1
|
Li J, Bao H, Huang Z, Liang Z, Wang M, Lin N, Ni C, Xu Y. Little things with significant impact: miRNAs in hepatocellular carcinoma. Front Oncol 2023; 13:1191070. [PMID: 37274242 PMCID: PMC10235484 DOI: 10.3389/fonc.2023.1191070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has developed into one of the most lethal, aggressive, and malignant cancers worldwide. Although HCC treatment has improved in recent years, the incidence and lethality of HCC continue to increase yearly. Therefore, an in-depth study of the pathogenesis of HCC and the search for more reliable therapeutic targets are crucial to improving the survival quality of HCC patients. Currently, miRNAs have become one of the hotspots in life science research, which are widely present in living organisms and are non-coding RNAs involved in regulating gene expression. MiRNAs exert their biological roles by suppressing the expression of downstream genes and are engaged in various HCC-related processes, including proliferation, apoptosis, invasion, and metastasis. In addition, the expression status of miRNAs is related to the drug resistance mechanism of HCC, which has important implications for the systemic treatment of HCC. This paper reviews the regulatory role of miRNAs in the pathogenesis of HCC and the clinical applications of miRNAs in HCC in recent years.
Collapse
Affiliation(s)
- Jiehan Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haolin Bao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ziyue Huang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zixin Liang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Mei Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ning Lin
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, Fujian, China
| | - Chunjie Ni
- Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng, Jiangsu, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, Fujian, China
- Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng, Jiangsu, China
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People’s Hospital, Changxing, Zhejiang, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Levic DS, Bagnat M. Polarized transport of membrane and secreted proteins during lumen morphogenesis. Semin Cell Dev Biol 2023; 133:65-73. [PMID: 35307284 PMCID: PMC9481742 DOI: 10.1016/j.semcdb.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 10/18/2022]
Abstract
A ubiquitous feature of animal development is the formation of fluid-filled cavities or lumina, which transport gases and fluids across tissues and organs. Among different species, lumina vary drastically in size, scale, and complexity. However, all lumen formation processes share key morphogenetic principles that underly their development. Fundamentally, a lumen simply consists of epithelial cells that encapsulate a continuous internal space, and a common way of building a lumen is via opening and enlarging by filling it with fluid and/or macromolecules. Here, we discuss how polarized targeting of membrane and secreted proteins regulates lumen formation, mainly focusing on ion transporters in vertebrate model systems. We also discuss mechanistic differences observed among invertebrates and vertebrates and describe how the unique properties of the Na+/K+-ATPase and junctional proteins can promote polarization of immature epithelia to build lumina de novo in developing organs.
Collapse
Affiliation(s)
- Daniel S Levic
- Department of Cell Biology, Duke University, Durham, NC 27710, USA.
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
3
|
Gupta VK, Nam S, Yim D, Camuglia J, Martin JL, Sanders EN, O'Brien LE, Martin AC, Kim T, Chaudhuri O. The nature of cell division forces in epithelial monolayers. J Cell Biol 2021; 220:212389. [PMID: 34132746 PMCID: PMC8240854 DOI: 10.1083/jcb.202011106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/05/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Epithelial cells undergo striking morphological changes during division to ensure proper segregation of genetic and cytoplasmic materials. These morphological changes occur despite dividing cells being mechanically restricted by neighboring cells, indicating the need for extracellular force generation. Beyond driving cell division itself, forces associated with division have been implicated in tissue-scale processes, including development, tissue growth, migration, and epidermal stratification. While forces generated by mitotic rounding are well understood, forces generated after rounding remain unknown. Here, we identify two distinct stages of division force generation that follow rounding: (1) Protrusive forces along the division axis that drive division elongation, and (2) outward forces that facilitate postdivision spreading. Cytokinetic ring contraction of the dividing cell, but not activity of neighboring cells, generates extracellular forces that propel division elongation and contribute to chromosome segregation. Forces from division elongation are observed in epithelia across many model organisms. Thus, division elongation forces represent a universal mechanism that powers cell division in confining epithelia.
Collapse
Affiliation(s)
- Vivek K Gupta
- Department of Mechanical Engineering, Stanford University, Stanford, CA
| | - Sungmin Nam
- Department of Mechanical Engineering, Stanford University, Stanford, CA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA.,Wyss Institute for Biologically Inspired Engineering, Cambridge, MA
| | - Donghyun Yim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | - Jaclyn Camuglia
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Judy Lisette Martin
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
| | - Erin Nicole Sanders
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
| | - Lucy Erin O'Brien
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA
| |
Collapse
|
4
|
Caceres PS, Benedicto I, Lehmann GL, Rodriguez-Boulan EJ. Directional Fluid Transport across Organ-Blood Barriers: Physiology and Cell Biology. Cold Spring Harb Perspect Biol 2017; 9:a027847. [PMID: 28003183 PMCID: PMC5334253 DOI: 10.1101/cshperspect.a027847] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Directional fluid flow is an essential process for embryo development as well as for organ and organism homeostasis. Here, we review the diverse structure of various organ-blood barriers, the driving forces, transporters, and polarity mechanisms that regulate fluid transport across them, focusing on kidney-, eye-, and brain-blood barriers. We end by discussing how cross talk between barrier epithelial and endothelial cells, perivascular cells, and basement membrane signaling contribute to generate and maintain organ-blood barriers.
Collapse
Affiliation(s)
- Paulo S Caceres
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, New York 10065
| | - Ignacio Benedicto
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, New York 10065
| | - Guillermo L Lehmann
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, New York 10065
| | - Enrique J Rodriguez-Boulan
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, New York 10065
| |
Collapse
|
5
|
Newbold C, Farrington A, Peters L, Cowan R, Needham K. Electropermeabilization of Adherent Cells with Cochlear Implant Electrical Stimulation in vitro. Audiol Neurootol 2014; 19:283-92. [DOI: 10.1159/000362588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/31/2014] [Indexed: 11/19/2022] Open
|
6
|
Illien F, Piao HR, Coué M, di Marco C, Ayala-Sanmartin J. Lipid organization regulates annexin A2 Ca2+-sensitivity for membrane bridging and its modulator effects on membrane fluidity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2892-900. [DOI: 10.1016/j.bbamem.2012.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/03/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
|
7
|
Mohanty BK, Gupta BL. A marked animal-vegetal polarity in the localization of Na(+),K(+) -ATPase activity and its down-regulation following progesterone-induced maturation. Mol Reprod Dev 2011; 79:138-60. [PMID: 22213374 DOI: 10.1002/mrd.22012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 11/22/2011] [Indexed: 01/01/2023]
Abstract
The stage-VI Xenopus oocyte has a very distinct animal-vegetal polarity with structural and functional asymmetry. In this study, we show the expression and distribution pattern of Na(+),K(+) -ATPase in stage-VI oocytes, and its changes following progesterone-induced maturation. Using enzyme-specific electron microscopy phosphatase histochemistry, [(3) H]-ouabain autoradiography, and immunofluorescence cytochemistry at light microscopic level, we find that Na(+),K(+) -ATPase activity is mainly confined to the animal hemisphere. Electron microscopy histochemical results also suggest that polarized distribution of Na(+),K(+) -ATPase activity persists following progesterone-induced maturation, and it becomes gradually more polarized towards the animal pole. The time course following progesterone-induced maturation suggests that there is an initial up-regulation and then gradual down-regulation of Na(+),K(+) -ATPase activity leading to germinal vesicle breakdown (GVBD). By GVBD, the Na(+),K(+) -ATPase activity is completely down-regulated due to endocytotic removal of pump molecules from the plasma membrane into the sub-cortical region of the oocyte. This study provides the first direct evidence for a marked asymmetric localization of Na(+),K(+) -ATPase activity in any vertebrate oocyte. Here, we propose that such asymmetry in Na(+),K(+) -ATPase activity in stage-VI oocytes, and their down-regulation following progesterone-induced maturation, is likely to have a role in the active state of the germinal vesicle in stage-VI oocytes and chromosomal condensation after GVBD.
Collapse
|
8
|
Siemers Krzeminski KA, Wilson Hammerton R, Mays RW, Ryan TA, Wollner DA, Nelson WJ. Response. Science 2010; 260:554-6. [PMID: 17830435 DOI: 10.1126/science.260.5107.554] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Jaehrling S, Thelen K, Wolfram T, Pollerberg GE. Nanopatterns biofunctionalized with cell adhesion molecule DM-GRASP offered as cell substrate: spacing determines attachment and differentiation of neurons. NANO LETTERS 2009; 9:4115-4121. [PMID: 19694460 DOI: 10.1021/nl9023325] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The density/spacing of plasma membrane proteins is thought to be crucial for their function; clear-cut experimental evidence, however, is still rare. We examined nanopatterns biofunctionalized with cell adhesion molecule DM-GRASP with respect to their impact on neuron attachment and neurite growth. Data analysis/modeling revealed that these cellular responses improve with increasing DM-GRASP density, with the exception of one spacing which does not allow for the anchorage of a cytoskeletal protein (spectrin) to three DM-GRASP molecules.
