1
|
Jurberg AD, Gomes G, Seixas MR, Mermelstein C, Costa ML. Improving quantification of myotube width and nuclear/cytoplasmic ratio in myogenesis research. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 230:107354. [PMID: 36682109 DOI: 10.1016/j.cmpb.2023.107354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND OBJECTIVE The culture of skeletal muscle cells is particularly relevant to basic biomedical research and translational medicine. The incubation of dissociated cells under controlled conditions has helped to dissect several molecular mechanisms associated with muscle cell differentiation, in addition to contributing for the evaluation of drug effects and prospective cell therapies for patients with degenerative muscle pathologies. The formation of mature multinucleated myotubes is a stepwise process involving well defined events of cell proliferation, commitment, migration, and fusion easily identified through optical microscopy methods including immunofluorescence and live cell imaging. The characterization of each step is usually based on muscle cell morphology and nuclei number, as well as the presence and intracellular location of specific cell markers. However, manual quantification of these parameters in large datasets of images is work-intensive and prone to researcher's subjectivity, mostly because of the extremely elongated cell shape of large myotubes and because myotubes are multinucleated. METHODS Here we provide two semi-automated ImageJ macros aimed to measure the width of myotubes and the nuclear/cytoplasmic localization of molecules in fluorescence images. The width measuring macro automatically determines the best angle, perpendicular to most cells, to draw a profile plot and identify and measure individual myotubes. The nuclear/cytoplasmic ratio macro compares the intensity values along lines, drawn by the user, over cytoplasm and nucleus. RESULTS We show that the macro measurements are more consistent than manual measurements by comparing with our own results and with the literature. CONCLUSIONS By relying on semi-automated muscle specific ImageJ macros, we seek to improve measurement accuracy and to alleviate the laborious routine of counting and measuring muscle cell features.
Collapse
Affiliation(s)
- Arnon Dias Jurberg
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), RJ, Brazil; Instituto de Educação Médica (IDOMED), Campus Vista Carioca, Universidade Estácio de Sá (UNESA), RJ, Brazil
| | - Geyse Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), RJ, Brazil
| | - Marianna Reis Seixas
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), RJ, Brazil
| | - Claudia Mermelstein
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), RJ, Brazil
| | - Manoel Luis Costa
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), RJ, Brazil.
| |
Collapse
|
2
|
Kovacs AM, Zimmer WE. Cell-specific transcription of the smooth muscle gamma-actin gene requires both positive- and negative-acting cis elements. Gene Expr 2018; 7:115-29. [PMID: 9699483 PMCID: PMC6190202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have characterized the function of putative regulatory sequences upon the smooth muscle transcription of the SMGA gene, using promoter deletion analyses. We demonstrate that the SMGA promoter contains four domains: a basal promoter (-1 to -100), a smooth muscle specifier sequence (-100 to -400), a negative regulator (-400 to -1000), and a smooth muscle-specific modulator (-1000 to -2000). The basal or core promoter supports equivalent transcription in both smooth and skeletal muscle cells. Addition of sequences containing a CArG motif juxtaposed to an E-box element stimulates smooth muscle transcription by five- to sixfold compared to skeletal muscle. This smooth muscle-specific segment is maintained for about 200 bp, after which is a segment of DNA that appears to inhibit the transcriptional capacity of the SMGA promoter in smooth muscle cells. Within the boundary between the smooth muscle specifier and negative regulatory sequences (-400 to -500) are three E-box elements. The smooth muscle modulator domain contains two CArG elements and multiple E-boxes. When added to the SMGA promoter it causes an additional three- to fivefold increase in smooth muscle-specific transcription over that stimulated by the smooth muscle specifier domain. Thus, our studies show that the appropriate cell-specific transcription of the SMGA gene involves complex interactions directed by multiple cis-acting elements. Moreover, our characterization of a cell culture system employing embryonic gizzard smooth muscle cells lays the foundation for further molecular analyses of factors that regulate or control SMGA and other smooth muscle genes during differentiation.
Collapse
Affiliation(s)
- Adrienne M. Kovacs
- Department of Structural and Cellular Biology, University of South Alabama, Mobile, AL 36688
| | - Warren E. Zimmer
- Department of Structural and Cellular Biology, University of South Alabama, Mobile, AL 36688
- Address correspondence to Warren E. Zimmer. Tel: (334) 460-7982; Fax: (334) 460-6771; E-mail:
| |
Collapse
|
3
|
Liu H, Qin W, Wang Z, Shao Y, Wang J, Borg TK, Gao BZ, Xu M. Disassembly of myofibrils and potential imbalanced forces on Z-discs in cultured adult cardiomyocytes. Cytoskeleton (Hoboken) 2016; 73:246-57. [PMID: 27072949 DOI: 10.1002/cm.21298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 11/08/2022]
Abstract
Myofibrils are the main protein structures that generate force in the beating heart. Myofibril disassembly is related to many physiological and pathological processes. This study investigated, in a cultured rat adult cardiomyocyte model, the effect of force imbalance on myofibril disassembly. The imbalance of forces that were exerted on Z-discs was induced by the synergistic effect of broken intercalated discs and actin-myosin interaction. Cardiomyocytes with well-preserved intercalated discs were isolated from adult rat ventricles. The ultrastructure of cardiomyocyte was observed using a customized two-photon excitation fluorescence and second harmonic generation imaging system. The contraction of cardiomyocytes was recorded with a high-speed CCD camera, and the movement of cellular components was analyzed using a contractile imaging assay technique. The cardiomyocyte dynamic remodeling process was recorded using a time-lapse imaging system. The role of actin-myosin interaction in myofibril disassembly was investigated by incubating cardiomyocytes with blebbistatin (25 μM). Results demonstrated that the hierarchical disassembly process of myofibrils was initiated from cardiomyocyte free ends where intercalated discs had broken, during which the desmin network near the free cell ends was destroyed to release single myofibrils. Analysis of force (based on a schematic model of cardiomyocytes connected at intercalated discs) suggests that breaking of intercalated discs caused force imbalance on both sides of the Z-discs adjacent to the cell ends due to actin-myosin interaction. The damaged intercalated discs and actin-myosin interaction induced force imbalance on both sides of the Z-discs, which played an important role in the hierarchical disassembly of myofibrils. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Honghai Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, 45267
| | - Wan Qin
- Department of Bioengineering and COMSET, Clemson University, Clemson, South Carolina, 29634
| | - Zhonghai Wang
- Department of Bioengineering and COMSET, Clemson University, Clemson, South Carolina, 29634
| | - Yonghong Shao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jingcai Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, 45267
| | - Thomas K Borg
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, 29425
| | - Bruce Z Gao
- Department of Bioengineering and COMSET, Clemson University, Clemson, South Carolina, 29634
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, Ohio, 45267
| |
Collapse
|
4
|
Ojima K, Lin ZX, de Andrade IR, Costa ML, Mermelstein C. Distinctive Effects of Cytochalasin B in Chick Primary Myoblasts and Fibroblasts. PLoS One 2016; 11:e0154109. [PMID: 27119825 PMCID: PMC4847871 DOI: 10.1371/journal.pone.0154109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/09/2016] [Indexed: 01/07/2023] Open
Abstract
Actin-based structures play fundamental roles in cellular functions. However it remains controversial how cells cope with the absence of F-actin structures. This report focuses on short- and long-term effects of cytochalasin B (CB) on actin-complexes in fibroblasts and myoblasts. Thirty min of CB treatment dispersed subplasma actin cortices, lamellipodia, ruffled membranes, stress fibers and adhesion plaques into actin patches in fibroblasts and muscle cells. In contrast, 72 hrs CB treatment showed distinct morphological effects. Fibroblasts became giant multinucleated-finger shaped with 5 to 10 protrusions, 3-8 μm in width, and >200 μm in length. They lacked cortical actin, stress fibers, adhesion plaques and ruffled membranes but contained immense lamelliopodia with abnormal adhesion plaque protein complexes. Muscle cells transformed into multinucleated globular-shaped but contained normal I-Z-I and A-bands, indicating that CB did not interfere with the assembly of myofibrils. Within 30 min after CB removal, finger-shaped fibroblasts returned to their original shape and actin-containing structures rapidly reappeared, whereas muscle cells respond slowly to form elongated myotubes following CB washout. The capacity to grow, complete several nuclear cycles, assemble intermediate filaments and microtubules without a morphologically recognizable actin cytoskeleton raises interesting issues related to the role of the actin compartments in eukaryotic cells.
