1
|
Shultes PV, Weaver DT, Tadele DS, Barker-Clarke RJ, Scott JG. Cell-cell fusion in cancer: The next cancer hallmark? Int J Biochem Cell Biol 2024; 175:106649. [PMID: 39186970 DOI: 10.1016/j.biocel.2024.106649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
In this review, we consider the role of cell-cell fusion in cancer development and progression through an evolutionary lens. We begin by summarizing the origins of fusion proteins (fusogens), of which there are many distinct classes that have evolved through convergent evolution. We then use an evolutionary framework to highlight how the persistence of fusion over generations and across different organisms can be attributed to traits that increase fitness secondary to fusion; these traits map well to the expanded hallmarks of cancer. By studying the tumor microenvironment, we can begin to identify the key selective pressures that may favor higher rates of fusion compared to healthy tissues. The paper concludes by discussing the increasing number of research questions surrounding fusion, recommendations for how to answer them, and the need for a greater interest in exploring cell fusion and evolutionary principles in oncology moving forward.
Collapse
Affiliation(s)
- Paulameena V Shultes
- Translational Hematology and Oncology (THOR), Cleveland Clinic, Cleveland, OH 44120, USA; School of Medicine, Case Western Reserve University, Cleveland, OH 44120, USA
| | - Davis T Weaver
- Translational Hematology and Oncology (THOR), Cleveland Clinic, Cleveland, OH 44120, USA; School of Medicine, Case Western Reserve University, Cleveland, OH 44120, USA
| | - Dagim S Tadele
- Translational Hematology and Oncology (THOR), Cleveland Clinic, Cleveland, OH 44120, USA; Oslo University Hospital, Ullevål, Department of Medical Genetics, Oslo, Norway
| | - Rowan J Barker-Clarke
- Translational Hematology and Oncology (THOR), Cleveland Clinic, Cleveland, OH 44120, USA
| | - Jacob G Scott
- Translational Hematology and Oncology (THOR), Cleveland Clinic, Cleveland, OH 44120, USA; School of Medicine, Case Western Reserve University, Cleveland, OH 44120, USA; Physics Department, Case Western Reserve University, Cleveland, OH 44120, USA.
| |
Collapse
|
2
|
Niu X, Zhao Y, Zhang T, Sun Y, Wei Z, Fu K, Li J, Tang M, Wan W, Gao X, Chen H, Qi R, Song B. Comprehensive succinylome analyses reveal that hyperthermia upregulates lysine succinylation of annexin A2 by downregulating sirtuin7 in human keratinocytes. J Transl Int Med 2024; 12:424-436. [PMID: 39360157 PMCID: PMC11444469 DOI: 10.2478/jtim-2022-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023] Open
Abstract
Background and Objectives Local hyperthermia at 44°C can clear multiple human papillomavirus (HPV)-infected skin lesions (warts) by targeting a single lesion, which is considered as a success of inducing antiviral immunity in the human body. However, approximately 30% of the patients had a lower response to this intervention. To identify novel molecular targets for anti-HPV immunity induction to improve local hyperthermia efficacy, we conducted a lysine succinylome assay in HaCaT cells (subjected to 44°C and 37°C water baths for 30 min). Methods The succinylome analysis was conducted on HaCaT subjected to 44°C and 37°C water bath for 30 min using antibody affinity enrichment together with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results were validated by western blot (WB), immunoprecipitation (IP), and co-immunoprecipitation (Co-IP). Then, bioinformatic analysis including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, motif characterization, secondary structure, and protein-protein interaction (PPI) was performed. Results A total of 119 proteins with 197 succinylated sites were upregulated in 44°C-treated HaCaT cells. GO annotation demonstrated that differential proteins were involved in the immune system process and viral transcription. Succinylation was significantly upregulated in annexin A2. We found that hyperthermia upregulated the succinylated level of global proteins in HaCaT cells by downregulating the desuccinylase sirtuin7 (SIRT7), which can interact with annexin A2. Conclusions Taken together, these data indicated that succinylation of annexin A2 may serve as a new drug target, which could be intervened in combination with local hyperthermia for better treatment of cutaneous warts.
Collapse
Affiliation(s)
- Xueli Niu
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- Key Laboratory of Immunodermatology, National Health Commission of the People’s Republic of China, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Yiping Zhao
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- Key Laboratory of Immunodermatology, National Health Commission of the People’s Republic of China, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Tao Zhang
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of Stem Cell and Regenerative Medicine, China Medical University, Shenyang110122, Liaoning Province, China
| | - Yuzhe Sun
- Department of Dermatology, Dermatological Hospital of Southern Medical University, Guangzhou510091, Guangdong Province, China
| | - Zhendong Wei
- Department of Dermatology, The 2nd Affiliated Hospital of Dalian Medical University, Dalian116027, Liaoning Province, China
| | - Kangle Fu
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- Key Laboratory of Immunodermatology, National Health Commission of the People’s Republic of China, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Jingyi Li
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, CardiffUK
| | - Mingsui Tang
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, CardiffUK
| | - Wenyu Wan
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- Key Laboratory of Immunodermatology, National Health Commission of the People’s Republic of China, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Xinghua Gao
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- Key Laboratory of Immunodermatology, National Health Commission of the People’s Republic of China, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Hongduo Chen
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- Key Laboratory of Immunodermatology, National Health Commission of the People’s Republic of China, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Ruiqun Qi
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- Key Laboratory of Immunodermatology, National Health Commission of the People’s Republic of China, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
| | - Bing Song
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang110001, Liaoning Province, China
- School of Dentistry, Cardiff University, Heath Park, Cardiff CF14 4XY, CardiffUK
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen518055, Guangdong Province, China
| |
Collapse
|
3
|
Park IW, Fiadjoe HK, Chaudhary P. Impact of Annexin A2 on virus life cycles. Virus Res 2024; 345:199384. [PMID: 38702018 PMCID: PMC11091703 DOI: 10.1016/j.virusres.2024.199384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Due to the limited size of viral genomes, hijacking host machinery by the viruses taking place throughout the virus life cycle is inevitable for the survival and proliferation of the virus in the infected hosts. Recent reports indicated that Annexin A2 (AnxA2), a calcium- and lipid-binding cellular protein, plays an important role as a critical regulator in various steps of the virus life cycle. The multifarious AnxA2 functions in cells, such as adhesion, adsorption, endocytosis, exocytosis, cell proliferation and division, inflammation, cancer metastasis, angiogenesis, etc., are intimately related to the various clinical courses of viral infection. Ubiquitous expression of AnxA2 across multiple cell types indicates the broad range of susceptibility of diverse species of the virus to induce disparate viral disease in various tissues, and intracellular expression of AnxA2 in the cytoplasmic membrane, cytosol, and nucleus suggests the involvement of AnxA2 in the regulation of the different stages of various virus life cycles within host cells. However, it is yet unclear as to the molecular processes on how AnxA2 and the infected virus interplay to regulate virus life cycles and thereby the virus-associated disease courses, and hence elucidation of the molecular mechanisms on AnxA2-mediated virus life cycle will provide essential clues to develop therapeutics deterring viral disease.
Collapse
Affiliation(s)
- In-Woo Park
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| | - Hope K Fiadjoe
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Pankaj Chaudhary
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| |
Collapse
|
4
|
Wang L, Zhu J, Xie P, Gong D. Pigeon during the Breeding Cycle: Behaviors, Composition and Formation of Crop Milk, and Physiological Adaptation. Life (Basel) 2023; 13:1866. [PMID: 37763270 PMCID: PMC10533064 DOI: 10.3390/life13091866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Pigeon is an important economic poultry species in many countries. As an altricial bird, its growth and development are largely reliant on pigeon milk produced by the crop tissue in the first week. During the breeding cycle, pigeons undergo a series of behavioral changes. Pigeon milk is generally characterized by having high concentrations of proteins and lipids, and a complicated regulatory network is involved in the milk formation. Hormones, especially prolactin, could promote the proliferation of crop epidermal cells and nutrient accumulation. The expression of target genes associated with these important biological processes in the crop epidermis is affected by non-coding RNAs. Meanwhile, signaling pathways, such as target of rapamycin (TOR), Janus kinase/signal transducer and activator of transcription proteins (JAK/STAT), protein kinase B (Akt), etc., influence the production of crop milk by either enhancing protein synthesis in crop cells or inducing apoptosis of crop epidermal cells. In order to adapt to the different breeding periods, pigeons are physiologically changed in their intestinal morphology and function and liver metabolism. This paper reviews the behaviors and physiological adaptations of pigeon during the breeding cycle, the composition of pigeon crop milk, and the mechanism of its formation, which is important for a better understanding of the physiology of altricial birds and the development of artificial crop milk.
Collapse
Affiliation(s)
- Liuxiong Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.W.); (J.Z.)
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China
| | - Jianguo Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.W.); (J.Z.)
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China
| | - Peng Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (L.W.); (J.Z.)
| |
Collapse
|
5
|
Jia LJ, Rafiq M, Radosa L, Hortschansky P, Cunha C, Cseresnyés Z, Krüger T, Schmidt F, Heinekamp T, Straßburger M, Löffler B, Doenst T, Lacerda JF, Campos A, Figge MT, Carvalho A, Kniemeyer O, Brakhage AA. Aspergillus fumigatus hijacks human p11 to redirect fungal-containing phagosomes to non-degradative pathway. Cell Host Microbe 2023; 31:373-388.e10. [PMID: 36893734 PMCID: PMC10016320 DOI: 10.1016/j.chom.2023.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/28/2022] [Accepted: 02/03/2023] [Indexed: 03/10/2023]
Abstract
The decision whether endosomes enter the degradative or recycling pathway in mammalian cells is of fundamental importance for pathogen killing, and its malfunctioning has pathological consequences. We discovered that human p11 is a critical factor for this decision. The HscA protein present on the conidial surface of the human-pathogenic fungus Aspergillus fumigatus anchors p11 on conidia-containing phagosomes (PSs), excludes the PS maturation mediator Rab7, and triggers binding of exocytosis mediators Rab11 and Sec15. This reprogramming redirects PSs to the non-degradative pathway, allowing A. fumigatus to escape cells by outgrowth and expulsion as well as transfer of conidia between cells. The clinical relevance is supported by the identification of a single nucleotide polymorphism in the non-coding region of the S100A10 (p11) gene that affects mRNA and protein expression in response to A. fumigatus and is associated with protection against invasive pulmonary aspergillosis. These findings reveal the role of p11 in mediating fungal PS evasion.