Collapse
Affiliation(s)
- Steffen Jaehrling
- Department of Developmental Neurobiology, Institute of Zoology, University of Heidelberg, 69120 Heidelberg, Im Neuenheimer Feld 232, Germany
| | | | | | | |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW An enormous body of research has been focused on exploring the mechanisms through which epithelial cells establish their characteristic polarity. It is clear that under normal circumstances cell-cell contacts mediated by the calcium-dependent adhesion proteins of the intercellular adhesion junctions are required to initiate complete polarization. Furthermore, formation of the tight, or occluding, junctions that limit paracellular permeability has long been thought to help to establish polarity by preventing the diffusion of membrane proteins between the two plasmalemmal domains. This review will discuss several selected kinases and protein complexes and highlight their relevance to transporting epithelial cell polarization. RECENT FINDINGS Recent work has shed new light on the roles of junctional complexes in establishing and maintaining epithelial cell polarity. In addition, work from several laboratories suggests that the formation of these junctions is tied to processes that regulate cellular energy metabolism. SUMMARY Junctional complexes and energy sensing kinases constitute a novel class of machinery whose capacity to generate and modulate epithelial cell polarity is likely to have wide ranging and important physiological ramifications.
Collapse
|
11
|
|
12
|
Dubreuil RR. Functional links between membrane transport and the spectrin cytoskeleton. J Membr Biol 2006; 211:151-61. [PMID: 17091212 DOI: 10.1007/s00232-006-0863-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 07/10/2006] [Indexed: 01/12/2023]
Abstract
Membrane transporters precisely regulate which molecules cross the plasma membrane and when they can cross. In many cases it is also important to regulate where substances can cross the plasma membrane. Consequently, cells have evolved mechanisms to confine and stabilize membrane transport proteins within specific subdomains of the plasma membrane. A number of different transporters (including ion pumps, channels and exchangers) are known to physically associate with the spectrin cytoskeleton, a submembrane complex of spectrin and ankyrin. These proteins form a protein scaffold that assembles within discrete subdomains of the plasma membrane in polarized cells. Recent genetic studies in humans and model organisms have provided the opportunity to test the hypothesis that the spectrin cytoskeleton has a direct role in restricting transporters to specialized domains. Remarkably, genetic defects in spectrin and ankyrin can produce effects on cell physiology that are comparable to knockouts of the transporters themselves.
Collapse
Affiliation(s)
- Ronald R Dubreuil
- Dept. of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Ave., Chicago, IL 60607, USA.
| |
Collapse
|
13
|
Bournier O, Kroviarski Y, Rotter B, Nicolas G, Lecomte MC, Dhermy D. Spectrin interacts with EVL (Enabled/vasodilator-stimulated phosphoprotein-like protein), a protein involved in actin polymerization. Biol Cell 2006; 98:279-93. [PMID: 16336193 DOI: 10.1042/bc20050024] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND INFORMATION The alpha- and beta-spectrin chains constitute the filaments of the spectrin-based skeleton, which was first identified in erythrocytes. The discovery of analogous structures at plasma membranes of eukaryotic cells has led to investigations of the role of this spectrin skeleton in many cellular processes. The alphaII-spectrin chain expressed in nucleated cells harbours in its central region several functional motifs, including an SH3 (Src homology 3) domain. RESULTS Using yeast two-hybrid screening, we have identified EVL [Enabled/VASP (vasodilator-stimulated phosphoprotein)-like protein] as a new potential partner of the alphaII-spectrin SH3 domain. In the present study, we investigated the interaction of the alphaII-spectrin SH3 domain with EVL and compared this with other proteins related to EVL [Mena (mammalian Enabled) and VASP]. We confirmed the in vitro interaction between EVL and the alphaII-spectrin SH3 domain by GST (glutathione S-transferase) pull-down assays, and showed that the co-expression of EVL with the alphaII-spectrin SH3 domain in COS-7 cells resulted in the partial delocalization of the SH3 domain from cytoplasm to filopodia and lamellipodia, where it was co-localized with EVL. In kidney epithelial and COS-7 cells, we demonstrated the co-immunoprecipitation of the alphaII-spectrin chain with over-expressed EVL. Immunofluorescence studies showed that the over-expression of EVL in COS-7 cells promoted the formation of filopodia and lamellipodia, and the expressed EVL was detected in filopodial tips and the leading edge of lamellipodia. In these cells over-expressing EVL, the alphaII-spectrin membrane labelling lagged behind EVL staining in lamellipodia and filopodia, with co-localization of these two stains in the contact area. In kidney epithelial cell lines, focused co-localization of spectrin with expressed EVL was observed in the membrane of the lateral domain, where the cell-cell contacts are reinforced. CONCLUSIONS The possible link between the spectrin-based skeleton and actin via the EVL protein suggests a new way of integrating the spectrin-based skeleton in areas of dynamic actin reorganization.
Collapse
|
14
|
Rak DJ, Hardy KM, Jaffe GJ, McKay BS. Ca++-switch induction of RPE differentiation. Exp Eye Res 2006; 82:648-56. [PMID: 16289163 DOI: 10.1016/j.exer.2005.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 08/25/2005] [Accepted: 09/11/2005] [Indexed: 10/25/2022]
Abstract
Cultured retinal pigment epithelial (RPE) cells are commonly used as a model of the tissue to study their involvement in visual diseases. Unfortunately, cultured RPE often lose their differentiated phenotype reducing their usefulness as a model of the RPE in vivo. In this study, we used a Ca++-switch protocol to initiate the patterned expression of several phenotypic and functional markers of RPE differentiation. Cultured RPE cells from adult donors were maintained through at least six serial passages prior to assay to minimize their differentiated properties. The cells were then subjected to the Ca++-switch protocol and maintained at confluence for up to 4 months. Paired control and Ca++-switch cells were examined for phenotype, pigmentation, and the expression of tyrosinase, CRABP, myocilin, and bestrophin by western blot analysis. The Ca++-switch protocol led to a rapid restriction of N-cadherin to lateral cell borders, and to expression of tyrosinase by day 4. After 8 weeks, the experimental RPE monolayers began to accumulate visible pigment, and after 12 weeks CRABP expression was observed. Myocilin was observed at 4 months after the Ca++-switch but bestrophin was not detected at any time point. Our results suggest this protocol may drive epithelial morphogenesis in RPE cells. We note two specific differences in cells plated in low Ca++, reduced spreading on the substrate and coordinated development of cadherin adhesion when the Ca++-concentration is returned to normal. Thus, we suggest that this method produces phenotypic changes through multiple cell signalling pathways.
Collapse
Affiliation(s)
- Daniel J Rak
- Department of Ophthalmology, The University of Arizona, Tucson, AZ, USA
| | | | | | | |
Collapse
|
15
|
Trinh LA, Yelon D, Stainier DYR. Hand2 regulates epithelial formation during myocardial diferentiation. Curr Biol 2005; 15:441-6. [PMID: 15786591 DOI: 10.1016/j.cub.2004.12.083] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Myocardial differentiation is initiated by the activation of terminal-differentiation gene expression within a subset of cells in the anterior lateral plate mesoderm. We have previously shown that shortly after this activation, myocardial cells undergo epithelial maturation [1], suggesting that myocardial differentiation encompasses both molecular and cellular changes. To address the question of how the molecular programs driving myocardial gene expression and the formation of the myocardial epithelium are integrated, we analyzed the role of two essential myocardial terminal-differentiation factors, Hand2 and Gata5, in myocardial epithelia formation. hand2 and gata5 mutants exhibit a much-reduced number of myocardial cells and defects in myocardial gene expression [2,3]. We find that the few myocardial precursors that are present in hand2 mutants do not polarize. In contrast, embryos with reduced Gata5 function exhibit polarized myocardial epithelia despite a similar reduction in myocardial precursor number, indicating that proper cell number is not required for epithelial formation. Taken thogether, these results indicate that Hand2 is uniquely required for myocardial polarization, a previously unappreciated role for this critical transcription factor. Furthermore, these results demonstrate that two independent processes, the polarizaton of myocardial precursors and the allocation of proper cell number, contribute to myocardial development.
Collapse
Affiliation(s)
- Le A Trinh
- Department of Biochemistry and Biophysics Programs in Developmental Biology, Genetics, and Human Genetics, University of California, San Francisco, San Francisco, California 94143, USA
| | | | | |
Collapse
|
16
|
Burke AG, Zhou W, O'Brien ET, Roberts BC, Stamer WD. Effect of hydrostatic pressure gradients and Na2EDTA on permeability of human Schlemm's canal cell monolayers. Curr Eye Res 2004; 28:391-8. [PMID: 15512946 DOI: 10.1080/02713680490503697] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE Elevated intraocular pressure in those with glaucoma appears to be a function of increased resistance to movement of aqueous humor through the conventional outflow pathway. The majority of resistance in both normal and glaucomatous eyes is generated in the region between the juxtacanalicular trabecular meshwork and the inner wall of Schlemm's canal. To accommodate transient elevations in pressure, we hypothesize that conventional outflow increases rapidly due to changes in complexity of intercellular junctions between cells of the inner wall of Schlemm's canal. METHODS To test this hypothesis we examined specifically the effects of hydrostatic pressure gradients and the calcium chelator, Na2EDTA, on permeability of cultured human Schlemm's canal cell monolayers in isolation. Human Schlemm's Canal cells were isolated, cultured and then seeded onto permeable supports and maintained in culture to allow intercellular junctions to mature. With a minimum net transendothelial electrical resistance of 10 Ohm cm2, cells were placed into an Ussing-type chamber and hydraulic conductivity was calculated from pressure and flow measurements that were continuously recorded. Simultaneously, transendothelial electrical resistance was measured manually at fixed intervals. In parallel experiments, cell margins were monitored in real time by videomicroscopy. RESULTS During the baseline measurement period when cells were exposed to pressure but not Na2EDTA, hydraulic conductivity was constant but transendothelial electrical resistance decreased continuously at rate of 0.24 Ohm cm2/minute. After Na2EDTA treatment, no significant change in transendothelial electrical resistance was measured while, hydraulic conductivity of Schlemm's Canal monolayers increased significantly by 125%; corresponding to noticeable intercellular separations. Restoration of cell-cell contact was observed by videomicroscopy 30 minutes following washout of Na2EDTA and functionally after 2 hours. CONCLUSIONS Responses of Schlemm's Canal cells to pressure and calcium chelators in vitro are consistent with a role for calcium sensitive junctions in outflow resistance in vivo.