Collapse
Affiliation(s)
- Koichi Ojima
- Animal Products Research Division, NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, 305–0901, Japan
| | - Zhong-Xiang Lin
- Department of Cell Biology, Beijing Institute for Cancer Research, Beijing Medical University, Beijing, 100083, China
| | - Ivone Rosa de Andrade
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941–902, Brasil
| | - Manoel Luis Costa
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941–902, Brasil
| | - Claudia Mermelstein
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941–902, Brasil
- * E-mail:
| |
Collapse
|
5
|
Gawlitta D, Boonen KJM, Oomens CWJ, Baaijens FPT, Bouten CVC. The influence of serum-free culture conditions on skeletal muscle differentiation in a tissue-engineered model. Tissue Eng Part A 2008; 14:161-71. [PMID: 18333814 DOI: 10.1089/ten.a.2007.0095] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The influence of differentiation medium (DM) components on C2C12 murine myoblast differentiation has only been studied in monolayer cultures. Serum-free formulations have been applied that omit the use of sera with unknown composition. The goal of the present study was to compare the influence of serum-free media on C2C12 differentiation in 3-dimensional tissue-engineered muscle constructs. Myoblast proliferation and differentiation in media containing Ultroser G (DMU), insulin-like growth factor (IGF)-I (DMI), or both (DMUI) were compared with those induced by more-traditional media containing horse serum (HS) or horse serum and IGF-I (HSI). Effects of the applied media were assessed from gross construct morphology, total protein content, creatine kinase activity, and tissue viability. Addition of IGF-I (HSI) to the standard DM (HS) improved myoblast differentiation in muscle constructs. Even better results were obtained using DMU and DMUI culture conditions. DMI could not induce differentiation or maintain cell viability. Serum-free culture medium supplemented with DMU or DMUI accelerates and improves myoblast differentiation in engineered muscle tissue better than the gold standard HS.
Collapse
Affiliation(s)
- Debby Gawlitta
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | | | | | | |
Collapse
|
6
|
Ng DCH, Gebski BL, Grounds MD, Bogoyevitch MA. Myoseverin disrupts sarcomeric organization in myocytes: an effect independent of microtubule assembly inhibition. ACTA ACUST UNITED AC 2008; 65:40-58. [PMID: 17948234 DOI: 10.1002/cm.20242] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although disruption of the microtubule (MT) array inhibits myogenesis in myocytes, the relationship between the assembly of microtubules (MT) and the organization of the contractile filaments is not clearly defined. We now report that the assembly of mature myofibrils in hypertrophic cardiac myocytes is disrupted by myoseverin, a compound previously shown to perturb the MT array in skeletal muscle cells. Myoseverin treated cardiac myocytes showed disruptions of the striated Z-bands containing alpha-actinin and desmin and the localization of tropomyosin, titin and myosin on mature sarcomeric filaments. In contrast, MT depolymerization by nocodazole did not perturb sarcomeric filaments. Similarly, expression of constitutively active stathmin as a non-chemical molecular method of MT depolymerization did not prevent sarcomere assembly. The extent of MT destabilization by myoseverin and nocodazole were comparable. Thus, the effect of myoseverin on sarcomere assembly was independent of its capacity for MT inhibition. Furthermore, we found that upon removal of myoseverin, sarcomeres reformed in the absence of an intact MT network. Sarcomere formation in cardiac myocytes therefore, does not appear to require an intact MT network and thus we conclude that a functional MT array appears to be dispensable for myofibrillogenesis.
Collapse
Affiliation(s)
- Dominic C H Ng
- Biochemistry and Molecular Biology, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Western Australia, Australia.
| | | | | | | |
Collapse
|
7
|
McGrath MJ, Cottle DL, Nguyen MA, Dyson JM, Coghill ID, Robinson PA, Holdsworth M, Cowling BS, Hardeman EC, Mitchell CA, Brown S. Four and a half LIM protein 1 binds myosin-binding protein C and regulates myosin filament formation and sarcomere assembly. J Biol Chem 2006; 281:7666-83. [PMID: 16407297 DOI: 10.1074/jbc.m512552200] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Four and a half LIM protein 1 (FHL1/SLIM1) is highly expressed in skeletal and cardiac muscle; however, the function of FHL1 remains unknown. Yeast two-hybrid screening identified slow type skeletal myosin-binding protein C as an FHL1 binding partner. Myosin-binding protein C is the major myosin-associated protein in striated muscle that enhances the lateral association and stabilization of myosin thick filaments and regulates actomyosin interactions. The interaction between FHL1 and myosin-binding protein C was confirmed using co-immunoprecipitation of recombinant and endogenous proteins. Recombinant FHL2 and FHL3 also bound myosin-binding protein C. FHL1 impaired co-sedimentation of myosin-binding protein C with reconstituted myosin filaments, suggesting FHL1 may compete with myosin for binding to myosin-binding protein C. In intact skeletal muscle and isolated myofibrils, FHL1 localized to the I-band, M-line, and sarcolemma, co-localizing with myosin-binding protein C at the sarcolemma in intact skeletal muscle. Furthermore, in isolated myofibrils FHL1 staining at the M-line appeared to extend partially into the C-zone of the A-band, where it co-localized with myosin-binding protein C. Overexpression of FHL1 in differentiating C2C12 cells induced "sac-like" myotube formation (myosac), associated with impaired Z-line and myosin thick filament assembly. This phenotype was rescued by co-expression of myosin-binding protein C. FHL1 knockdown using RNAi resulted in impaired myosin thick filament formation associated with reduced incorporation of myosin-binding protein C into the sarcomere. This study identified FHL1 as a novel regulator of myosin-binding protein C activity and indicates a role for FHL1 in sarcomere assembly.
Collapse
Affiliation(s)
- Meagan J McGrath
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Antolik C, De Deyne PG, Bloch RJ. Biolistic transfection of cultured myotubes. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2003; 2003:PL11. [PMID: 12881614 DOI: 10.1126/stke.2003.192.pl11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Transfection of cells in culture with cDNA constructs is a powerful tool in cell biology, but postmitotic cells, including myotubes, can be hard to transfect with classic methods. Biolistics provides an alternative. We have used this biolistic technique to introduce cDNAs into cultured rat, chick, and C2C12 myotubes. This protocol results in efficient (20 to 70%, depending on cell type) transfection of myotubes, high levels of cDNA expression in individual myotubes, and little cellular damage. Using this procedure, we have expressed different muscle-specific cDNAs as green fluorescent protein (GFP) fusions. This technique is rapid, reliable, uses minimal amounts of reagent per transfection, and yields high transfection rates in a previously hard-to-transfect cell type. Its efficiency and reliability are high, regardless of plasmid size or epitope tag. Muscle cell biologists may now perform experiments in mature myotubes rather than relying on transfection of myoblast cultures or heterologous expression systems.
Collapse
Affiliation(s)
- Christian Antolik
- Department of Physiology, University of Maryland School of Medicine, 655 W. Baltimore St., Baltimore, MD 21201, USA
| | | | | |
Collapse
|
9
|
Ojima K, Lin Z, Bang ML, Holtzer S, Matsuda R, Labeit S, Sweeney H, Holtzer H. Distinct families of Z-line targeting modules in the COOH-terminal region of nebulin. J Cell Biol 2000; 150:553-66. [PMID: 10931867 PMCID: PMC2175182 DOI: 10.1083/jcb.150.3.553] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To learn how nebulin functions in the assembly and maintenance of I-Z-I bands, MYC- and GFP- tagged nebulin fragments were expressed in primary cultured skeletal myotubes. Their sites of incorporation were visualized by double staining with anti-MYC, antibodies to myofibrillar proteins, and FITC- or rhodamine phalloidin. Contrary to expectations based on in vitro binding studies, none of the nebulin fragments expressed in maturing myotubes were incorporated selectively into I-band approximately 1.0-micrometer F-alpha-actin-containing thin filaments. Four of the MYC/COOH-terminal nebulin fragments were incorporated exclusively into periodic approximately 0.1-micrometer Z-bands. Whereas both anti-MYC and Rho-phalloidin stained intra-Z-band F-alpha-actin oligomers, only the latter stained the pointed ends of the polarized approximately 1.0-micrometer thin filaments. Z-band incorporation was independent of the nebulin COOH-terminal Ser or SH3 domains. In vitro cosedimentation studies also demonstrated that nebulin SH3 fragments did not bind to F-alpha-actin or alpha-actinin. The remaining six fragments were not incorporated into Z-bands, but were incorporated (a) diffusely throughout the sarcoplasm and into (b) fibrils/patches of varying lengths and widths nested among normal striated myofibrils. Over time, presumably in response to the mediation of muscle-specific homeostatic controls, many of the ectopic MYC-positive structures were resorbed. None of the tagged nebulin fragments behaved as dominant negatives; they neither blocked the assembly nor induced the disassembly of mature striated myofibrils. Moreover, they were not cytotoxic in myotubes, as they were in the fibroblasts and presumptive myoblasts in the same cultures.