Collapse
Affiliation(s)
- Lei-Jie Jia
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Muhammad Rafiq
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany; Institute of Microbiology, Friedrich Schiller University, 07745 Jena, Germany
| | - Lukáš Radosa
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Franziska Schmidt
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | | | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, 07747 Jena, Germany
| | - Torsten Doenst
- Klinik für Herz- und Thoraxchirurgie, Jena University Hospital, 07747 Jena, Germany
| | - João F Lacerda
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, 1649-035 Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - António Campos
- Serviço de Transplantação de Medula Óssea, Instituto Português de Oncologia do Porto, 4200-072 Porto, Portugal
| | - Marc Thilo Figge
- Institute of Microbiology, Friedrich Schiller University, 07745 Jena, Germany; Research Group Applied Systems Biology, Leibniz-HKI, Jena, Germany
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany; Institute of Microbiology, Friedrich Schiller University, 07745 Jena, Germany.
| |
Collapse
|
6
|
Tanaka H, Saigo C, Iwata Y, Yasufuku I, Kito Y, Yoshida K, Takeuchi T. Human colorectal cancer-associated carbohydrate antigen on annexin A2 protein. J Mol Med (Berl) 2021; 99:1115-1123. [PMID: 33904933 DOI: 10.1007/s00109-021-02077-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/22/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Cancer-associated antigens are not only a good marker for monitoring cancer progression but are also useful for molecular target therapy. In this study, we aimed to generate a monoclonal antibody that preferentially reacts with colorectal cancer cells relative to noncancerous gland cells. We prepared antigens composed of HT-29 colorectal cancer cell lysates that were adsorbed by antibodies to sodium butyrate-induced enterocytically differentiated HT-29 cells. Subsequently, we generated a monoclonal antibody, designated 12G5A, which reacted with HT-29 colon cancer cells, but not with sodium butyrate-induced differentiated HT-29 cells. Immunohistochemical staining revealed 12G5A immunoreactivity in all 73 colon cancer tissue specimens examined at various degrees, but little or no immunoreactivity in noncancerous gland cells. Notably, high 12G5A immunoreactivity, which was determined as more than 50% of colon cancer cells intensively stained with 12G5A antibody, exhibited significantly higher association with a poor overall survival rate of patients with colorectal cancer (P = 0.0196) and unfavorable progression-free survival rate of patients with colorectal cancer (P = 0.0418). Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, si-RNA silencing analysis, enzymatic deglycosylation, and tunicamycin treatment revealed that 12G5A recognized the glycosylated epitope on annexin A2 protein. Our findings indicate that 12G5A identified a cancer-associated glycosylation epitope on annexin A2, whose expression was related to unfavorable colorectal cancer behavior. KEY MESSAGE: • 12G5A monoclonal antibody recognized a colorectal cancer-associated epitope. • 12G5A antibody recognized the N-linked glycosylation epitope on annexin A2. • 12G5A immunoreactivity was related to unfavorable colorectal cancer behavior.
Collapse
Affiliation(s)
- Hideharu Tanaka
- Department of Surgical Oncology, Gifu University, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Chiemi Saigo
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yoshinori Iwata
- Department of Surgical Oncology, Gifu University, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Itaru Yasufuku
- Department of Surgical Oncology, Gifu University, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yusuke Kito
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kazuhiro Yoshida
- Department of Surgical Oncology, Gifu University, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tamotsu Takeuchi
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu, Japan.
| |
Collapse
|
7
|
Li Z, Yu L, Hu B, Chen L, Jv M, Wang L, Zhou C, Wei M, Zhao L. Advances in cancer treatment: a new therapeutic target, Annexin A2. J Cancer 2021; 12:3587-3596. [PMID: 33995636 PMCID: PMC8120175 DOI: 10.7150/jca.55173] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Annexin A2 (ANXA2) is a calcium regulated phospholipid-binding protein. It is expressed in some tumor cells, endothelial cells, macrophages, and mononuclear cells, affecting cell survival and mediating interactions between intercellular and extracellular microenvironment. Aberrant expression of ANXA2 can be used as a potential predictive factor, diagnostic biomarker and therapeutic target in cancer therapy. Investigators used various technologies to target ANXA2 in a preclinical model of human cancers and demonstrated encouraging results. In this review article, we discuss the diagnosis and prognosis latent capacity of ANXA2 in progressive cancers, focus on the exploration of restorative interventions targeting ANXA2 in cancer treatment. Further, we comment on a promising candidate therapy that is conceivable for clinical translation.
Collapse
Affiliation(s)
- Zinan Li
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Lifeng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Baohui Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Lianze Chen
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Mingyi Jv
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Lin Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Chenyi Zhou
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Medical Diagnosis and Treatment Center, Liaoning Province, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.,Liaoning Engineering Technology Research Center, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| |
Collapse
|
8
|
The Bioactive Peptide SL-13R Expands Human Umbilical Cord Blood Hematopoietic Stem and Progenitor Cells In Vitro. Molecules 2021; 26:molecules26071995. [PMID: 33915948 PMCID: PMC8036704 DOI: 10.3390/molecules26071995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022] Open
Abstract
Hematopoietic stem and progenitor cell (HSPC) transplantation is a curative treatment of hematological disorders that has been utilized for several decades. Although umbilical cord blood (UCB) is a promising source of HSPCs, the low dose of HSPCs in these preparations limits their use, prompting need for ex vivo HSPC expansion. To establish a more efficient method to expand UCB HSPCs, we developed the bioactive peptide named SL-13R and cultured UCB HSPCs (CD34+ cells) with SL-13R in animal component-free medium containing a cytokine cocktail. Following 9 days of culture with SL-13R, the numbers of total cells, CD34+, CD38− cells, and hematopoietic stem cell (HSC)-enriched cells were significantly increased relative to control. Transplantation of cells cultured with SL-13R into immunodeficient NOD/Shi-scid/IL-2Rγ knockout mice confirmed that they possess long-term reconstitution and self-renewal ability. AHNAK, ANXA2, and PLEC all interact with SL-13R. Knockdown of these genes in UCB CD34+ cells resulted in reduced numbers of hematopoietic colonies relative to SL-13R-treated and non-knockdown controls. In summary, we have identified a novel bioactive peptide SL-13R promoting expansion of UCB CD34+ cells with long-term reconstitution and self-renewal ability, suggesting its clinical use in the future.
Collapse
|
9
|
Fabbiano F, Corsi J, Gurrieri E, Trevisan C, Notarangelo M, D'Agostino VG. RNA packaging into extracellular vesicles: An orchestra of RNA-binding proteins? J Extracell Vesicles 2020; 10:e12043. [PMID: 33391635 PMCID: PMC7769857 DOI: 10.1002/jev2.12043] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/17/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous membranous particles released from the cells through different biogenetic and secretory mechanisms. We now conceive EVs as shuttles mediating cellular communication, carrying a variety of molecules resulting from intracellular homeostatic mechanisms. The RNA is a widely detected cargo and, impressively, a recognized functional intermediate that elects EVs as modulators of cancer cell phenotypes, determinants of disease spreading, cell surrogates in regenerative medicine, and a source for non-invasive molecular diagnostics. The mechanistic elucidation of the intracellular events responsible for the engagement of RNA into EVs will significantly improve the comprehension and possibly the prediction of EV "quality" in association with cell physiology. Interestingly, the application of multidisciplinary approaches, including biochemical as well as cell-based and computational strategies, is increasingly revealing an active RNA-packaging process implicating RNA-binding proteins (RBPs) in the sorting of coding and non-coding RNAs. In this review, we provide a comprehensive view of RBPs recently emerging as part of the EV biology, considering the scenarios where: (i) individual RBPs were detected in EVs along with their RNA substrates, (ii) RBPs were detected in EVs with inferred RNA targets, and (iii) EV-transcripts were found to harbour sequence motifs mirroring the activity of RBPs. Proteins so far identified are members of the hnRNP family (hnRNPA2B1, hnRNPC1, hnRNPG, hnRNPH1, hnRNPK, and hnRNPQ), as well as YBX1, HuR, AGO2, IGF2BP1, MEX3C, ANXA2, ALIX, NCL, FUS, TDP-43, MVP, LIN28, SRP9/14, QKI, and TERT. We describe the RBPs based on protein domain features, current knowledge on the association with human diseases, recognition of RNA consensus motifs, and the need to clarify the functional significance in different cellular contexts. We also summarize data on previously identified RBP inhibitor small molecules that could also be introduced in EV research as potential modulators of vesicular RNA sorting.
Collapse
Affiliation(s)
- Fabrizio Fabbiano
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Jessica Corsi
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Elena Gurrieri
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Caterina Trevisan
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Michela Notarangelo
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| | - Vito G. D'Agostino
- Department of CellularComputational and Integrative Biology (CIBIO)University of TrentoTrentoItaly
| |
Collapse
|
10
|
Gutierrez-Xicotencatl L, Pedroza-Saavedra A, Chihu-Amparan L, Salazar-Piña A, Maldonado-Gama M, Esquivel-Guadarrama F. Cellular Functions of HPV16 E5 Oncoprotein during Oncogenic Transformation. Mol Cancer Res 2020; 19:167-179. [PMID: 33106372 DOI: 10.1158/1541-7786.mcr-20-0491] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/30/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022]
Abstract
The human papillomavirus (HPV) is recognized as the main etiologic agent associated with cervical cancer. HPVs are epitheliotropic, and the ones that infect the mucous membranes are classified into low-risk (LR) and high-risk (HR) types. LR-HPVs produce benign lesions, whereas HR-HPVs produce lesions that may progress to cancer. HR-HPV types 16 and 18 are the most frequently found in cervical cancer worldwide. E6 and E7 are the major HPV oncogenic proteins, and they have been profusely studied. Moreover, it has been shown that the HPV16 E5 (16E5) oncoprotein generates transformation, although the molecular mechanisms through which it carries out its activity have not been well defined. In contrast to E6 and E7, the E5 open reading frame is lost during the integration of the episomal HPV DNA into the cellular genome. This suggests that E5 acts at the early stages of the transformation process. In this review, we focused on the biochemical characteristics and functions of the HPV E5 oncoprotein, mainly on its association with growth factor receptors and other cellular proteins. Knowledge of the HPV E5 biology is important to understand the role of this oncoprotein in maintaining the viral cycle through the modulation of proliferation, differentiation, and apoptosis, as well as the alteration of other processes, such as survival, adhesion, migration, and invasion during early carcinogenesis. Finally, we summarized recent research that uses the E5 oncoprotein as a therapeutic target, promising a novel approach to the treatment of cervical cancer in its early stages.
Collapse
Affiliation(s)
- Lourdes Gutierrez-Xicotencatl
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico.
| | - Adolfo Pedroza-Saavedra
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Lilia Chihu-Amparan
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Azucena Salazar-Piña
- Facultad de Nutrición, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Minerva Maldonado-Gama
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | | |
Collapse
|
11
|
Bittel DC, Chandra G, Tirunagri LMS, Deora AB, Medikayala S, Scheffer L, Defour A, Jaiswal JK. Annexin A2 Mediates Dysferlin Accumulation and Muscle Cell Membrane Repair. Cells 2020; 9:cells9091919. [PMID: 32824910 PMCID: PMC7565960 DOI: 10.3390/cells9091919] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 01/08/2023] Open
Abstract
Muscle cell plasma membrane is frequently damaged by mechanical activity, and its repair requires the membrane protein dysferlin. We previously identified that, similar to dysferlin deficit, lack of annexin A2 (AnxA2) also impairs repair of skeletal myofibers. Here, we have studied the mechanism of AnxA2-mediated muscle cell membrane repair in cultured muscle cells. We find that injury-triggered increase in cytosolic calcium causes AnxA2 to bind dysferlin and accumulate on dysferlin-containing vesicles as well as with dysferlin at the site of membrane injury. AnxA2 accumulates on the injured plasma membrane in cholesterol-rich lipid microdomains and requires Src kinase activity and the presence of cholesterol. Lack of AnxA2 and its failure to translocate to the plasma membrane, both prevent calcium-triggered dysferlin translocation to the plasma membrane and compromise repair of the injured plasma membrane. Our studies identify that Anx2 senses calcium increase and injury-triggered change in plasma membrane cholesterol to facilitate dysferlin delivery and repair of the injured plasma membrane.
