1
|
Kuffner CJ, Marzilli AM, Ngo JT. RNA-Stabilized Coat Proteins for Sensitive and Simultaneous Imaging of Distinct Single mRNAs in Live Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624393. [PMID: 39605486 PMCID: PMC11601628 DOI: 10.1101/2024.11.21.624393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
RNA localization and regulation are critical for cellular function, yet many live RNA imaging tools suffer from limited sensitivity due to background emissions from unbound probes. Here, we introduce conditionally stable variants of MS2 and PP7 coat proteins (which we name dMCP and dPCP) designed to decrease background in live-cell RNA imaging. Using a protein engineering approach that combines circular permutation and degron masking, we generated dMCP and dPCP variants that rapidly degrade except when bound to cognate RNA ligands. These enhancements enabled the sensitive visualization of single mRNA molecules undergoing differential regulation within various sub-compartments of live cells. We further demonstrate dual-color imaging with orthogonal MS2 and PP7 motifs, allowing simultaneous low-background visualization of distinct RNA species within the same cell. Overall, this work provides versatile, low-background probes for RNA imaging, which should have broad utility in the imaging and biotechnological utilization of MS2- and PP7-containing RNAs.
Collapse
|
2
|
Sending messages in moving cells: mRNA localization and the regulation of cell migration. Essays Biochem 2020; 63:595-606. [PMID: 31324705 DOI: 10.1042/ebc20190009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022]
Abstract
Cell migration is a fundamental biological process involved in tissue formation and homeostasis. The correct polarization of motile cells is critical to ensure directed movement, and is orchestrated by many intrinsic and extrinsic factors. Of these, the subcellular distribution of mRNAs and the consequent spatial control of translation are key modulators of cell polarity. mRNA transport is dependent on cis-regulatory elements within transcripts, which are recognized by trans-acting proteins that ensure the efficient delivery of certain messages to the leading edge of migrating cells. At their destination, translation of localized mRNAs then participates in regional cellular responses underlying cell motility. In this review, we summarize the key findings that established mRNA targetting as a critical driver of cell migration and how the characterization of polarized mRNAs in motile cells has been expanded from just a few species to hundreds of transcripts. We also describe the molecular control of mRNA trafficking, subsequent mechanisms of local protein synthesis and how these ultimately regulate cell polarity during migration.
Collapse
|
3
|
Dugina VB, Shagieva GS, Kopnin PB. Biological Role of Actin Isoforms in Mammalian Cells. BIOCHEMISTRY (MOSCOW) 2019; 84:583-592. [DOI: 10.1134/s0006297919060014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Zhao D, An Z, Li F. Degradation of β-Actin mRNA and 18S rRNA in mouse spleen cells after death. JOURNAL OF FORENSIC SCIENCE AND MEDICINE 2019. [DOI: 10.4103/jfsm.jfsm_38_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
5
|
Lefebvre FA, Cody NA, Bouvrette LPB, Bergalet J, Wang X, Lécuyer E. CeFra-seq: Systematic mapping of RNA subcellular distribution properties through cell fractionation coupled to deep-sequencing. Methods 2017; 126:138-148. [DOI: 10.1016/j.ymeth.2017.05.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/18/2017] [Accepted: 05/21/2017] [Indexed: 12/18/2022] Open
|
6
|
Donlin-Asp PG, Rossoll W, Bassell GJ. Spatially and temporally regulating translation via mRNA-binding proteins in cellular and neuronal function. FEBS Lett 2017; 591:1508-1525. [PMID: 28295262 DOI: 10.1002/1873-3468.12621] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/20/2022]
Abstract
Coordinated regulation of mRNA localization and local translation are essential steps in cellular asymmetry and function. It is increasingly evident that mRNA-binding proteins play critical functions in controlling the fate of mRNA, including when and where translation occurs. In this review, we discuss the robust and complex roles that mRNA-binding proteins play in the regulation of local translation that impact cellular function in vertebrates. First, we discuss the role of local translation in cellular polarity and possible links to vertebrate development and patterning. Next, we discuss the expanding role for local protein synthesis in neuronal development and function, with special focus on how a number of neurological diseases have given us insight into the importance of translational regulation. Finally, we discuss the ever-increasing set of tools to study regulated translation and how these tools will be vital in pushing forward and addressing the outstanding questions in the field.