Collapse
Affiliation(s)
- A G Burke
- Department of Ophthalmology, University of Arizona, Tucson, AZ 85711-1824, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
One important element that defines cell shape is the membrane skeleton. This filamentous network is closely apposed to the cytoplasmic face of the plasma membrane where it gives mechanical support to the membrane, provides specific attachment sites for cytoskeletal components and helps to organize some integral membrane proteins into domains. The membrane skeleton of erythrocytes has been studied extensively by biochemical and ultrastructural methods, but similar structures in other cell types are just beginning to be defined. In this review, David Pumplin and Robert Bloch draw attention to these nonerythroid skeletons and compare and contrast them with the erythrocyte model.
Collapse
Affiliation(s)
- D W Pumplin
- Department of Anatomy, University of Maryland School of Medicine, 660 W. Redwood Street, Baltimore, MD 21201, USA
| | | |
Collapse
|
18
|
Bignone PA, Baines AJ. Spectrin alpha II and beta II isoforms interact with high affinity at the tetramerization site. Biochem J 2003; 374:613-24. [PMID: 12820899 PMCID: PMC1223645 DOI: 10.1042/bj20030507] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2003] [Revised: 06/23/2003] [Accepted: 06/23/2003] [Indexed: 11/17/2022]
Abstract
Spectrin tetramers form by the interaction of two alpha-beta dimers through two helices close to the C-terminus of a beta subunit and a single helix at the N-terminus of an alpha subunit. Early work on spectrin from solid tissues (typified by alphaII and betaII polypeptides) indicated that it forms a more stable tetramer than erythroid spectrin (alphaI-betaI). In the present study, we have probed the molecular basis of this phenomenon. We have quantified the interactions of N-terminal regions of two human alpha polypeptides (alphaI and alphaII) with the C-terminal regions of three beta isoforms (betaISigma1, betaIISigma1 and betaIISigma2). alphaII binds either betaII form with a much higher affinity than alphaI binds betaISigma1 ( K (d) values of 5-9 nM and 840 nM respectively at 25 degrees C). betaIISigma1 and betaIISigma2 are splice variants with different C-terminal extensions outside the tetramerization site: these extensions affect the rate rather than the affinity of alpha subunit interaction. alphaII spectrin interacts with each beta subunit with higher affinity than alphaI, and the betaII polypeptides have higher affinities for both alpha chains than betaISigma1. The first full repeat of the alpha subunit has a major role in determining affinity. Enthalpy changes in the alphaII-betaIISigma2 interaction are large, but the entropy change is comparatively small. The interaction is substantially reduced, but not eliminated, by concentrated salt solutions. The high affinity and slow overall kinetics of association and dissociation of alphaII-betaII spectrin may suit it well to a role in strengthening cell junctions and providing stable anchor points for transmembrane proteins at points specified by cell-adhesion molecules.
Collapse
Affiliation(s)
- Paola A Bignone
- Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK.
| | | |
Collapse
|
19
|
Abstract
We have previously identified a Golgi-localized spectrin isoform by using an antibody to the beta-subunit of erythrocyte spectrin. In this study, we show that a screen of a lambdagt11 expression library resulted in the isolation of an approximately 5-kb partial cDNA from a Madin-Darby bovine kidney (MDBK) cell line, which encoded a polypeptide of 1697 amino acids with low, but detectable, sequence homology to spectrin (37%). A blast search revealed that this clone overlaps with the 5' end of a recently identified spectrin family member Syne-1B/Nesprin-1beta, an alternately transcribed gene with muscle-specific forms that bind acetylcholine receptor and associate with the nuclear envelope. By comparing the sequence of the MDBK clone with sequence data from the human genome database, we have determined that this cDNA represents a central portion of a very large gene ( approximately 500 kb), encoding an approximately 25-kb transcript that we refer to as Syne-1. Syne-1 encodes a large polypeptide (8406 amino acids) with multiple spectrin repeats and a region at its amino terminus with high homology to the actin binding domains of conventional spectrins. Golgi localization for this spectrin-like protein was demonstrated by expression of epitope-tagged fragments in MDBK and COS cells, identifying two distinct Golgi binding sites, and by immunofluorescence microscopy by using several different antibody preparations. One of the Golgi binding domains on Syne-1 acts as a dominant negative inhibitor that alters the structure of the Golgi complex, which collapses into a condensed structure near the centrosome in transfected epithelial cells. We conclude that the Syne-1 gene is expressed in a variety of forms that are multifunctional and are capable of functioning at both the Golgi and the nuclear envelope, perhaps linking the two organelles during muscle differentiation.
Collapse
Affiliation(s)
- Lisa Lucio Gough
- Department of Cell Biology and Human Anatomy, University of California, Davis, 95616, USA
| | | | | | | | | |
Collapse
|
20
|
Arvan P, Zhao X, Ramos-Castaneda J, Chang A. Secretory pathway quality control operating in Golgi, plasmalemmal, and endosomal systems. Traffic 2002; 3:771-80. [PMID: 12383343 DOI: 10.1034/j.1600-0854.2002.31102.x] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Exportable proteins that have significant defects in nascent polypeptide folding or subunit assembly are frequently retained in the endoplasmic reticulum and subject to endoplasmic reticulum-associated degradation by the ubiquitin-proteasome system. In addition to this, however, there is growing evidence for post-endoplasmic reticulum quality control mechanisms in which mutant or non-native exportable proteins may undergo anterograde transport to the Golgi complex and post-Golgi compartments before intracellular disposal. In some instances, these proteins may undergo retrograde transport back to the endoplasmic reticulum with re-targeting to the endoplasmic reticulum-associated degradation pathway; in other typical cases, they are targeted into the endosomal system for degradation by vacuolar/lysosomal proteases. Such quality control targeting is likely to involve recognition of features more commonly expressed in mutant proteins, but may also be expressed by wild-type proteins, especially in cells with perturbation of local environments that are essential for normal protein trafficking and stability in the secretory pathway and at the cell surface.
Collapse
Affiliation(s)
- Peter Arvan
- Division of Endocrinology/Diabetes Center and Department of Developmental/Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx NY 10461, USA.
| | | | | | | |
Collapse
|
21
|
Tang Y, Katuri V, Iqbal S, Narayan T, Wang Z, Lu RS, Mishra L, Mishra B. ELF a beta-spectrin is a neuronal precursor cell marker in developing mammalian brain; structure and organization of the elf/beta-G spectrin gene. Oncogene 2002; 21:5255-67. [PMID: 12149647 DOI: 10.1038/sj.onc.1205548] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2001] [Revised: 03/20/2002] [Accepted: 03/27/2002] [Indexed: 11/09/2022]
Abstract
Spectrins play a pivotal role in axonal transport, neurite extension, the organization of synaptic vesicles, as well as for protein sorting in the Golgi apparatus and cell membrane. Among spectrins there is great variability in sequence composition, tissue distribution, and function, with two known genes encoding the alpha-chain, and at least five encoding the beta-chain. It remains unclear as to whether novel beta-spectrins such as elf1-4 are distinct genes or beta-G-spectrin isoforms. The role for ELF in the developing nervous system has not been identified to date. In this study we demonstrate the genomic structure of elf-3, as well as the expression of ELF in the developing mouse brain using a peptide specific antibody against its distinctive amino-terminal end. Full genomic structural analyses reveal that elf-3 is composed of 31 exons spanning approximately 67 kb, and confirm that elf and mouse brain beta-G-spectrin share multiple exons, with a complex form of exon/intron usage. In embryonic stages, E9-12, anti-ELF localized to the primary brain vesicular cells that also labeled strongly with anti-nestin but not anti-vimentin. At E12-14, anti-ELF localized to axonal sprouts in the developing neuroblasts of cortex and purkinje cell layer of the cerebellum, as well as in cell bodies in the diencephalon and metencephalon. Double labeling identified significant co-localization of anti-ELF, nestin and dystrophin in sub ventricular zone cells and in stellate-like cells of the developing forebrain. These studies define clearly the expression of ELF, a new isoform of beta-G-spectrin in the developing brain. Based on its expression pattern, ELF may have a role in neural stem cell development and is a marker of axonal sprouting in mid stages of embryonic development.