Collapse
Affiliation(s)
- Daniel C. Bittel
- Center for Genetic Medicine Research, 111 Michigan Av NW, Children’s National Hospital, Washington, DC 20010, USA; (D.C.B.); (G.C.); (S.M.); (L.S.); (A.D.)
| | - Goutam Chandra
- Center for Genetic Medicine Research, 111 Michigan Av NW, Children’s National Hospital, Washington, DC 20010, USA; (D.C.B.); (G.C.); (S.M.); (L.S.); (A.D.)
| | - Laxmi M. S. Tirunagri
- Department of Cellular Biophysics, The Rockefeller University, New York, NY 10065, USA;
| | - Arun B. Deora
- Department of Cell & Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA;
| | - Sushma Medikayala
- Center for Genetic Medicine Research, 111 Michigan Av NW, Children’s National Hospital, Washington, DC 20010, USA; (D.C.B.); (G.C.); (S.M.); (L.S.); (A.D.)
| | - Luana Scheffer
- Center for Genetic Medicine Research, 111 Michigan Av NW, Children’s National Hospital, Washington, DC 20010, USA; (D.C.B.); (G.C.); (S.M.); (L.S.); (A.D.)
| | - Aurelia Defour
- Center for Genetic Medicine Research, 111 Michigan Av NW, Children’s National Hospital, Washington, DC 20010, USA; (D.C.B.); (G.C.); (S.M.); (L.S.); (A.D.)
| | - Jyoti K. Jaiswal
- Center for Genetic Medicine Research, 111 Michigan Av NW, Children’s National Hospital, Washington, DC 20010, USA; (D.C.B.); (G.C.); (S.M.); (L.S.); (A.D.)
- Department of Genomics and Precision medicine, George Washington University School of Medicine and Health Sciences, Washington, DC 20010, USA
- Correspondence: ; Tel.: +1-(202)476-6456; Fax: +1-(202)476-6014
| |
Collapse
|
12
|
Qiu LW, Liu YF, Cao XQ, Wang Y, Cui XH, Ye X, Huang SW, Xie HJ, Zhang HJ. Annexin A2 promotion of hepatocellular carcinoma tumorigenesis via the immune microenvironment. World J Gastroenterol 2020; 26:2126-2137. [PMID: 32476780 PMCID: PMC7235202 DOI: 10.3748/wjg.v26.i18.2126] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer with a dismal prognosis, especially when diagnosed at advanced stages. Annexin A2 (ANXA2), is found to promote cancer progression and therapeutic resistance. However, the underlining mechanisms of ANXA2 in immune escape of HCC remain poorly understood up to now. Herein, we summarized the molecular function of ANXA2 in HCC and its relationship with prognosis. Furthermore, we tentatively elucidated the underlying mechanism of ANXA2 immune escape of HCC by upregulating the proportion of regulatory T cells and the expression of several inhibitory molecules, and by downregulating the proportion of natural killer cells and dendritic cells and the expression of several inhibitory molecules or effector molecules. We expect a lot of in-depth studies to further reveal the underlying mechanism of ANXA2 in immune escape of HCC in the future.
Collapse
Affiliation(s)
- Li-Wei Qiu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yi-Fei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Xiao-Qing Cao
- Department of Thoracic Surgery, Beijing Chest Hospital, Capital Medical University (Beijing Tuberculosis and Thoracic Tumor Research Institute), Beijing 101149, China
| | - Yan Wang
- Emergency Department, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Xiao-Hong Cui
- Department of General Surgery, Shanghai Electric Power Hospital, Shanghai 200050, China
| | - Xian Ye
- Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Shuo-Wen Huang
- Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Hong-Jun Xie
- Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Hai-Jian Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
13
|
Saiki Y, Horii A. Multiple functions of S100A10, an important cancer promoter. Pathol Int 2019; 69:629-636. [PMID: 31612598 DOI: 10.1111/pin.12861] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Abstract
The S100 group of calcium binding proteins is composed of 21 members that exhibit tissue/cell specific expressions. These S100 proteins bind a diverse range of targets and regulate multiple cellular processes, including proliferation, migration and differentiation. S100A10, also known as p11, binds mainly to annexin A2 and mediates the conversion of plasminogen to an active protease, plasmin. Higher S100A10 expression has been reported to link to worse outcome and/or chemoresistance in a number of cancer types in lung, breast, ovary, pancreas, gall bladder and colorectum and leukemia although some discrepancy was reported. In this review, we focused on the roles of the S100A10 in cancer. We summarized its biological functions, role in cancer progression, prognostic value and targeting of S100A10 for cancer therapy.
Collapse
Affiliation(s)
- Yuriko Saiki
- Department of Molecular Pathology, Tohoku University School of Medicine, Miyagi, Japan
| | - Akira Horii
- Department of Molecular Pathology, Tohoku University School of Medicine, Miyagi, Japan
| |
Collapse
|
14
|
Wang J, Deng L, Zhuang H, Liu J, Liu D, Li X, Jin S, Zhu L, Wang H, Lin B. Interaction of HE4 and ANXA2 exists in various malignant cells-HE4-ANXA2-MMP2 protein complex promotes cell migration. Cancer Cell Int 2019; 19:161. [PMID: 31210752 PMCID: PMC6567406 DOI: 10.1186/s12935-019-0864-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 05/27/2019] [Indexed: 02/06/2023] Open
Abstract
Background The interaction between human epididymis protein 4 (HE4) and annexin A2 (Annexin A2) has been found in ovarian cancer. However, it is dimness whether
the interaction exists in other malignant tumors. Methods Real-time PCR, western blotting and immunocytochemistry were used to detect mRNA and proteins expression. Co-immunoprecipitation and double-labeling immunofluorescence were used to detect the interaction among HE4, ANXA2 and MMP2. MTS assay was used to test cell proliferation. Adhesion test was used to test cell adhesion. Flow cytometry was applied to examine cell cycle. The scratch test and Transwell assay was performed to detect the migration and invasion of various malignant cell lines. Results Here we show that the overexpression of HE4 and ANXA2 in various malignant cells is a common phenomenon. HE4 and ANXA2 are co-localized in the cytoplasm and membrane of various tumor cells. ES-2 cells which had both high expression of HE4 and ANXA2 were much stronger in proliferation, adhesion, invasion, and migration than other tumor cells. HE4–ANXA2–MMP2 could form a triple protein complex. HE4 could mediate the expression of MMP2 via ANXA2 to promote cell migration progress. Conclusions The interaction of HE4 and ANXA2 exists in various types of cancer cells. HE4 and ANXA2 can promote the proliferation, adhesion, invasion, and migration of cancer cells. HE4–ANXA2–MMP2 form a protein complex and ANXA2 plays the role of “bridge”. They performed together to promote cell migration.
Collapse
Affiliation(s)
- Jing Wang
- 1Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated To China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, No. 7 Mulan Road, Xihu District, Benxi, 117000 Liaoning China
| | - Lu Deng
- 1Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated To China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, No. 7 Mulan Road, Xihu District, Benxi, 117000 Liaoning China.,3Obstetrics and Gynaecology Hospital of Fudan University, Shanghai, China
| | - Huiyu Zhuang
- 1Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated To China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, No. 7 Mulan Road, Xihu District, Benxi, 117000 Liaoning China.,4Department of Gynecology and Obstetrics, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Workers' Stadium South Road, Chaoyang District, Beijing, 100020 China
| | - Juanjuan Liu
- 1Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated To China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, No. 7 Mulan Road, Xihu District, Benxi, 117000 Liaoning China
| | - Dawo Liu
- 1Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated To China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, No. 7 Mulan Road, Xihu District, Benxi, 117000 Liaoning China
| | - Xiao Li
- 1Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated To China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, No. 7 Mulan Road, Xihu District, Benxi, 117000 Liaoning China
| | - Shan Jin
- 1Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated To China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, No. 7 Mulan Road, Xihu District, Benxi, 117000 Liaoning China
| | - Liancheng Zhu
- 1Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated To China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, No. 7 Mulan Road, Xihu District, Benxi, 117000 Liaoning China
| | - Huimin Wang
- 1Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated To China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, No. 7 Mulan Road, Xihu District, Benxi, 117000 Liaoning China.,5Department of Gynecology, Liaoning Cancer Hospital & Institute China Medical University, No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110000 Liaoning China
| | - Bei Lin
- 1Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated To China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004 Liaoning China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, No. 7 Mulan Road, Xihu District, Benxi, 117000 Liaoning China
| |
Collapse
|
15
|
Tramutola A, Abate G, Lanzillotta C, Triani F, Barone E, Iavarone F, Vincenzoni F, Castagnola M, Marziano M, Memo M, Garrafa E, Butterfield DA, Perluigi M, Di Domenico F, Uberti D. Protein nitration profile of CD3 + lymphocytes from Alzheimer disease patients: Novel hints on immunosenescence and biomarker detection. Free Radic Biol Med 2018; 129:430-439. [PMID: 30321702 DOI: 10.1016/j.freeradbiomed.2018.10.414] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive form of dementia characterized by increased production of amyloid-β plaques and hyperphosphorylated tau protein, mitochondrial dysfunction, elevated oxidative stress, reduced protein clearance, among other. Several studies showed systemic modifications of immune and inflammatory systems due, in part, to decreased levels of CD3+ lymphocytes in peripheral blood in AD. Considering that oxidative stress, both in the brain and in the periphery, can influence the activation and differentiation of T-cells, we investigated the 3-nitrotyrosine (3-NT) proteome of blood T-cells derived from AD patients compared to non-demented (ND) subjects by using a proteomic approach. 3-NT is a formal protein oxidation and index of nitrosative stress. We identified ten proteins showing increasing levels of 3-NT in CD3+ T-cells from AD patients compared with ND subjects. These proteins are involved in energy metabolism, cytoskeletal structure, intracellular signaling, protein folding and turnover, and antioxidant response and provide new insights into the molecular mechanism that impact reduced T-cell differentiation in AD. Our results highlight the role of peripheral oxidative stress in T-cells related to immune-senescence during AD pathology focusing on the specific targets of protein nitration that conceivably can be suitable to further therapies. Further, our data demonstrate common targets of protein nitration between the brain and the periphery, supporting their significance as disease biomarkers.
Collapse
Affiliation(s)
- Antonella Tramutola
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Giulia Abate
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy
| | - Chiara Lanzillotta
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesca Triani
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Federica Iavarone
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica, and/or Dip. di Diagnostica di Laboratorio e Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Federica Vincenzoni
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica, and/or Dip. di Diagnostica di Laboratorio e Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Massimo Castagnola
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica, and/or Dip. di Diagnostica di Laboratorio e Malattie Infettive, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Mariagrazia Marziano
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy
| | - Maurizio Memo
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy
| | - Emirena Garrafa
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Daniela Uberti
- Department of Biomedical Sciences and Biotechnologies, University of Brescia, Brescia, Italy
| |
Collapse
|
16
|
Rentero C, Blanco-Muñoz P, Meneses-Salas E, Grewal T, Enrich C. Annexins-Coordinators of Cholesterol Homeostasis in Endocytic Pathways. Int J Mol Sci 2018; 19:E1444. [PMID: 29757220 PMCID: PMC5983649 DOI: 10.3390/ijms19051444] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
The spatiotemporal regulation of calcium (Ca2+) storage in late endosomes (LE) and lysosomes (Lys) is increasingly recognized to influence a variety of membrane trafficking events, including endocytosis, exocytosis, and autophagy. Alterations in Ca2+ homeostasis within the LE/Lys compartment are implicated in human diseases, ranging from lysosomal storage diseases (LSDs) to neurodegeneration and cancer, and they correlate with changes in the membrane binding behaviour of Ca2+-binding proteins. This also includes Annexins (AnxA), which is a family of Ca2+-binding proteins participating in membrane traffic and tethering, microdomain organization, cytoskeleton interactions, Ca2+ signalling, and LE/Lys positioning. Although our knowledge regarding the way Annexins contribute to LE/Lys functions is still incomplete, recruitment of Annexins to LE/Lys is greatly influenced by the availability of Annexin bindings sites, including acidic phospholipids, such as phosphatidylserine (PS) and phosphatidic acid (PA), cholesterol, and phosphatidylinositol (4,5)-bisphosphate (PIP2). Moreover, the cytosolic portion of LE/Lys membrane proteins may also, directly or indirectly, determine the recruitment of Annexins to LE. Strikingly, within LE/Lys, AnxA1, A2, A6, and A8 differentially contribute to cholesterol transport along the endocytic route, in particular, cholesterol transfer between LE and other compartments, positioning Annexins at the centre of major pathways mediating cellular cholesterol homeostasis. Underlying mechanisms include the formation of membrane contact sites (MCS) and intraluminal vesicles (ILV), as well as the modulation of LE-cholesterol transporter activity. In this review, we will summarize the current understanding how Annexins contribute to influence LE/Lys membrane transport and associated functions.
