular dissection of the human breast and explore its cellular composition and histological organization. Moreover, we introduce a novel FACS antibody panel and rigorous gating strategy capable of isolating each of the 12 major breast cell types to purity. Finally, we describe the creation of primary cell models from nearly every breast cell type-some the first of their kind-and submit these as critical tools for studying the dynamic cellular interactions within breast tissues and tumors. Together, this body of work delivers a unique perspective of the breast, revealing insights into its cellular, molecular, and biochemical composition.
Collapse
Affiliation(s)
- Kate Thi
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Katelyn Del Toro
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Yamhilette Licon-Munoz
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Rosalyn W Sayaman
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - William C Hines
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA.
| |
Collapse
|
4
|
Erkan Pota Ç, Doğan ME, Alkan Bülbül G, Sanhal CY, Pota A. Optical coherence tomography angiography assessment of retinochoroidal microcirculation differences in preeclampsia. Photodiagnosis Photodyn Ther 2024; 46:104004. [PMID: 38342388 DOI: 10.1016/j.pdpdt.2024.104004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/14/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND To investigate microvascular changes in pregnant women with preeclampsia using optical coherence tomography angiography (OCTA) and compare the results with healthy pregnant and non-pregnant subjects. METHODS Superficial capillary plexus (SCP), deep capillary plexus (DCP) choriocapillaris (CC) vessel density (VD) and foveal avascular zone area (FAZ), retina, retinal nerve fiber layer (RNFL), the ganglion cell layer (GCL) and the choroidal thickness were examined and compared in preeclamptic pregnant (group 1), healthy pregnant women (group 2) and non-pregnant, age-matched female controls (group 3). The correlations of the parameters with each other and with blood pressure were evaluated. RESULTS No significant difference was found between the groups when retinal, RNFL and GCL thickness values (p> 0.05). The choroidal thickness values were significantly lower in group 1 than in group 2 (p = 0.029). The central foveal VD of the SCP and DCP was significantly lower in group 1 compared to groups 2 and 3 (p = 0.03, p< 0.01 respectively). The mean VD of the SCP was significantly higher in groups 1 and 2 than in group 3 (p = 0.01). The FAZ area was statistically significantly lower in group 3 than in group 2 (p = 0.032). The CC VD was lower in group 3 compared to the other groups in all measurements (p < 0.01).The FAZ area was positively correlated with systolic blood pressure in group 1. CONCLUSION The use of OCTA, a non-invasive imaging technique, to assess the retinal microcirculation appears to have the potential to in the early diagnosis or follow up in preeclampsia before signs of hypertensive retinopathy.
Collapse
Affiliation(s)
- Çisil Erkan Pota
- Department of Ophthalmology, Manavgat State Hospital, Antalya, Turkey.
| | - Mehmet Erkan Doğan
- Department of Ophthalmology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Gül Alkan Bülbül
- Department of Obstetrics and Gynecology, Division of Perinatology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Cem Yaşar Sanhal
- Department of Obstetrics and Gynecology, Division of Perinatology, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Ali Pota
- Department of Obstetrics and Gynecology, Antalya Kepez State Hospital, Antalya, Turkey
| |
Collapse
|
5
|
McDonald H, Gardner-Russell J, Alarcon-Martinez L. Orchestrating Blood Flow in the Retina: Interpericyte Tunnelling Nanotube Communication. Results Probl Cell Differ 2024; 73:229-247. [PMID: 39242382 DOI: 10.1007/978-3-031-62036-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
The retina transforms light into electrical signals, which are sent to the brain via the optic nerve to form our visual perception. This complex signal processing is performed by the retinal neuron and requires a significant amount of energy. Since neurons are unable to store energy, they must obtain glucose and oxygen from the bloodstream to produce energy to match metabolic needs. This process is called neurovascular coupling (NVC), and it is based on a precise mechanism that is not totally understood. The discovery of fine tubular processes termed tunnelling nanotubes (TNTs) set a new type of cell-to-cell communication. TNTs are extensions of the cellular membrane that allow the transfer of material between connected cells. Recently, they have been reported in the brain and retina of living mice, where they connect pericytes, which are vascular mural cells that regulate vessel diameter. Accordingly, these TNTs were termed interpericyte tunnelling nanotubes (IPTNTs), which showed a vital role in blood delivery and NVC. In this chapter, we review the involvement of TNTs in NVC and discuss their implications in retinal neurodegeneration.
Collapse
Affiliation(s)
- Hannah McDonald
- Centre for Eye Research Australia, Melbourne, VIC, Australia
- Department of Ophthalmology, University of Melbourne, Melbourne, VIC, Australia
- The Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Jesse Gardner-Russell
- Centre for Eye Research Australia, Melbourne, VIC, Australia
- Department of Ophthalmology, University of Melbourne, Melbourne, VIC, Australia
- The Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Luis Alarcon-Martinez
- Centre for Eye Research Australia, Melbourne, VIC, Australia.
- Department of Ophthalmology, University of Melbourne, Melbourne, VIC, Australia.
- The Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
6
|
Girolamo F, Errede M, Bizzoca A, Virgintino D, Ribatti D. Central Nervous System Pericytes Contribute to Health and Disease. Cells 2022; 11:1707. [PMID: 35626743 PMCID: PMC9139243 DOI: 10.3390/cells11101707] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/11/2022] Open
Abstract
Successful neuroprotection is only possible with contemporary microvascular protection. The prevention of disease-induced vascular modifications that accelerate brain damage remains largely elusive. An improved understanding of pericyte (PC) signalling could provide important insight into the function of the neurovascular unit (NVU), and into the injury-provoked responses that modify cell-cell interactions and crosstalk. Due to sharing the same basement membrane with endothelial cells, PCs have a crucial role in the control of endothelial, astrocyte, and oligodendrocyte precursor functions and hence blood-brain barrier stability. Both cerebrovascular and neurodegenerative diseases impair oxygen delivery and functionally impair the NVU. In this review, the role of PCs in central nervous system health and disease is discussed, considering their origin, multipotency, functions and also dysfunction, focusing on new possible avenues to modulate neuroprotection. Dysfunctional PC signalling could also be considered as a potential biomarker of NVU pathology, allowing us to individualize therapeutic interventions, monitor responses, or predict outcomes.
Collapse
Affiliation(s)
- Francesco Girolamo
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| | - Mariella Errede
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| | - Antonella Bizzoca
- Physiology Unit, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| | - Daniela Virgintino
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| | - Domenico Ribatti
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari ‘Aldo Moro’, 70124 Bari, Italy; (M.E.); (D.V.); (D.R.)
| |
Collapse
|
7
|
Erdener ŞE, Küreli G, Dalkara T. Contractile apparatus in CNS capillary pericytes. NEUROPHOTONICS 2022; 9:021904. [PMID: 35106320 PMCID: PMC8785978 DOI: 10.1117/1.nph.9.2.021904] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Significance: Whether or not capillary pericytes contribute to blood flow regulation in the brain and retina has long been debated. This was partly caused by failure of detecting the contractile protein α -smooth muscle actin ( α -SMA) in capillary pericytes. Aim: The aim of this review is to summarize recent developments in detecting α -SMA and contractility in capillary pericytes and the relevant literature on the biology of actin filaments. Results: Evidence suggests that for visualization of the small amounts of α -SMA in downstream mid-capillary pericytes, actin depolymerization must be prevented during tissue processing. Actin filaments turnover is mainly based on de/re-polymerization rather than transcription of the monomeric form, hence, small amounts of α -SMA mRNA may evade detection by transcriptomic studies. Similarly, transgenic mice expressing fluorescent reporters under the α -SMA promoter may yield low fluorescence due to limited transcriptional activity in mid-capillary pericytes. Recent studies show that pericytes including mid-capillary ones express several actin isoforms and myosin heavy chain type 11, the partner of α -SMA in mediating contraction. Emerging evidence also suggests that actin polymerization in pericytes may have a role in regulating the tone of downstream capillaries. Conclusions: With guidance of actin biology, innovative labeling and imaging techniques can reveal the molecular machinery of contraction in pericytes.
Collapse
Affiliation(s)
- Şefik E. Erdener
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
| | - Gülce Küreli
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
| | - Turgay Dalkara
- Hacettepe University, Institute of Neurological Sciences and Psychiatry, Ankara, Turkey
| |
Collapse
|
8
|
Zhang S, Liao XJ, Wang J, Shen Y, Shi HF, Zou Y, Ma CY, Wang XQ, Wang QG, Wang X, Xu MY, Cheng FF, Bai WZ. Temporal alterations in pericytes at the acute phase of ischemia/reperfusion in the mouse brain. Neural Regen Res 2022; 17:2247-2252. [PMID: 35259845 PMCID: PMC9083170 DOI: 10.4103/1673-5374.336876] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Pericytes, as the mural cells surrounding the microvasculature, play a critical role in the regulation of microcirculation; however, how these cells respond to ischemic stroke remains unclear. To determine the temporal alterations in pericytes after ischemia/reperfusion, we used the 1-hour middle cerebral artery occlusion model, which was examined at 2, 12, and 24 hours after reperfusion. Our results showed that in the reperfused regions, the cerebral blood flow decreased and the infarct volume increased with time. Furthermore, the pericytes in the infarct regions contracted and acted on the vascular endothelial cells within 24 hours after reperfusion. These effects may result in incomplete microcirculation reperfusion and a gradual worsening trend with time in the acute phase. These findings provide strong evidence for explaining the "no-reflow" phenomenon that occurs after recanalization in clinical practice.