Collapse
Affiliation(s)
- Yi Tang
- Laboratory of Development Molecular Biology, DVAMC, Washington, District of Columbia, DC 20422, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The diversity of epithelia in the body permits a multitude of organ-specific functions. One of the foremost examples of this is the retinal pigment epithelium. Located between the photoreceptors of the retina and their principal blood supply, the choriocapillaris, the retinal pigment epithelium is critical for the survival and function of retinal photoreceptors. To serve this purpose, the retinal pigment epithelium cell has adapted the classic Golgi-to-cell-surface targeting pathways first described in such prototypic epithelial cell models as the Madin-Darby canine kidney cell, to arrive at a unique distribution of membrane and secreted proteins. More recent data suggest that the retinal pigment epithelium also takes advantage of its inherent asymmetry to augment the classical pathways of Golgi-to-cell-surface traffic. As retinal pigment epithelium transplants and gene therapy represent potential cures for retinal degenerative diseases, understanding the basis of the unique polarity properties of retinal pigment epithelium cells will be a critical issue for the development of future therapies.
Collapse
Affiliation(s)
- A D Marmorstein
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation i31, 9500 Euclid Avenue, Cleveland, Ohio, 44195, USA.
| |
Collapse
|
23
|
Carothers AM, Melstrom KA, Mueller JD, Weyant MJ, Bertagnolli MM. Progressive changes in adherens junction structure during intestinal adenoma formation in Apc mutant mice. J Biol Chem 2001; 276:39094-102. [PMID: 11483600 DOI: 10.1074/jbc.m103450200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C57BL/6J-Min/+ (Min/+) mouse bears a mutant Apc gene and therefore is an important in vivo model of intestinal tumorigenesis. Min/+ mice develop adenomas that exhibit loss of the wild-type Apc allele (Apc(Min/-)). Previously, we found that histologically normal enterocytes bearing a truncated Apc protein (Apc(Min/+)) migrated more slowly in vivo than enterocytes with either wild-type Apc (Apc(+/+)) or with heterozygous loss of Apc protein (Apc(1638N)). To study this phenotype further, we determined the effect of the Apc(Min) mutation upon cell-cell adhesion by examining the components of the adherens junction (AJ). We observed a reduced association between E-cadherin and beta-catenin in Apc(Min/+) enterocytes. Subcellular fractionation of proteins from Apc(+/+), Apc(Min/+), and Apc(Min/-) intestinal tissues revealed a cytoplasmic localization of intact E-cadherin only in Apc(Min/+), suggesting E-cadherin internalization in these enterocytes. beta-Catenin tyrosine phosphorylation was also increased in Apc(Min/+) enterocytes, consistent with its dissociation from E-cadherin. Furthermore, Apc(Min/+) enterocytes showed a decreased association between beta-catenin and receptor protein-tyrosine phosphatase beta/zeta (RPTPbeta/zeta), and Apc(Min/-) cells demonstrated an association between beta-catenin and receptor protein-tyrosine phosphatase gamma. In contrast to the Apc(Min/+) enterocytes, Apc(Min/-) adenomas displayed increased expression and association of E-cadherin, beta-catenin, and alpha-catenin relative to Apc(+/+) controls. These data show that Apc plays a role in regulating adherens junction structure and function in the intestine. In addition, discovery of these effects in initiated but histologically normal tissue (Apc(Min/+)) defines a pre-adenoma stage of tumorigenesis in the intestinal mucosa.
Collapse
Affiliation(s)
- A M Carothers
- Department of Surgery, Weill College of Medicine, Cornell University, New York, the Strang Cancer Prevention Center, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
24
|
Bennett V, Baines AJ. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev 2001; 81:1353-92. [PMID: 11427698 DOI: 10.1152/physrev.2001.81.3.1353] [Citation(s) in RCA: 720] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The spectrin-based membrane skeleton of the humble mammalian erythrocyte has provided biologists with a set of interacting proteins with diverse roles in organization and survival of cells in metazoan organisms. This review deals with the molecular physiology of spectrin, ankyrin, which links spectrin to the anion exchanger, and two spectrin-associated proteins that promote spectrin interactions with actin: adducin and protein 4.1. The lack of essential functions for these proteins in generic cells grown in culture and the absence of their genes in the yeast genome have, until recently, limited advances in understanding their roles outside of erythrocytes. However, completion of the genomes of simple metazoans and application of homologous recombination in mice now are providing the first glimpses of the full scope of physiological roles for spectrin, ankyrin, and their associated proteins. These functions now include targeting of ion channels and cell adhesion molecules to specialized compartments within the plasma membrane and endoplasmic reticulum of striated muscle and the nervous system, mechanical stabilization at the tissue level based on transcellular protein assemblies, participation in epithelial morphogenesis, and orientation of mitotic spindles in asymmetric cell divisions. These studies, in addition to stretching the erythrocyte paradigm beyond recognition, also are revealing novel cellular pathways essential for metazoan life. Examples are ankyrin-dependent targeting of proteins to excitable membrane domains in the plasma membrane and the Ca(2+) homeostasis compartment of the endoplasmic reticulum. Exciting questions for the future relate to the molecular basis for these pathways and their roles in a clinical context, either as the basis for disease or more positively as therapeutic targets.
Collapse
Affiliation(s)
- V Bennett
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
25
|
Moreno RD, Schatten G. Microtubule configurations and post-translational alpha-tubulin modifications during mammalian spermatogenesis. CELL MOTILITY AND THE CYTOSKELETON 2000; 46:235-46. [PMID: 10962478 DOI: 10.1002/1097-0169(200008)46:4<235::aid-cm1>3.0.co;2-g] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mechanisms underlying cell cycle progression and differentiation are tightly entwined with changes associated in the structure and composition of the cytoskeleton. Mammalian spermatogenesis is a highly intricate process that involves differentiation and polarization of the round spermatid. We found that pachytene spermatocytes and round spermatids have most of the microtubules randomly distributed in a cortical network without any apparent centrosome. The Golgi apparatus faces the acrosomal vesicle and some microtubules contact its surface. In round spermatids, at step 7, there is an increase in short microtubules around and over the nucleus. These microtubules are located between the rims of the acrosome and may be the very first sign in the formation of the manchette. This new microtubular configuration is correlated with the beginning of the migration of the Golgi apparatus from the acrosomal region towards the opposite pole of the cell. Next, the cortical microtubules form a bundle running around the nucleus perpendicular to the main axis of the cell. At later stages, the nuclear microtubules increase in size and a fully formed manchette appears at stage 9. On the other hand, acetylated tubulin is present in a few microtubules in pachytene spermatocytes and in the axial filament (precursor of the sperm tail) in round spermatids. Our results suggest that at step 7, the spermatid undergoes a major microtubular reordering that induces or allows organelle movement and prepares the cell for the formation of the manchette and further nuclear shaping. This new microtubular configuration is associated with an increase in short microtubules over the nucleus that may correspond to the initial step of the manchette formation. The new structure of the cytoskeleton may be associated with major migratory events occurring at this step of differentiation.
Collapse
Affiliation(s)
- R D Moreno
- Oregon Regional Primate Research Center, Oregon Health Sciences University, Beaverton, OR 97006, USA
| | | |
Collapse
|
26
|
Affiliation(s)
- H Kubista
- Department of Physiology, University College London, UK
| | | | | |
Collapse
|
27
|
Moorthy S, Chen L, Bennett V. Caenorhabditis elegans beta-G spectrin is dispensable for establishment of epithelial polarity, but essential for muscular and neuronal function. J Cell Biol 2000; 149:915-30. [PMID: 10811831 PMCID: PMC2174577 DOI: 10.1083/jcb.149.4.915] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The Caenorhabditis elegans genome encodes one alpha spectrin subunit, a beta spectrin subunit (beta-G), and a beta-H spectrin subunit. Our experiments show that the phenotype resulting from the loss of the C. elegans alpha spectrin is reproduced by tandem depletion of both beta-G and beta-H spectrins. We propose that alpha spectrin combines with the beta-G and beta-H subunits to form alpha/beta-G and alpha/beta-H heteromers that perform the entire repertoire of spectrin function in the nematode. The expression patterns of nematode beta-G spectrin and vertebrate beta spectrins exhibit three striking parallels including: (1) beta spectrins are associated with the sites of cell-cell contact in epithelial tissues; (2) the highest levels of beta-G spectrin occur in the nervous system; and (3) beta spectrin-G in striated muscle is associated with points of attachment of the myofilament apparatus to adjacent cells. Nematode beta-G spectrin associates with plasma membranes at sites of cell-cell contact, beginning at the two-cell stage, and with a dramatic increase in intensity after gastrulation when most cell proliferation has been completed. Strikingly, depletion of nematode beta-G spectrin by RNA-mediated interference to undetectable levels does not affect the establishment of structural and functional polarity in epidermis and intestine. Contrary to recent speculation, beta-G spectrin is not associated with internal membranes and depletion of beta-G spectrin was not associated with any detectable defects in secretion. Instead beta-G spectrin-deficient nematodes arrest as early larvae with progressive defects in the musculature and nervous system. Therefore, C. elegans beta-G spectrin is required for normal muscle and neuron function, but is dispensable for embryonic elongation and establishment of early epithelial polarity. We hypothesize that heteromeric spectrin evolved in metazoans in response to the needs of cells in the context of mechanically integrated tissues that can withstand the rigors imposed by an active organism.