Collapse
Affiliation(s)
- Paul G Donlin-Asp
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Wilfried Rossoll
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.,Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.,Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.,Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
7
|
Lefebvre FA, Lécuyer E. Small Luggage for a Long Journey: Transfer of Vesicle-Enclosed Small RNA in Interspecies Communication. Front Microbiol 2017; 8:377. [PMID: 28360889 PMCID: PMC5352665 DOI: 10.3389/fmicb.2017.00377] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/23/2017] [Indexed: 12/25/2022] Open
Abstract
In the evolutionary arms race, symbionts have evolved means to modulate each other's physiology, oftentimes through the dissemination of biological signals. Beyond small molecules and proteins, recent evidence shows that small RNA molecules are transferred between organisms and transmit functional RNA interference signals across biological species. However, the mechanisms through which specific RNAs involved in cross-species communication are sorted for secretion and protected from degradation in the environment remain largely enigmatic. Over the last decade, extracellular vesicles have emerged as prominent vehicles of biological signals. They can stabilize specific RNA transcripts in biological fluids and selectively deliver them to recipient cells. Here, we review examples of small RNA transfers between plants and bacterial, fungal, and animal symbionts. We also discuss the transmission of RNA interference signals from intestinal cells to populations of the gut microbiota, along with its roles in intestinal homeostasis. We suggest that extracellular vesicles may contribute to inter-species crosstalk mediated by small RNA. We review the mechanisms of RNA sorting to extracellular vesicles and evaluate their relevance in cross-species communication by discussing conservation, stability, stoichiometry, and co-occurrence of vesicles with alternative communication vehicles.
Collapse
Affiliation(s)
- Fabio A. Lefebvre
- Institut de Recherches Cliniques de Montréal (IRCM), RNA Biology DepartmentMontreal, QC, Canada
- Département de Biochimie, Université de MontréalMontreal, QC, Canada
| | - Eric Lécuyer
- Institut de Recherches Cliniques de Montréal (IRCM), RNA Biology DepartmentMontreal, QC, Canada
- Département de Biochimie, Université de MontréalMontreal, QC, Canada
- Divison of Experimental Medicine, McGill UniversityMontreal, QC, Canada
| |
Collapse
|
8
|
Schneider N, Meier M. Efficient in situ detection of mRNAs using the Chlorella virus DNA ligase for padlock probe ligation. RNA (NEW YORK, N.Y.) 2017; 23:250-256. [PMID: 27879431 PMCID: PMC5238799 DOI: 10.1261/rna.057836.116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/18/2016] [Indexed: 05/22/2023]
Abstract
Padlock probes are single-stranded DNA molecules that are circularized upon hybridization to their target sequence by a DNA ligase. In the following, the circulated padlock probes are amplified and detected with fluorescently labeled probes complementary to the amplification product. The hallmark of padlock probe assays is a high detection specificity gained by the ligation reaction. Concomitantly, the ligation reaction is the largest drawback for a quantitative in situ detection of mRNAs due to the low affinities of common DNA or RNA ligases to RNA-DNA duplex strands. Therefore, current protocols require that mRNAs be reverse transcribed to DNA before detection with padlock probes. Recently, it was found that the DNA ligase from Paramecium bursaria Chlorella virus 1 (PBCV-1) is able to efficiently ligate RNA-splinted DNA. Hence, we designed a padlock probe assay for direct in situ detection of mRNAs using the PBCV-1 DNA ligase. Experimental single-cell data were used to optimize and characterize the efficiency of mRNA detection with padlock probes. Our results demonstrate that the PBCV-1 DNA ligase overcomes the efficiency limitation of current protocols for direct in situ mRNA detection, making the PBCV-1 DNA ligase an attractive tool to simplify in situ ligation sequencing applications.