Collapse
Affiliation(s)
- Shuang Zhang
- Beijing Key Laboratory, School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xue-Jing Liao
- Beijing Key Laboratory, School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Shen
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Han-Fen Shi
- Beijing Key Laboratory, School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zou
- Shineway Pharmaceutical Group Ltd., Shijiazhuang, Hebei Province, China
| | - Chong-Yang Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xue-Qian Wang
- Beijing Key Laboratory, School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qing-Guo Wang
- Beijing Key Laboratory, School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xu Wang
- Beijing Key Laboratory, School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ming-Yang Xu
- Beijing Key Laboratory, School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Fa-Feng Cheng
- Beijing Key Laboratory, School of Basic Medical Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Wan-Zhu Bai
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Nag TC, Gorla S, Kumari C, Roy TS. Aging of the human choriocapillaris: Evidence that early pericyte damage can trigger endothelial changes. Exp Eye Res 2021; 212:108771. [PMID: 34624336 DOI: 10.1016/j.exer.2021.108771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/15/2021] [Accepted: 09/17/2021] [Indexed: 01/25/2023]
Abstract
The choriocapillaris (CC), the capillary bed in the choroid, essentially nourishes the photoreceptor cells. Its damage in aging and age-related diseases significantly influences the survival of the photoreceptor cells. Earlier reports implicated endothelial loss in aged and diseased CC; however, age-related pericyte changes and their contribution in CC death remain unknown. We examined human donor eyes (age: 56-94 years; N = 24), and found that CC pericyte damage preceded endothelial changes. With aging (>70 years), the sub-macular choroid accumulated debris in Bruch's membrane (BM). Of the debris content, the long-spaced collagens had a tendency to settle over the capillary basal lamina (BL), and this often resulted in endothelial projection into capillary lumen. Between 75 and 83 years, pericytes contained dark mitochondria, and their processes facing the BM debris showed partial loss of BL and intermediate filaments (IFs), when the endothelium remained unaltered. The endothelial changes appeared beyond 83 years, the abundance of IFs and autophagy reinforced their survival until late aging. TUNEL+ pericytes, and immunoreactivity to carboxymethyl lysine and 4-hydroxy 2-nonenal, but no nitro-tyrosine, was detected in aged CC walls. Iba-1+ dystrophic microglia were present in the vicinity of the CC. Our data indicate that (1) BM debris exerts pressure on the CC, leading to the damage of the capillary BL and pericyte processes (2) loss of IFs results in early pericyte destabilization (3) capillary wall undergoes lipid peroxidative and glycative damage, and (4) pericyte damage leads to late endothelial changes and ultimately CC loss. Future research should explore the normal ways of pericyte maintenance in the aging nervous system.
Collapse
Affiliation(s)
- Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Shilpa Gorla
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Chiman Kumari
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Tara Sankar Roy
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
10
|
Motz CT, Kabat V, Saxena T, Bellamkonda RV, Zhu C. Neuromechanobiology: An Expanding Field Driven by the Force of Greater Focus. Adv Healthc Mater 2021; 10:e2100102. [PMID: 34342167 PMCID: PMC8497434 DOI: 10.1002/adhm.202100102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/06/2021] [Indexed: 12/14/2022]
Abstract
The brain processes information by transmitting signals through highly connected and dynamic networks of neurons. Neurons use specific cellular structures, including axons, dendrites and synapses, and specific molecules, including cell adhesion molecules, ion channels and chemical receptors to form, maintain and communicate among cells in the networks. These cellular and molecular processes take place in environments rich of mechanical cues, thus offering ample opportunities for mechanical regulation of neural development and function. Recent studies have suggested the importance of mechanical cues and their potential regulatory roles in the development and maintenance of these neuronal structures. Also suggested are the importance of mechanical cues and their potential regulatory roles in the interaction and function of molecules mediating the interneuronal communications. In this review, the current understanding is integrated and promising future directions of neuromechanobiology are suggested at the cellular and molecular levels. Several neuronal processes where mechanics likely plays a role are examined and how forces affect ligand binding, conformational change, and signal induction of molecules key to these neuronal processes are indicated, especially at the synapse. The disease relevance of neuromechanobiology as well as therapies and engineering solutions to neurological disorders stemmed from this emergent field of study are also discussed.
Collapse
Affiliation(s)
- Cara T Motz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Victoria Kabat
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Tarun Saxena
- Department of Biomedical Engineering, Duke University, Durham, NC, 27709, USA
| | - Ravi V Bellamkonda
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| |
Collapse
|
11
|
Understanding the Heterogeneity of Human Pericyte Subsets in Blood-Brain Barrier Homeostasis and Neurological Diseases. Cells 2021; 10:cells10040890. [PMID: 33919664 PMCID: PMC8069782 DOI: 10.3390/cells10040890] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 01/01/2023] Open
Abstract
Pericytes are increasingly recognized as being important in the control of blood–brain barrier permeability and vascular flow. Research on this important cell type has been hindered by widespread confusion regarding the phenotypic identity and nomenclature of pericytes and other perivascular cell types. In addition, pericyte heterogeneity and mouse–human species differences have contributed to confusion. Herein we summarize our present knowledge on the identification of pericytes and pericyte subsets in humans, primarily focusing on recent findings in humans and nonhuman primates. Precise identification and definition of pericytes and pericyte subsets in humans may help us to better understand pericyte biology and develop new therapeutic approaches specifically targeting disease-associated pericyte subsets.
Collapse
|
12
|
Liu G, Wang F. Macular vascular changes in pregnant women with gestational diabetes mellitus by optical coherence tomography angiography. BMC Ophthalmol 2021; 21:170. [PMID: 33836718 PMCID: PMC8034184 DOI: 10.1186/s12886-021-01927-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/29/2021] [Indexed: 12/05/2022] Open
Abstract
Background Retinal capillary is vulnerable to diabetes, whether gestational diabetes mellitus (GDM) eyes without clinical retinopathy have capillary abnormalities has not been well studied. To observe the microvasculature changes in eyes of GDM women compared with normoglycemic pregnant women and non-pregnant women by optical coherence tomography-angiography (OCT-A). Methods GDM women, age-matched normoglycemic pregnant women and non-pregnant women were included in this study. All subjects were examined by OCT-A, vascular density and macular foveal parameters were measured automatically. Results Thirty eight non-pregnant women (NC group), thirty pregnant women without GDM (PC group), and thirty one GDM women (GDM group) were included in this study. There was a significant reduction of vascular density in superficial capillary layer, but an increase in deep capillary layer in PC and GDM groups (P < 0.001). When in terms of the average vascular density, the difference was insignificant among these three groups. Although all the measurements were similar between PC and GDM groups, more capillary “dropout” changes were detected in GDM group. Unexpectedly, the abnormal changes of central macular thickness thinning and foveal avascular zone enlargement seen during pregnancy were improved when compared to PC group. Conclusions The changes of vascular density implied the redistribution of capillary network from superficial to deep layer under pregnancy and GDM states. Although the transient hyperglycemia aggravates the changes of capillary “dropout”, GDM group revealed the improvement of central macular thickness thinning and foveal avascular zone enlargement during pregnancy.
Collapse
Affiliation(s)
- Guodong Liu
- Department of Ophthalmology, Shanghai Tenth People's Hospital affiliated with Tongji University, 301 Middle Yan Chang Road, Shanghai, 200072, People's Republic of China
| | - Fang Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital affiliated with Tongji University, 301 Middle Yan Chang Road, Shanghai, 200072, People's Republic of China.
| |
Collapse
|
13
|
Su H, Cantrell AC, Zeng H, Zhu SH, Chen JX. Emerging Role of Pericytes and Their Secretome in the Heart. Cells 2021; 10:548. [PMID: 33806335 PMCID: PMC8001346 DOI: 10.3390/cells10030548] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022] Open
Abstract
Pericytes, as mural cells covering microvascular capillaries, play an essential role in vascular remodeling and maintaining vascular functions and blood flow. Pericytes are crucial participants in the physiological and pathological processes of cardiovascular disease. They actively interact with endothelial cells, vascular smooth muscle cells (VSMCs), fibroblasts, and other cells via the mechanisms involved in the secretome. The secretome of pericytes, along with diverse molecules including proinflammatory cytokines, angiogenic growth factors, and the extracellular matrix (ECM), has great impacts on the formation, stabilization, and remodeling of vasculature, as well as on regenerative processes. Emerging evidence also indicates that pericytes work as mesenchymal cells or progenitor cells in cardiovascular regeneration. Their capacity for differentiation also contributes to vascular remodeling in different ways. Previous studies primarily focused on the roles of pericytes in organs such as the brain, retina, lung, and kidney; very few studies have focused on pericytes in the heart. In this review, following a brief introduction of the origin and fundamental characteristics of pericytes, we focus on pericyte functions and mechanisms with respect to heart disease, ending with the promising use of cardiac pericytes in the treatment of ischemic heart failure.
Collapse
Affiliation(s)
- Han Su
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Aubrey C Cantrell
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Heng Zeng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Shai-Hong Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
14
|
Alarcon-Martinez L, Yemisci M, Dalkara T. Pericyte morphology and function. Histol Histopathol 2021; 36:633-643. [PMID: 33595091 DOI: 10.14670/hh-18-314] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The proper delivery of blood is essential for healthy neuronal function. The anatomical substrate for this precise mechanism is the neurovascular unit, which is formed by neurons, glial cells, endothelia, smooth muscle cells, and pericytes. Based on their particular location on the vessel wall, morphology, and protein expression, pericytes have been proposed as cells capable of regulating capillary blood flow. Pericytes are located around the microvessels, wrapping them with their processes. Their morphology and protein expression substantially vary along the vascular tree. Their contractibility is mediated by a unique cytoskeleton organization formed by filaments of actin that allows pericyte deformability with the consequent mechanical force transferred to the extracellular matrix for changing the diameter. Pericyte ultrastructure is characterized by large mitochondria likely to provide energy to regulate intracellular calcium concentration and fuel contraction. Accordingly, pericytes with compromised energy show a sustained intracellular calcium increase that leads to persistent microvascular constriction. Pericyte morphology is highly plastic and adapted for varying contractile capability along the microvascular tree, making pericytes ideal cells to regulate the capillary blood flow in response to local neuronal activity. Besides the vascular regulation, pericytes also play a role in the maintenance of the blood-brain/retina barrier, neovascularization and angiogenesis, and leukocyte transmigration. Here, we review the morphological and functional features of the pericytes as well as potential specific markers for the study of pericytes in the brain and retina.