Collapse
Affiliation(s)
- K. Ojima
- Department of Cell and Developmental Biology, The School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Z.X. Lin
- Department of Cell Biology, Beijing Institute for Cancer Research, Beijing Medical University, Beijing 100034, China
| | | | - S. Holtzer
- Department of Cell and Developmental Biology, The School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - R. Matsuda
- Department of Life Science, University of Tokyo, Tokyo, Japan 153-8092
| | - S. Labeit
- Department of Anesthesiology and Intensive Operative Care, Klinikum, Mannheim, Germany
| | - H.L. Sweeney
- Department of Physiology, The School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - H. Holtzer
- Department of Cell and Developmental Biology, The School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
10
|
Ojima K, Lin ZX, Zhang ZQ, Hijikata T, Holtzer S, Labeit S, Sweeney HL, Holtzer H. Initiation and maturation of I-Z-I bodies in the growth tips of transfected myotubes. J Cell Sci 1999; 112 ( Pt 22):4101-12. [PMID: 10547369 DOI: 10.1242/jcs.112.22.4101] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While over a dozen I-Z-I proteins are expressed in postmitotic myoblasts and myotubes it is unclear how, when, or where these first assemble into transitory I-Z-I bodies (thin filament/Z-band precursors) and, a short time later, into definitive I-Z-I bands. By double-staining the growth tips of transfected myotubes expressing (a) MYC-tagged s-alpha-actinins (MYC/s-alpha-actinins) or (b) green fluorescent protein-tagged titin cap (GFP/T-cap) with antibodies against MYC and I-Z-I band proteins, we found that the de novo assembly of I-Z-I bodies and their maturation into I-Z-I bands involved relatively concurrent, cooperative binding and reconfiguration of, at a minimum, 5 integral Z-band molecules. These included s-alpha-actinin, nebulin, titin, T-cap and alpha-actin. Resolution of the approximately 1.0 microm polarized alpha-actin/nebulin/tropomyosin/troponin thin filament complexes occurred subsequent to the maturation of Z-bands into a dense tetragonal configuration. Of particular interest is finding that mutant MYC/s-alpha-actinin peptides (a) lacking spectrin-like repeats 1–4, or consisting of spectrin-like repeats 1–4 only, as well as (b) mutants/fragments lacking titin or alpha-actin binding sites, were promptly and exclusively incorporated into de novo assembling I-Z-I bodies and definitive I-Z-I bands as was exogenous full length MYC/s-alpha-actinin or GFP/T-cap.
Collapse
Affiliation(s)
- K Ojima
- Department of Physiology and Cell and Developmental Biology, The School of Medicine, University of Pennsylvania, Philadelphia, PA l9l04, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Gautel M, Mues A, Young P. Control of sarcomeric assembly: the flow of information on titin. Rev Physiol Biochem Pharmacol 1999; 138:97-137. [PMID: 10396139 DOI: 10.1007/bfb0119625] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- M Gautel
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
12
|
Fürst DO, Obermann WM, van der Ven PF. Structure and assembly of the sarcomeric M band. Rev Physiol Biochem Pharmacol 1999; 138:163-202. [PMID: 10396141 DOI: 10.1007/bfb0119627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- D O Fürst
- Department of Cell Biology, University of Potsdam, Germany
| | | | | |
Collapse
|
13
|
Gautel M, Mues A, Young P. Control of sarcomeric assembly: The flow of information on titin. Rev Physiol Biochem Pharmacol 1999. [DOI: 10.1007/bf02346661] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Fürst DO, Obermann WMJ, Ven PFM. Structure and assembly of the sarcomeric M Band. Rev Physiol Biochem Pharmacol 1999. [DOI: 10.1007/bf02346663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Steiner F, Weber K, Fürst DO. Structure and expression of the gene encoding murine M-protein, a sarcomere-specific member of the immunoglobulin superfamily. Genomics 1998; 49:83-95. [PMID: 9570952 DOI: 10.1006/geno.1998.5220] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The complete exon-intron organization of the murine gene encoding M-protein, a structural protein of sarcomeric myofibrils, was determined. The gene is composed of 37 exons and 36 introns, spanning approximately 75 kb of DNA. Intron positions are related to the modular structure of M-protein, which is composed essentially of immunoglobulin and fibronectin type III domains. Almost all repeats follow a two exon-one domain structure. The beginning and end of each domain are defined by introns in phase I; internal introns are more divergent in position and very rarely use phase I. A single transcriptional start point was detected in both skeletal and cardiac muscle. Analysis of the prospective promoter region revealed several potential regulatory elements. CAT expression assays using promoter deletion constructs identified three regions that seem to be most important for the muscle-specific transcription activation of the M-protein gene. These results provide the first complete characterization of a gene for a member of the intracellular branch of the immunoglobulin superfamily.
Collapse
Affiliation(s)
- F Steiner
- Department of Biochemistry, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | |
Collapse
|
16
|
Yotov WV, St-Arnaud R. Differential splicing-in of a proline-rich exon converts alphaNAC into a muscle-specific transcription factor. Genes Dev 1996; 10:1763-72. [PMID: 8698236 DOI: 10.1101/gad.10.14.1763] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
NAC (nascent polypeptide-associated complex) was recently purified as an alpha/beta heterodimeric complex binding the newly synthesized polypeptide chains as they emerge from the ribosome. We have identified, cloned, and characterized a muscle-specific isoform of alphaNAC. The 7.0-kb mRNA arises from differential splicing-in of a 6.0 kb-exon giving rise to a proline-rich isoform that we termed skNAC. The skNAC protein was specifically expressed in differentiated myotubes but not in myoblasts. We have identified a specific DNA binding site for skNAC and shown that it can activate transcription through that element. The murine myoglobin promoter contains three putative skNAC-binding sites. skNAC was shown to activate transcription from the myoglobin promoter, and site-specific mutation of the skNAC response elements abrogated skNAC-dependent activation. We also examined the role of the NAC isoforms in the myogenic program. Whereas overexpression of alphaNAC prevented C2C12 differentiation and myotube fusion, the overexpression of skNAC in C2C12 myoblasts led to early fusion of the cells into gigantic myosacs, suggesting that skNAC may be involved in normal differentiation along the myogenic lineage and in the regulation of myoblast fusion. Our data demonstrate that differential splicing converts alphaNAC into a tissue-specific DNA-binding activator and suggest that this regulation may be an important event in the proper control of gene expression during myogenic differentiation.
Collapse
Affiliation(s)
- W V Yotov
- Genetics Unit, Shriners Hospital, Montréal, Québec, Canada
| | | |
Collapse
|
17
|
Castellani L, Reedy M, Airey JA, Gallo R, Ciotti MT, Falcone G, Alemà S. Remodeling of cytoskeleton and triads following activation of v-Src tyrosine kinase in quail myotubes. J Cell Sci 1996; 109 ( Pt 6):1335-46. [PMID: 8799822 DOI: 10.1242/jcs.109.6.1335] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To study the cellular signals underlying the regulatory mechanisms involved in maintenance of sarcomeric integrity, we have used quail skeletal muscle cells that reach a high degree of structural maturation in vitro, and also express a temperature-sensitive mutant of the v-Src tyrosine kinase that allows the control of differentiation in a reversible manner. By immunofluorescence and electron microscopy we show that v-Src activity in myotubes leads to an extensive cellular remodeling which affects components of the sarcomeres, the cytoskeleton network and the triad junctions. We have previously shown that activation of v-Src causes a selective dismantling of the I-Z-I segments coupled to the formation of aggregates of sarcomeric actin, alpha-actinin and vinculin, called actin bodies. We now show that intermediate filaments do not participate in the formation of actin bodies, while talin, a component of costameres, does. The I-Z-I segments are completely dismantled within 24 hours of v-Src activity, but the A-bands persist for a longer time, implying distinct pathways for the turnover of sarcomeric subdomains. Immunofluorescence labeling of markers of the triad junctions demonstrates that the localization of the alpha 1 subunit of the dihydropyridine receptor is disrupted earlier than that of the ryanodine receptor after tyrosine kinase activation. Furthermore, the location of junctional sarcoplasmic reticulum and transverse tubule membranes is maintained in myotubes in which the I-Z-I have been removed and the regular disposition of the intermediate filaments is disrupted, supporting a role for sarcoplasmic reticulum in the proper positioning of triad junctions. Altogether these results point to a tyrosine kinase signaling cascade as a mechanism for selectively destabilizing sarcomere subdomains and their tethering to the cytoskeleton and the sarcolemma.
Collapse
Affiliation(s)
- L Castellani
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università di Roma Tor Vergata, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Nag AC, Lee ML, Sarkar FH. Remodelling of adult cardiac muscle cells in culture: dynamic process of disorganization and reorganization of myofibrils. J Muscle Res Cell Motil 1996; 17:313-34. [PMID: 8814551 DOI: 10.1007/bf00240929] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The myofibrils of adult rat cardiac muscle cells in long-term culture initially break down and later reassemble into mature myofibrils. The objective of this study is to examine the disorganization process of myofibrils and to determine how disorganized myofibrillar proteins, myosin, titin, actin, and alpha-actinin are reorganized into mature myofibrils in adult cells. After dismantlement of myofibrils during initial culture period (24-72 h), myofibrillar proteins became disorganized into amorphous form. These proteins later were observed in vesicular, amorphous, and nonstriated fibrillar forms. Some vesicular structures, containing mainly myosin, titin, alpha-actin, and alpha-actinin were observed on the outer surfaces of the cell and outside the cell body. Such vesicles containing F-actin were rare. Punctate structures of alpha-actinin emerged from the pre-existing amorphous alpha-actinin along with the appearance of mostly titin periodicities. The periodicities of alpha-actinin later became prevalent, followed by the appearance of periodicities of actin. alpha-actinin provided an initiation point on which titin and actin became associated, forming titin-associated I-Z-I structures. Titin traversed the I-bands on either side of the Z-line. The phalloidin-stained I-Z-I structures bound to antibodies to muscle specific sarcomeric proteins (titin, alpha-actin, alpha-actinin). The differentiation of myosin periodicities lagged behind those of titin, alpha-actinin, and actin although presarcomeric structures of immunolabelled titin and myosin were very closely linked in their distributions in the formative myofibrils. Variations in the temporal sequence of emergence of periodicities of alpha-actinin and myosin were observed among certain myocytes. Also observed was the variation of the temporal sequence of emergence of titin and actin periodicities among different myocytes and within a single myocyte. Even in the late stage of culture (30 days), when the cell body was packed with myofibrils, the myocytes contained remnants of amorphous myofibrillar proteins.