Collapse
Affiliation(s)
- Nils Schneider
- Microfluidic and Biological Engineering, Department of Microsystems Engineering-IMTEK, University of Freiburg, 79110 Freiburg, Germany
- Centre for Biological Signalling Studies-BIOSS, University of Freiburg, 79104 Freiburg, Germany
| | - Matthias Meier
- Microfluidic and Biological Engineering, Department of Microsystems Engineering-IMTEK, University of Freiburg, 79110 Freiburg, Germany
- Centre for Biological Signalling Studies-BIOSS, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
9
|
Kafri P, Hasenson SE, Kanter I, Sheinberger J, Kinor N, Yunger S, Shav-Tal Y. Quantifying β-catenin subcellular dynamics and cyclin D1 mRNA transcription during Wnt signaling in single living cells. eLife 2016; 5. [PMID: 27879202 PMCID: PMC5161448 DOI: 10.7554/elife.16748] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 11/21/2016] [Indexed: 11/13/2022] Open
Abstract
Signal propagation from the cell membrane to a promoter can induce gene expression. To examine signal transmission through sub-cellular compartments and its effect on transcription levels in individual cells within a population, we used the Wnt/β-catenin signaling pathway as a model system. Wnt signaling orchestrates a response through nuclear accumulation of β-catenin in the cell population. However, quantitative live-cell measurements in individual cells showed variability in nuclear β-catenin accumulation, which could occur in two waves, followed by slow clearance. Nuclear accumulation dynamics were initially rapid, cell cycle independent and differed substantially from LiCl stimulation, presumed to mimic Wnt signaling. β-catenin levels increased simultaneously at adherens junctions and the centrosome, and a membrane-centrosome transport system was revealed. Correlating β-catenin nuclear dynamics to cyclin D1 transcriptional activation showed that the nuclear accumulation rate of change of the signaling factor, and not actual protein levels, correlated with the transcriptional output of the pathway. DOI:http://dx.doi.org/10.7554/eLife.16748.001 Cells in an animal’s body must communicate with one another to coordinate many processes that are essential to life. One way that cells do this is by releasing molecules that bind to receptors located on the surface of others cells; this binding then triggers a signaling pathway in the receiving cell that passes information from the surface of the cell to its interior. The last stage of these pathways typically involves specific genes being activated, which changes the cell’s overall activity. Wnt is one protein that animal cells release to control how nearby cells grow and divide. One arm of the Wnt signaling pathway involves a protein called β-catenin. In the absence of a Wnt signal, there is little β-catenin in the cell. When Wnt binds to its receptor, β-catenin accumulates and enters the cell’s nucleus to activate its target genes. One of these genes, called cyclin D1, controls cell division. However it was not understood how β-catenin builds up in response to a Wnt signal and influences the activity of genes. Using microscopy, Kafri et al. have now examined how the activities of β-catenin and the cyclin D1 gene change in living human cells. These analyses were initially performed in a population of cells, and confirmed that β-catenin rapidly accumulates after a Wnt signal and that the cyclin D1 gene becomes activated. Individual cells in a population can respond differently to signaling events. To assess whether human cells differ in their responses to Wnt, Kafri et al. examined the dynamics of β-catenin in single cells in real time. In most cells, β-catenin accumulated after Wnt activation. However, the time taken to accumulate β-catenin, and this protein’s levels, varied between individual cells. Most cells showed the “average” response, with one major wave of accumulation that peaked about two hours after the Wnt signal. Notably, in some cells, β-catenin accumulated in the cell’s nucleus in two waves; in other words, the levels in this compartment of the cell increased, dropped slightly and then increased again. So how does β-catenin in the nucleus activate target genes? Kafri et al. saw that the absolute number of β-catenin molecules in the nucleus did not affect the activity of cyclin D1. Instead, cells appeared to sense how quickly the amount of β-catenin in the nucleus changes over time, and this rate influences the activation of cyclin D1. Importantly, problems with Wnt signaling have been linked to diseases in humans; and different components of the Wnt signaling pathway are mutated in many cancers. An important next challenge will be to uncover how the dynamics of this pathway change during disease. Furthermore, a better understanding of Wnt signaling may in future help efforts to develop new drugs that can target the altered pathway in cancer cells. DOI:http://dx.doi.org/10.7554/eLife.16748.002
Collapse
Affiliation(s)
- Pinhas Kafri
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Sarah E Hasenson
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Itamar Kanter
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Jonathan Sheinberger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Noa Kinor
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Sharon Yunger
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| | - Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel.,Institute of Nanotechnology, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
10
|
Gabanella F, Pisani C, Borreca A, Farioli-Vecchioli S, Ciotti MT, Ingegnere T, Onori A, Ammassari-Teule M, Corbi N, Canu N, Monaco L, Passananti C, Di Certo MG. SMN affects membrane remodelling and anchoring of the protein synthesis machinery. J Cell Sci 2016; 129:804-16. [PMID: 26743087 DOI: 10.1242/jcs.176750] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/29/2015] [Indexed: 12/31/2022] Open
Abstract
Disconnection between membrane signalling and actin networks can have catastrophic effects depending on cell size and polarity. The survival motor neuron (SMN) protein is ubiquitously involved in assembly of spliceosomal small nuclear ribonucleoprotein particles. Other SMN functions could, however, affect cellular activities driving asymmetrical cell surface expansions. Genes able to mitigate SMN deficiency operate within pathways in which SMN can act, such as mRNA translation, actin network and endocytosis. Here, we found that SMN accumulates at membrane protrusions during the dynamic rearrangement of the actin filaments. In addition to localization data, we show that SMN interacts with caveolin-1, which mediates anchoring of translation machinery components. Importantly, SMN deficiency depletes the plasma membrane of ribosomes, and this correlates with the failure of fibroblasts to extend membrane protrusions. These findings strongly support a relationship between SMN and membrane dynamics. We propose that SMN could assembly translational platforms associated with and governed by the plasma membrane. This activity could be crucial in cells that have an exacerbated interdependence of membrane remodelling and local protein synthesis.