Collapse
Affiliation(s)
- Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona. 08036 Barcelona. Spain.
| | - Patricia Blanco-Muñoz
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona. 08036 Barcelona. Spain.
| | - Elsa Meneses-Salas
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona. 08036 Barcelona. Spain.
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia.
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona. 08036 Barcelona. Spain.
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
| |
Collapse
|
17
|
Cui L, Elzakra N, Xu S, Xiao GG, Yang Y, Hu S. Investigation of three potential autoantibodies in Sjogren's syndrome and associated MALT lymphoma. Oncotarget 2018; 8:30039-30049. [PMID: 28404907 PMCID: PMC5444724 DOI: 10.18632/oncotarget.15613] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/24/2017] [Indexed: 12/28/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease which might progress to mucosal-associated lymphoid tissue lymphoma (pSS/MALT). Diagnosis of pSS requires an invasive tissue biopsy and a delay in diagnosis of pSS has been frequently reported. In this study, four proteins including cofilin-1, alpha-enolase, annexin A2 and Rho GDP-dissociation inhibitor 2 (RGI2) were found to be over-expressed in pSS and pSS/MALT by 2D gel electrophoresis/mass spectrometry, and the finding was verified by the microarray analysis and western blotting results. We then developed enzyme-linked immunosorbent assays for autoantibodies including anti-cofilin-1, anti-alpha-enolase and anti-RGI2 with good quantitative ability. The expression levels of salivary anti-cofilin-1, anti-alpha-enolase and anti-RGI2 were found to be the highest in pSS/MALT patients and lowest in healthy controls. The combination of these three antiantibodies yielded an “area under the curve” (AUC) value of 0.94 with an 86% sensitivity and 93% specificity in distinguishing patients with pSS from healthy controls, an AUC value of 0.99 with a 95% sensitivity and 94% specificity in distinguishing patients with pSS/MALT from healthy controls and an AUC value of 0.86 with a 75% sensitivity and 94% specificity in distinguishing pSS/MALT patients from pSS patients. Collectively, we have successfully identified a panel of potential autoantigens that are progressively up-regulated during the development of pSS and its progression to MALT lymphoma. The autoantibody biomarkers may be used to help diagnose pSS and predict its progression to MALT lymphoma.
Collapse
Affiliation(s)
- Li Cui
- UCLA School of Dentistry, Los Angeles, CA 90095, USA.,UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 900953, USA.,Department of Dentistry, Maoming People's Hospital, Maoming 525000, China
| | - Naseim Elzakra
- UCLA School of Dentistry, Los Angeles, CA 90095, USA.,UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 900953, USA
| | - Shuaimei Xu
- Guangdong Provincial Stomatological Hospital, Guangzhou 510000, China
| | - Gary Guishan Xiao
- School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, 116024 China
| | - Yan Yang
- UCLA School of Dentistry, Los Angeles, CA 90095, USA.,Department of Stomatology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Shen Hu
- UCLA School of Dentistry, Los Angeles, CA 90095, USA.,UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 900953, USA
| |
Collapse
|
18
|
Stromal Annexin A2 expression is predictive of decreased survival in pancreatic cancer. Oncotarget 2017; 8:106405-106414. [PMID: 29290958 PMCID: PMC5739743 DOI: 10.18632/oncotarget.22433] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/25/2017] [Indexed: 01/18/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is renowned for high rates of metastasis and poor survival. Its notoriously dense fibrotic stroma contributes to chemoresistance. Stromal signaling in PDA is recognized for its multiple roles in regulating tumor invasion and metastasis. However, no stromal biomarker which can predict survival in PDA exists. Annexin A2 (AnxA2) was formerly identified as a metastasis-associated protein in PDA and tumoral overexpression is associated with poor survival. In this study, we examined AnxA2 expression in the tumor microenvironment in a preclinical model of PDA which suggests its role in tumor colonization. We injected wild-type (KPC) and AnxA2 knockout (KPCA) pancreatic cells into C57BL/GJ (B6) and AnxA2 knockout (KO) mice using the hemi-spleen model and observed their survival. We performed quantitative immunohistochemistry examining stromal AnxA2 expression in 56 patients who had surgically resected PDA and correlated expression with clinical outcomes. B6 mice injected with KPC cells demonstrated decreased median survival compared to those injected with KPCA cells (90 days vs. not reached, p < 0.0001) whereas there was no survival difference in the AnxA2 KO mice (p = 0.63). In patient specimens, we found that high stromal AnxA2 expression (≥80th percentile) was associated with significantly reduced disease-free survival (p = 0.002) and overall survival (p < 0.001). Using multivariate Cox models, there were no significant associations between other clinical covariates apart from high stromal AnxA2 expression. This study highlights the role that stromal AnxA2 expression plays as a prognostic marker in PDA and its potential as a predictive biomarker for survival outcomes in PDA.
Collapse
|
19
|
Christensen M, H�gdall C, Jochumsen K, H�gdall E. Annexin A2 and cancer: A systematic review. Int J Oncol 2017; 52:5-18. [DOI: 10.3892/ijo.2017.4197] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/10/2017] [Indexed: 11/06/2022] Open
Affiliation(s)
- Maria Christensen
- Department of Pathology, Molecular Unit, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Claus H�gdall
- Department of Gynaecology, Juliane Maria Centre (JMC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten Jochumsen
- Department of Gynaecology and Obstetrics, Odense University Hospital, Odense, Denmark
| | - Estrid H�gdall
- Department of Pathology, Molecular Unit, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Enrich C, Rentero C, Meneses-Salas E, Tebar F, Grewal T. Annexins: Ca 2+ Effectors Determining Membrane Trafficking in the Late Endocytic Compartment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:351-385. [PMID: 29594868 DOI: 10.1007/978-3-319-55858-5_14] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Despite the discovery of annexins 40 years ago, we are just beginning to understand some of the functions of these still enigmatic proteins. Defined and characterized by their ability to bind anionic membrane lipids in a Ca2+-dependent manner, each annexin has to be considered a multifunctional protein, with a multitude of cellular locations and diverse activities. Underlying causes for this considerable functional diversity include their capability to associate with multiple cytosolic and membrane proteins. In recent years, the increasingly recognized establishment of membrane contact sites between subcellular compartments opens a new scenario for annexins as instrumental players to link Ca2+ signalling with the integration of membrane trafficking in many facets of cell physiology. In this chapter, we review and discuss current knowledge on the contribution of annexins in the biogenesis and functioning of the late endocytic compartment, affecting endo- and exocytic pathways in a variety of physiological consequences ranging from membrane repair, lysosomal exocytosis, to cell migration.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica (CELLEX), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica (CELLEX), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Elsa Meneses-Salas
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica (CELLEX), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica (CELLEX), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, Australia
| |
Collapse
|
21
|
Enrich C, Rentero C, Grewal T. Annexin A6 in the liver: From the endocytic compartment to cellular physiology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:933-946. [PMID: 27984093 DOI: 10.1016/j.bbamcr.2016.10.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 12/15/2022]
Abstract
Annexin A6 (AnxA6) belongs to the conserved annexin family - a group of Ca2+-dependent membrane binding proteins. AnxA6 is the largest of all annexins and highly expressed in smooth muscle, hepatocytes, endothelial cells and cardiomyocytes. Upon activation, AnxA6 binds to negatively charged phospholipids in a wide range of intracellular localizations, in particular the plasma membrane, late endosomes/pre-lysosomes, but also synaptic vesicles and sarcolemma. In these cellular sites, AnxA6 is believed to contribute to the organization of membrane microdomains, such as cholesterol-rich lipid rafts and confer multiple regulatory functions, ranging from vesicle fusion, endocytosis and exocytosis to programmed cell death and muscle contraction. Growing evidence supports that Ca2+ and Ca2+-binding proteins control endocytosis and autophagy. Their regulatory role seems to operate at the level of the signalling pathways that initiate autophagy or at later stages, when autophagosomes fuse with endolysosomal compartments. The convergence of the autophagic and endocytic vesicles to lysosomes shares several features that depend on Ca2+ originating from lysosomes/late endosomes and seems to depend on proteins that are subsequently activated by this cation. However, the involvement of Ca2+ and its effector proteins in these autophagic and endocytic stages still remains poorly understood. Although AnxA6 makes up almost 0.25% of total protein in the liver, little is known about its function in hepatocytes. Within the endocytic route, we identified AnxA6 in endosomes and autophagosomes of hepatocytes. Hence, AnxA6 and possibly other annexins might represent new Ca2+ effectors that regulate converging steps of autophagy and endocytic trafficking in hepatocytes. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cellular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain.
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cellular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Thomas Grewal
- Faculty of Pharmacy A15, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
22
|
Muriel O, Tomas A, Scott CC, Gruenberg J. Moesin and cortactin control actin-dependent multivesicular endosome biogenesis. Mol Biol Cell 2016; 27:3305-3316. [PMID: 27605702 PMCID: PMC5170863 DOI: 10.1091/mbc.e15-12-0853] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 08/31/2016] [Indexed: 11/11/2022] Open
Abstract
Moesin and cortactin on early endosomes are necessary for the formation of F-actin networks that mediate multivesicular endosome biogenesis and transport through the degradative pathway toward lysosomes. Presumably, this mechanism helps segregate recycling membranes from the maturing multivesicular endosomes. We used in vivo and in vitro strategies to study the mechanisms of multivesicular endosome biogenesis. We found that, whereas annexinA2 and ARP2/3 mediate F-actin nucleation and branching, respectively, the ERM protein moesin supports the formation of F-actin networks on early endosomes. We also found that moesin plays no role during endocytosis and recycling to the plasma membrane but is absolutely required, much like actin, for early-to-late-endosome transport and multivesicular endosome formation. Both actin network formation in vitro and early-to-late endosome transport in vivo also depend on the F-actin–binding protein cortactin. Our data thus show that moesin and cortactin are necessary for formation of F-actin networks that mediate endosome biogenesis or maturation and transport through the degradative pathway. We propose that the primary function of endosomal F-actin is to control the membrane remodeling that accompanies endosome biogenesis. We also speculate that this mechanism helps segregate tubular and multivesicular membranes along the recycling and degradation pathways, respectively.
Collapse
Affiliation(s)
- Olivia Muriel
- Department of Biochemistry, University of Geneva, 1211 Geneva 4, Switzerland
| | - Alejandra Tomas
- Department of Biochemistry, University of Geneva, 1211 Geneva 4, Switzerland
| | - Cameron C Scott
- Department of Biochemistry, University of Geneva, 1211 Geneva 4, Switzerland
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, 1211 Geneva 4, Switzerland
| |
Collapse
|
23
|
Kita K, Sugita K, Sato C, Sugaya S, Sato T, Kaneda A. Extracellular Release of Annexin A2 is Enhanced upon Oxidative Stress Response via the p38 MAPK Pathway after Low-Dose X-Ray Irradiation. Radiat Res 2016; 186:79-91. [DOI: 10.1667/rr14277.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kazuko Kita
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana, Chuou-ku, Chiba 260-8670, Japan and
| | - Katsuo Sugita
- Department of Clinical Medicine, Faculty of Education, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Chihomi Sato
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana, Chuou-ku, Chiba 260-8670, Japan and
| | - Shigeru Sugaya
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana, Chuou-ku, Chiba 260-8670, Japan and
| | - Tetsuo Sato
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana, Chuou-ku, Chiba 260-8670, Japan and
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Inohana, Chuou-ku, Chiba 260-8670, Japan and
| |
Collapse
|
24
|
Annexin A2 Coordinates STAT3 to Regulate the Invasion and Migration of Colorectal Cancer Cells In Vitro. Gastroenterol Res Pract 2016; 2016:3521453. [PMID: 27274723 PMCID: PMC4870365 DOI: 10.1155/2016/3521453] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 02/11/2016] [Accepted: 03/24/2016] [Indexed: 01/01/2023] Open
Abstract
The present study aimed to reveal the expression of STAT3 and Anxa 2 in CRC specimens and to investigate the effects of STAT3 and Anxa 2 signaling on the proliferation, invasion, and migration in CRC Caco-2 cells. Results demonstrated that both Anxa 2 and STAT3 were highly expressed in CRC specimens in both mRNA and protein levels, with or without phosphorylation (Tyrosine 23 in Anxa 2 and Tyrosine 705 in STAT3). And the upregulated Anxa 2 promoted the phosphorylation of STAT3 (Tyrosine 705) in CRC Caco-2 cells. The upregulated Anxa 2 promoted the proliferation, migration, and invasion of Caco-2 cells in vitro. Moreover, the STAT3 knockdown also repressed the proliferation, migration, and invasion of Caco-2 cells. In conclusion, the overexpressed Annexin A2 regulated the proliferation, invasion, and migration in CRC cells in an association with STAT3.