Collapse
Affiliation(s)
- Luis Alarcon-Martinez
- Department of Neuroscience and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, QC, Canada.
| | - Muge Yemisci
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.,Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
15
|
Evaluation of serum platelet-derived growth factor receptor-ß and brain-derived neurotrophic factor levels in microvascular angina. Anatol J Cardiol 2020; 24:397-404. [PMID: 33253128 PMCID: PMC7791298 DOI: 10.14744/anatoljcardiol.2020.44388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective: Microvascular angina (MVA) is a coronary microcirculation disease. Research on microcirculatory dysfunction has revealed several biomarkers involved in the etiopathogenesis of MVA. Platelet-derived growth factor receptor β (PDGFR-β) and brain-derived neurotrophic factor (BDNF) are 2 biomarkers associated with microcirculation, particularly pericytes function. The aim of this study was to investigate the role of PDGFR-β and BDNF in MVA. Methods: Ninety-one patients (median age, 56 y; age range, 40–79 y; 36 men) with MVA and 61 control group subjects (median age, 52 y; age range, 38–76 y; 29 men) were included in the study. Serum concentrations of PDGFR-β and BDNF were measured with commercially available enzyme-linked immunosorbent assay kits. Results: PDGFR-β [2.82 ng/ml; interquartile range (IQR), 0.57–7.79 ng/ml vs. 2.27 ng/ml; IQR, 0.41–7.16 ng/ml; p<0.0005] and BDNF (2.41 ng/ml; IQR, 0.97–7.97 ng/ml vs. 1.92 ng/ml; IQR, 1.07–6.67 ng/ml; p=0.023) concentrations were significantly higher in patients with MVA compared with the controls. PDGFR-β correlated positively with age (r=0.26, p=0.001), low-density lipoprotein (r=0.18; p=0.02), and BDNF (r=0.47; p<0.001), and BDNF showed a significant positive correlation with age (r=0.20; p=0.01). In binary logistic regression analysis, high-sensitivity C-reactive protein, uric acid, and PDGFR-β values were found to be independent predictors of MVA. Conclusion: MVA is associated with higher PDGFR-β and BDNF levels. This association may indicate an abnormality in microvascular function. Future studies are required to determine the role of these biomarkers in the pathogenesis of MVA. (Anatol J Cardiol 2020; 24: 397-404)
Collapse
|
16
|
Kaul S, Methner C, Mishra A. The role of pericytes in hyperemia-induced capillary de-recruitment following stenosis. ACTA ACUST UNITED AC 2020; 1:163-169. [PMID: 33778770 DOI: 10.1007/s43152-020-00017-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Purpose The microvascular capillary network is ensheathed by cells called pericytes - a heterogeneous population of mural cells derived from multiple lineages. Pericytes play a multifaceted role in the body, including in vascular structure and permeability, regulation of local blood flow, immune and wound healing functions, induction of angiogenesis, and generation of various progenitor cells. Here, we consider the role of pericytes in capillary de-recruitment, a pathophysiologic phenomenon that is observed following hyperemic stimuli in the presence of a stenosis and attenuates the hyperemic response. Recent Findings We discuss recent observations that conclusively demonstrate pericytes to be the cellular structures that contract in response to hyperemic stimuli when an upstream arterial stenosis is present. This response constricts capillaries, which is likely aimed at maintaining capillary hydrostatic pressure, an important factor in tissue homeostasis. Nonetheless, the ensuing attenuation of the hyperemic response can lead to a decrease in energy supply and negatively impact tissue health. Summary Therapeutics aimed at preventing pericyte-mediated capillary de-recruitment may prove beneficial in conditions such as coronary stenosis and peripheral arterial disease by reducing restriction in hyperemic flow. Identification of the pericyte subtypes involved in this de-recruitment and the underlying molecular mechanisms regulating this process will greatly assist this purpose.
Collapse
Affiliation(s)
- Sanjiv Kaul
- Knight Cardiovascular Institute Oregon Health & Science University, Portland, Oregon, USA
| | - Carmen Methner
- Knight Cardiovascular Institute Oregon Health & Science University, Portland, Oregon, USA
| | - Anusha Mishra
- Knight Cardiovascular Institute Oregon Health & Science University, Portland, Oregon, USA.,Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
17
|
Bohannon DG, Okhravi HR, Kim J, Kuroda MJ, Didier ES, Kim WK. A subtype of cerebrovascular pericytes is associated with blood-brain barrier disruption that develops during normal aging and simian immunodeficiency virus infection. Neurobiol Aging 2020; 96:128-136. [PMID: 33002766 PMCID: PMC7721991 DOI: 10.1016/j.neurobiolaging.2020.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 01/14/2023]
Abstract
Lax phenotypic characterization of these morphologically distinct pericytes has delayed our understanding of their role in neurological disorders. We herein establish markers which uniquely distinguish different subpopulations of human brain microvascular pericytes and characterize them independently from cerebrovascular smooth muscle cells. Furthermore, we begin to elucidate the roles of these subsets in blood-brain barrier (BBB) breakdown by studying natural aging and simian immunodeficiency virus (SIV) infection in rhesus macaques. We demonstrate that the main type-1 pericyte subpopulation in the brain of young uninfected adults is positive for platelet-derived growth factor receptor-β (PDGFRB) and negative for α-smooth muscle actin (SMA) and myosin heavy chain 11 (MYH11), whereas PDGFRB+/SMA+/MYH11- (type-2) pericytes are found more frequently in older adults and are associated with SIV infection and progression. Interestingly, we find a strong positive correlation between the degree of BBB breakdown and the percentage of type-2 pericytes regardless of age or SIV status. Taken together, our findings suggest that type-2 pericytes may be a cellular biomarker related to BBB disruption independent of disease status.
Collapse
Affiliation(s)
- Diana G Bohannon
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Hamid R Okhravi
- Glennan Center for Geriatrics and Gerontology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Jayoung Kim
- Cedars-Sinai Medical Center, University of California, Los Angeles, CA, USA
| | - Marcelo J Kuroda
- Center for Immunology and Infectious Diseases, University of California, Davis, CA, USA
| | - Elizabeth S Didier
- Center for Immunology and Infectious Diseases, University of California, Davis, CA, USA
| | - Woong-Ki Kim
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, USA.
| |
Collapse
|
18
|
Wareham LK, Calkins DJ. The Neurovascular Unit in Glaucomatous Neurodegeneration. Front Cell Dev Biol 2020; 8:452. [PMID: 32656207 PMCID: PMC7325980 DOI: 10.3389/fcell.2020.00452] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/15/2020] [Indexed: 12/31/2022] Open
Abstract
Glaucoma is a neurodegenerative disease of the visual system and leading cause of blindness worldwide. The disease is associated with sensitivity to intraocular pressure (IOP), which over a large range of magnitudes stresses retinal ganglion cell (RGC) axons as they pass through the optic nerve head in forming the optic projection to the brain. Despite clinical efforts to lower IOP, which is the only modifiable risk factor for glaucoma, RGC degeneration and ensuing loss of vision often persist. A major contributor to failure of hypotensive regimens is the multifactorial nature of how IOP-dependent stress influences RGC physiology and structure. This stress is conveyed to the RGC axon through interactions with structural, glial, and vascular components in the nerve head and retina. These interactions promote pro-degenerative pathways involving biomechanical, metabolic, oxidative, inflammatory, immunological and vascular challenges to the microenvironment of the ganglion cell and its axon. Here, we focus on the contribution of vascular dysfunction and breakdown of neurovascular coupling in glaucoma. The vascular networks of the retina and optic nerve head have evolved complex mechanisms that help to maintain a continuous blood flow and supply of metabolites despite fluctuations in ocular perfusion pressure. In healthy tissue, autoregulation and neurovascular coupling enable blood flow to stay tightly controlled. In glaucoma patients evidence suggests these pathways are dysfunctional, thus highlighting a potential role for pathways involved in vascular dysfunction in progression and as targets for novel therapeutic intervention.
Collapse
Affiliation(s)
- Lauren K Wareham
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - David J Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
19
|
Attrill E, Ramsay C, Ross R, Richards S, Sutherland BA, Keske MA, Eringa E, Premilovac D. Metabolic-vascular coupling in skeletal muscle: A potential role for capillary pericytes? Clin Exp Pharmacol Physiol 2019; 47:520-528. [PMID: 31702069 DOI: 10.1111/1440-1681.13208] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/22/2019] [Accepted: 11/05/2019] [Indexed: 01/23/2023]
Abstract
The matching of capillary blood flow to metabolic rate of the cells within organs and tissues is a critical microvascular function which ensures appropriate delivery of hormones and nutrients, and the removal of waste products. This relationship is particularly important in tissues where local metabolism, and hence capillary blood flow, must be regulated to avoid a mismatch between nutrient demand and supply that would compromise normal function. The consequences of a mismatch in microvascular blood flow and metabolism are acutely apparent in the brain and heart, where a sudden cessation of blood flow, for example following an embolism, acutely manifests as stroke or myocardial infarction. Even in more resilient tissues such as skeletal muscle, a short-term mismatch reduces muscle performance and exercise tolerance, and can cause intermittent claudication. In the longer-term, a microvascular-metabolic mismatch in skeletal muscle reduces insulin-mediated muscle glucose uptake, leading to disturbances in whole-body metabolic homeostasis. While the notion that capillary blood flow is fine-tuned to meet cellular metabolism is well accepted, the mechanisms that control this function and where and how different parts of the vascular tree contribute to capillary blood flow regulation remain poorly understood. Here, we discuss the emerging evidence implicating pericytes, mural cells that surround capillaries, as key mediators that match tissue metabolic demand with adequate capillary blood flow in a number of organs, including skeletal muscle.