Collapse
Affiliation(s)
- Suraj Moorthy
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710
| | - Lihsia Chen
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710
| | - Vann Bennett
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
28
|
Troxell ML, Chen YT, Cobb N, Nelson WJ, Marrs JA. Cadherin function in junctional complex rearrangement and posttranslational control of cadherin expression. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C404-18. [PMID: 9950768 DOI: 10.1152/ajpcell.1999.276.2.c404] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of E-cadherin, a calcium-dependent adhesion protein, in organizing and maintaining epithelial junctions was examined in detail by expressing a fusion protein (GP2-Cad1) composed of the extracellular domain of a nonadherent glycoprotein (GP2) and the transmembrane and cytoplasmic domains of E-cadherin. All studies shown were also replicated using an analogous cell line that expresses a mutant cadherin construct (T151) under the control of tet repressor. Mutant cadherin was expressed at approximately 10% of the endogenous E-cadherin level and had no apparent effect on tight junction function or on distributions of adherens junction, tight junction, or desmosomal marker proteins in established Madin-Darby canine kidney cell monolayers. However, GP2-Cad1 accelerated the disassembly of epithelial junctional complexes and delayed their reassembly in calcium switch experiments. Inducing expression of GP2-Cad1 to levels approximately threefold greater than endogenous E-cadherin expression levels in control cells resulted in a decrease in endogenous E-cadherin levels. This was due in part to increased protein turnover, indicating a cellular mechanism for sensing and controlling E-cadherin levels. Cadherin association with catenins is necessary for strong cadherin-mediated cell-cell adhesion. In cells expressing low levels of GP2-Cad1, protein levels and stoichiometry of the endogenous cadherin-catenin complex were unaffected. Thus effects of GP2-Cad1 on epithelial junctional complex assembly and stability were not due to competition with endogenous E-cadherin for catenin binding. Rather, we suggest that GP2-Cad1 interferes with the packing of endogenous cadherin-catenin complexes into higher-order structures in junctional complexes that results in junction destabilization.
Collapse
Affiliation(s)
- M L Troxell
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305-5426, USA
| | | | | | | | | |
Collapse
|
29
|
Wu H, Reuver SM, Kuhlendahl S, Chung WJ, Garner CC. Subcellular targeting and cytoskeletal attachment of SAP97 to the epithelial lateral membrane. J Cell Sci 1998; 111 ( Pt 16):2365-76. [PMID: 9683631 DOI: 10.1242/jcs.111.16.2365] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The synapse-associated protein SAP97 is a member of a novel family of cortical cytoskeletal proteins involved in the localization of ion channels at such membrane specializations as synaptic junctions. These multidomain proteins have binding sites for protein 4.1, GKAPs/SAPAPs, voltage- and ligand-gated ion channels and cell-adhesion molecules containing C-terminal T/SXV motifs. In this study, we evaluated the contribution of individual domains in SAP97 to its selective recruitment and attachment to the cortical cytoskeleton in epithelial cells. We find that the PDZ, SH3 and GK domains, as well as the I3 insert in SAP97, are not essential for subcellular targeting, though both PDZ1-2 domains and the I3 insert affect the efficiency of localization. Instead, we show that the first 65 amino acid residues in SAP97, which are absent from SAP90/PSD-95 and SAP102, direct the selective subcellular localization and can mediate at least one point of attachment of SAP97 to the cytoskeleton assembled at sites of cell-cell contact. Our data demonstrate that it is the sequences unique to SAP97 that direct its subcellular targeting to the epithelial lateral membrane.
Collapse
Affiliation(s)
- H Wu
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294-0021, USA
| | | | | | | | | |
Collapse
|
30
|
Beck KA, Nelson WJ. A spectrin membrane skeleton of the Golgi complex. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1404:153-60. [PMID: 9714784 DOI: 10.1016/s0167-4889(98)00054-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The existence of a Golgi-localized membrane cytoskeleton has been revealed by the identification of two major components of the spectrin membrane skeleton, spectrin and ankyrin, that associate with the Golgi complex. Golgi spectrin was identified with an antibody specific for the beta-subunit of the erythroid isoform of spectrin (beta1Sigma1). This antibody recognizes a 220 kDa polypeptide that localizes to discrete regions of the Golgi complex and associates with Golgi membranes in a Brefeldin A sensitive manner. Two isoforms of Golgi ankyrin have been identified: a 119 kDa form (AnkG119) which represents a truncated, alternatively spliced isoform of a recently cloned novel ankyrin of the nervous system AnkG, and a larger 195 kDa ankyrin (Ank195) that cross-reacts with antibodies to erythrocyte ankyrin. A Golgi localized membrane skeleton composed of these unique membrane skeleton isoforms could serve a variety of important functions, including the maintenance of Golgi structural organization and the formation of discrete membrane domains within Golgi compartments.
Collapse
Affiliation(s)
- K A Beck
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
31
|
Jou TS, Schneeberger EE, Nelson WJ. Structural and functional regulation of tight junctions by RhoA and Rac1 small GTPases. J Cell Biol 1998; 142:101-15. [PMID: 9660866 PMCID: PMC2133025 DOI: 10.1083/jcb.142.1.101] [Citation(s) in RCA: 275] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Tight junctions (TJ) govern ion and solute diffusion through the paracellular space (gate function), and restrict mixing of membrane proteins and lipids between membrane domains (fence function) of polarized epithelial cells. We examined roles of the RhoA and Rac1 GTPases in regulating TJ structure and function in MDCK cells using the tetracycline repressible transactivator to regulate RhoAV14, RhoAN19, Rac1V12, and Rac1N17 expression. Both constitutively active and dominant negative RhoA or Rac1 perturbed TJ gate function (transepithelial electrical resistance, tracer diffusion) in a dose-dependent and reversible manner. Freeze-fracture EM and immunofluoresence microscopy revealed abnormal TJ strand morphology and protein (occludin, ZO-1) localization in RhoAV14 and Rac1V12 cells. However, TJ strand morphology and protein localization appeared normal in RhoAN19 and Rac1N17 cells. All mutant GTPases disrupted the fence function of the TJ (interdomain diffusion of a fluorescent lipid), but targeting and organization of a membrane protein in the apical membrane were unaffected. Expression levels and protein complexes of occludin and ZO-1 appeared normal in all mutant cells, although ZO-1 was more readily solubilized from RhoAV14-expressing cells with Triton X-100. These results show that RhoA and Rac1 regulate gate and fence functions of the TJ, and play a role in the spatial organization of TJ proteins at the apex of the lateral membrane.
Collapse
Affiliation(s)
- T S Jou
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | | | | |
Collapse
|
32
|
Kshirsagar T, Nakano AH, Law PY, Elde R, Portoghese PS. NTI4F: a non-peptide fluorescent probe selective for functional delta opioid receptors. Neurosci Lett 1998; 249:83-6. [PMID: 9682822 DOI: 10.1016/s0304-3940(98)00379-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A non-peptide fluorescent probe, NTI4F, has been developed for the delta (delta) opioid receptor. The probe is a potent delta-antagonist in the mouse vas deferens (MVD) smooth muscle assay and it binds to the delta opioid receptor with high affinity (Ki = 1 nM) and selectivity. Confocal microscopy indicates that the probe binds to Madin-Darby canine kidney (MDCK) cells transfected with the delta opioid receptor. This binding can be blocked by the delta opioid receptor antagonist, naltrindole (NTI), but not by morphine or ethylketazocine (EK) which are mu (mu)- and kappa (kappa)-selective ligands. This fluorescent probe should prove useful in the study of the distribution of the delta opioid receptor.
Collapse
Affiliation(s)
- T Kshirsagar
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | |
Collapse
|
33
|
Cereijido M, Valdés J, Shoshani L, Contreras RG. Role of tight junctions in establishing and maintaining cell polarity. Annu Rev Physiol 1998; 60:161-77. [PMID: 9558459 DOI: 10.1146/annurev.physiol.60.1.161] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The tight junction (TJ) is not randomly located on the cell membrane, but occupies a precise position at the outermost edge of the intercellular space and, therefore, is itself considered a polarized structure. This article reviews the most common experimental approaches for studying this relationship. We then discuss three main topics. (a) The mechanisms of polarization that operate regardless of the presence of TJs: We explore a variety of polarization mechanisms that operate at stages of the cell cycle in which TJs may be already established. (b) TJs and polarity as partners in highly dynamic processes: Polarity and TJs are steady state situations that may be drastically changed by a variety of signaling events. (c) Polarized distribution of membrane molecules that depend on TJs: This refers to molecules (mainly lipids) whose polarized distribution, although not the direct result of TJs, depends on these structures to maintain such distribution.