Collapse
|
25
|
Gioria S, Lobo Vicente J, Barboro P, La Spina R, Tomasi G, Urbán P, Kinsner-Ovaskainen A, François R, Chassaigne H. A combined proteomics and metabolomics approach to assess the effects of gold nanoparticles in vitro. Nanotoxicology 2016; 10:736-48. [PMID: 26647645 PMCID: PMC4898143 DOI: 10.3109/17435390.2015.1121412] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Omics technologies, such as proteomics or metabolomics, have to date been applied in the field of nanomaterial safety assessment to a limited extent. To address this dearth, we developed an integrated approach combining the two techniques to study the effects of two sizes, 5 and 30 nm, of gold nanoparticles (AuNPs) in Caco-2 cells. We observed differences in cells exposed for 72 h to each size of AuNPs: 61 responsive (up/down-regulated) proteins were identified and 35 metabolites in the cell extract were tentatively annotated. Several altered biological pathways were highlighted by integrating the obtained multi-omics data with bioinformatic tools. This provided a unique set of molecular information on the effects of nanomaterials at cellular level. This information was supported by complementary data obtained by immunochemistry, microscopic analysis, and multiplexed assays. A part from increasing our knowledge on how the cellular processes and pathways are affected by nanomaterials (NMs), these findings could be used to identify specific biomarkers of toxicity or to support the safe-by-design concept in the development of new nanomedicines.
Collapse
Affiliation(s)
- Sabrina Gioria
- a European Commission, Joint Research Centre, Institute for Health and Consumer Protection , Ispra , Italy and
| | - Joana Lobo Vicente
- a European Commission, Joint Research Centre, Institute for Health and Consumer Protection , Ispra , Italy and
| | - Paola Barboro
- b IRCCS Azienda Ospedaliera Universitaria San Martino - IST Istituto Nazionale per la Ricerca sul Cancro , Genova , Italy
| | - Rita La Spina
- a European Commission, Joint Research Centre, Institute for Health and Consumer Protection , Ispra , Italy and
| | - Giorgio Tomasi
- a European Commission, Joint Research Centre, Institute for Health and Consumer Protection , Ispra , Italy and
| | - Patricia Urbán
- a European Commission, Joint Research Centre, Institute for Health and Consumer Protection , Ispra , Italy and
| | | | - Rossi François
- a European Commission, Joint Research Centre, Institute for Health and Consumer Protection , Ispra , Italy and
| | - Hubert Chassaigne
- a European Commission, Joint Research Centre, Institute for Health and Consumer Protection , Ispra , Italy and
| |
Collapse
|
26
|
Delevoye C, Heiligenstein X, Ripoll L, Gilles-Marsens F, Dennis MK, Linares RA, Derman L, Gokhale A, Morel E, Faundez V, Marks MS, Raposo G. BLOC-1 Brings Together the Actin and Microtubule Cytoskeletons to Generate Recycling Endosomes. Curr Biol 2015; 26:1-13. [PMID: 26725201 DOI: 10.1016/j.cub.2015.11.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/15/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022]
Abstract
Recycling endosomes consist of a tubular network that emerges from vacuolar sorting endosomes and diverts cargoes toward the cell surface, the Golgi, or lysosome-related organelles. How recycling tubules are formed remains unknown. We show that recycling endosome biogenesis requires the protein complex BLOC-1. Mutations in BLOC-1 subunits underlie an inherited disorder characterized by albinism, the Hermansky-Pudlak Syndrome, and are associated with schizophrenia risk. We show here that BLOC-1 coordinates the kinesin KIF13A-dependent pulling of endosomal tubules along microtubules to the Annexin A2/actin-dependent stabilization and detachment of recycling tubules. These components cooperate to extend, stabilize and form tubular endosomal carriers that function in cargo recycling and in the biogenesis of pigment granules in melanocytic cells. By shaping recycling endosomal tubules, our data reveal that dysfunction of the BLOC-1-KIF13A-Annexin A2 molecular network underlies the pathophysiology of neurological and pigmentary disorders.
Collapse
Affiliation(s)
- Cédric Delevoye
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005 Paris, France; Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 75005 Paris, France.
| | - Xavier Heiligenstein
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005 Paris, France
| | - Léa Ripoll
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005 Paris, France
| | - Floriane Gilles-Marsens
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005 Paris, France
| | - Megan K Dennis
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine and Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ricardo A Linares
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine and Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura Derman
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005 Paris, France
| | - Avanti Gokhale
- Department of Cell Biology and the Center for Social Translational Neuroscience, Emory University, Atlanta, GA 30322, USA
| | - Etienne Morel
- INSERM U1151-CNRS UMR 8253, Institut Necker Enfants-Malades (INEM) Université, Paris Descartes-Sorbonne Paris Cité Paris, 75993 Paris Cedex 14, France
| | - Victor Faundez
- Department of Cell Biology and the Center for Social Translational Neuroscience, Emory University, Atlanta, GA 30322, USA
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine and Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, 75005 Paris, France; Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 75005 Paris, France
| |
Collapse
|
27
|
Young PA, Leonard S, Martin DSD, Findlay JBC. Analysis of the effect of a novel therapeutic for type 2 diabetes on the proteome of a muscle cell line. Proteomics 2015; 16:70-9. [PMID: 26573124 DOI: 10.1002/pmic.201500050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 09/05/2015] [Accepted: 11/11/2015] [Indexed: 01/18/2023]
Abstract
Elevated serum retinol-binding protein (RBP) concentration has been implicated in the development of insulin resistance and type 2 diabetes. Two series of small molecules have been designed to lower serum levels by reducing secretion of the transthyretin-RBP complex from the liver and enhancing RBP clearance through the kidney. These small molecules were seen to improve glucose and insulin tolerance tests and to reduce body weight gain in mice rendered diabetic through a high fat diet. A proteomics study was conducted to better understand the effects of these compounds in muscle cells, muscle being the primary site for energy expenditure. One lead compound, RTC-15, is seen to have a significant effect on proteins involved in fat and glucose metabolism. This could indicate that the compound is having a direct effect on muscle tissue to improve energy homeostasis as well as a whole body effect on circulating RBP levels. This newly characterized group of antidiabetic compounds may prove useful in the treatment and prevention of insulin resistance and obesity.
Collapse
Affiliation(s)
- Pamela A Young
- Marie Curie Laboratory for Membrane Proteins, Department of Biology, Maynooth University, Maynooth, Ireland
| | - Siobhán Leonard
- Marie Curie Laboratory for Membrane Proteins, Department of Biology, Maynooth University, Maynooth, Ireland
| | - Darren S D Martin
- Marie Curie Laboratory for Membrane Proteins, Department of Biology, Maynooth University, Maynooth, Ireland
| | - John B C Findlay
- Marie Curie Laboratory for Membrane Proteins, Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
28
|
Annexin A2 binds to endosomes and negatively regulates TLR4-triggered inflammatory responses via the TRAM-TRIF pathway. Sci Rep 2015; 5:15859. [PMID: 26527544 PMCID: PMC4630631 DOI: 10.1038/srep15859] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/05/2015] [Indexed: 02/05/2023] Open
Abstract
Lipopolysaccharide (LPS) derived from Gram-negative bacteria activates plasma membrane signaling via Toll-like receptor 4 (TLR4) on host cells and triggers innate inflammatory responses, but the underlying mechanisms remain to be fully elucidated. Here we reveal a role for annexin A2 (AnxA2) in host defense against infection as anxa2−/− mice were highly susceptible to Gram-negative bacteria-induced sepsis with enhanced inflammatory responses. Computing analysis and biochemical experiments identified that constitutive AnxA2 expression facilitated TLR4 internalization and its subsequent translocation into early endosomal membranes. It activated the TRAM-dependent endosomal signaling, leading to the release of anti-inflammatory cytokines. Importantly, AnxA2 deficiency prolonged TLR4-mediated signaling from the plasma membrane, which was attributable to pro-inflammatory cytokine production (IL-6, TNFα and IL-1β). Thus, AnxA2 directly exerted negative regulation of inflammatory responses through TLR4-initiated TRAM-TRIF pathway occurring on endosomes. This study reveals AnxA2 as a critical regulator in infection-initiated inflammation, which protects the host from excessive inflammatory damage.
Collapse
|
29
|
Li DW, Li JH, Wang YD, Li GR. Atorvastatin protects endothelial colony‑forming cells against H2O2‑induced oxidative damage by regulating the expression of annexin A2. Mol Med Rep 2015; 12:7941-8. [PMID: 26497173 PMCID: PMC4758293 DOI: 10.3892/mmr.2015.4440] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 09/10/2015] [Indexed: 12/24/2022] Open
Abstract
Endothelial dysfunction and injury are central events in the pathogenesis of ischemic vascular disorders. Endothelial progenitor cells (EPCs) are mobilized from the bone marrow into the peripheral circulation, where they locate to sites of injured endothelium and are involved in endothelial repair and vascular regeneration. During these processes, EPCs are exposed to oxidative stress, a crucial pathological condition, which occurs during vascular injury and limits the efficacy of EPCs in the repair of injured endothelium. Statins are effective inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase, and are commonly used to manage and prevent ischemic vascular disease by reducing plasma cholesterol levels. In addition to lowering cholesterol, statins have also been reported to exert pleiotropic actions, including anti-inflammatory and anti-oxidative activities. The present study aimed to investigate the ability of atorvastatin to protect endothelial colony-forming cells (ECFCs), a homogeneous subtype of EPCs, from hydrogen peroxide (H2O2)-induced oxidative damage, and to determine the mechanism underlying this protective action. MTT assay, acridine orange/ethidium bromide staining, reactive oxygen species assay, western blot analysis and tube formation assay were employed. The results demonstrated that H2O2 induced cell death and decreased the tube-forming ability of the ECFCs, in a concentration-dependent manner; however, these effects were partially attenuated following administration of atorvastatin. The reversion of the quantitative and qualitative impairment of the H2O2-treated ECFCs appeared to be mediated by the regulation of annexin A2, as the expression levels of annexin A2 were decreased following treatment with H2O2 and increased following treatment with atorvastatin. These results indicated that annexin A2 may be involved in the H2O2-induced damage of ECFCs, and in the protective activities of atorvastatin in response to oxidative stress.