Collapse
Affiliation(s)
- Emily Attrill
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Ciaran Ramsay
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Renee Ross
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Stephen Richards
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Brad A Sutherland
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| | - Michelle A Keske
- The Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Vic., Australia
| | - Etto Eringa
- Laboratory for Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Dino Premilovac
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tas, Australia
| |
Collapse
|
20
|
Affiliation(s)
- Turgay Dalkara
- From the Department of Neurology, Faculty of Medicine and Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey; and Department of Radiology, Massachusetts General Hospital, Harvard University, Boston
| |
Collapse
|
21
|
Sangaralingham SJ, Burnett JC. Relaxing With C-Type Natriuretic Peptide, the Guanylyl Cyclase B Receptor, and Pericytes. Circulation 2019; 138:509-512. [PMID: 30571536 DOI: 10.1161/circulationaha.118.035132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine and Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| |
Collapse
|
22
|
Alarcon-Martinez L, Yilmaz-Ozcan S, Yemisci M, Schallek J, Kılıç K, Villafranca-Baughman D, Can A, Di Polo A, Dalkara T. Retinal ischemia induces α-SMA-mediated capillary pericyte contraction coincident with perivascular glycogen depletion. Acta Neuropathol Commun 2019; 7:134. [PMID: 31429795 PMCID: PMC6701129 DOI: 10.1186/s40478-019-0761-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/26/2019] [Indexed: 12/21/2022] Open
Abstract
Increasing evidence indicates that pericytes are vulnerable cells, playing pathophysiological roles in various neurodegenerative processes. Microvascular pericytes contract during cerebral and coronary ischemia and do not relax after re-opening of the occluded artery, causing incomplete reperfusion. However, the cellular mechanisms underlying ischemia-induced pericyte contraction, its delayed emergence, and whether it is pharmacologically reversible are unclear. Here, we investigate i) whether ischemia-induced pericyte contractions are mediated by alpha-smooth muscle actin (α-SMA), ii) the sources of calcium rise in ischemic pericytes, and iii) if peri-microvascular glycogen can support pericyte metabolism during ischemia. Thus, we examined pericyte contractility in response to retinal ischemia both in vivo, using adaptive optics scanning light ophthalmoscopy and, ex vivo, using an unbiased stereological approach. We found that microvascular constrictions were associated with increased calcium in pericytes as detected by a genetically encoded calcium indicator (NG2-GCaMP6) or a fluoroprobe (Fluo-4). Knocking down α-SMA expression with RNA interference or fixing F-actin with phalloidin or calcium antagonist amlodipine prevented constrictions, suggesting that constrictions resulted from calcium- and α-SMA-mediated pericyte contractions. Carbenoxolone or a Cx43-selective peptide blocker also reduced calcium rise, consistent with involvement of gap junction-mediated mechanisms in addition to voltage-gated calcium channels. Pericyte calcium increase and capillary constrictions became significant after 1 h of ischemia and were coincident with depletion of peri-microvascular glycogen, suggesting that glucose derived from glycogen granules could support pericyte metabolism and delay ischemia-induced microvascular dysfunction. Indeed, capillary constrictions emerged earlier when glycogen breakdown was pharmacologically inhibited. Constrictions persisted despite recanalization but were reversible with pericyte-relaxant adenosine administered during recanalization. Our study demonstrates that retinal ischemia, a common cause of blindness, induces α-SMA- and calcium-mediated persistent pericyte contraction, which can be delayed by glucose driven from peri-microvascular glycogen. These findings clarify the contractile nature of capillary pericytes and identify a novel metabolic collaboration between peri-microvascular end-feet and pericytes.
Collapse
Affiliation(s)
- Luis Alarcon-Martinez
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, 06100, Ankara, Turkey
- Department of Neuroscience and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Sinem Yilmaz-Ozcan
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, 06100, Ankara, Turkey
| | - Muge Yemisci
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, 06100, Ankara, Turkey.
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| | - Jesse Schallek
- Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, New York, USA
| | - Kıvılcım Kılıç
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, 06100, Ankara, Turkey
| | - Deborah Villafranca-Baughman
- Department of Neuroscience and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Alp Can
- Department of Histology and Embryology, School of Medicine, Ankara University, Ankara, Turkey
| | - Adriana Di Polo
- Department of Neuroscience and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, 06100, Ankara, Turkey.
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
23
|
Abstract
Recent stroke research has shifted the focus to the microvasculature from neuron-centric views. It is increasingly recognized that a successful neuroprotection is not feasible without microvascular protection. On the other hand, recent studies on pericytes, long-neglected cells on microvessels have provided insight into the regulation of microcirculation. Pericytes play an essential role in matching the metabolic demand of nervous tissue with the blood flow in addition to regulating the development and maintenance of the blood-brain barrier (BBB), leukocyte trafficking across the BBB and angiogenesis. Pericytes appears to be highly vulnerable to injury. Ischemic injury to pericytes on cerebral microvasculature unfavorably impacts the stroke-induced tissue damage and brain edema by disrupting microvascular blood flow and BBB integrity. Strongly supporting this, clinical imaging studies show that tissue reperfusion is not always obtained after recanalization. Therefore, prevention of pericyte dysfunction may improve the outcome of recanalization therapies by promoting microcirculatory reperfusion and preventing hemorrhage and edema. In the peri-infarct tissue, pericytes are detached from microvessels and promote angiogenesis and neurogenesis, and hence positively effect stroke outcome. Expectedly, we will learn more about the place of pericytes in CNS pathologies including stroke and devise approaches to treat them in the next decades.
Collapse
|
24
|
Schwartz SM, Virmani R, Majesky MW. An update on clonality: what smooth muscle cell type makes up the atherosclerotic plaque? F1000Res 2018; 7:F1000 Faculty Rev-1969. [PMID: 30613386 PMCID: PMC6305222 DOI: 10.12688/f1000research.15994.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
Almost 50 years ago, Earl Benditt and his son John described the clonality of the atherosclerotic plaque. This led Benditt to propose that the atherosclerotic lesion was a smooth muscle neoplasm, similar to the leiomyomata seen in the uterus of most women. Although the observation of clonality has been confirmed many times, interest in the idea that atherosclerosis might be a form of neoplasia waned because of the clinical success of treatments for hyperlipemia and because animal models have made great progress in understanding how lipid accumulates in the plaque and may lead to plaque rupture. Four advances have made it important to reconsider Benditt's observations. First, we now know that clonality is a property of normal tissue development. Second, this is even true in the vessel wall, where we now know that formation of clonal patches in that wall is part of the development of smooth muscle cells that make up the tunica media of arteries. Third, we know that the intima, the "soil" for development of the human atherosclerotic lesion, develops before the fatty lesions appear. Fourth, while the cells comprising this intima have been called "smooth muscle cells", we do not have a clear definition of cell type nor do we know if the initial accumulation is clonal. As a result, Benditt's hypothesis needs to be revisited in terms of changes in how we define smooth muscle cells and the quite distinct developmental origins of the cells that comprise the muscular coats of all arterial walls. Finally, since clonality of the lesions is real, the obvious questions are do these human tumors precede the development of atherosclerosis, how do the clones develop, what cell type gives rise to the clones, and in what ways do the clones provide the soil for development and natural history of atherosclerosis?
Collapse
Affiliation(s)
| | - Renu Virmani
- CV Path Institute, Gaithersberg, Maryland, 20878, USA
| | - Mark W. Majesky
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Hospital Research Institute, Seattle, WA, 98112, USA
| |
Collapse
|
25
|
Alarcon-Martinez L, Yilmaz-Ozcan S, Yemisci M, Schallek J, Kılıç K, Can A, Di Polo A, Dalkara T. Capillary pericytes express α-smooth muscle actin, which requires prevention of filamentous-actin depolymerization for detection. eLife 2018; 7:e34861. [PMID: 29561727 PMCID: PMC5862523 DOI: 10.7554/elife.34861] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/12/2018] [Indexed: 01/12/2023] Open
Abstract
Recent evidence suggests that capillary pericytes are contractile and play a crucial role in the regulation of microcirculation. However, failure to detect components of the contractile apparatus in capillary pericytes, most notably α-smooth muscle actin (α-SMA), has questioned these findings. Using strategies that allow rapid filamentous-actin (F-actin) fixation (i.e. snap freeze fixation with methanol at -20°C) or prevent F-actin depolymerization (i.e. with F-actin stabilizing agents), we demonstrate that pericytes on mouse retinal capillaries, including those in intermediate and deeper plexus, express α-SMA. Junctional pericytes were more frequently α-SMA-positive relative to pericytes on linear capillary segments. Intravitreal administration of short interfering RNA (α-SMA-siRNA) suppressed α-SMA expression preferentially in high order branch capillary pericytes, confirming the existence of a smaller pool of α-SMA in distal capillary pericytes that is quickly lost by depolymerization. We conclude that capillary pericytes do express α-SMA, which rapidly depolymerizes during tissue fixation thus evading detection by immunolabeling.
Collapse
Affiliation(s)
- Luis Alarcon-Martinez
- Institute of Neurological Sciences and PsychiatryHacettepe UniversityAnkaraTurkey
- Centre de Recherche du Centre Hospitalier de l’Université de MontréalUniversité de Montréal, MontréalQuébecCanada
- Department of NeuroscienceUniversité de Montréal, MontréalQuébecCanada
| | - Sinem Yilmaz-Ozcan
- Institute of Neurological Sciences and PsychiatryHacettepe UniversityAnkaraTurkey
| | - Muge Yemisci
- Institute of Neurological Sciences and PsychiatryHacettepe UniversityAnkaraTurkey
- Department of NeurologyFaculty of Medicine, Hacettepe UniversityAnkaraTurkey
| | - Jesse Schallek
- Center for Visual ScienceUniversity of RochesterNew YorkUnited States
- Flaum Eye InstituteUniversity of RochesterNew YorkUnited States
| | - Kıvılcım Kılıç
- Institute of Neurological Sciences and PsychiatryHacettepe UniversityAnkaraTurkey
| | - Alp Can
- Department of Histology and EmbryologySchool of Medicine, Ankara UniversityAnkaraTurkey
| | - Adriana Di Polo
- Centre de Recherche du Centre Hospitalier de l’Université de MontréalUniversité de Montréal, MontréalQuébecCanada
- Department of NeuroscienceUniversité de Montréal, MontréalQuébecCanada
| | - Turgay Dalkara
- Institute of Neurological Sciences and PsychiatryHacettepe UniversityAnkaraTurkey
- Department of NeurologyFaculty of Medicine, Hacettepe UniversityAnkaraTurkey
| |
Collapse
|
26
|
Abstract
In the face of the global epidemic of diabetes, it is critical that we update our knowledge about the pathogenesis of diabetes and the related micro alterations on the vascular network in the body. This may ultimately lead to early diagnosis and novel treatment options for delaying the progression of diabetic complications. Research has recently revealed the pivotal role of endothelin in the pathogenesis of diabetic complications, particularly in the regulation of the capillary flow, which is affected in the course of retinopathy. Although there are several reviews on various approaches to the treatment of diabetes, including normalization of glucose and fat metabolism, no reviews in literature have focused on the endothelin system as a therapeutic target or early indicator of diabetic microangiopathy. In this review, we summarize some of the experimental and clinical evidence suggesting that current therapeutic approaches to diabetes may include the modulation of the blood concentration of compounds of the endothelin system. In addition, we will briefly discuss the beneficial effects produced by the inhibition of the production of high levels of endothelin in vasculopathy, with focus on diabetic retinopathy. The cutting-edge technology currently widely used in opththalmology, such as the OCT angiography, allows us to detect very early retinal morphological changes alongside alterations in choroidal and retinal vascular network. Combination of such changes with highly sensitive measurements of alterations in serum concentrations of endothelin may lead to more efficient early detection and treatment of diabetes and related macro/microvascular complications.