Collapse
Affiliation(s)
- Francesca Gabanella
- CNR-Institute of Cell Biology and Neurobiology, Rome 00143, Italy IRCCS Fondazione Santa Lucia, Rome 00143, Italy
| | - Cinzia Pisani
- CNR-IBPM, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Antonella Borreca
- CNR-Institute of Cell Biology and Neurobiology, Rome 00143, Italy IRCCS Fondazione Santa Lucia, Rome 00143, Italy
| | - Stefano Farioli-Vecchioli
- CNR-Institute of Cell Biology and Neurobiology, Rome 00143, Italy IRCCS Fondazione Santa Lucia, Rome 00143, Italy
| | - Maria Teresa Ciotti
- CNR-Institute of Cell Biology and Neurobiology, Rome 00143, Italy European Brain Research Institute (EBRI) Rita Levi-Montalcini, Rome 00143, Italy
| | - Tiziano Ingegnere
- Department of Ecological and Biological Sciences, Tuscia University, Viterbo 01100, Italy
| | - Annalisa Onori
- CNR-IBPM, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Martine Ammassari-Teule
- CNR-Institute of Cell Biology and Neurobiology, Rome 00143, Italy IRCCS Fondazione Santa Lucia, Rome 00143, Italy
| | - Nicoletta Corbi
- CNR-IBPM, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Nadia Canu
- CNR-Institute of Cell Biology and Neurobiology, Rome 00143, Italy Department of System Medicine, University of 'Tor Vergata', Rome 00137, Italy
| | - Lucia Monaco
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome 00185, Italy
| | - Claudio Passananti
- CNR-IBPM, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Maria Grazia Di Certo
- CNR-Institute of Cell Biology and Neurobiology, Rome 00143, Italy IRCCS Fondazione Santa Lucia, Rome 00143, Italy
| |
Collapse
|
11
|
Kalo A, Kanter I, Shraga A, Sheinberger J, Tzemach H, Kinor N, Singer RH, Lionnet T, Shav-Tal Y. Cellular Levels of Signaling Factors Are Sensed by β-actin Alleles to Modulate Transcriptional Pulse Intensity. Cell Rep 2015; 11:419-32. [PMID: 25865891 DOI: 10.1016/j.celrep.2015.03.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/18/2015] [Accepted: 03/16/2015] [Indexed: 01/11/2023] Open
Abstract
The transcriptional response of β-actin to extra-cellular stimuli is a paradigm for transcription factor complex assembly and regulation. Serum induction leads to a precisely timed pulse of β-actin transcription in the cell population. Actin protein is proposed to be involved in this response, but it is not known whether cellular actin levels affect nuclear β-actin transcription. We perturbed the levels of key signaling factors and examined the effect on the induced transcriptional pulse by following endogenous β-actin alleles in single living cells. Lowering serum response factor (SRF) protein levels leads to loss of pulse integrity, whereas reducing actin protein levels reveals positive feedback regulation, resulting in elevated gene activation and a prolonged transcriptional response. Thus, transcriptional pulse fidelity requires regulated amounts of signaling proteins, and perturbations in factor levels eliminate the physiological response, resulting in either tuning down or exaggeration of the transcriptional pulse.