Collapse
Affiliation(s)
- Da-Wei Li
- Department of Neurology, Affiliated Hospital of Beihua University, Jilin, Jilin 132000, P.R. China
| | - Ji-Hua Li
- Department of Ultrasonography, The Third Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Ying-Di Wang
- Department of Urinary Surgery, The Tumor Hospital of Jilin, Changchun, Jilin 130012, P.R. China
| | - Guang-Ren Li
- Department of Neurology, The Third Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
30
|
Plasma membrane and cytoskeleton dynamics during single-cell wound healing. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015. [DOI: 10.1016/j.bbamcr.2015.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
31
|
Yap YW, Llanos RM, La Fontaine S, Cater MA, Beart PM, Cheung NS. Comparative Microarray Analysis Identifies Commonalities in Neuronal Injury: Evidence for Oxidative Stress, Dysfunction of Calcium Signalling, and Inhibition of Autophagy-Lysosomal Pathway. Neurochem Res 2015; 41:554-67. [PMID: 26318862 DOI: 10.1007/s11064-015-1666-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/14/2015] [Accepted: 07/14/2015] [Indexed: 12/21/2022]
Abstract
Mitochondrial dysfunction, ubiquitin-proteasomal system impairment and excitotoxicity occur during the injury and death of neurons in neurodegenerative conditions. The aim of this work was to elucidate the cellular mechanisms that are universally altered by these conditions. Through overlapping expression profiles of rotenone-, lactacystin- and N-methyl-D-aspartate-treated cortical neurons, we have identified three affected biological processes that are commonly affected; oxidative stress, dysfunction of calcium signalling and inhibition of the autophagic-lysosomal pathway. These data provides many opportunities for therapeutic intervention in neurodegenerative conditions, where mitochondrial dysfunction, proteasomal inhibition and excitotoxicity are evident.
Collapse
Affiliation(s)
- Yann Wan Yap
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia
| | - Roxana M Llanos
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia
| | - Sharon La Fontaine
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia.,Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Michael A Cater
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia
| | - Philip M Beart
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Nam Sang Cheung
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3125, Australia.
| |
Collapse
|
32
|
Receptor role of the annexin A2 in the mesothelial endocytosis of crocidolite fibers. J Transl Med 2015; 95:749-64. [PMID: 25915724 DOI: 10.1038/labinvest.2015.28] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 11/27/2014] [Accepted: 12/22/2014] [Indexed: 11/08/2022] Open
Abstract
Asbestos-induced mesothelioma is a worldwide problem. Parietal mesothelial cells internalize asbestos fibers that traverse the entire lung parenchyma, an action that is linked to mesothelial carcinogenesis. Thus far, vitronectin purified from serum reportedly enhances the internalization of crocidolite by mesothelial cells via integrin αvβ5. To reveal another mechanism by which mesothelial cells endocytose (phagocytose) asbestos, we first evaluated the effects of serum on asbestos uptake, which proved to be nonessential. Thereafter, we undertook a study to identify proteins on the surface of mesothelial cells (MeT5A) that act as receptors for asbestos uptake based on the assumption that receptors bind to asbestos with physical affinity. To this end, we incubated the membrane fraction of MeT5A cells with crocidolite or chrysotile and evaluated the adsorbed proteins using sodium dodecyl sulfate polyacrylamide gel analysis. Next, we extensively identified the proteins using an in-solution or in-gel digestion coupled with mass spectrometry. Among the identified proteins, annexin A2 (ANXA2) and transferrin receptor protein 1 (TFRC) were distinguished because of their high score and presence at the cell surface. Crocidolite uptake by MeT5A cells was significantly decreased by shRNA (short hairpin RNA)-induced knockdown of ANXA2 and direct blockade of cell surface ANXA2 using anti-ANXA2 antibody. In addition, abundant ANXA2 protein was present on the cell membrane of mesothelial cells, particularly facing the somatic cavity. These findings demonstrate that ANXA2 has a role in the mesothelial phagocytosis of crocidolite and may serve as its receptor.
Collapse
|
33
|
Hajjar KA. The Biology of Annexin A2: From Vascular Fibrinolysis to Innate Immunity. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2015; 126:144-55. [PMID: 26330668 PMCID: PMC4530673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Annexin A2 is a multicompartmental protein that orchestrates a spectrum of dynamic membrane-related events. At cell surfaces, A2 forms the (A2•S100A10)2 complex which accelerates tissue plasminogen activator-dependent activation of the fibrinolytic protease, plasmin. Anti-A2 antibodies are associated with clinical thrombosis in antiphospholipid syndrome, whereas overexpression of A2 promotes hyperfibrinolytic bleeding in acute promyelocytic leukemia. A2 is upregulated in hypoxic tissues, and mice deficient in A2 are resistant to hypoxia-related retinal neovascularization in a model of diabetic retinopathy. Within the cell, A2 regulates membrane fusion processes involved in the secretion of pre-packaged, ultra-large molecules. In stimulated dendritic cells, A2 maintains lysosomal membrane integrity, thereby modulating inflammasome activation and cytokine secretion. Together, these findings suggest an emerging, multifaceted role for annexin A2 in human health and disease. The author's work has been inspired by numerous colleagues and mentors, and by the author's grandfather, and former ACCA member, Dr. J. Burns Amberson.
Collapse
|
34
|
Luo D, Fajol A, Umbach AT, Noegel AA, Laufer S, Lang F, Föller M. Influence of annexin A7 on insulin sensitivity of cellular glucose uptake. Pflugers Arch 2014; 467:641-9. [PMID: 24903239 DOI: 10.1007/s00424-014-1541-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/07/2014] [Accepted: 05/19/2014] [Indexed: 02/06/2023]
Abstract
Insulin sensitivity is decreased by prostaglandin E2 (PGE2), a major product of cyclooxygenase (COX). As shown in erythrocytes, PGE2 formation is inhibited by annexin A7. The present study defined the role of annexin A7 in glucose metabolism. Gene-targeted mice lacking annexin A7 (annexin7 (-/-)) were compared to wild-type mice (annexin7 (+/+)). The serum 6-Keto-prostaglandin-F1α (6-Keto-PGF1α) concentration was measured by ELISA and hepatic COX activity determined by an enzyme assay. Expression of COX-1, COX-2, prostaglandin E synthase, GLUT-4, and insulin receptor was determined by Western blotting. Glucose and insulin serum concentrations were analyzed following an intraperitoneal glucose load and glucose serum levels after intraperitoneal injection of insulin. Experiments were done without and with pretreatment of the mice with COX-inhibitor aspirin. The serum 6-Keto-PGF1α level and hepatic COX activity were significantly higher in annexin7 (-/-) than in annexin7 (+/+) mice. Hepatic COX-1 expression was higher in annexin7 (-/-) mice. Glucose tolerance was decreased in annexin7 (-/-) mice. Intraperitoneal insulin injection decreased the serum glucose level in both genotypes, an effect significantly less pronounced in annexin7 (-/-) mice. Glucose-induced insulin secretion was higher in annexin7 (-/-) mice. GLUT-4 expression in skeletal muscle from annexin7 (-/-) mice was reduced. Aspirin pretreatment lowered the increase in insulin concentration following glucose injection in both genotypes and virtually abrogated the differences in serum insulin between the genotypes. Aspirin pretreatment improved glucose tolerance in annexin7 (-/-) mice. In conclusion, annexin A7 influences insulin sensitivity of cellular glucose uptake and thus glucose tolerance. These effects depend on COX activity.
Collapse
Affiliation(s)
- Dong Luo
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Liu YM, Zhang WY, Wang ZF, Yan CY, Gao PJ. High expression of beta2-glycoprotein I is associated significantly with the earliest stages of hepatitis B virus infection. J Med Virol 2014; 86:1296-306. [PMID: 24760738 DOI: 10.1002/jmv.23961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2014] [Indexed: 01/05/2023]
Abstract
Human beta2-glycoprotein I (beta2-GPI) binds to recombinant hepatitis B surface antigen (rHBsAg) and can bind specifically to annexin II, which is located on the cell membrane of human hepatoma SMMC-7721 cells. Viral envelope proteins are essential for mediating cellular entry. The aim of this study was to investigate the role of beta2-GPI in the early stages of hepatitis B virus (HBV) infection. Western blot and qRT-PCR analyses revealed that beta2-GPI expression was upregulated in HepG2.2.15 cells at both the mRNA and protein level and was almost non-existent in 293T and CHO cells. Furthermore, annexin II was expressed at lower levels in HepG2.2.15 cells compared to L02, HepG2, and SMMC-7721 cells. Additionally, ELISA analyses demonstrated that beta2-GPI enhanced the ability of HBsAg to bind to cell surfaces, and there was differential adhesion to L02, HepG2, HepG2.2.15, and 293T cells. Western blot and ELISA were then performed to assess the effects of HBV and the HBsAg domain on beta2-GPI expression in co-transfected 293T cells. This study revealed that HBV and the large HBV envelope protein increased beta2-GPI expression. Further investigation indicated that beta2-GPI colocalized with HBsAg in the cytosol of HepG2.2.15 cells, with sodium taurocholate co-transporting polypeptide (NTCP) on the cell membrane in NTCP-complemented HepG2 cells, and with annexin II in the cytosol of HepG2 and HepG2.2.15 cells. These data suggest that high expression of beta2-GPI enhances HBsAg binding to cell surfaces, thus contributing to virus particle transfer to the NTCP receptor and interaction with annexin II for viral membrane fusion.
Collapse
Affiliation(s)
- Ya-Ming Liu
- Department of Hepatology, First Hospital of Jilin University, Changchun, Jilin, China
| | | | | | | | | |
Collapse
|
36
|
Voelkl J, Alesutan I, Pakladok T, Viereck R, Feger M, Mia S, Schönberger T, Noegel AA, Gawaz M, Lang F. Annexin A7 deficiency potentiates cardiac NFAT activity promoting hypertrophic signaling. Biochem Biophys Res Commun 2014; 445:244-9. [PMID: 24508799 DOI: 10.1016/j.bbrc.2014.01.186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 01/30/2014] [Indexed: 01/14/2023]
Abstract
Annexin A7 (Anxa7) is a cytoskeletal protein interacting with Ca(2+) signaling which in turn is a crucial factor for cardiac remodeling following cardiac injury. The present study explored whether Anxa7 participates in the regulation of cardiac stress signaling. To this end, mice lacking functional Anxa7 (anxa7(-/-)) and wild-type mice (anxa7(+/+)) were investigated following pressure overload by transverse aortic constriction (TAC). In addition, HL-1 cardiomyocytes were silenced with Anxa7 siRNA and treated with isoproterenol. Transcript levels were determined by quantitative RT-PCR, transcriptional activity by luciferase reporter assay and protein abundance by Western blotting and confocal microscopy. As a result, TAC treatment increased the mRNA and protein levels of Anxa7 in wild-type mice. Moreover, TAC increased heart weight to body weight ratio and the cardiac mRNA levels of αSka, Nppb, Col1a1, Col3a1 and Rcan1, effects more pronounced in anxa7(-/-) mice than in anxa7(+/+) mice. Silencing of Anxa7 in HL-1 cardiomyocytes significantly increased nuclear localization of Nfatc1. Furthermore, Anxa7 silencing increased NFAT-dependent transcriptional activity as well as αSka, Nppb, and Rcan1 mRNA levels both, under control conditions and following β-adrenergic stimulation by isoproterenol. These observations point to an important role of annexin A7 in the regulation of cardiac NFAT activity and hypertrophic response following cardiac stress conditions.