Collapse
Affiliation(s)
- A C Nag
- Department of Biological Sciences, Oakland University, Rochester MI 48309, USA
| | | | | |
Collapse
|
19
|
Mermelstein CDS, Costa ML, Chagas Filho C, Moura Neto V. Intermediate filament proteins in TPA-treated skeletal muscle cells in culture. J Muscle Res Cell Motil 1996; 17:199-206. [PMID: 8793722 DOI: 10.1007/bf00124242] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The cocarcinogenic phorbol ester 13-tetradecanoyl-O-phorbol acetate selectively and reversibly inhibits the ongoing differentiation programme of chick muscle cells in culture. 13-tetradecanoyl-O-phorbol acetate promptly blocks spontaneous contractions in mature myotubes and induces them to retract, forming giant myosacs and concurrently stress fibre-like structures are assembled. Using indirect immunofluorescence to localise desmin, the muscle specific intermediate filament protein, it was shown that its distribution is longitudinally oriented in mature myotubes. In myosacs, desmin has a reticular pattern although not as linearly oriented as in control myotubes. Using gel electrophoresis of control and 13-tetradecanoyl-O-phorbol acetate treated cell extracts, three major protein bands were observed with molecular weight of 43, 50 and 55 kDa. They migrate as actin, desmin and vimentin, respectively. The 50 kDa and 55 kDa proteins were expressed more in 13-tetradecanoyl-O-phorbol acetate-treated cells. The 50 kDa band was confirmed as desmin by immunoblotting using anti-chicken desmin antibody. Two-dimensional gel electrophoresis analysis showed the appearance of more acidic isoforms of the 50 and 55 kDa proteins 13-tetradecanoyl-O- phorbol in acetate-treated cells. The 43 kDa protein was seen as three distinct isoforms in control cells and as only two isoforms in 13-tetradecanoyl-O-phorbol acetatetreated cells.
Collapse
Affiliation(s)
- C dos S Mermelstein
- Departmento de Histologia e Embriologia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | |
Collapse
|
20
|
|
21
|
Kang SJ, Shin KS, Song WK, Ha DB, Chung CH, Kang MS. Involvement of transglutaminase in myofibril assembly of chick embryonic myoblasts in culture. J Biophys Biochem Cytol 1995; 130:1127-36. [PMID: 7657697 PMCID: PMC2120562 DOI: 10.1083/jcb.130.5.1127] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Involvement of transglutaminase in myofibrillogenesis of chick embryonic myoblasts has been investigated in vitro. Both the activity and protein level of transglutaminase initially decreased to a minimal level at the time of burst of myoblast fusion but gradually increased thereafter. The localization of transglutaminase underwent a dramatic change from the whole cytoplasm in a diffuse pattern to the cross-striated sarcomeric A band, being strictly colocalized with the myosin thick filaments. For a brief period prior to the appearance of cross-striation, transglutaminase was localized in nonstriated filamental structures that coincided with the stress fiber-like structures. When 12-o-tetradecanoyl phorbol acetate was added to muscle cell cultures to induce the sequential disassembly of thin and thick filaments, transglutaminase was strictly colocalized with the myosin thick filaments even in the myosacs, of which most of the thin filaments were disrupted. Moreover, monodansylcadaverine, a competitive inhibitor of transglutaminase, reversibly inhibited the myofibril maturation. In addition, myosin heavy chain behaved as one of the potential intracellular substrates for transglutaminase. The cross-linked myosin complex constituted approximately 5% of the total Triton X-100-insoluble pool of myosin molecules in developing muscle cells, and its level was reduced to below 1% upon treatment with monodansylcadaverine. These results suggest that transglutaminase plays a crucial role in myofibrillogenesis of developing chick skeletal muscle.
Collapse
Affiliation(s)
- S J Kang
- Department of Molecular Biology, Seoul National University, Korea
| | | | | | | | | | | |
Collapse
|
22
|
Castellani L, Reedy MC, Gauzzi MC, Provenzano C, Alemà S, Falcone G. Maintenance of the differentiated state in skeletal muscle: activation of v-Src disrupts sarcomeres in quail myotubes. J Biophys Biochem Cytol 1995; 130:871-85. [PMID: 7642704 PMCID: PMC2199955 DOI: 10.1083/jcb.130.4.871] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have used quail skeletal myotubes expressing a temperature-sensitive allele of the v-src oncogene to address the issue of the homeostasis of sarcomeric myofibrils in differentiated muscle cells. Reactivation of the v-Src tyrosine kinase by shifting the cultures to the permissive temperature leads within minutes to the formation of F-actin-containing bodies (ABs), that originate in the ventral region of the myotubes and increase in number concomitantly with the dismantling of the I-Z-I complex of the sarcomeres. This process is detailed by confocal and electron microscopy. Indirect immunofluorescence reveals that ABs contain muscle-specific protein isoforms associated with the I-Z-I complexes and vinculin, a component of the cytoskeletal network. Anti-phosphotyrosine antibodies label proteins in ABs and Z-discs. Evidence is presented indicating that this phenomenon specifically depends on the persistent activation of v-Src, rather than on a general increase in phosphotyrosine content such as that induced by vanadate. AB formation is prevented by activation of protein kinase C by phorbol ester or by treatment with the kinase inhibitor 2-aminopurine, without any detectable effect on tyrosine phosphorylation. Taken together these findings indicate that phosphorylation of specific target proteins by v-Src, although necessary, is not sufficient per se to induce AB formation. In addition, the signal transduction cascade that culminates in MAP kinase activation and its nuclear translocation is activated both by v-Src and phorbol ester, and is relatively unaffected by 2-aminopurine. These findings imply that both phorbol esters and 2-aminopurine operate, at least in part, at the level of alternative pathways that may diverge upstream of the MAP kinase and are presumably mediating the early effects of v-Src on the differentiated phenotype.
Collapse
Affiliation(s)
- L Castellani
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università di Roma Tor Vergata, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Varadaraj K, Skinner DM. Cytoplasmic localization of transcripts of a complex G+C-rich crab satellite DNA. Chromosoma 1994; 103:423-31. [PMID: 7859563 DOI: 10.1007/bf00362287] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The primary sequence and higher order structures of a G+C-rich satellite DNA of the Bermuda land crab Gecarcinus lateralis have been described previously. The repeat unit of the satellite is approximately 2.1 kb. In exploring a possible function for this satellite, we asked whether it is transcribed. As a probe for transcripts, we used a segment of DNA amplified from a 368 bp EcoRI fragment from the very highly conserved 3' end of the satellite DNA. During polymerase chain reaction (PCR) amplification, the probe was simultaneously either radiolabeled or biotinylated. Tissue- and stage-specific transcripts were observed when blots of poly(A)+ mRNAs recovered from polysomes isolated from crab tissues [including midgut gland (hepatopancreas), limb bud, and claw muscle] were probed with the satellite DNA fragment. The presence of satellite transcripts in polysomal mRNAs is strong evidence that the transcripts had reached the cytoplasm. To corroborate the presence of transcripts in the cytoplasm, we investigated in situ hybridization of satellite probes with RNAs in tissue sections. Biotinylated satellite DNA probes were applied to sections of midgut gland, limb bud papilla, ovary, or testis of anecdysial crabs. Retention of RNAs in tissue sections was improved by UV-irradiation prior to hybridization. Transcripts were abundant in the cytoplasm of all tissues except testis. Sections of crab midgut gland treated with RNase A prior to hybridization and sections of mouse pancreatic tumor served as controls; neither showed any signals with the probe.