Collapse
Affiliation(s)
- M Cereijido
- Center for Research and Advanced Studies, México.
| | | | | | | |
Collapse
|
34
|
Reuver SM, Garner CC. E-cadherin mediated cell adhesion recruits SAP97 into the cortical cytoskeleton. J Cell Sci 1998; 111 ( Pt 8):1071-80. [PMID: 9512503 DOI: 10.1242/jcs.111.8.1071] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Members of the SAP family of synapse-associated proteins have recently emerged as central players in the molecular organization of synapses. In this study, we have examined the mechanism that localizes one member, SAP97, to sites of cell-cell contact. Utilizing epithelial CACO-2 cells and fibroblast L-cells as model systems, we demonstrate that SAP97 is associated with the submembranous cortical cytoskeleton at cell-cell adhesion sites. Furthermore, we show that its localization into this structure is triggered by E-cadherin. Although SAP97 can be found in an E-cadherin/catenin adhesion complex, this interaction seems to be mediated by the attachment of SAP97 to the cortical cytoskeleton. Our results are consistent with a model in which SAP97 is recruited to sites of cell-cell contact via an E-cadherin induced assembly of the cortical cytoskeleton.
Collapse
Affiliation(s)
- S M Reuver
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294-0021, USA
| | | |
Collapse
|
35
|
Grindstaff KK, Bacallao RL, Nelson WJ. Apiconuclear organization of microtubules does not specify protein delivery from the trans-Golgi network to different membrane domains in polarized epithelial cells. Mol Biol Cell 1998; 9:685-99. [PMID: 9487135 PMCID: PMC25297 DOI: 10.1091/mbc.9.3.685] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/1997] [Accepted: 12/05/1997] [Indexed: 02/06/2023] Open
Abstract
In nonpolarized epithelial cells, microtubules originate from a broad perinuclear region coincident with the distribution of the Golgi complex and extend outward to the cell periphery (perinuclear [PN] organization). During development of epithelial cell polarity, microtubules reorganize to form long cortical filaments parallel to the lateral membrane, a meshwork of randomly oriented short filaments beneath the apical membrane, and short filaments at the base of the cell; the Golgi becomes localized above the nucleus in the subapical membrane cytoplasm (apiconuclear [AN] organization). The AN-type organization of microtubules is thought to be specialized in polarized epithelial cells to facilitate vesicle trafficking between the trans-Golgi Network (TGN) and the plasma membrane. We describe two clones of MDCK cells, which have different microtubule distributions: clone II/G cells, which gradually reorganize a PN-type distribution of microtubules and the Golgi complex to an AN-type during development of polarity, and clone II/J cells which maintain a PN-type organization. Both cell clones, however, exhibit identical steady-state polarity of apical and basolateral proteins. During development of cell surface polarity, both clones rapidly establish direct targeting pathways for newly synthesized gp80 and gp135/170, and E-cadherin between the TGN and apical and basolateral membrane, respectively; this occurs before development of the AN-type microtubule/Golgi organization in clone II/G cells. Exposure of both clone II/G and II/J cells to low temperature and nocodazole disrupts >99% of microtubules, resulting in: 1) 25-50% decrease in delivery of newly synthesized gp135/170 and E-cadherin to the apical and basolateral membrane, respectively, in both clone II/G and II/J cells, but with little or no missorting to the opposite membrane domain during all stages of polarity development; 2) approximately 40% decrease in delivery of newly synthesized gp80 to the apical membrane with significant missorting to the basolateral membrane in newly established cultures of clone II/G and II/J cells; and 3) variable and nonspecific delivery of newly synthesized gp80 to both membrane domains in fully polarized cultures. These results define several classes of proteins that differ in their dependence on intact microtubules for efficient and specific targeting between the Golgi and plasma membrane domains.
Collapse
Affiliation(s)
- K K Grindstaff
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
36
|
Boxberger HJ, Meyer TF, Grausam MC, Reich K, Becker HD, Sessler MJ. Isolating and maintaining highly polarized primary epithelial cells from normal human duodenum for growth as spheroid-like vesicles. In Vitro Cell Dev Biol Anim 1997; 33:536-45. [PMID: 9282314 DOI: 10.1007/s11626-997-0096-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A method is described for the three-dimensional (3-D) in vitro culture of nontransformed gastrointestinal epithelial cells from the human duodenal mucosa. Biopsies obtained from human duodenum were finely minced. The tissue fragments were suspended in culture medium supplemented with 5% fetal calf serum and the appropriate antibiotics. The suspended mucosal fragments generated spheroid-like multicellular vesicles consisting of highly prismatic absorptive and goblet cells retaining most of the histological features of the tissue in vivo. We performed immunocytochemical studies to determine the origin of the vesicles using monoclonal antibodies against EP4. The histochemistry of the vesicles showed alkaline phosphatase activity. Ultrastructural studies revealed that these cells exhibit characteristics of normal duodenal cells in vivo: apical microvilli, glycocalyx, tight junctions and desmosomes, lateral membrane interdigitations, mucous droplets, and a well-developed Golgi apparatus. An overgrowth of the vesicles by fibroblasts was not seen during cultivation. In contrast with the two-dimensional cell cultures grown on artificial supports, the vesicle cells show organization similar to that of natural epithelia. The polarization and cytoarchitecture of normal gastrointestinal epithelial cells cultured as 3-D vesicles are comparable to those known for the native tissue. This study was undertaken to provide a morphological baseline for subsequent infection experiments.
Collapse
Affiliation(s)
- H J Boxberger
- Max-Planck-Institut für Biologie, Abteilung Infektionsbiologie, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Baumann O. Biogenesis of surface domains in fly photoreceptor cells: Fine-structural analysis of the plasma membrane and immunolocalization of Na+,K+ ATPase and ?-spectrin during cell differentiation. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970616)382:4<429::aid-cne1>3.0.co;2-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Eger A, Stockinger A, Wiche G, Foisner R. Polarisation-dependent association of plectin with desmoplakin and the lateral submembrane skeleton in MDCK cells. J Cell Sci 1997; 110 ( Pt 11):1307-16. [PMID: 9202391 DOI: 10.1242/jcs.110.11.1307] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intermediate filament-binding protein plectin and cytokeratin were localised at the cellular periphery of fully polarised Madin-Darby canine kidney (MDCK) cells, whereas vimentin was primarily found in a perinuclear network. Confocal and immunoelectron microscopy revealed that plectin was restricted to areas underlying the lateral plasma membrane. It colocalised with fodrin, a component of the submembrane skeleton, and was closely associated with desmosomal plaque structures. Biochemically, plectin was shown to interact directly with immunoprecipitated desmoplakin in vitro. Upon loss of cell polarity in low calcium medium, plectin redistributed to a cytoplasmic vimentin- and cytokeratin-related network, clearly distinct from diffusely distributed fodrin and internalised desmoplakin structures. The structural reorganisation of plectin was also reflected by an increased solubility of the protein in Triton X-100/high salt, and a decrease in its half-life from approximately 20 to approximately 5 hours. Furthermore, unlike cytokeratins and vimentin, desmoplakin and fodrin did not associate with plectin attached to magnetic beads in cell lysates of unpolarised cells, while all proteins formed a stable complex in polarised cells. Altogether, these data indicate that plectin is involved in the anchorage of intermediate filaments to desmosomes and to the submembrane skeleton in polarised MDCK cells.
Collapse
Affiliation(s)
- A Eger
- Institute of Biochemistry and Molecular Cell Biology, University of Vienna, Biocenter, Austria
| | | | | | | |
Collapse
|
39
|
Beck KA, Buchanan JA, Nelson WJ. Golgi membrane skeleton: identification, localization and oligomerization of a 195 kDa ankyrin isoform associated with the Golgi complex. J Cell Sci 1997; 110 ( Pt 10):1239-49. [PMID: 9191047 DOI: 10.1242/jcs.110.10.1239] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To extend our finding of a Golgi-localized form of the membrane skeleton protein spectrin, we have identified an isoform of ankyrin that associates at steady state with the Golgi complex. Immuno-light and -electron microscopy show that this ankyrin isoform localizes to the perinuclear cytoplasm on tubular vesicular structures that co-stain with Golgi marker proteins. An antiserum raised against erythrocyte ankyrin, which was used to identify the Golgi ankyrin, recognized three prominent polypeptides of 220, 213 and 195 kDa in MDCK cells. Affinity purification of this antiserum against each of these MDCK cell ankyrins revealed that only an antibody specific for the 195 kDa form retained the ability to stain the Golgi complex; affinity purified antibody preparations specific for both the 220 and 213 kDa forms stained punctate and reticular cytoplasmic structures distinct from the Golgi complex. Antibody specific for the 195 kDa ankyrin did not recognize a recently identified 119 kDa ankyrin that is also localized to the Golgi. The 195 kDa Golgi ankyrin binds purified erythrocyte spectrin, and rapidly co-sediments with Golgi beta-spectrin during brief, low speed centrifugation of Triton X-100 extracts of MDCK cells. Golgi ankyrin and beta-spectrin are retained on tubular vesicular ‘Golgi ghosts’ following extraction of cultured cells with Triton X-100. Significantly, Golgi ghost tubules containing ankyrin/spectrin are co-linear with individual microtubules, suggesting a role for both Golgi membrane skeleton and microtubules in spatial localization of the Golgi. Golgi ankyrin dissociates from Golgi membranes during mitosis and in cells treated with brefeldin A, indicating that Golgi ankyrin has a dynamic assembly state similar to that of Golgi spectrin and other Golgi membrane coat proteins.