Collapse
MESH Headings
- Adrenergic beta-Agonists/pharmacology
- Animals
- Annexin A7/genetics
- Annexin A7/metabolism
- Aorta/pathology
- Blotting, Western
- Calcium-Binding Proteins
- Cell Line
- Cell Nucleus/metabolism
- Constriction, Pathologic
- Gene Expression/drug effects
- Hypertrophy
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Isoproterenol/pharmacology
- Male
- Mice
- Mice, 129 Strain
- Mice, Knockout
- Microscopy, Confocal
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- NFATC Transcription Factors/metabolism
- RNA Interference
- Receptors, Atrial Natriuretic Factor/genetics
- Receptors, Atrial Natriuretic Factor/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
Collapse
Affiliation(s)
- Jakob Voelkl
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Ioana Alesutan
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | - Robert Viereck
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Martina Feger
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Sobuj Mia
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Tanja Schönberger
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, Germany
| | - Angelika A Noegel
- Center for Biochemistry, Institute of Biochemistry I, University of Cologne, Köln, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen, Germany
| | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
37
|
Ghislat G, Knecht E. Ca²⁺-sensor proteins in the autophagic and endocytic traffic. Curr Protein Pept Sci 2014; 14:97-110. [PMID: 23305313 PMCID: PMC3664516 DOI: 10.2174/13892037112139990033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 09/19/2012] [Accepted: 11/28/2012] [Indexed: 12/21/2022]
Abstract
Autophagy and endocytosis are two evolutionarily conserved catabolic processes that comprise vesicle trafficking events for the clearance of the sequestered intracellular and extracellular cargo. Both start differently but end in the same compartment, the lysosome. Mounting evidences from the last years have established the involvement of proteins sensitive to intracellular Ca2+ in the control of the early autophagic steps and in the traffic of autophagic, endocytic and lysosomal vesicles. However, this knowledge is based on dispersed outcomes that do not set up a consensus model of the Ca2+-dependent control of autophagy and endocytosis. Here, we will provide a critical synopsis of insights from the last decade on the involvement of Ca2+-sensor proteins in the activation of autophagy and in fusion events of endocytic vesicles, autophagosomes and lysosomes.
Collapse
Affiliation(s)
- Ghita Ghislat
- Laboratorio de Biología Celular, Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, Valencia 46012, Spain and CIBERER, Valencia, Spain
| | | |
Collapse
|
38
|
Annexin A2: its molecular regulation and cellular expression in cancer development. DISEASE MARKERS 2014; 2014:308976. [PMID: 24591759 PMCID: PMC3925611 DOI: 10.1155/2014/308976] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 01/05/2023]
Abstract
Annexin A2 (ANXA2) orchestrates multiple biologic processes and clinical associations, especially in cancer progression. The structure of ANXA2 affects its cellular localization and function. However, posttranslational modification and protease-mediated N-terminal cleavage also play critical roles in regulating ANXA2. ANXA2 expression levels vary among different types of cancers. With some cancers, ANXA2 can be used for the detection and diagnosis of cancer and for monitoring cancer progression. ANXA2 is also required for drug-resistance. This review discusses the feasibility of ANXA2 which is active in cancer development and can be a therapeutic target in cancer management.
Collapse
|
39
|
Rankin CR, Hilgarth RS, Leoni G, Kwon M, Den Beste KA, Parkos CA, Nusrat A. Annexin A2 regulates β1 integrin internalization and intestinal epithelial cell migration. J Biol Chem 2013; 288:15229-39. [PMID: 23558678 DOI: 10.1074/jbc.m112.440909] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gastrointestinal epithelium functions as an important barrier that separates luminal contents from the underlying tissue compartment and is vital in maintaining mucosal homeostasis. Mucosal wounds in inflammatory disorders compromise the critical epithelial barrier. In response to injury, intestinal epithelial cells (IECs) rapidly migrate to reseal wounds. We have previously observed that a membrane-associated, actin binding protein, annexin A2 (AnxA2), is up-regulated in migrating IECs and plays an important role in promoting wound closure. To identify the mechanisms by which AnxA2 promotes IEC movement and wound closure, we used a loss of function approach. AnxA2-specific shRNA was utilized to generate IECs with stable down-regulation of AnxA2. Loss of AnxA2 inhibited IEC migration while promoting enhanced cell-matrix adhesion. These functional effects were associated with increased levels of β1 integrin protein, which is reported to play an important role in mediating the cell-matrix adhesive properties of epithelial cells. Because cell migration requires dynamic turnover of integrin-based adhesions, we tested whether AnxA2 modulates internalization of cell surface β1 integrin required for forward cell movement. Indeed, pulse-chase biotinylation experiments in IECs lacking AnxA2 demonstrated a significant increase in cell surface β1 integrin that was accompanied by decreased β1 integrin internalization and degradation. These findings support an important role of AnxA2 in controlling dynamics of β1 integrin at the cell surface that in turn is required for the active turnover of cell-matrix associations, cell migration, and wound closure.
Collapse
Affiliation(s)
- Carl R Rankin
- Department of Pathology and Laboratory Medicine, Epithelial Pathobiology and Mucosal Inflammation Research Unit, Emory University, Atlanta, Georgia 30306, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Domains I and IV of annexin A2 affect the formation and integrity of in vitro capillary-like networks. PLoS One 2013; 8:e60281. [PMID: 23555942 PMCID: PMC3612057 DOI: 10.1371/journal.pone.0060281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/24/2013] [Indexed: 12/19/2022] Open
Abstract
Annexin A2 (AnxA2) is a widely expressed multifunctional protein found in different cellular compartments. In spite of lacking a hydrophobic signal peptide, AnxA2 is found at the cell surface of endothelial cells, indicative of a role in angiogenesis. Increased extracellular levels of AnxA2 in tumours correlate with neoangiogenesis, metastasis and poor prognosis. We hypothesised that extracellular AnxA2 may contribute to angiogenesis by affecting endothelial cell-cell interactions and motility. To address this question, we studied the effect of heterotetrameric and monomeric forms of AnxA2, as well as its two soluble domains on the formation and maintenance of capillary-like structures by using an in vitro co-culture system consisting of endothelial and smooth muscle cells. In particular, addition of purified domains I and IV of AnxA2 potently inhibited the vascular endothelial growth factor (VEGF)-dependent formation of the capillary-like networks in a dose-dependent manner. In addition, these AnxA2 domains disrupted endothelial cell-cell contacts in preformed capillary-like networks, resulting in the internalisation of vascular endothelial (VE)-cadherin and the formation of VE-cadherin-containing filopodia-like structures between the endothelial cells, suggesting increased cell motility. Addition of monoclonal AnxA2 antibodies, in particular against Tyr23 phosphorylated AnxA2, also strongly inhibited network formation in the co-culture system. These results suggest that extracellular AnxA2, most likely in its Tyr phosphorylated form, plays a pivotal role in angiogenesis. The exogenously added AnxA2 domains most likely mediate their effects by competing with endogenous AnxA2 for extracellular factors necessary for the initiation and maintenance of angiogenesis, such as those involved in the formation/integrity of cell-cell contacts.
Collapse
|
41
|
Annexin A2 heterotetramer: structure and function. Int J Mol Sci 2013; 14:6259-305. [PMID: 23519104 PMCID: PMC3634455 DOI: 10.3390/ijms14036259] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/02/2013] [Accepted: 03/05/2013] [Indexed: 12/12/2022] Open
Abstract
Annexin A2 is a pleiotropic calcium- and anionic phospholipid-binding protein that exists as a monomer and as a heterotetrameric complex with the plasminogen receptor protein, S100A10. Annexin A2 has been proposed to play a key role in many processes including exocytosis, endocytosis, membrane organization, ion channel conductance, and also to link F-actin cytoskeleton to the plasma membrane. Despite an impressive list of potential binding partners and regulatory activities, it was somewhat unexpected that the annexin A2-null mouse should show a relatively benign phenotype. Studies with the annexin A2-null mouse have suggested important functions for annexin A2 and the heterotetramer in fibrinolysis, in the regulation of the LDL receptor and in cellular redox regulation. However, the demonstration that depletion of annexin A2 causes the depletion of several other proteins including S100A10, fascin and affects the expression of at least sixty-one genes has confounded the reports of its function. In this review we will discuss the annexin A2 structure and function and its proposed physiological and pathological roles.
Collapse
|
42
|
The involvement of annexin II in resistance to UVB-induced cell death and in the increased nucleotide excision repair capacity of UV-damaged DNA in human cells. Biosci Biotechnol Biochem 2013; 77:307-11. [PMID: 23391921 DOI: 10.1271/bbb.120724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Annexin II, an HSP27-interacting protein, is involved in the protection of human cells against UVC. UVB is concerned with deleterious actions on human health. In this study, we attempted to confirm the anti-UVB effect of annexin II, and to elucidate the mechanisms underlying annexin II-involving UV resistance. The RSa cells were more sensitive to UVB lethality than the AP(r)-1 cells. Overproduction of annexin II in RSa cells resulted in increased resistance to UVB lethality, while annexin II siRNA-transfected AP(r)-1 cells were sensitized to UVB lethality. The excision capacity of the two major types (CPD and 6-4PP) of UVC- and UVB-damaged DNA in AP(r)-1 cells was greater than in RSa cells. The excision capacity of the RSa cells improved following upregulation of annexin II, while the capacity of the AP(r)-1 cells decreased after annexin II downregulation. Our results suggest that annexin II is involved in the UV resistance of human cells, via functioning in nucleotide excision repair.
Collapse
|
43
|
Sato T, Kita K, Sugaya S, Suzuki T, Suzuki N. Extracellular release of annexin II from pancreatic cancer cells and resistance to anticancer drug-induced apoptosis by supplementation of recombinant annexin II. Pancreas 2012; 41:1247-54. [PMID: 22750966 DOI: 10.1097/mpa.0b013e31824f356f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Extracellular microenvironment plays crucial roles in the development of cancers and chemoresistance. Pancreatic carcinoma is resistant to almost all chemotherapeutic agents. In this study, we identified annexin II in the medium from pancreatic cancer cells as a protein released into the extracellular environment. METHODS Medium from 5-hour cultures of various cancer cells was collected. Proteins in the medium were detected by molecular mass analysis and immunoblotting. Anticancer drug sensitivity of cells preincubated with or without recombinant annexin II (rANX II) was measured using crystal violet assay and colony survival assay. Apoptosis-related molecules were analyzed by immunoblotting. RESULTS Recombinant ANX II supplementation in the medium confers resistance to anticancer drugs, including cisplatin, 5-fluorouracil, and gemcitabine, in MiaPaCa-2 and AsPC-1 cells. In MiaPaCa-2 cells, rANX II supplementation resulted in suppression of caspase-3 activation associated with increased Bcl-2/Bax ratios. Suppression of cisplatin-induced cell death by rANX II supplementation was canceled by inhibitors of phosphatidylinositol 3-kinase and mitogen-activated protein kinase kinase signal pathways. CONCLUSIONS The current study is the first report to demonstrate that supplementation of rANX II in the medium increased resistance to anticancer drugs in pancreatic cancer cells. Recombinant ANX II exerts cell death-suppressive function by antagonizing cisplatin-induced apoptosis.
Collapse
Affiliation(s)
- Tetsuo Sato
- Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | |
Collapse
|
44
|
Altered protein expression in gestational diabetes mellitus placentas provides insight into insulin resistance and coagulation/fibrinolysis pathways. PLoS One 2012; 7:e44701. [PMID: 22970290 PMCID: PMC3436753 DOI: 10.1371/journal.pone.0044701] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 08/09/2012] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To investigate the placental proteome differences between pregnant women complicated with gestational diabetes mellitus (GDM) and those with normal glucose tolerance (NGT). METHODS We used two-dimensional electrophoresis (2DE) to separate and compare placental protein levels from GDM and NGT groups. Differentially expressed proteins between the two groups were identified by MALDI-TOF/TOF mass spectrometry and further confirmed by Western blotting. The mRNA levels of related proteins were measured by realtime RT-PCR. Immunohistochemistry (IHC) was performed to examine the cellular location of the proteins expressed in placenta villi. RESULTS Twenty-one protein spots were differentially expressed between GDM and NGT placenta villi in the tested samples, fifteen of which were successfully identified by mass spectrometry. The molecular functions of these differentially expressed proteins include blood coagulation, signal transduction, anti-apoptosis, ATP binding, phospholipid binding, calcium ion binding, platelet activation, and tryptophan-tRNA ligase activity. Both protein and mRNA levels of Annexin A2, Annexin A5 and 14-3-3 protein ζ/δ were up-regulated, while the expression of the Ras-related protein Rap1A was down-regulated in the GDM placenta group. CONCLUSION Placenta villi derived from GDM pregnant women exhibit significant proteome differences compared to those of NGT mothers. The identified differentially expressed proteins are mainly associated with the development of insulin resistance, transplacental transportation of glucose, hyperglucose-mediated coagulation and fibrinolysis disorders in the GDM placenta villi.