Collapse
Affiliation(s)
- K Varadaraj
- Biology Division, Oak Ridge National Laboratory, TN 37831
| | | |
Collapse
|
24
|
Simpson DG, Carver W, Borg TK, Terracio L. Role of mechanical stimulation in the establishment and maintenance of muscle cell differentiation. INTERNATIONAL REVIEW OF CYTOLOGY 1994; 150:69-94. [PMID: 8169083 DOI: 10.1016/s0074-7696(08)61537-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- D G Simpson
- Department of Developmental Biology and Anatomy, School of Medicine, University of South Carolina, Columbia 29208
| | | | | | | |
Collapse
|
25
|
Muros MA, Aránega AE, Vélez C, Melguizo C, Alvarez L, Aránega A. Modulation of contractile proteins in embryonic and fetal chick cardiac cells by phorbol ester, gamma-interferon, 5-azacytidine and diacylglycerols. Life Sci 1994; 54:171-83. [PMID: 7507197 DOI: 10.1016/0024-3205(94)00586-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We studied changes in the concentration of tropomyosin, actin, desmin and vimentin in cultured myocardiocytes from Hamburger and Hamilton's stages 29 and 39 chick embryos (HH29 and HH39) (1), treated with 12-o-tetradecanoyl-phorbol-13-acetate (TPA), 5-azacytidine (AZA), gamma interferon (INF) and diacylglycerols (DAG). In embryonic myocardiocytes at HH29, the first three agents modified the intracellular distribution of the thin filament proteins tropomyosin and actin, increasing their cytoplasmic concentration and decreasing their cytoskeletal concentration. The concentration of the intermediate filament proteins desmin and vimentin increased in both subcellular fractions after treatment with these drugs. In fetal myocardiocytes at HH39, total protein content decreased after treatment with these drugs. Cytoplasmic and cytoskeletal concentrations of actin and tropomyosin decreased to different degrees after treatment with TPA, AZA or DAG in HH39 myocardiocytes. TPA, AZA and DAG decreased desmin in the cytoplasmic and cytoskeletal fractions. These findings suggest that the drugs tested alter the normal protein composition in cultured myocardiocytes, and have different effects depending on the developmental stage in which the embryo is treated.
Collapse
Affiliation(s)
- M A Muros
- Department of Morphological Sciences, School of Medicine, University of Granada, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Lin Z, Lu MH, Schultheiss T, Choi J, Holtzer S, DiLullo C, Fischman DA, Holtzer H. Sequential appearance of muscle-specific proteins in myoblasts as a function of time after cell division: evidence for a conserved myoblast differentiation program in skeletal muscle. CELL MOTILITY AND THE CYTOSKELETON 1994; 29:1-19. [PMID: 7820854 DOI: 10.1002/cm.970290102] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Based on the assumption that a conserved differentiation program governs the assembly of sarcomeres in skeletal muscle in a manner analogous to programs for viral capsid assembly, we have defined the temporal and spatial distribution of 10 muscle-specific proteins in mononucleated myoblasts as a function of the time after terminal cell division. Single cells in mitosis were identified in monolayer cultures of embryonic chicken pectoralis, followed for selected time points (0-24 h postmitosis) by video time-lapse microscopy, and then fixed for immunofluorescence staining. For convenience, the myoblasts were termed x-h-old to define their age relative to their mitotic "birthdate." All 6 h myoblasts that emerged in a mitogen-rich medium were desmin+ but only 50% were positive for a alpha-actin, troponin-I, alpha-actinin, MyHC, zeugmatin, titin, or nebulin. By 15 h postmitosis, approximately 80% were positive for all of the above proteins. The up-regulation of these 7 myofibrillar proteins appears to be stochastic, in that many myoblasts were alpha-actinin+ or zeugmatin+ but MyHC- or titin- whereas others were troponin-I+ or MyHC+ but alpha-actinin- or alpha-actin-. In 15-h-old myoblasts, these contractile proteins were organized into nonstriated myofibrils (NSMFs). In contrast to striated myofibrils (SMFs), the NSMFs exhibited variable stoichiometries of the sarcomeric proteins and these were not organized into any consistent pattern. In this phase of maturation, two other changes occurred: (1) the microtubule network was reorganized into parallel bundles, driving the myoblasts into polarized, needle-shaped cells; and (2) the sarcolemma became fusion-competent. A transition from NSMFs to SMFs took place between 15 and 24 h (or later) postmitosis and was correlated with the late appearance of myomesin, and particularly, MyBP-C (C protein). The emergence of one, or a string of approximately 2 mu long sarcomeres, was invariably characterized by the localization of myomesin and MyBP-C to their mature positions in the developing A-bands. The latter group of A-band proteins may be rate-limiting in the assembly program. The great majority of myoblasts stained positively for desmin and myofibrillar proteins prior to, rather than after, fusing to form myotubes. This sequential appearance of muscle-specific proteins in vitro fully recapitulates myofibrillar assembly steps in myoblasts of the myotome and limb bud in vivo, as well as in nonmuscle cells converted to myoblasts by MyoD. We suggest that this cell-autonomous myoblast differentiation program may be blocked at different control points in immortalized myogenic cell lines.
Collapse
Affiliation(s)
- Z Lin
- Department of Cell Biology, Beijing Institute for Cancer Research, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Conrad AH, Consigli RA, Conrad GW. Infection with the avian polyomavirus, BFDV, selectively affects myofibril structure in embryonic chick ventricle cardiomyocytes. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1993; 267:253-66. [PMID: 8228865 DOI: 10.1002/jez.1402670303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Embryonic cardiomyocytes can both beat and divide. They assemble cardiac muscle-specific proteins into sarcomeric myofibrils and contract. In addition, they periodically synthesize DNA, complete mitosis, disassemble sarcomeric myofibrils in the area of the mitotic spindle, assemble cytoplasmic isoform-specific proteins into a cleavage furrow contractile ring, undergo cytokinesis, and then reform sarcomeric myofibrils in daughter cells. Little is known about how embryonic cardiomyocytes disassemble their myofibrils as they traverse the cell cycle and divide. In the present study, beating embryonic avian ventricular cardiomyocytes in primary culture were stimulated to initiate DNA synthesis without subsequent mitosis or cytokinesis by infection with the lytic avian polyomavirus, Budgerigar Fledgling Disease Virus (BFDV). Within 48 hours, infected, adherent cardiomyocytes disassemble most of their sarcomeric myofibrils, retaining cardiac myosin only in thin myofibrils with disrupted sarcomeric periodicity and in amorphous nonfibrillar pools. By 72 hours, infected cardiomyocytes contain no myofibrils and no longer react with antibodies to cardiac myosin. In contrast, infected cardiomyocytes continue to display cytoplasmic myosin localized in stress-fiber-like-structures in adherent cells, or in disrupted fibers and dispersed pools in detaching cells. Infected cardiomyocytes also continue to display interphase-like arrays of polymerized microtubules, even when rounded-up just prior to lysis. These results suggest that polyomavirus infection may provide a useful model system for further study of the regulation of myofibrils disassembly in embryonic cardiomyocytes.
Collapse
Affiliation(s)
- A H Conrad
- Division of Biology, Kansas State University, Manhattan 66506
| | | | | |
Collapse
|
28
|
Vikstrom KL, Rovner AS, Saez CG, Bravo-Zehnder M, Straceski AJ, Leinwand LA. Sarcomeric myosin heavy chain expressed in nonmuscle cells forms thick filaments in the presence of substoichiometric amounts of light chains. CELL MOTILITY AND THE CYTOSKELETON 1993; 26:192-204. [PMID: 8293476 DOI: 10.1002/cm.970260303] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Central to the function of myosin is its ability to assemble into thick filaments which interact precisely and specifically with other myofibrillar proteins. We have established a novel experimental system for studying myofibrillogenesis using transient transfections of COS cells, a monkey kidney cell line. We have expressed both full-length rat alpha cardiac myosin heavy chain (MHC) and a truncated heavy meromyosin-like alpha MHC (sHMM) and shown that immunoreactive MHC proteins of the expected sizes were detected in lysates of transfected cells. Surprisingly, the full-length MHC formed large spindle-shaped structures throughout the cytoplasm of transfected cells as determined by immunofluorescence microscopy. The structures were not found in cells expressing the sHMM construct, indicating that their formation required an MHC rod. The spindle-shaped structures ranged in length from approximately 1 micron to over 20 microns in length and were birefringent suggesting that they are ordered arrays of thick filaments. This was confirmed by electron microscopic analysis of the transfected cells which revealed arrays of filamentous structures approximately 12 nm in diameter at their widest point. In addition, the vast majority of transfected MHC did not associate with the endogenous nonmuscle myosin light chains, demonstrating that myosin thick filaments can form in the absence of stoichiometric amounts of myosin light chains.
Collapse
Affiliation(s)
- K L Vikstrom
- Albert Einstein College of Medicine, Bronx, NY 10461-1975
| | | | | | | | | | | |
Collapse
|
29
|
Nag AC, Lee ML. TPA has no influence on the expression of myosin heavy chain isoforms in cultured adult cardiac muscle cells. J Cell Biochem 1992; 49:399-409. [PMID: 1429866 DOI: 10.1002/jcb.240490410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effect of a tumor promoter, 12-O-tetradecanoyl phorbol-13-acetate (TPA), on the expression of myosin heavy chain isoforms in cultured rat cardiac ventricular muscle cells was studied. The previous preliminary report [Claycomb WC (1988): "Biology of Isolated Adult Cardiac Myocytes." In Clark WA, Decker RS, Borg TK (eds): New York: Elsevier, pp 284-287] indicated that TPA turns off the expression of myosin heavy chain genes in cultured adult cardiac myocytes. Electrophoretic and immunocytochemical analyses were carried out in the present studies. The myosin heavy chain isoform profiles of cardiac myocytes exposed to TPA at concentrations of 50-250 ng/ml culture medium for varying periods were similar to those of controls that were grown in the absence of TPA, showing predominant isoform V1. Immunofluorescence microscopy with monoclonal antibodies to cardiac ventricular isomyosin revealed the structural organization of myosin in TPA-treated cells. The organization of myosin was variable among different myocytes and within a single myocyte. Immunofluorescence microscopy was extended to the examination of the organization of alpha-actinin which did not differ from that of myosin in some myocytes. In contrast to the previous report [Claycomb, 1988], this study has demonstrated that TPA has no influence on the expression of myosin heavy chain isoforms in cultured adult ventricular cardiac muscle cells.