Collapse
Affiliation(s)
- K A Beck
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, CA 94305-5426, USA
| | | | | |
Collapse
|
40
|
Salas PJ, Rodriguez ML, Viciana AL, Vega-Salas DE, Hauri HP. The apical submembrane cytoskeleton participates in the organization of the apical pole in epithelial cells. J Biophys Biochem Cytol 1997; 137:359-75. [PMID: 9128248 PMCID: PMC2139782 DOI: 10.1083/jcb.137.2.359] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In a previous publication (Rodriguez, M.L., M. Brignoni, and P.J.I. Salas. 1994. J. Cell Sci. 107: 3145-3151), we described the existence of a terminal web-like structure in nonbrush border cells, which comprises a specifically apical cytokeratin, presumably cytokeratin 19. In the present study we confirmed the apical distribution of cytokeratin 19 and expanded that observation to other epithelial cells in tissue culture and in vivo. In tissue culture, subconfluent cell stocks under continuous treatment with two different 21-mer phosphorothioate oligodeoxy nucleotides that targeted cytokeratin 19 mRNA enabled us to obtain confluent monolayers with a partial (40-70%) and transitory reduction in this protein. The expression of other cytoskeletal proteins was undisturbed. This downregulation of cytokeratin 19 resulted in (a) decrease in the number of microvilli; (b) disorganization of the apical (but not lateral or basal) filamentous actin and abnormal apical microtubules; and (c) depletion or redistribution of apical membrane proteins as determined by differential apical-basolateral biotinylation. In fact, a subset of detergent-insoluble proteins was not expressed on the cell surface in cells with lower levels of cytokeratin 19. Apical proteins purified in the detergent phase of Triton X-114 (typically integral membrane proteins) and those differentially extracted in Triton X-100 at 37 degrees C or in n-octyl-beta-D-glycoside at 4 degrees C (representative of GPI-anchored proteins), appeared partially redistributed to the basolateral domain. A transmembrane apical protein, sucrase isomaltase, was found mispolarized in a subpopulation of the cells treated with antisense oligonucleotides, while the basolateral polarity of Na+-K+ATPase was not affected. Both sucrase isomaltase and alkaline phosphatase (a GPI-anchored protein) appeared partially depolarized in A19 treated CACO-2 monolayers as determined by differential biotinylation, affinity purification, and immunoblot. These results suggest that an apical submembrane cytoskeleton of intermediate filaments is expressed in a number of epithelia, including those without a brush border, although it may not be universal. In addition, these data indicate that this structure is involved in the organization of the apical region of the cytoplasm and the apical membrane.
Collapse
Affiliation(s)
- P J Salas
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Florida 33101, USA
| | | | | | | | | |
Collapse
|
41
|
Scannevin RH, Murakoshi H, Rhodes KJ, Trimmer JS. Identification of a cytoplasmic domain important in the polarized expression and clustering of the Kv2.1 K+ channel. J Cell Biol 1996; 135:1619-32. [PMID: 8978827 PMCID: PMC2133974 DOI: 10.1083/jcb.135.6.1619] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The voltage-sensitive K+ channel Kv2.1 has a polarized and clustered distribution in neurons. To investigate the basis for this localization, we expressed wild-type Kv2.1 and two COOH-terminal truncation mutants, delta C318 and delta C187, in polarized epithelial MDCK cells. These functional channel proteins had differing subcellular localization, in that while both wild-type Kv2.1 and delta C187 localized to the lateral membrane in high density clusters, delta C318 was expressed uniformly on both apical and lateral membranes. A chimeric protein containing the hemagglutinin protein from influenza virus and the region of Kv2.1 that differentiates the two truncation mutants (amino acids 536-666) was also expressed in MDCK cells, where it was found in high density clusters similar to those observed for Kv2.1. Polarized expression and clustering of Kv2.1 correlates with detergent solubility, suggesting that interaction with the detergent insoluble cytoskeleton may be necessary for proper localization of this channel.
Collapse
Affiliation(s)
- R H Scannevin
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook 11794, USA
| | | | | | | |
Collapse
|
42
|
Heymach JV, Krüttgen A, Suter U, Shooter EM. The regulated secretion and vectorial targeting of neurotrophins in neuroendocrine and epithelial cells. J Biol Chem 1996; 271:25430-7. [PMID: 8810312 DOI: 10.1074/jbc.271.41.25430] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The varied roles that neurotrophins play in the development and activity-dependent plasticity of the nervous system presumably require that the sites and quantity of neurotrophin release be precisely regulated. As a step toward understanding how different neurotrophins are sorted and secreted by neurons, we expressed nerve growth factor (NGF), brain-derived neurotrophic factor, and neurotrophin-3 in cell lines used as models for neuronal protein sorting. All three neurotrophins were secreted by a regulated pathway in transfected AtT-20 and PC12 neuroendocrine cells, with a 3-6-fold increase in neurotrophin release in response to 8-bromo-cAMP or depolarization, respectively. To determine if the propeptide directs the intracellular sorting of mature NGF, we examined mutants in which regions spanning the propeptide were deleted. These mutants underwent regulated release in every case in which expression could be detected. Similarly, NGF sorting was not significantly altered by mutations which specifically abolished N-glycosylation or proteolytic processing sites within the NGF precursor. Finally, we found that all three neurotrophins were secreted 65-75% basolaterally by polarized Madin-Darby canine kidney epithelial cells. These findings suggest that the determinants of regulated neurotrophin secretion lie within the mature neurotrophin moiety and that NGF, brain-derived neurotrophic factor, and neurotrophin-3 are likely to be sorted similarly and released in a regulated manner by neurons.
Collapse
Affiliation(s)
- J V Heymach
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305-5401, USA
| | | | | | | |
Collapse
|
43
|
Angres B, Barth A, Nelson WJ. Mechanism for transition from initial to stable cell-cell adhesion: kinetic analysis of E-cadherin-mediated adhesion using a quantitative adhesion assay. J Cell Biol 1996; 134:549-57. [PMID: 8707837 PMCID: PMC2120882 DOI: 10.1083/jcb.134.2.549] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A centrifugal force-based adhesion assay has been used to quantitatively examine the kinetics of formation of cell-cell contacts mediated specifically by expression of E-cadherin under the control of a glucocorticoid-inducible promoter in mouse fibroblasts. Analysis of cells expressing maximal or minimal levels of E-cadherin showed that the strength of E-cadherin-mediated adhesion developed in a single exponential step over a short time (half-maximal adhesion, 13-17 min). At 37 degrees C, adhesion strength increased rapidly in the first 20 min without an apparent lag phase. After 90 min, adhesion strength reached a plateau. Differences in final strengths of adhesion were commensurate with the level of E-cadherin expression. Strengthening of adhesion was temperature dependent. At 19 degrees C, strengthening of adhesion was delayed and subsequently developed with a slower rate compared to adhesion at 37 degrees C. At 4 degrees C, adhesion was completely inhibited. Strengthening of adhesion was absolutely dependent on a functional actin cytoskeleton since adhesion did not develop when cells were treated with cytochalasin D. Together, our current and previous (McNeill et al., 1993.J. Cell Biol. 120:1217-1226) studies indicate that the rate of initial strengthening of E-cadherin-mediated adhesion is neither dependent on the amount of E-cadherin expressed nor on long-range protein diffusion in the membrane to the adhesion site. However, initial strengthening of adhesion is dependent on temperature-sensitive cellular activities that may locally couple clusters of E-cadherin to the actin cytoskeleton.
Collapse
Affiliation(s)
- B Angres
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, California 94305-5426, USA
| | | | | |
Collapse
|
44
|
Zuk A, Matlin KS. Apical beta 1 integrin in polarized MDCK cells mediates tubulocyst formation in response to type I collagen overlay. J Cell Sci 1996; 109 ( Pt 7):1875-89. [PMID: 8832410 DOI: 10.1242/jcs.109.7.1875] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of epithelia form tubulocysts in vitro when overlaid with type I collagen gel. Because collagen receptors are generally believed to be expressed on the basolateral domain, the mechanism by which collagen elicits this morphogenetic response from the apical surface is unclear. To investigate the role of beta 1 integrins, the major receptor family for collagen, in this process, we overlaid polarized monolayers of MDCK II cells grown on permeable supports with type I collagen gel and correlated integrin polarity with the polarity of other apical and basolateral membrane markers during tubulocyst formation. Polarized monolayers of one clone of MDCK II cells, referred to as Heidelberg MDCK, initially respond to collagen overlay by stratifying; within 48 hours, lumena develop between the cell layers giving rise to tubulocysts. Tight junctions remain intact during tubulocyst formation because transepithelial electrical resistance does not significantly change. Major alterations are observed, however, in the expression and localization of apical and basolateral membrane markers. beta 1 integrins are necessary for tubulocyst morphogenesis because a function-blocking antibody administered to the apical pole of the cells completely inhibits the formation of these structures. To determine how apical-cell collagen interactions elicit tubulocyst formation, we examined whether beta 1 integrins are mobilized to apical plasma membranes in response to collagen overlay. We found that in the absence of collagen, polarized monolayers of Heidelberg MDCK cells endogenously express on apical plasma membranes a small pool of the beta 1 family, including alpha 2 beta 1 and alpha 3 beta 1. Collagen overlay does not mobilize additional beta 1 integrins to apical domains. If beta 1 integrins are not already apically expressed, as in the C6 MDCK cell line (Schoenenberger et al. (1994) J. Cell Biol. 107, 527–541), beta 1 integrins are not directed apically and tubulocysts do not develop in response to collagen. Thus, interaction of beta 1 integrin pre-existing on apical plasma membranes of polarized epithelia with type I collagen gel is the mechanism by which apical application of collagen elicits the formation of tubulocysts. Depolarized integrins on apical plasma membranes of polarized epithelia may be relevant to the pathogenesis of disease and injury.