Collapse
|
27
|
Barrett EJ, Liu Z, Khamaisi M, King GL, Klein R, Klein BEK, Hughes TM, Craft S, Freedman BI, Bowden DW, Vinik AI, Casellini CM. Diabetic Microvascular Disease: An Endocrine Society Scientific Statement. J Clin Endocrinol Metab 2017; 102:4343-4410. [PMID: 29126250 PMCID: PMC5718697 DOI: 10.1210/jc.2017-01922] [Citation(s) in RCA: 305] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 01/18/2023]
Abstract
Both type 1 and type 2 diabetes adversely affect the microvasculature in multiple organs. Our understanding of the genesis of this injury and of potential interventions to prevent, limit, or reverse injury/dysfunction is continuously evolving. This statement reviews biochemical/cellular pathways involved in facilitating and abrogating microvascular injury. The statement summarizes the types of injury/dysfunction that occur in the three classical diabetes microvascular target tissues, the eye, the kidney, and the peripheral nervous system; the statement also reviews information on the effects of diabetes and insulin resistance on the microvasculature of skin, brain, adipose tissue, and cardiac and skeletal muscle. Despite extensive and intensive research, it is disappointing that microvascular complications of diabetes continue to compromise the quantity and quality of life for patients with diabetes. Hopefully, by understanding and building on current research findings, we will discover new approaches for prevention and treatment that will be effective for future generations.
Collapse
Affiliation(s)
- Eugene J. Barrett
- Division of Endocrinology, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908
| | - Zhenqi Liu
- Division of Endocrinology, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908
| | - Mogher Khamaisi
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215
| | - George L. King
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | - Barbara E. K. Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | - Timothy M. Hughes
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Suzanne Craft
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Barry I. Freedman
- Divisions of Nephrology and Endocrinology, Department of Internal Medicine, Centers for Diabetes Research, and Center for Human Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Donald W. Bowden
- Divisions of Nephrology and Endocrinology, Department of Internal Medicine, Centers for Diabetes Research, and Center for Human Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Aaron I. Vinik
- EVMS Strelitz Diabetes Center, Eastern Virginia Medical Center, Norfolk, Virginia 23510
| | - Carolina M. Casellini
- EVMS Strelitz Diabetes Center, Eastern Virginia Medical Center, Norfolk, Virginia 23510
| |
Collapse
|
28
|
Nielsen MFB, Mortensen MB, Detlefsen S. Identification of markers for quiescent pancreatic stellate cells in the normal human pancreas. Histochem Cell Biol 2017; 148:359-380. [PMID: 28540429 DOI: 10.1007/s00418-017-1581-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2017] [Indexed: 12/16/2022]
Abstract
Pancreatic stellate cells (PSCs) play a central role as source of fibrogenic cells in pancreatic cancer and chronic pancreatitis. In contrast to quiescent hepatic stellate cells (qHSCs), a specific marker for quiescent PSCs (qPSCs) that can be used in formalin-fixed and paraffin embedded (FFPE) normal human pancreatic tissue has not been identified. The aim of this study was to identify a marker enabling the identification of qPSCs in normal human FFPE pancreatic tissue. Immunohistochemical (IHC), double-IHC, immunofluorescence (IF) and double-IF analyses were carried out using a tissue microarray consisting of cores with normal human pancreatic tissue. Cores with normal human liver served as control. Antibodies directed against adipophilin, α-SMA, CD146, CRBP-1, cytoglobin, desmin, GFAP, nestin, S100A4 and vinculin were examined, with special emphasis on their expression in periacinar cells in the normal human pancreas and perisinusoidal cells in the normal human liver. The immunolabelling capacity was evaluated according to a semiquantitative scoring system. Double-IF of the markers of interest together with markers for other periacinar cells was performed. Moreover, the utility of histochemical stains for the identification of human qPSCs was examined, and their ultrastructure was revisited by electron microscopy. Adipophilin, CRBP-1, cytoglobin and vinculin were expressed in qHSCs in the liver, whereas cytoglobin and adipophilin were expressed in qPSCs in the pancreas. Adipophilin immunohistochemistry was highly dependent on the preanalytical time interval (PATI) from removal of the tissue to formalin fixation. Cytoglobin, S100A4 and vinculin were expressed in periacinar fibroblasts (FBs). The other examined markers were negative in human qPSCs. Our data indicate that cytoglobin and adipophilin are markers of qPSCs in the normal human pancreas. However, the use of adipophilin as a qPSC marker may be limited due to its high dependence on optimal PATI. Cytoglobin, on the other hand, is a sensitive marker for qPSCs but is expressed in FBs as well.
Collapse
Affiliation(s)
- Michael Friberg Bruun Nielsen
- Department of Pathology, Odense University Hospital, J.B. Winsløws Vej 15, 5000, Odense C, Denmark.,Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, 5000, Odense C, Denmark
| | - Michael Bau Mortensen
- Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, 5000, Odense C, Denmark.,Department of Surgery, HPB Section, Odense University Hospital, Sdr. Boulevard 29, 5000, Odense C, Denmark
| | - Sönke Detlefsen
- Department of Pathology, Odense University Hospital, J.B. Winsløws Vej 15, 5000, Odense C, Denmark. .,Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, 5000, Odense C, Denmark.
| |
Collapse
|
29
|
Pucket JD, Allbaugh RA, Higginbotham ML, Rankin AJ, Teixeira L. Metastatic intraocular hemangiopericytoma in a dog. Open Vet J 2017; 7:132-138. [PMID: 28652979 PMCID: PMC5471746 DOI: 10.4314/ovj.v7i2.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/08/2017] [Indexed: 11/17/2022] Open
Abstract
A 10-year-old Labrador Retriever who had been undergoing therapy for a recurrent hemangiopericytoma of the right flank presented to the Kansas State University Ophthalmology service for evaluation of a painful left eye. Examination revealed secondary glaucoma and irreversible blindness of the affected eye and multifocal chorioretinal lesions in the fellow eye. Therapeutic and diagnostic enucleation of the left eye was performed and histopathologic examination demonstrated the presence of a presumed metastatic spindle cell sarcoma. Further immunohistochemical staining confirmed the intraocular neoplasia to be metastatic spread from the previously removed flank mass. Rapid progression in size and number of chorioretinal lesions in the right eye was noted in the post-operative period until the patient was euthanized one month after surgery. This case report is the first to document intraocular metastasis of hemangiopericytoma in a veterinary patient.
Collapse
Affiliation(s)
- Jonathan D. Pucket
- Department of Veterinary Clinical Sciences, College of Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Rachel A. Allbaugh
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Mary L. Higginbotham
- Department of Clinical Science, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Amy J. Rankin
- Department of Clinical Science, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Leandro Teixeira
- Department of Pathological Sciences, College of Veterinary Medicine, University of Wisconsin-Madison, WI 53706, USA
| |
Collapse
|
30
|
Kennedy-Lydon T. Immune Functions and Properties of Resident Cells in the Heart and Cardiovascular System: Pericytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1003:93-103. [PMID: 28667555 DOI: 10.1007/978-3-319-57613-8_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This chapter provides an introduction to pericyte physiology. Pericytes are smooth muscle-like cells that wrap around vessels and arterioles. Here, we discuss their structure, function, contractility and interaction with other cells including immune cells and finally their role in pathological processes. Additionally, we discuss recent studies describing pericyte populations in the heart and their potential as targets for future cardiac therapeutic interventions.
Collapse
|
31
|
|
32
|
Zeiger AS, Liu FD, Durham JT, Jagielska A, Mahmoodian R, Van Vliet KJ, Herman IM. Static mechanical strain induces capillary endothelial cell cycle re-entry and sprouting. Phys Biol 2016; 13:046006. [PMID: 27526677 DOI: 10.1088/1478-3975/13/4/046006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vascular endothelial cells are known to respond to a range of biochemical and time-varying mechanical cues that can promote blood vessel sprouting termed angiogenesis. It is less understood how these cells respond to sustained (i.e., static) mechanical cues such as the deformation generated by other contractile vascular cells, cues which can change with age and disease state. Here we demonstrate that static tensile strain of 10%, consistent with that exerted by contractile microvascular pericytes, can directly and rapidly induce cell cycle re-entry in growth-arrested microvascular endothelial cell monolayers. S-phase entry in response to this strain correlates with absence of nuclear p27, a cyclin-dependent kinase inhibitor. Furthermore, this modest strain promotes sprouting of endothelial cells, suggesting a novel mechanical 'angiogenic switch'. These findings suggest that static tensile strain can directly stimulate pathological angiogenesis, implying that pericyte absence or death is not necessarily required of endothelial cell re-activation.
Collapse
Affiliation(s)
- A S Zeiger
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139. BioSystems & Micromechanics Interdisciplinary Research Group (BioSyM), Singapore-MIT Alliance in Research & Technology (SMART), Singapore 138602
| | | | | | | | | | | | | |
Collapse
|
33
|
Hartmann DA, Underly RG, Grant RI, Watson AN, Lindner V, Shih AY. Pericyte structure and distribution in the cerebral cortex revealed by high-resolution imaging of transgenic mice. NEUROPHOTONICS 2015; 2:041402. [PMID: 26158016 PMCID: PMC4478963 DOI: 10.1117/1.nph.2.4.041402] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/27/2015] [Indexed: 05/05/2023]
Abstract
Pericytes are essential for normal brain function, but many aspects of their physiology remain enigmatic due to a lack of tools to genetically target this cell population. Here, we characterize brain pericytes using two existing Cre-recombinase driver mouse lines that can serve distinct purposes in cerebrovascular research. One line expresses an inducible version of Cre under the NG2 proteoglycan promoter, which provides the sparse labeling necessary to define the morphology of single cells. These mice reveal structural differences between pericytes adjacent to arterioles versus those broadly distributed in the capillary bed that may underlie differential roles in control of vessel caliber. A second line expresses Cre constitutively under the platelet-derived growth factor receptor β promoter and provides continuous, highly specific and near-complete labeling of pericytes and myocytes along the entire cerebrovasculature. This line provides a three-dimensional view of pericyte distribution along the cortical angioarchitecture following optical clearing of brain tissue. In combination with recent reporter lines for expression of optogenetic actuators and activity-sensitive probes, these mice may be key tools for studying pericyte biology in the intact brain.