Collapse
Affiliation(s)
- A C Nag
- Department of Biological Sciences, Oakland University, Rochester, Michigan 48309-4401
| | | |
Collapse
|
30
|
Lu MH, DiLullo C, Schultheiss T, Holtzer S, Murray JM, Choi J, Fischman DA, Holtzer H. The vinculin/sarcomeric-alpha-actinin/alpha-actin nexus in cultured cardiac myocytes. J Cell Biol 1992; 117:1007-22. [PMID: 1577864 PMCID: PMC2289484 DOI: 10.1083/jcb.117.5.1007] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Experiments are described supporting the proposition that the assembly of stress fibers in non-muscle cells and the assembly of myofibrils in cardiac cells share conserved mechanisms. Double staining with a battery of labeled antibodies against membrane-associated proteins, myofibrillar proteins, and stress fiber proteins reveals the following: (a) dissociated, cultured cardiac myocytes reconstitute intercalated discs consisting of adherens junctions (AJs) and desmosomes at sites of cell-cell contact and sub-sarcolemmal adhesion plaques (SAPs) at sites of cell-substrate contact; (b) each AJ or SAP associates proximally with a striated myofibril, and conversely every striated myofibril is capped at either end by an AJ or a SAP; (C) the invariant association between a given myofibril and its SAP is especially prominent at the earliest stages of myofibrillogenesis; nascent myofibrils are capped by oppositely oriented SAPs; (d) the insertion of nascent myofibrils into AJs or into SAPs invariably involves vinculin, alpha-actin, and sarcomeric alpha-actinin (s-alpha-actinin); (e) AJs are positive for A-CAM but negative for talin and integrin; SAPs lack A-CAM but are positive for talin and integrin; (f) in cardiac cells all alpha-actinin-containing structures invariably are positive for the sarcomeric isoform, alpha-actin and related sarcomeric proteins; they lack non-s-alpha-actinin, gamma-actin, and caldesmon; (g) in fibroblasts all alpha-actinin-containing structures are positive for the non-sarcomeric isoform, gamma-actin, and related non-sarcomeric proteins, including caldesmon; and (h) myocytes differ from all other types of adherent cultured cells in that they do not assemble authentic stress fibers; instead they assemble stress fiber-like structures of linearly aligned I-Z-I-like complexes consisting exclusively of sarcomeric proteins.
Collapse
Affiliation(s)
- M H Lu
- Department of Anatomy, University of Pennsylvania Medical School, Philadelphia 19104-6058
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Li L, Chambard JC, Karin M, Olson EN. Fos and Jun repress transcriptional activation by myogenin and MyoD: the amino terminus of Jun can mediate repression. Genes Dev 1992; 6:676-89. [PMID: 1313772 DOI: 10.1101/gad.6.4.676] [Citation(s) in RCA: 190] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Myogenin and MyoD belong to a family of muscle-specific helix-loop-helix (HLH) proteins that have the potential to activate muscle-specific genes in nonmyogenic cells. Peptide growth factors can block the ability of myogenin and MyoD to activate their target genes. Here, we show that the growth factor-inducible proto-oncogenes c-fos, c-jun, and junB mimic the effects of exogenous growth factors and suppress trans-activation of the muscle creatine kinase (MCK) enhancer by myogenin and MyoD. In contrast, JunD, which shares DNA-binding specificity with JunB and c-Jun but is expressed constitutively in muscle cells, is an inefficient inhibitor of the trans-activating capacity of myogenin and MyoD. Transcriptional repression by Fos and Jun is specific to myogenic HLH proteins and is not observed with the widely expressed HLH protein E47, which recognizes the same DNA sequence. Repression of the MCK enhancer by Fos and Jun is targeted at the myogenin and MyoD DNA recognition sequence and can be mediated by the amino terminus of c-Jun. Comparison of several myogenin mutants for their responsiveness to Fos and Jun shows that repression is directed at the basic-HLH region. These results indicate that members of the Jun family can be distinguished on the basis of their effects on muscle-specific transcription and suggest there is cross talk between transcription factors that control myogenesis and those involved in cell proliferation.
Collapse
Affiliation(s)
- L Li
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston 77030
| | | | | | | |
Collapse
|
32
|
Li L, Olson EN. Regulation of muscle cell growth and differentiation by the MyoD family of helix-loop-helix proteins. Adv Cancer Res 1992; 58:95-119. [PMID: 1312291 DOI: 10.1016/s0065-230x(08)60292-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The skeletal muscle cell system provides a powerful model for exploring the mechanistic basis for the antagonism between cell growth and differentiation. The recent identification of the MyoD family of muscle-specific transcription factors now offers opportunities to dissect at the molecular level of the mechanisms through which defined cell type-specific transcription factors can activate an entire differentiation program as well as to unravel the mechanisms through which growth factor and oncogenic signals can disrupt cellular differentiation. Because the mechanisms for growth factor signaling and induction of cell proliferation are conserved in diverse cell types, it is tempting to speculate that the molecular mechanisms responsible for the antagonism between cell proliferation and differentiation in muscle cells are also operative in other cell types. Resolution of this question, however, must await identification of the regulatory factors that specify cell fate in other lineages.
Collapse
Affiliation(s)
- L Li
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston 77030
| | | |
Collapse
|
33
|
Zhu YY, Schwartz RJ, Crow MT. Phorbol esters selectively downregulate contractile protein gene expression in terminally differentiated myotubes through transcriptional repression and message destabilization. J Biophys Biochem Cytol 1991; 115:745-54. [PMID: 1717491 PMCID: PMC2289189 DOI: 10.1083/jcb.115.3.745] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Chronic exposure of differentiated avian skeletal muscle cells in culture to the phorbol ester, 12-O-tetradecanoyl phorbol-13-acetate (PMA), results in the selective disassembly of sarcomeric structures and loss of muscle-specific contractile proteins, leaving cytoskeletal structures and their associated proteins intact. We demonstrate here that these morphological and biochemical changes are accompanied by dramatic and selective decreases in the level of the mRNAs that encode the contractile proteins. We measured the effects of PMA on the transcriptional activity and mRNA stability of four contractile protein genes (alpha-cardiac and alpha-skeletal actin, cardiac troponin C [cTnC], and myosin light chain lf [MLClf]) and two nonmuscle genes (beta-cytoplasmic actin and the glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase [GAPDH]). The transcriptional activity of the alpha-cardiac actin and cTnC genes dramatically decreased by 8 h after the addition of PMA, while other muscle and nonmuscle genes examined showed no change. Pulse-chase experiments of in vivo labeled RNA showed significant reductions in mRNA half-lifes for all the contractile protein mRNAs examined, while the half-lifes of beta-actin and GAPDH mRNA were unchanged. All of the above effects occurred under conditions in which cellular protein kinase C (PKC) levels had been reduced by greater than 90%. The fact that many of the contractile protein genes remained transcriptionally active despite the fact that the cells were unable to accumulate their mRNAs to any significant extent indicated that the treated cells were still committed to skeletal muscle differentiation. The selective changes in the stability of the contractile protein mRNAs suggest that the control of mRNA stability may be part of the normal regulatory program of skeletal muscle differentiation and that this control may be linked to the integrity of the contractile apparatus and mediated by second messenger pathways involving PKC activation.
Collapse
Affiliation(s)
- Y Y Zhu
- Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | | | | |
Collapse
|
34
|
Phorbol esters selectively and reversibly inhibit a subset of myofibrillar genes responsible for the ongoing differentiation program of chick skeletal myotubes. Mol Cell Biol 1991. [PMID: 1875933 DOI: 10.1128/mcb.11.9.4473] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phorbol esters selectively and reversibly disassemble the contractile apparatus of cultured skeletal muscle as well as inhibit the synthesis of many contractile proteins without inhibiting that of housekeeping proteins. We now demonstrate that phorbol esters reversibly decrease the mRNA levels of at least six myofibrillar genes: myosin heavy chain, myosin light chain 1/3, myosin light chain 2, cardiac and skeletal alpha-actin, and skeletal troponin T. The steady-state message levels decrease 50- to 100-fold after 48 h of exposure to phorbol esters. These decreases can be attributed at least in part to decreases in transcription rates. For at least two genes, cardiac and skeletal alpha-actin, some of the decreases are the result of increased mRNA turnover. In contrast, the cardiac troponin T steady-state message level does not change, and its transcription rate decreases only transiently upon exposure to phorbol esters. Phorbol esters do not decrease the expression of the housekeeping genes, alpha-tubulin, beta-actin, and gamma-actin. Phorbol esters do not decrease the steady-state message levels of MyoD1, a gene known to be important in the activation of many skeletal muscle-specific genes. Cycloheximide blocks the phorbol ester-induced decreases in transcription, message stability, and the resulting steady-state message level but does not block the tetradecanoyl phorbol acetate-induced rapid disassembly of the I-Z-I complexes. These results suggests a common mechanism for the regulation of many myofibrillar genes independent of MyoD1 mRNA levels, independent of housekeeping genes, but dependent on protein synthesis.