Collapse
Affiliation(s)
- A Zuk
- Renal Unit, Massachusetts General Hospital, Charlestown, USA
| | | |
Collapse
|
45
|
Sjaastad MD, Lewis RS, Nelson WJ. Mechanisms of integrin-mediated calcium signaling in MDCK cells: regulation of adhesion by IP3- and store-independent calcium influx. Mol Biol Cell 1996; 7:1025-41. [PMID: 8862518 PMCID: PMC275956 DOI: 10.1091/mbc.7.7.1025] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Peptides containing Arg-Gly-Asp (RGD) immobilized on beads bind to integrins and trigger biphasic, transient increases in intracellular free Ca2+ ([Ca2+]i) in Madin-Darby canine kidney epithelial cells. The [Ca2+]i increase participates in feedback regulation of integrin-mediated adhesion in these cells. We examined influx pathways and inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ store release as possible sources of the [Ca2+]i rise. The RGD-induced [Ca2+]i response requires external Ca2+ (threshold approximately 150 microM), and its magnitude is proportional to extracellular calcium. RGD-induced transients were attenuated by Ca2+ channel inhibitors (Ni2+ and carboxy-amidotriazole) or by plasma membrane depolarization, indicating that Ca2+ influx contributes to the response. Loading cells with heparin reduced the size of RGD-induced [Ca2+]i transients, indicating that IP3-mediated release of Ca2+ from stores may also contribute to the RGD response. Depletion of Ca2+ stores with thapsigargin activated Ni(2+)-sensitive Ca2+ influx that might also be expected to occur after IP3-mediated depletion of stored Ca2-. However, RGD elicited a Ni(2+)-sensitive Ca2+ influx even after pretreatment with thapsigargin, indicating that Ca2+ influx is controlled by a mechanism independent of IP3-mediated store depletion. We conclude that RGD-induced [Ca2+]i transients in Madin-Darby canine kidney cells result primarily from the combination of two distinct mechanisms: 1) IP3-mediated release of intracellular stores, and 2) activation of a Ca2+ influx pathway regulated independently of IP3 and Ca2+ store release. Because Ni2+ and carboxy-amidotriazole inhibited adhesion, whereas store depletion with thapsigargin had little effect, we suggest that the Ca2+ influx mechanism is most important for feedback regulation of integrin-mediated adhesion by increased [Ca2+]i.
Collapse
Affiliation(s)
- M D Sjaastad
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, California 94305-5426, USA
| | | | | |
Collapse
|
46
|
Handlogten ME, Dudenhausen EE, Yang W, Kilberg MS. Association of hepatic system A amino acid transporter with the membrane-cytoskeletal proteins ankyrin and fodrin. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1282:107-14. [PMID: 8679646 DOI: 10.1016/0005-2736(96)00046-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
System A activity is a highly regulated mechanism for the active transport of zwitterionic amino acids into mammalian cells. Monoclonal antibodies generated against a previously unidentified rat liver plasma membrane-associated protein were shown to immunoprecipitate solubilized System A transport activity. The immunoreactive protein was later determined by immunoblotting and peptide microsequencing to be rat liver alpha-fodrin (non-erythroid spectrin). Antibody against ankyrin, a protein that often serves as a bridge between integral membrane proteins and fodrin, also immunoprecipitated System A transport activity. Fractionation of solubilized plasma membrane proteins on sucrose gradients revealed that the System A transporter co-migrated as a complex with fodrin and ankyrin, even in the presence of detergent and urea. In contrast, the System N amino acid transporter does not co-migrate with ankyrin and fodrin, nor does the anti-fodrin antibody immunoprecipitate System N activity. The present data are the first to demonstrate an association between an organic solute transporter and the membranocytoskeletal proteins ankyrin and fodrin.
Collapse
Affiliation(s)
- M E Handlogten
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, JHMHC, Gainesville 32610, USA
| | | | | | | |
Collapse
|
47
|
Dubreuil RR, MacVicar G, Dissanayake S, Liu C, Homer D, Hortsch M. Neuroglian-mediated cell adhesion induces assembly of the membrane skeleton at cell contact sites. J Cell Biol 1996; 133:647-55. [PMID: 8636238 PMCID: PMC2120821 DOI: 10.1083/jcb.133.3.647] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The protein ankyrin links integral membrane proteins to the spectrin-based membrane skeleton. Ankyrin is often concentrated within restricted membrane domains of polarized epithelia and neurons, but the mechanisms responsible for membrane targeting and its segregation within a continuous lipid bilayer remain unexplained. We provide evidence that neuroglian, a cell adhesion molecule related to L1 and neurofascin, can transmit positional information directly to ankyrin and thereby polarize its distribution in Drosophila S2 tissue culture cells. Ankyrin was not normally associated with the plasma membrane of these cells. Upon expression of an inducible neuroglian minigene, however, cells aggregated into large clusters and ankyrin became concentrated at sites of cell-cell contact. Spectrin was also recruited to sites of cell contact in response to neuroglian expression. The accumulation of ankyrin at cell contacts required the presence of the cytoplasmic domain of neuroglian since a glycosyl phosphatidylinositol-linked form of neuroglian failed to recruit ankyrin to sites of cell-cell contact. Double-labeling experiments revealed that, whereas ankyrin was strictly associated with sites of cell-cell contact, neuroglian was more broadly distributed over the cell surface. A direct interaction between neuroglian and ankyrin was demonstrated using yeast two-hybrid analysis. Thus, neuroglian appears to be activated by extracellular adhesion so that ankyrin and the membrane skeleton selectively associate with sites of cell contact and not with other regions of the plasma membrane.
Collapse
Affiliation(s)
- R R Dubreuil
- Department of Pharmacological & Physiological Sciences, University of Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
48
|
Beck KA, Nelson WJ. The spectrin-based membrane skeleton as a membrane protein-sorting machine. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 270:C1263-70. [PMID: 8967424 DOI: 10.1152/ajpcell.1996.270.5.c1263] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Normal cell function is dependent on the existence of membrane compartments that have unique populations of membrane proteins. Sorting of membrane proteins forms the basis for the biogenesis of distinct membrane compartments. There are many examples of membrane protein-sorting events in cells, but the molecular machinery involved is poorly understood. We discuss characteristics of a putative membrane protein-sorting machine and show that the spectrin-based membrane skeleton conforms to these characteristics. The spectrin-based membrane skeleton is a submembranous, spatially limited, two-dimensional lattice that binds a subset of membrane proteins. These properties allow the membrane skeleton to facilitate the formation of distinct membrane domains and thus reveal its potential as a membrane protein-sorting machine.
Collapse
Affiliation(s)
- K A Beck
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, California 94305-5426, USA
| | | |
Collapse
|
49
|
Huotari V, Vaaraniemi J, Lehto VP, Eskelinen S. Regulation of the disassembly/assembly of the membrane skeleton in Madin-Darby canine kidney cells. J Cell Physiol 1996; 167:121-30. [PMID: 8698829 DOI: 10.1002/(sici)1097-4652(199604)167:1<121::aid-jcp14>3.0.co;2-e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The effects of pH, temperature, block of energy production, calcium/calmodulin, protein phosphorylation, and cytoskeleton-disrupting agents (cytochalasin D, nocodazole) on the integrity of the membrane skeleton were studied in polarized MDCK cells. The intracellular distributions of alpha-fodrin, actin, and ankyrin were monitored by immunofluorescence microscopy. The membrane skeleton, once assembled, seemed to be quite stable; the only factors releasing alpha-fodrin from the lateral walls were the acidification of the cytoplasm and the depletion of extracellular calcium ions. Upon cellular acidification, some actin was also released from its normal location along the lateral walls and was seen in colocalization with alpha-fodrin in the cytoplasm, whereas ankyrin remained associated with the lateral walls. No accumulation of plasma membrane lipids was observed in the cytoplasm of acidified cells, as visualized by TMA-DPH. These results suggest that the linkages between the fodrin-actin complex and its membrane association sites are broken upon acidification. The pH-induced change in alpha-fodrin localization was reversible upon restoring the normal pH. Reassembly of the membrane skeleton, however, required temperatures above +20 degrees C, normal energy production, proper cell-cell contacts, and polymerized actin. Release of alpha-fodrin from the lateral walls to the cytoplasm was also observed upon depletion of extracellular calcium ions. This change was accompanied by the disruption of cell-cell contacts, supporting the role of proper cell-cell contacts in the maintenance of the membrane skeleton polarity. These results suggest that local alterations of the cytoplasmic pH and calcium ion concentration may be important in regulating the integrity of the membrane skeleton.
Collapse
Affiliation(s)
- V Huotari
- Biocenter Oulu, University of Oulu, Finland
| | | | | | | |
Collapse
|
50
|
Chapter 6 The Spectrin Cytoskeleton and Organization of Polarized Epithelial Cell Membranes. CURRENT TOPICS IN MEMBRANES 1996. [DOI: 10.1016/s0070-2161(08)60386-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
|