Collapse
Affiliation(s)
- David A. Hartmann
- Medical University of South Carolina, Department of Neurosciences, 173 Ashley Avenue CRI 406, Charleston, South Carolina 29425, United States
| | - Robert G. Underly
- Medical University of South Carolina, Department of Neurosciences, 173 Ashley Avenue CRI 406, Charleston, South Carolina 29425, United States
| | - Roger I. Grant
- Medical University of South Carolina, Department of Neurosciences, 173 Ashley Avenue CRI 406, Charleston, South Carolina 29425, United States
| | - Ashley N. Watson
- Medical University of South Carolina, Department of Neurosciences, 173 Ashley Avenue CRI 406, Charleston, South Carolina 29425, United States
| | - Volkhard Lindner
- Maine Medical Center Research Institute, Center for Molecular Medicine, 81 Research Drive, Scarborough, Maine 04074, United States
| | - Andy Y. Shih
- Medical University of South Carolina, Department of Neurosciences, 173 Ashley Avenue CRI 406, Charleston, South Carolina 29425, United States
- Medical University of South Carolina, Center for Biomedical Imaging, 68 President Street, Charleston, South Carolina 29425, United States
- Address all correspondence to: Andy Y. Shih, E-mail:
| |
Collapse
|
34
|
Durham JT, Dulmovits BM, Cronk SM, Sheets AR, Herman IM. Pericyte chemomechanics and the angiogenic switch: insights into the pathogenesis of proliferative diabetic retinopathy? Invest Ophthalmol Vis Sci 2015; 56:3441-59. [PMID: 26030100 DOI: 10.1167/iovs.14-13945] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
PURPOSE To establish the regulatory roles that pericytes have in coordinating retinal endothelial cell (EC) growth and angiogenic potential. METHODS Pericytes were derived from donor diabetic (DHuRP) or normal (NHuRP) human retinae, and characterized using vascular markers, coculture, contraction, morphogenesis, and proliferation assays. To investigate capillary "cross-talk," pericyte-endothelial coculture growth, and connexin-43 (Cx43) expression assays were performed. Paracrine effects were examined via treating EC with pericyte-derived conditioned media (CM) in proliferation, angiogenesis, and angiocrine assays. The effects of sphingosine 1-phosphate (S1P) were assessed using receptor antagonists. RESULTS The DHuRP exhibit unique proliferative and morphologic properties, reflecting distinctive cytoskeletal and isoactin expression patterns. Unlike NHuRP, DHuRP are unable to sustain EC growth arrest in coculture and display reduced Cx43 expression. Further, CM from DHuRP (DPCM) markedly stimulates EC proliferation and tube formation. Treatment with S1P receptor antagonists mitigates DPCM growth-promotion in EC and S1P-mediated pericyte contraction. Angiocrine assays on normal and diabetic pericyte secretomes reveal factors involved in angiogenic control, inflammation, and metabolism. CONCLUSIONS Effects from the diabetic microenvironment appear sustainable in cell culture: pericytes derived from diabetic donor eyes seemingly possess a "metabolic memory" in vitro, which may be linked to original donor health status. Diabetes- and pericyte-dependent effects on EC growth and angiogenesis may reflect alterations in bioactive lipid, angiocrine, and chemomechanical signaling. Altogether, our results suggest that diabetes alters pericyte contractile phenotype and cytoskeletal signaling, which ultimately may serve as a key, initiating event required for retinal endothelial reproliferation, angiogenic activation, and the pathological neovascularization accompanying proliferative diabetic retinopathy.
Collapse
|
35
|
Yin GN, Das ND, Choi MJ, Song KM, Kwon MH, Ock J, Limanjaya A, Ghatak K, Kim WJ, Hyun JS, Koh GY, Ryu JK, Suh JK. The pericyte as a cellular regulator of penile erection and a novel therapeutic target for erectile dysfunction. Sci Rep 2015; 5:10891. [PMID: 26044953 PMCID: PMC4456662 DOI: 10.1038/srep10891] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/05/2015] [Indexed: 02/01/2023] Open
Abstract
Pericytes are known to play critical roles in vascular development and homeostasis. However, the distribution of cavernous pericytes and their roles in penile erection is unclear. Herein we report that the pericytes are abundantly distributed in microvessels of the subtunical area and dorsal nerve bundle of mice, followed by dorsal vein and cavernous sinusoids. We further confirmed the presence of pericytes in human corpus cavernosum tissue and successfully isolated pericytes from mouse penis. Cavernous pericyte contents from diabetic mice and tube formation of cultured pericytes in high glucose condition were greatly reduced compared with those in normal conditions. Suppression of pericyte function with anti-PDGFR-β blocking antibody deteriorated erectile function and tube formation in vivo and in vitro diabetic condition. In contrast, enhanced pericyte function with HGF protein restored cavernous pericyte content in diabetic mice, and significantly decreased cavernous permeability in diabetic mice and in pericytes-endothelial cell co-culture system, which induced significant recovery of erectile function. Overall, these findings showed the presence and distribution of pericytes in the penis of normal or pathologic condition and documented their role in the regulation of cavernous permeability and penile erection, which ultimately explore novel therapeutics of erectile dysfunction targeting pericyte function.
Collapse
Affiliation(s)
- Guo Nan Yin
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 400-711, Republic of Korea
| | - Nando Dulal Das
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 400-711, Republic of Korea
| | - Min Ji Choi
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 400-711, Republic of Korea
| | - Kang-Moon Song
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 400-711, Republic of Korea
| | - Mi-Hye Kwon
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 400-711, Republic of Korea
| | - Jiyeon Ock
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 400-711, Republic of Korea
| | - Anita Limanjaya
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 400-711, Republic of Korea
| | - Kalyan Ghatak
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 400-711, Republic of Korea
| | - Woo Jean Kim
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 400-711, Republic of Korea
| | - Jae Seog Hyun
- Department of Urology, Gyeongsang National University School of Medicine, Jinju 660-702, Republic of Korea
| | - Gou Young Koh
- Department of Biological Sciences and Laboratory for Vascular Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Ji-Kan Ryu
- 1] National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 400-711, Republic of Korea [2] Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon 400-711, Republic of Korea
| | - Jun-Kyu Suh
- National Research Center for Sexual Medicine and Department of Urology, Inha University School of Medicine, Incheon 400-711, Republic of Korea
| |
Collapse
|
36
|
PRRX1- and PRRX2-positive mesenchymal stem/progenitor cells are involved in vasculogenesis during rat embryonic pituitary development. Cell Tissue Res 2015; 361:557-65. [PMID: 25795141 DOI: 10.1007/s00441-015-2128-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/13/2015] [Indexed: 10/23/2022]
Abstract
We have recently shown that cells positive for the paired-related homeobox transcription factors PRRX1 and PRRX2 occur in the rat pituitary, and that they are derived from two different origins: pituitary-derived cells positive for stem cell marker SOX2 and extra-pituitary-derived cells negative for SOX2. In this study, we have further characterized the PRRX1- and PRRX2-positive cells that originate from extra-pituitary cells. Immunohistochemical analyses were performed with specific antibodies against PRRX1 and PRRX2 in order to clarify their roles in pituitary vasculogenesis. PRRX1- and PRRX2-positive cells were found in Atwell's recess and at the periphery of the pituitary on embryonic day 15.5 (E15.5). Several PRRX1-positive cells then invaded the anterior lobe, together with a few PRRX2-positive cells, on E16.5. Some PRRX1-positive cells were also positive for mesenchymal stem cell marker NESTIN. Moreover, some PRRX1/NESTIN double-positive cells showed characteristics of vascular endothelial cells with an Isolectin-B4-binding capacity. PRRX1 co-localized with vascular smooth muscle cell/pericyte marker α-smooth muscle actin in the deep area of Atwell's recess. We confirmed the presence of PRRX2/NESTIN double-positive cells at an entry area in Atwell's recess and at the periphery of the pituitary, but PRRX2 did not co-localize with Isolectin B4 or α-smooth muscle actin. These data suggest that PRRX1- and PRRX2-positive mesenchymal stem/progenitor cells are present at the periphery of the embryonic pituitary and at the entry from Atwell's recess and participate in pituitary vasculogenesis by differentiation into vascular endothelial cells and pericytes, whereas the presence of PRRX2 indicates much higher stemness than PRRX1.
Collapse
|
37
|
Arboleda-Velasquez JF, Valdez CN, Marko CK, D'Amore PA. From pathobiology to the targeting of pericytes for the treatment of diabetic retinopathy. Curr Diab Rep 2015; 15:573. [PMID: 25620405 PMCID: PMC5599150 DOI: 10.1007/s11892-014-0573-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pericytes, the mural cells that constitute the capillaries along with endothelial cells, have been associated with the pathobiology of diabetic retinopathy; however, therapeutic implications of this association remain largely unexplored. Pericytes appear to be highly susceptible to the metabolic challenges associated with a diabetic environment, and there is substantial evidence that their loss may contribute to microvascular instability leading to the formation of microaneurysms, microhemorrhages, acellular capillaries, and capillary nonperfusion. Since pericytes are strategically located at the interface between the vascular and neural components of the retina, they offer extraordinary opportunities for therapeutic interventions in diabetic retinopathy. Moreover, the availability of novel imaging methodologies now allows for the in vivo visualization of pericytes, enabling a new generation of clinical trials that use pericyte tracking as clinical endpoints. The recognition of multiple signaling mechanisms involved in pericyte development and survival should allow for a renewed interest in pericytes as a therapeutic target for diabetic retinopathy.