Collapse
|
45
|
Annexin A1 and A2: roles in retrograde trafficking of Shiga toxin. PLoS One 2012; 7:e40429. [PMID: 22792315 PMCID: PMC3391278 DOI: 10.1371/journal.pone.0040429] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/06/2012] [Indexed: 01/05/2023] Open
Abstract
Annexins constitute a family of calcium and membrane binding proteins. As annexin A1 and A2 have previously been linked to various membrane trafficking events, we initiated this study to investigate the role of these annexins in the uptake and intracellular transport of the bacterial Shiga toxin (Stx) and the plant toxin ricin. Once endocytosed, both toxins are retrogradely transported from endosomes to the Golgi apparatus and the endoplasmic reticulum before being targeted to the cytosol where they inhibit protein synthesis. This study was performed to obtain new information both about toxin transport and the function of annexin A1 and annexin A2. Our data show that depletion of annexin A1 or A2 alters the retrograde transport of Stx but not ricin, without affecting toxin binding or internalization. Knockdown of annexin A1 increases Golgi transport of Stx, whereas knockdown of annexin A2 slightly decreases the same transport step. Interestingly, annexin A1 was found in proximity to cytoplasmic phospholipase A2 (cPLA2), and the basal as well as the increased Golgi transport of Stx upon annexin A1 knockdown is dependent on cPLA2 activity. In conclusion, annexin A1 and A2 have different roles in Stx transport to the trans-Golgi network. The most prominent role is played by annexin A1 which normally works as a negative regulator of retrograde transport from the endosomes to the Golgi network, most likely by complex formation and inhibition of cPLA2.
Collapse
|
46
|
Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen and angiogenin interact with common host proteins, including annexin A2, which is essential for survival of latently infected cells. J Virol 2011; 86:1589-607. [PMID: 22130534 DOI: 10.1128/jvi.05754-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) infection and latency-associated nuclear antigen (LANA-1) upregulate the multifunctional protein angiogenin (ANG). Our studies demonstrate that silencing ANG or inhibiting its nuclear translocation downregulates KSHV LANA-1 expression and ANG is necessary for KSHV latency, anti-apoptosis and angiogenesis (Sadagopan et al., J. Virol. 83:3342-3364, 2009; Sadagopan et al., J Virol. 85:2666-2685, 2011). Here we show that LANA-1 interacts with ANG and colocalizes in latently infected endothelial telomerase-immortalized human umbilical vein endothelial (TIVE-LTC) cells. Mass spectrometric analyses of TIVE-LTC proteins immunoprecipitated by anti-LANA-1 and ANG antibodies identified 28 common cellular proteins such as ribosomal proteins, structural proteins, tRNA synthetases, metabolic pathway enzymes, chaperons, transcription factors, antioxidants, and ubiquitin proteosome proteins. LANA-1 and ANG interaction with one of the proteins, annexin A2, was validated. Annexin A2 has been shown to play roles in cell proliferation, apoptosis, plasmin generation, exocytosis, endocytosis, and cytoskeleton reorganization. It is also known to associate with glycolytic enzyme 3-phosphoglyceratekinase in the primer recognition protein (PRP) complex that interacts with DNA polymerase α in the lagging strand of DNA during replication. A higher level of annexin A2 is expressed in KSHV+ but not in Epstein-Barr virus (EBV)+ B-lymphoma cell lines. Annexin A2 colocalized with several LANA-1 punctate spots in KSHV+ body cavity B-cell lymphoma (BCBL-1) cells. In triple-staining analyses, we observed annexin A2-ANG-LANA-1, annexin A2-ANG, and ANG-LANA-1 colocalizations. Annexin A2 appeared as punctate nuclear dots in LANA-1-positive TIVE-LTC cells. In LANA-1-negative TIVE-LTC cells, annexin A2 was detected predominately in the cytoplasm, with some nuclear spots, and colocalization with ANG was observed mostly in the cytoplasm. Annexin A2 coimmunoprecipitated with LANA-1 and ANG in TIVE-LTC and BCBL-1 cells and with ANG in 293T cells independent of LANA-1. This suggested that annexin A2 forms a complex with LANA-1 and ANG as well as a separate complex with ANG. Silencing annexin A2 in BCBL-1 cells resulted in significant cell death, downregulation of cell cycle-associated Cdk6 and of cyclin D, E, and A proteins, and downregulation of LANA-1 and ANG expression. No effect was seen in KSHV⁻ lymphoma (BJAB and Ramos) and 293T cells. These studies suggest that LANA-1 association with annexin A2/ANG could be more important than ANG association with annexin A2, and KSHV probably uses annexin A2 to maintain the viability and cell cycle regulation of latently infected cells. Since the identified LANA-1- and ANG-interacting common cellular proteins are hitherto unknown to KSHV and ANG biology, this offers a starting point for further analysis of their roles in KSHV biology, which may lead to identification of potential therapeutic targets to control KSHV latency and associated malignancies.
Collapse
|
47
|
Kita K, Sugita K, Chen SP, Suzuki T, Sugaya S, Tanaka T, Jin YH, Satoh T, Tong XB, Suzuki N. Extracellular Recombinant Annexin II Confers UVC-Radiation Resistance and Increases the Bcl-xL to Bax Protein Ratios in Human UVC-Radiation-Sensitive Cells. Radiat Res 2011; 176:732-42. [DOI: 10.1667/rr2561.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kazuko Kita
- Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, Inohana, Chuou-ku, Chiba 260-8670, Japan
| | - Katsuo Sugita
- Department of Clinical Medicine, Faculty Education, Chiba University, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Shi-Ping Chen
- Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, Inohana, Chuou-ku, Chiba 260-8670, Japan
| | - Toshikazu Suzuki
- Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, Inohana, Chuou-ku, Chiba 260-8670, Japan
| | - Shigeru Sugaya
- Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, Inohana, Chuou-ku, Chiba 260-8670, Japan
| | - Takeshi Tanaka
- Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, Inohana, Chuou-ku, Chiba 260-8670, Japan
| | - Yuan-Hu Jin
- Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, Inohana, Chuou-ku, Chiba 260-8670, Japan
| | - Tetsuo Satoh
- Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, Inohana, Chuou-ku, Chiba 260-8670, Japan
| | - Xiao-Bo Tong
- Department of Physiology, Faculty of Basic Medical Sciences, Chengde Medical University, Chengde 067000, P.R. China
| | - Nobuo Suzuki
- Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, Inohana, Chuou-ku, Chiba 260-8670, Japan
| |
Collapse
|
48
|
Rezvanpour A, Santamaria-Kisiel L, Shaw GS. The S100A10-annexin A2 complex provides a novel asymmetric platform for membrane repair. J Biol Chem 2011; 286:40174-83. [PMID: 21949189 PMCID: PMC3220529 DOI: 10.1074/jbc.m111.244038] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Membrane repair is mediated by multiprotein complexes, such as that formed between the dimeric EF-hand protein S100A10, the calcium- and phospholipid-binding protein annexin A2, the enlargeosome protein AHNAK, and members of the transmembrane ferlin family. Although interactions between these proteins have been shown, little is known about their structural arrangement and mechanisms of formation. In this work, we used a non-covalent complex between S100A10 and the N terminus of annexin A2 (residues 1-15) and a designed hybrid protein (A10A2), where S100A10 is linked in tandem to the N-terminal region of annexin A2, to explore the binding region, stoichiometry, and affinity with a synthetic peptide from the C terminus of AHNAK. Using multiple biophysical methods, we identified a novel asymmetric arrangement between a single AHNAK peptide and the A10A2 dimer. The AHNAK peptide was shown to require the annexin A2 N terminus, indicating that the AHNAK binding site comprises regions on both S100A10 and annexin proteins. NMR spectroscopy was used to show that the AHNAK binding surface comprised residues from helix IV in S100A10 and the C-terminal portion from the annexin A2 peptide. This novel surface maps to the exposed side of helices IV and IV' of the S100 dimeric structure, a region not identified in any previous S100 target protein structures. The results provide the first structural details of the ternary S100A10 protein complex required for membrane repair.
Collapse
Affiliation(s)
- Atoosa Rezvanpour
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | |
Collapse
|
49
|
The human papillomavirus type 16 E5 oncoprotein translocates calpactin I to the perinuclear region. J Virol 2011; 85:10968-75. [PMID: 21849434 DOI: 10.1128/jvi.00706-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The human papillomavirus type 16 (HPV-16) E5 oncoprotein is embedded in membranes of the endoplasmic reticulum and nuclear envelope with its C terminus exposed to the cytoplasm. Among other activities, E5 cooperates with the HPV E6 oncoprotein to induce koilocytosis in human cervical cells and keratinocytes in vitro. The effect of E5 on infected cells may rely on its interactions with various cellular proteins. In this study we identify calpactin I, a heterotetrameric, Ca(2+)- and phospholipid-binding protein complex that regulates membrane fusion, as a new cellular target for E5. Both the annexin A2 and p11 subunits of calpactin I coimmunoprecipitate with E5 in COS cells and in human epithelial cell lines, and an intact E5 C terminus is required for binding. Moreover, E5-expressing cells exhibit a perinuclear redistribution of annexin A2 and p11 and show increased fusion of perinuclear membrane vesicles. The C terminus of E5 is required for both the perinuclear redistribution of calpactin I and increased formation of perinuclear vacuoles. These results support the hypothesis that the E5-induced relocalization of calpactin I to the perinuclear region promotes perinuclear membrane fusion, which may underlie the development of koilocytotic vacuoles.
Collapse
|
50
|
Urbanska A, Sadowski L, Kalaidzidis Y, Miaczynska M. Biochemical characterization of APPL endosomes: the role of annexin A2 in APPL membrane recruitment. Traffic 2011; 12:1227-41. [PMID: 21645192 PMCID: PMC3380557 DOI: 10.1111/j.1600-0854.2011.01226.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
APPL endosomes are a recently identified subpopulation of early endosomes characterized by the presence of two homologous Rab5 effector proteins APPL1 and APPL2. They exhibit only limited colocalization with EEA1, another Rab5 effector and a marker of the canonical early endosomes. Although APPL endosomes appear to play important roles in cargo trafficking and signal transduction, their protein composition and biochemical properties remain largely unknown. Here we employed membrane fractionation methods to characterize APPL endosomes biochemically. We demonstrate that they represent heterogeneous membrane structures which can be discriminated from the canonical EEA1-positive early endosomes by their partly different physical properties and a distinct migration pattern in the continuous density gradients. In search for other potential markers of APPL endosomes we identified Annexin A2 as an interacting partner of both APPL1 and APPL2. Annexin A2 is a Ca2+ and phosphatidylinositol 4,5-bisphosphate binding protein, previously implicated in several endocytic steps. We show that Annexin A2 co-fractionates and colocalizes with APPL endosomes. Moreover, silencing of its expression causes solubilization of APPL2 from endosomes. Although Annexin A2 is not an exclusive marker of APPL endosomes, our data suggest that it has an important function in membrane recruitment of APPL proteins, acting in parallel to Rab5.
Collapse
Affiliation(s)
- Anna Urbanska
- International Institute of Molecular and Cell Biology, Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | | | | | | |
Collapse
|