Collapse
|
35
|
Choi JK, Holtzer S, Chacko SA, Lin ZX, Hoffman RK, Holtzer H. Phorbol esters selectively and reversibly inhibit a subset of myofibrillar genes responsible for the ongoing differentiation program of chick skeletal myotubes. Mol Cell Biol 1991; 11:4473-82. [PMID: 1875933 PMCID: PMC361312 DOI: 10.1128/mcb.11.9.4473-4482.1991] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Phorbol esters selectively and reversibly disassemble the contractile apparatus of cultured skeletal muscle as well as inhibit the synthesis of many contractile proteins without inhibiting that of housekeeping proteins. We now demonstrate that phorbol esters reversibly decrease the mRNA levels of at least six myofibrillar genes: myosin heavy chain, myosin light chain 1/3, myosin light chain 2, cardiac and skeletal alpha-actin, and skeletal troponin T. The steady-state message levels decrease 50- to 100-fold after 48 h of exposure to phorbol esters. These decreases can be attributed at least in part to decreases in transcription rates. For at least two genes, cardiac and skeletal alpha-actin, some of the decreases are the result of increased mRNA turnover. In contrast, the cardiac troponin T steady-state message level does not change, and its transcription rate decreases only transiently upon exposure to phorbol esters. Phorbol esters do not decrease the expression of the housekeeping genes, alpha-tubulin, beta-actin, and gamma-actin. Phorbol esters do not decrease the steady-state message levels of MyoD1, a gene known to be important in the activation of many skeletal muscle-specific genes. Cycloheximide blocks the phorbol ester-induced decreases in transcription, message stability, and the resulting steady-state message level but does not block the tetradecanoyl phorbol acetate-induced rapid disassembly of the I-Z-I complexes. These results suggests a common mechanism for the regulation of many myofibrillar genes independent of MyoD1 mRNA levels, independent of housekeeping genes, but dependent on protein synthesis.
Collapse
Affiliation(s)
- J K Choi
- Department of Biochemistry, University of Pennsylvania Medical School, Philadelphia 19104-6058
| | | | | | | | | | | |
Collapse
|
36
|
Brennan TJ, Chakraborty T, Olson EN. Mutagenesis of the myogenin basic region identifies an ancient protein motif critical for activation of myogenesis. Proc Natl Acad Sci U S A 1991; 88:5675-9. [PMID: 1648228 PMCID: PMC51940 DOI: 10.1073/pnas.88.13.5675] [Citation(s) in RCA: 127] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Myogenin is a muscle-specific nuclear factor that acts as a genetic switch to activate myogenesis. Myogenin, MyoD, and a growing number of proteins implicated in transcriptional control share sequence homology within a basic region and an adjacent helix-loop-helix motif. Here we identify by site-directed mutagenesis a 12-amino acid subdomain of the myogenin basic region essential for binding of DNA and activation of myogenesis. The basic region of the widely expressed helix-loop-helix protein E12 is conserved at 8 of these 12 residues and can mediate DNA binding when placed in myogenin, but it cannot activate myogenesis. Replacement of each of the four nonconserved residues of the myogenin basic region with the corresponding residues of E12 reveals two adjacent amino acids (Ala86-Thr) that can impart muscle specificity to the basic region. These residues are specific to, and conserved in, the basic regions of all known myogenic helix-loop-helix proteins from Drosophila to man, suggesting that they constitute part of an ancient protein motif required for activation of the myogenic program.
Collapse
Affiliation(s)
- T J Brennan
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston 77074
| | | | | |
Collapse
|
37
|
Handel SE, Greaser ML, Schultz E, Wang SM, Bulinski JC, Lin JJ, Lessard JL. Chicken cardiac myofibrillogenesis studied with antibodies specific for titin and the muscle and nonmuscle isoforms of actin and tropomyosin. Cell Tissue Res 1991; 263:419-30. [PMID: 1878931 DOI: 10.1007/bf00327276] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Myofibrillogenesis was studied in cultured chick cardiomyocytes using indirect immunofluorescence microscopy and antibodies against alpha- and gamma-actin, muscle and nonmuscle tropomyosin, muscle myosin, and titin. Initially, cardiomyocytes, devoid of myofibrils, developed variable numbers of stress fiber-like structures with uniform staining for anti-muscle and nonmuscle actin and tropomyosin, and diffuse, weak staining with anti-titin. Anti-myosin labeled bundles of filaments that exhibited variable degrees of association with the stress fiber-like structures. Myofibrillogenesis occurred with a progressive, and generally simultaneous, longitudinal reorganization of stress fiber-like structures to form primitive sarcomeric units. Titin appeared to attain its mature pattern before the other major contractile proteins. Changes in the staining patterns of actin, tropomyosin, and myosin as myofibrils matured were interpreted as due to longitudinal filament alignment occurring before ordering in the axial direction. Non-muscle actin and tropomyosin were found with sarcomeric periodicity in the initial stages of sarcomere myofibrillogenesis, although their staining patterns were not identical. The localization of the "sarcomeric" proteins alpha-actin and muscle tropomyosin in stress fiber-like structures and the incorporation of non-muscle proteins in the initial stages of sarcomere organization bring into question the meaning of "sarcomeric" proteins in regard to myofibrillogenesis.
Collapse
Affiliation(s)
- S E Handel
- Muscle Biology Laboratory, University of Wisconsin-Madison 53706
| | | | | | | | | | | | | |
Collapse
|
38
|
Lin Z, Han Y, Wu B, Fang W. Altered cytoskeletal structures in transformed cells exhibiting obviously metastatic capabilities. Cell Res 1990. [DOI: 10.1038/cr.1990.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
39
|
Lin Z, Holtzen H. Studies on the role of microtubules in myofibrillogenesis. Cell Res 1990. [DOI: 10.1038/cr.1990.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
40
|
Shubeita HE, McDonough PM, Harris AN, Knowlton KU, Glembotski CC, Brown JH, Chien KR. Endothelin induction of inositol phospholipid hydrolysis, sarcomere assembly, and cardiac gene expression in ventricular myocytes. A paracrine mechanism for myocardial cell hypertrophy. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)30538-0] [Citation(s) in RCA: 463] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
41
|
Alpha- and beta-adrenergic stimulation induces distinct patterns of immediate early gene expression in neonatal rat myocardial cells. fos/jun expression is associated with sarcomere assembly; Egr-1 induction is primarily an alpha 1-mediated response. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)77420-6] [Citation(s) in RCA: 317] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
42
|
Nag AC, Lee ML. Differential response of cultured adult cardiac muscle cells to a tumor promotor: analysis of myofibrillar organization. Tissue Cell 1990; 22:655-72. [PMID: 2288003 DOI: 10.1016/0040-8166(90)90062-e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cultured adult rat ventricular cardiac muscle cells were exposed to varying concentrations of 12-0-tetradecanoyl-phorbol-13 acetate (TPA) for two weeks. A considerable number of cardiac myocytes exposed to a medium with less than 200 ng/ml TPA were rich in myofibrils. The rest of the myocytes lacked organized myofibrils; the terminal parts of these myofibrils were transformed into cord-like structures largely consisting of dense Z-band materials. Some of these aberrant myofibrils contained short normal myofibrillar segments, with sarcomeres. A number of myocytes exposed to 200-250 ng/ml TPA contained myofibrils, which terminated in cord-like structures. The Z-band materials appeared as amorphous dense matrices and some sarcomeres were replaced completely or partially by leptomeres; the myocytes contained autophagosomes. The other myocytes did not contain myofibrils when exposed to the above higher concentrations of TPA. The patches of Z-band materials and structures containing Z-band materials attached to thin filaments on either side were scattered throughout the sarcoplasm of the cells, which were packed with myofilaments and 10 nm microfilaments. Some of these myocytes assumed a spindle shape and contained myofilaments, 10 nm microfilaments and leptomeres. Some of the myocytes, treated with TPA for 1-7 days and then allowed to recover in control medium for 7 days, contained various stages of myofibrillar organization, which did not differ significantly from those of the myofibril-containing cells exposed continuously to TPA as discussed above. The rest of the myocytes during the recovery period in control medium did not contain myofibrils. Rough endoplasmic reticulum and Golgi bodies in TPA-treated myocytes were found to be highly developed as compared to the controls. It is evident from these studies that the responsiveness of cardiac myocytes to TPA not only differs from that of skeletal muscle cells studied by others, but also varies within a population of cardiac myocytes.