Collapse
Affiliation(s)
- Joseph F Arboleda-Velasquez
- Schepens Eye Research Institute/Massachusetts Eye and Ear and the Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA, 02114, USA
| | | | | | | |
Collapse
|
38
|
Brito MA, Palmela I, Cardoso FL, Sá-Pereira I, Brites D. Blood–Brain Barrier and Bilirubin: Clinical Aspects and Experimental Data. Arch Med Res 2014; 45:660-76. [DOI: 10.1016/j.arcmed.2014.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 11/18/2014] [Indexed: 01/18/2023]
|
39
|
Origin of myofibroblasts and cellular events triggering fibrosis. Kidney Int 2014; 87:297-307. [PMID: 25162398 DOI: 10.1038/ki.2014.287] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 04/04/2014] [Accepted: 04/10/2014] [Indexed: 01/13/2023]
Abstract
Renal fibrosis is a major hallmark of chronic kidney disease that is considered to be a common end point of various types of renal disease. To date, the biological meaning of fibrosis during the progression of chronic kidney diseases is unknown and possibly depends on the cell type contributing to extracellular matrix production. During the past decade, the origin of myofibroblasts in the kidney has been intensively investigated. Determining the origins of renal myofibroblasts is important because these might account for the heterogeneous characteristics and behaviors of myofibroblasts. Current data strongly suggest that collagen-producing myofibroblasts in the kidney can be derived from various cellular sources. Resident renal fibroblasts and cells of hematopoietic origin migrating into the kidney seem to be the most important ancestors of myofibroblasts. It is likely that both cell types communicate with each other and also with other cell types in the kidney. In this review, we will discuss the current knowledge on the origin of scar-producing myofibroblasts and cellular events triggering fibrosis.
Collapse
|
40
|
Durham JT, Surks HK, Dulmovits BM, Herman IM. Pericyte contractility controls endothelial cell cycle progression and sprouting: insights into angiogenic switch mechanics. Am J Physiol Cell Physiol 2014; 307:C878-92. [PMID: 25143350 DOI: 10.1152/ajpcell.00185.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Microvascular stability and regulation of capillary tonus are regulated by pericytes and their interactions with endothelial cells (EC). While the RhoA/Rho kinase (ROCK) pathway has been implicated in modulation of pericyte contractility, in part via regulation of the myosin light chain phosphatase (MLCP), the mechanisms linking Rho GTPase activity with actomyosin-based contraction and the cytoskeleton are equivocal. Recently, the myosin phosphatase-RhoA-interacting protein (MRIP) was shown to mediate the RhoA/ROCK-directed MLCP inactivation in vascular smooth muscle. Here we report that MRIP directly interacts with the β-actin-specific capping protein βcap73. Furthermore, manipulation of MRIP expression influences pericyte contractility, with MRIP silencing inducing cytoskeletal remodeling and cellular hypertrophy. MRIP knockdown induces a repositioning of βcap73 from the leading edge to stress fibers; thus MRIP-silenced pericytes increase F-actin-driven cell spreading twofold. These hypertrophied and cytoskeleton-enriched pericytes demonstrate a 2.2-fold increase in contractility upon MRIP knockdown when cells are plated on a deformable substrate. In turn, silencing pericyte MRIP significantly affects EC cycle progression and angiogenic activation. When MRIP-silenced pericytes are cocultured with capillary EC, there is a 2.0-fold increase in EC cycle entry. Furthermore, in three-dimensional models of injury and repair, silencing pericyte MRIP results in a 1.6-fold elevation of total tube area due to EC network formation and increased angiogenic sprouting. The pivotal role of MRIP expression in governing pericyte contractile phenotype and endothelial growth should lend important new insights into how chemomechanical signaling pathways control the "angiogenic switch" and pathological angiogenic induction.
Collapse
Affiliation(s)
- Jennifer T Durham
- Graduate Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Department of Developmental, Molecular, and Chemical Biology, Center for Innovations in Wound Healing Research, School of Medicine, Tufts University, Boston, Massachusetts
| | - Howard K Surks
- Graduate Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Department of Developmental, Molecular, and Chemical Biology, Center for Innovations in Wound Healing Research, School of Medicine, Tufts University, Boston, Massachusetts
| | - Brian M Dulmovits
- Graduate Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Department of Developmental, Molecular, and Chemical Biology, Center for Innovations in Wound Healing Research, School of Medicine, Tufts University, Boston, Massachusetts
| | - Ira M Herman
- Graduate Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Department of Developmental, Molecular, and Chemical Biology, Center for Innovations in Wound Healing Research, School of Medicine, Tufts University, Boston, Massachusetts
| |
Collapse
|
41
|
Liu G, Meng C, Pan M, Chen M, Deng R, Lin L, Zhao L, Liu X. Isolation, Purification, and Cultivation of Primary Retinal Microvascular Pericytes: A Novel Model Using Rats. Microcirculation 2014; 21:478-89. [PMID: 24495210 DOI: 10.1111/micc.12121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 01/30/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Guanghui Liu
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Wenzhou China
- Department of Ophthalmology; Affiliated People's Hospital (People's Hospital of Fujian Province); Fujian University of Traditional Chinese Medicine; Fuzhou China
| | - Chun Meng
- Department of Bioengineering; College of Biological Science and Biotechnology; Fuzhou University; Fuzhou China
| | - Mingdong Pan
- Department of Ophthalmology; Affiliated People's Hospital (People's Hospital of Fujian Province); Fujian University of Traditional Chinese Medicine; Fuzhou China
| | - Meng Chen
- Department of Ophthalmology; Baylor College of Medicine; Houston Texas USA
| | - Ruzhi Deng
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Wenzhou China
| | - Ling Lin
- Department of Bioengineering; College of Biological Science and Biotechnology; Fuzhou University; Fuzhou China
| | - Li Zhao
- Department of Cardiology; Affiliated People's Hospital (People's Hospital of Fujian Province); Fujian University of Traditional Chinese Medicine; Fuzhou China
| | - Xiaoling Liu
- School of Optometry and Ophthalmology and Eye Hospital; Wenzhou Medical University; Wenzhou China
| |
Collapse
|
42
|
Geevarghese A, Herman IM. Pericyte-endothelial crosstalk: implications and opportunities for advanced cellular therapies. Transl Res 2014; 163:296-306. [PMID: 24530608 PMCID: PMC3976718 DOI: 10.1016/j.trsl.2014.01.011] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/15/2014] [Accepted: 01/17/2014] [Indexed: 12/13/2022]
Abstract
Pericytes are mural cells of the microcirculation that have been shown to play key roles in regulating microvascular morphogenesis and stability throughout each tissue bed and organ system assessed. Of note, recent work has revealed that pericytes share several characteristics with mesenchymal- and adipose-derived stem cells, suggesting there may be lineage-related connections among bona fide pericytes and these vascular "progenitors," which can assume a perivascular position in association with endothelial cells. Hence, pericyte identity as a mediator of vascular remodeling may be confounded by its close relationships with its progenitors or pluripotent cell counterparts and yet demonstrates their potential utility as cell-based therapies for unmet clinical needs. Crucial to the development of such therapies is a comprehensive understanding of the origin and fate regulating these related cell types as well as the unveiling of the molecular mechanisms by which pericytes and endothelial cells communicate. Such mechanistic inputs, which disrupt normal cellular crosstalk during disease inception and progression, offer opportunities for intervention and are discussed in the context of the vasculopathies accompanying tumor growth, diabetes, and fibrosis.
Collapse
Affiliation(s)
- Anita Geevarghese
- Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Center for Innovations in Wound Healing Research, Tufts University School of Medicine, Boston, Mass
| | - Ira M Herman
- Program in Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Center for Innovations in Wound Healing Research, Tufts University School of Medicine, Boston, Mass.
| |
Collapse
|
43
|
Dore-Duffy P. Pericytes and adaptive angioplasticity: the role of tumor necrosis factor-like weak inducer of apoptosis (TWEAK). Methods Mol Biol 2014; 1135:35-52. [PMID: 24510853 DOI: 10.1007/978-1-4939-0320-7_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The TNF superfamily member TWEAK has emerged as a pleiotropic cytokine that regulates many cellular functions that include immune/inflammatory activity, angiogenesis, cell proliferation, and fate. TWEAK through its inducible receptor, FGF-inducible molecule 14 (Fn14), can induce both beneficial and deleterious activity that has a profound effect on cell survival. Thus it is highly likely that TWEAK and Fn14 expressed by cells of the neurovascular unit help regulate and maintain vascular and tissue homeostasis. In this chapter we discuss the expression of TWEAK and Fn14 signaling in the cerebral microvascular pericyte. Pericytes are a highly enigmatic population of microvascular cells that are important in regulatory pathways that modulate physiological angiogenesis in response to chronic mild hypoxic stress. A brief introduction will identify the microvascular pericyte. A more detailed discussion of pericyte TWEAK signaling during adaptive angioplasticity will follow.
Collapse
Affiliation(s)
- Paula Dore-Duffy
- Division of Neuroimmunology, Department of Neurology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
44
|
Brudno Y, Ennett-Shepard AB, Chen RR, Aizenberg M, Mooney DJ. Enhancing microvascular formation and vessel maturation through temporal control over multiple pro-angiogenic and pro-maturation factors. Biomaterials 2013; 34:9201-9. [PMID: 23972477 PMCID: PMC3811005 DOI: 10.1016/j.biomaterials.2013.08.007] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/02/2013] [Indexed: 12/20/2022]
Abstract
Therapeutic stimulation of angiogenesis to re-establish blood flow in ischemic tissues offers great promise as a treatment for patients suffering from cardiovascular disease or trauma. Since angiogenesis is a complex, multi-step process, different signals may need to be delivered at appropriate times in order to promote a robust and mature vasculature. The effects of temporally regulated presentation of pro-angiogenic and pro-maturation factors were investigated in vitro and in vivo in this study. Pro-angiogenic factors vascular endothelial growth factor (VEGF) and angiopoietin 2 (Ang2) cooperatively promoted endothelial sprouting and pericyte detachment in a three-dimensional in vitro EC-pericyte co-culture model. Pro-maturation factors platelet-derived growth factor B (PDGF) and angiopoietin 1 (Ang1) inhibited the early stages of VEGF- and Ang2-mediated angiogenesis if present simultaneously with VEGF and Ang2, but promoted these behaviors if added subsequently to the pro-angiogenesis factors. VEGF and Ang2 were also found to additively enhance microvessel density in a subcutaneous model of blood vessel formation, while simultaneously administered PDGF/Ang1 inhibited microvessel formation. However, a temporally controlled scaffold that released PDGF and Ang1 at a delay relative to VEGF/Ang2 promoted both vessel maturation and vascular remodeling without inhibiting sprouting angiogenesis. Our results demonstrate the importance of temporal control over signaling in promoting vascular growth, vessel maturation and vascular remodeling. Delivering multiple growth factors in combination and sequence could aid in creating tissue engineered constructs and therapies aimed at promoting healing after acute wounds and in chronic conditions such as diabetic ulcers and peripheral artery disease.
Collapse
Affiliation(s)
- Yevgeny Brudno
- School of Engineering and Applied Sciences, Harvard University; Cambridge, MA. 02138
- Wyss Institute for Biological Inspired Engineering, Harvard University; Boston, MA. 02115
| | - Alessandra B. Ennett-Shepard
- School of Engineering and Applied Sciences, Harvard University; Cambridge, MA. 02138
- Department of Biomedical Engineering; University of Michigan, Ann Arbor, MI. 48109
| | - Ruth R. Chen
- School of Engineering and Applied Sciences, Harvard University; Cambridge, MA. 02138
- Department of Biomedical Engineering; University of Michigan, Ann Arbor, MI. 48109
| | - Michael Aizenberg
- Wyss Institute for Biological Inspired Engineering, Harvard University; Boston, MA. 02115
| | - David J. Mooney
- School of Engineering and Applied Sciences, Harvard University; Cambridge, MA. 02138
- Wyss Institute for Biological Inspired Engineering, Harvard University; Boston, MA. 02115
| |
Collapse
|
45
|
Functional hyperemia and mechanisms of neurovascular coupling in the retinal vasculature. J Cereb Blood Flow Metab 2013; 33:1685-95. [PMID: 23963372 PMCID: PMC3824187 DOI: 10.1038/jcbfm.2013.145] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 11/08/2022]
Abstract
The retinal vasculature supplies cells of the inner and middle layers of the retina with oxygen and nutrients. Photic stimulation dilates retinal arterioles producing blood flow increases, a response termed functional hyperemia. Despite recent advances, the neurovascular coupling mechanisms mediating the functional hyperemia response in the retina remain unclear. In this review, the retinal functional hyperemia response is described, and the cellular mechanisms that may mediate the response are assessed. These neurovascular coupling mechanisms include neuronal stimulation of glial cells, leading to the release of vasoactive arachidonic acid metabolites onto blood vessels, release of potassium from glial cells onto vessels, and production and release of nitric oxide (NO), lactate, and adenosine from neurons and glia. The modulation of neurovascular coupling by oxygen and NO are described, and changes in functional hyperemia that occur with aging and in diabetic retinopathy, glaucoma, and other pathologies, are reviewed. Finally, outstanding questions concerning retinal blood flow in health and disease are discussed.
Collapse
|
46
|
Mills SJ, Cowin AJ, Kaur P. Pericytes, mesenchymal stem cells and the wound healing process. Cells 2013; 2:621-34. [PMID: 24709801 PMCID: PMC3972668 DOI: 10.3390/cells2030621] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/16/2013] [Accepted: 09/04/2013] [Indexed: 01/09/2023] Open
Abstract
Pericytes are cells that reside on the wall of the blood vessels and their primary function is to maintain the vessel integrity. Recently, it has been realized that pericytes have a much greater role than just the maintenance of vessel integrity essential for the development and formation of a vascular network. Pericytes also have stem cell-like properties and are seemingly able to differentiate into adipocytes, chondrocytes, osteoblasts and granulocytes, leading them to be identified as mesenchymal stem cells (MSCs). More recently it has been suggested that pericytes play a key role in wound healing, whereas the beneficial effects of MSCs in accelerating the wound healing response has been recognized for some time. In this review, we collate the most recent data on pericytes, particularly their role in vessel formation and how they can affect the wound healing process.
Collapse
Affiliation(s)
- Stuart J Mills
- Regenerative Medicine, Mawson Institute, Mawson Lakes, University of South Australia, South Australia 5095, Australia.
| | - Allison J Cowin
- Regenerative Medicine, Mawson Institute, Mawson Lakes, University of South Australia, South Australia 5095, Australia.
| | - Pritinder Kaur
- Epithelial Stem Cell Biology Laboratory, Research Division, Peter MacCallum Cancer Centre, St Andrew's Place, Melbourne, Victoria 3002, Australia.
| |
Collapse
|
47
|
Abstract
Fibrosis of the kidney glomerulus and interstitium are characteristic features of almost all chronic kidney diseases. Fibrosis is tightly associated with destruction of capillaries, inflammation, and epithelial injury which progresses to loss of nephrons, and replacement of kidney parenchyma with scar tissue. Understanding the origins and nature of the cells known as myofibroblasts that make scar tissue is central to development of new therapeutics for kidney disease. Whereas many cell lineages in the body have become defined by well-established markers, myofibroblasts have been much harder to identify with certainty. Recent insights from genetic fate mapping and the use of dynamic reporting of cells that make fibrillar collagen in mice have identified with greater clarity the major population of myofibroblasts and their precursors in the kidney. This review will explore the nature of these cells in health and disease of the kidney to underst and their central role in the pathogenesis of kidney disease.
Collapse
Affiliation(s)
- Naoki Nakagawa
- Division of Nephrology Kidney Research Institute, Center for Lung Biology, Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
48
|
Pericytes derived from adipose-derived stem cells protect against retinal vasculopathy. PLoS One 2013; 8:e65691. [PMID: 23741506 PMCID: PMC3669216 DOI: 10.1371/journal.pone.0065691] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 04/26/2013] [Indexed: 12/21/2022] Open
Abstract
Background Retinal vasculopathies, including diabetic retinopathy (DR), threaten the vision of over 100 million people. Retinal pericytes are critical for microvascular control, supporting retinal endothelial cells via direct contact and paracrine mechanisms. With pericyte death or loss, endothelial dysfunction ensues, resulting in hypoxic insult, pathologic angiogenesis, and ultimately blindness. Adipose-derived stem cells (ASCs) differentiate into pericytes, suggesting they may be useful as a protective and regenerative cellular therapy for retinal vascular disease. In this study, we examine the ability of ASCs to differentiate into pericytes that can stabilize retinal vessels in multiple pre-clinical models of retinal vasculopathy. Methodology/Principal Findings We found that ASCs express pericyte-specific markers in vitro. When injected intravitreally into the murine eye subjected to oxygen-induced retinopathy (OIR), ASCs were capable of migrating to and integrating with the retinal vasculature. Integrated ASCs maintained marker expression and pericyte-like morphology in vivo for at least 2 months. ASCs injected after OIR vessel destabilization and ablation enhanced vessel regrowth (16% reduction in avascular area). ASCs injected intravitreally before OIR vessel destabilization prevented retinal capillary dropout (53% reduction). Treatment of ASCs with transforming growth factor beta (TGF-β1) enhanced hASC pericyte function, in a manner similar to native retinal pericytes, with increased marker expression of smooth muscle actin, cellular contractility, endothelial stabilization, and microvascular protection in OIR. Finally, injected ASCs prevented capillary loss in the diabetic retinopathic Akimba mouse (79% reduction 2 months after injection). Conclusions/Significance ASC-derived pericytes can integrate with retinal vasculature, adopting both pericyte morphology and marker expression, and provide functional vascular protection in multiple murine models of retinal vasculopathy. The pericyte phenotype demonstrated by ASCs is enhanced with TGF-β1 treatment, as seen with native retinal pericytes. ASCs may represent an innovative cellular therapy for protection against and repair of DR and other retinal vascular diseases.
Collapse
|
49
|
Cappellari O, Benedetti S, Innocenzi A, Tedesco FS, Moreno-Fortuny A, Ugarte G, Lampugnani MG, Messina G, Cossu G. Dll4 and PDGF-BB convert committed skeletal myoblasts to pericytes without erasing their myogenic memory. Dev Cell 2013; 24:586-99. [PMID: 23477786 DOI: 10.1016/j.devcel.2013.01.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 12/21/2012] [Accepted: 01/28/2013] [Indexed: 11/25/2022]
Abstract
Pericytes are endothelial-associated cells that contribute to vessel wall. Here, we report that pericytes may derive from direct conversion of committed skeletal myoblasts. When exposed to Dll4 and PDGF-BB, but not Dll1, skeletal myoblasts downregulate myogenic genes, except Myf5, and upregulate pericyte markers, whereas inhibition of Notch signaling restores myogenesis. Moreover, when cocultured with endothelial cells, skeletal myoblasts, previously treated with Dll4 and PDGF-BB, adopt a perithelial position stabilizing newly formed vessel-like networks in vitro and in vivo. In a transgenic mouse model in which cells expressing MyoD activate Notch, skeletal myogenesis is abolished and pericyte genes are activated. Even if overexpressed, Myf5 does not trigger myogenesis because Notch induces Id3, partially sequestering Myf5 and inhibiting MEF2 expression. Myf5-expressing cells adopt a perithelial position, as occasionally also observed in wild-type (WT) embryos. These data indicate that endothelium, via Dll4 and PDGF-BB, induces a fate switch in adjacent skeletal myoblasts.
Collapse
Affiliation(s)
- Ornella Cappellari
- Department of Cell and Developmental Biology and Centre for Stem Cells and Regenerative Medicine, University College London, WC1E 6DE London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Campanholle G, Ligresti G, Gharib SA, Duffield JS. Cellular mechanisms of tissue fibrosis. 3. Novel mechanisms of kidney fibrosis. Am J Physiol Cell Physiol 2013; 304:C591-603. [PMID: 23325411 DOI: 10.1152/ajpcell.00414.2012] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease, defined as loss of kidney function for more than three months, is characterized pathologically by glomerulosclerosis, interstitial fibrosis, tubular atrophy, peritubular capillary rarefaction, and inflammation. Recent studies have identified a previously poorly appreciated, yet extensive population of mesenchymal cells, called either pericytes when attached to peritubular capillaries or resident fibroblasts when embedded in matrix, as the progenitors of scar-forming cells known as myofibroblasts. In response to sustained kidney injury, pericytes detach from the vasculature and differentiate into myofibroblasts, a process not only causing fibrosis, but also directly contributing to capillary rarefaction and inflammation. The interrelationship of these three detrimental processes makes myofibroblasts and their pericyte progenitors an attractive target in chronic kidney disease. In this review, we describe current understanding of the mechanisms of pericyte-to-myofibroblast differentiation during chronic kidney disease, draw parallels with disease processes in the glomerulus, and highlight promising new therapeutic strategies that target pericytes or myofibroblasts. In addition, we describe the critical paracrine roles of epithelial, endothelial, and innate immune cells in the fibrogenic process.
Collapse
Affiliation(s)
- Gabriela Campanholle
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | | | | |
Collapse
|