Collapse
Affiliation(s)
- A C Nag
- Department of Biological Sciences, Oakland University, Rochester, MI 48309-4401
| | | |
Collapse
|
43
|
Lin ZX, Holtzer S, Schultheiss T, Murray J, Masaki T, Fischman DA, Holtzer H. Polygons and adhesion plaques and the disassembly and assembly of myofibrils in cardiac myocytes. J Cell Biol 1989; 108:2355-67. [PMID: 2472405 PMCID: PMC2115580 DOI: 10.1083/jcb.108.6.2355] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Successive stages in the disassembly of myofibrils and the subsequent assembly of new myofibrils have been studied in cultures of dissociated chick cardiac myocytes. The myofibrils in trypsinized and dispersed myocytes are sequentially disassembled during the first 3 d of culture. They split longitudinally and then assemble into transitory polygons. Multiples of single sarcomeres, the cardiac polygons, are analogous to the transitory polygonal configurations assumed by stress fibers in spreading fibroblasts. They differ from their counterparts in fibroblasts in that they consist of muscle alpha-actinin vertices and muscle myosin heavy chain struts, rather than of the nonmuscle contractile protein isoforms of stress fiber polygons. EM sections reveal the vertices and struts in cardiac polygons to be typical Z and A bands. Most cardiac polygons are eliminated by day 5 of culture. Concurrent with the disassembly and elimination of the original myofibrils new myofibrils are rapidly assembled elsewhere in the same myocyte. Without exception both distal tips of each nascent myofibril terminate in adhesion plaques. The morphology and composition of the adhesion plaques capping each end of each myofibril are similar to those of the termini of stress fibers in fibroblasts. However, whereas the adhesion complexes involving stress fibers in fibroblasts consist of vinculin/nonmuscle alpha-actinin/beta- and gamma-actins, the analogous structures in myocytes involving myofibrils consist of vinculin/muscle alpha-actinin/alpha-actin. The addition of 1.7-2.0 microns sarcomeres to the distal tips of an elongating myofibril, irrespective of whether the myofibril consists of 1, 10, or several hundred tandem sarcomeres, occurs while the myofibril appears to remain linked to its respective adhesion plaques. The adhesion plaques in vitro are the equivalent of the in vivo intercalated discs, both in terms of their molecular composition and with respect to their functioning as initiating sites for the assembly of new sarcomeres. How 1.7-2.0 microns nascent sarcomeres can be added distally during elongation while the tips of the myofibrils remain inserted into submembranous adhesion plaques is unknown.
Collapse
Affiliation(s)
- Z X Lin
- Department of Anatomy, School of Medicine, University of Pennsylvania, Philadelphia 19104
| | | | | | | | | | | | | |
Collapse
|
44
|
Lin ZX, Eshleman J, Grund C, Fischman DA, Masaki T, Franke WW, Holtzer H. Differential response of myofibrillar and cytoskeletal proteins in cells treated with phorbol myristate acetate. J Cell Biol 1989; 108:1079-91. [PMID: 2493458 PMCID: PMC2115379 DOI: 10.1083/jcb.108.3.1079] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Muscle-specific and nonmuscle contractile protein isoforms responded in opposite ways to 12-o-tetradecanoyl phorbol-13-acetate (TPA). Loss of Z band density was observed in day-4-5 cultured chick myotubes after 2 h in the phorbol ester, TPA. By 5-10 h, most I-Z-I complexes were selectively deleted from the myofibril, although the A bands remained intact and longitudinally aligned. The deletion of I-Z-I complexes was inversely related to the appearance of numerous cortical, alpha-actinin containing bodies (CABs), transitory structures approximately 3.0 microns in diameter. Each CAB consisted of a filamentous core that costained with antibodies to alpha-actin and sarcomeric alpha-actinin. In turn each CAB was encaged by a discontinuous rim that costained with antibodies to vinculin and talin. Vimentin and desmin intermediate filaments and most cell organelles were excluded from the membrane-free CABs. These curious bodies disappeared over the next 10 h so that in 30-h myosacs all alpha-actin and sarcomeric alpha-actinin structures had been eliminated. On the other hand vinculin and talin adhesion plaques remained prominent even in 72-h myosacs. Disruption of the A bands was first initiated after 15-20 h in TPA (e.g., 15-20-h myosacs). Thick filaments of apparently normal length and structure were progressively released from A segments, and by 40 h all A bands had been broken down into enormous numbers of randomly dispersed, but still intact single thick filaments. This breakdown correlated with the formation of amorphous cytoplasmic aggregates which invariably colocalized antibodies to myosin heavy chain, MLC 1-3, myomesin, and C protein. Complete elimination of all immunoreactive thick filament proteins required 60-72 h of TPA exposure. The elimination of the thick filament-associated proteins did not involve the participation of vinculin or talin. In contrast to its effects on myofibrils, TPA did not induce the disassembly of the contractile proteins in stress fibers and microfilaments either in myosacs or in fibroblastic cells. Similarly, TPA, which rapidly induces the translocation of vinculin and talin to ectopic sites in many types of immortalized cells, had no gross effect on the adhesion plaques of myosacs, primary fibroblastic cells, or presumptive myoblasts. Clearly, the response to TPA of contractile protein and some cytoskeletal isoforms not only varies among phenotypes, but even within the domains of a given myotube the myofibrils respond one way, the stress fibers/microfilaments another.
Collapse
Affiliation(s)
- Z X Lin
- Department of Anatomy, School of Medicine, University of Pennsylvania, Philadelphia 19104
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Myology has greatly benefited from the recent unification of concepts in molecular, cellular, and developmental biology. The interplay between intrinsic and extrinsic factors in determining the physiologic characteristics of individual myofibers has emerged as an important theme. Of special note is the manner in which the study of contractile protein gene structure and expression has contributed to our understanding of the development and ultimate plasticity of the contractile apparatus. As mechanistic models of normal myogenesis achieve increasing sophistication, the opportunities for understanding the pathogenesis of progressive muscle disfunction improve. In this article we review recent progress in basic myology which will be of interest to clinicians studying the heritable neuromuscular disorders.
Collapse
Affiliation(s)
- H Stedman
- Department of Human Genetics, University of Pennsylvania School of Medicine, Philadelphia
| | | |
Collapse
|
46
|
Claycomb WC, Moses RL. Growth factors and TPA stimulate DNA synthesis and alter the morphology of cultured terminally differentiated adult rat cardiac muscle cells. Dev Biol 1988; 127:257-65. [PMID: 3378663 DOI: 10.1016/0012-1606(88)90313-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Previous studies have established that the terminally differentiated ventricular cardiac muscle cell of the adult rat reinitiates semiconservative DNA replication when grown in culture (W. C. Claycomb and H. D. Bradshaw, Jr., 1983, Dev. Biol. 90, 331-337). Work reported here shows that several growth factors and chemicals will stimulate this DNA synthetic activity in a concentration-dependent manner. Autoradiographic experiments establish that this stimulated DNA synthesis is due to cells not previously synthesizing DNA being induced to enter the S phase of the cell cycle. By far the greatest stimulation (250%) is observed with the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Fifty ng/ml is the optimal concentration, and the maximal effect is observed 5 days after adding TPA. TPA also substantially increases the protein content of the cultured myocytes. Diacylyglcerols (DAG) induce these same changes, indicating that the effect of TPA is mediated by protein kinase C. The morphology of the cultured cardiac muscle cells is profoundly altered by TPA and DAG. TPA- and DAG-treated myocytes spread more thinly on the surface of the culture flask, acquire multiple nuclei, and undergo nucleolar fragmentation. The myofibrillar ultrastructure of the treated cells becomes almost totally disorganized, and intermediate filaments and rough endoplasmic reticulum accumulate in the cytoplasm. These TPA results suggest a possible relationship between the degree of ultrastructural differentiation of the ventricular cardiac muscle cell and DNA synthetic activity. This easily altered cellular plasticity should be very useful for studies of the regulation of cardiac muscle cell proliferation and cell differentiation.
Collapse
Affiliation(s)
- W C Claycomb
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, New Orleans 70112
| | | |
Collapse
|
47
|
Vandekerckhove J, Osborn M, Altmannsberger M, Weber K. Actin typing of rhabdomyosarcomas shows the presence of the fetal and adult forms of sarcomeric muscle actin. Differentiation 1987; 35:126-31. [PMID: 3443230 DOI: 10.1111/j.1432-0436.1987.tb00160.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We analyzed actin expression in two human rhabdomyosarcomas as well as in three rhabdomyosarcomas induced in rats by the injection of nickel sulfide. All five tumors exhibited appreciable amounts of the sarcomeric alpha-actin types, in line with their myogenic differentiation. The level of these actins was particularly high in the rat tumors, which according to morphological criteria, all showed a higher degree of differentiation than the human tumors. Interestingly, in both human tumors and in two of the three rat tumors, the level of the cardiac alpha-actin type was significantly higher than that of adult skeletal muscle alpha-actin. Taken together with the results of recent reports indicating that the cardiac alpha-actin type is a marker of embryonic and fetal skeletal muscle, our findings indicate that rhabdomyosarcomas express the embryonic sarcomeric actin isoform.
Collapse
|