Collapse
Affiliation(s)
- Alon Kalo
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Itamar Kanter
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Amit Shraga
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Jonathan Sheinberger
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Hadar Tzemach
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Noa Kinor
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Transcription Imaging Consortium, Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA; Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Timothée Lionnet
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Transcription Imaging Consortium, Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 5290002, Israel.
| |
Collapse
|
12
|
Liao G, Mingle L, Van De Water L, Liu G. Control of cell migration through mRNA localization and local translation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:1-15. [PMID: 25264217 DOI: 10.1002/wrna.1265] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/13/2014] [Accepted: 07/31/2014] [Indexed: 02/06/2023]
Abstract
Cell migration plays an important role in many normal and pathological functions such as development, wound healing, immune defense, and tumor metastasis. Polarized migrating cells exhibit asymmetric distribution of many cytoskeletal proteins, which is believed to be critical for establishing and maintaining cell polarity and directional cell migration. To target these proteins to the site of function, cells use a variety of mechanisms such as protein transport and messenger RNA (mRNA) localization-mediated local protein synthesis. In contrast to the former which is intensively investigated and relatively well understood, the latter has been understudied and relatively poorly understood. However, recent advances in the study of mRNA localization and local translation have demonstrated that mRNA localization and local translation are specific and effective ways for protein localization and are crucial for embryo development, neuronal function, and many other cellular processes. There are excellent reviews on mRNA localization, transport, and translation during development and other cellular processes. This review will focus on mRNA localization-mediated local protein biogenesis and its impact on somatic cell migration.
Collapse
Affiliation(s)
- Guoning Liao
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA
| | | | | | | |
Collapse
|
13
|
Meseguer S, Martínez-Zamora A, García-Arumí E, Andreu AL, Armengod ME. The ROS-sensitive microRNA-9/9* controls the expression of mitochondrial tRNA-modifying enzymes and is involved in the molecular mechanism of MELAS syndrome. Hum Mol Genet 2014; 24:167-84. [PMID: 25149473 DOI: 10.1093/hmg/ddu427] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial dysfunction activates mitochondria-to-nucleus signaling pathways whose components are mostly unknown. Identification of these components is important to understand the molecular mechanisms underlying mitochondrial diseases and to discover putative therapeutic targets. MELAS syndrome is a rare neurodegenerative disease caused by mutations in mitochondrial (mt) DNA affecting mt-tRNA(Leu(UUR)). Patient and cybrid cells exhibit elevated oxidative stress. Moreover, mutant mt-tRNAs(Leu(UUR)) lack the taurine-containing modification normally present at the wobble uridine (U34) of wild-type mt-tRNA(Leu(UUR)), which is considered an etiology of MELAS. However, the molecular mechanism is still unclear. We found that MELAS cybrids exhibit a significant decrease in the steady-state levels of several mt-tRNA-modification enzymes, which is not due to transcriptional regulation. We demonstrated that oxidative stress mediates an NFkB-dependent induction of microRNA-9/9*, which acts as a post-transcriptional negative regulator of the mt-tRNA-modification enzymes GTPBP3, MTO1 and TRMU. Down-regulation of these enzymes by microRNA-9/9* affects the U34 modification status of non-mutant tRNAs and contributes to the MELAS phenotype. Anti-microRNA-9 treatments of MELAS cybrids reverse the phenotype, whereas miR-9 transfection of wild-type cells mimics the effects of siRNA-mediated down-regulation of GTPBP3, MTO1 and TRMU. Our data represent the first evidence that an mt-DNA disease can directly affect microRNA expression. Moreover, we demonstrate that the modification status of mt-tRNAs is dynamic and that cells respond to stress by modulating the expression of mt-tRNA-modifying enzymes. microRNA-9/9* is a crucial player in mitochondria-to-nucleus signaling as it regulates expression of nuclear genes in response to changes in the functional state of mitochondria.
Collapse
Affiliation(s)
- Salvador Meseguer
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia 46012, Spain
| | - Ana Martínez-Zamora
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia 46012, Spain
| | - Elena García-Arumí
- Hospital Universitari Vall d'Hebron, Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain Biomedical Research Networking Centre for Rare Diseases (CIBERER) (node U701), Barcelona, Spain and
| | - Antonio L Andreu
- Hospital Universitari Vall d'Hebron, Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain Biomedical Research Networking Centre for Rare Diseases (CIBERER) (node U701), Barcelona, Spain and
| | - M-Eugenia Armengod
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia 46012, Spain CIBERER (node U721), Valencia, Spain
| |
Collapse
|
14
|
Park HY, Lim H, Yoon YJ, Follenzi A, Nwokafor C, Lopez-Jones M, Meng X, Singer RH. Visualization of dynamics of single endogenous mRNA labeled in live mouse. Science 2014; 343:422-4. [PMID: 24458643 DOI: 10.1126/science.1239200] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The transcription and transport of messenger RNA (mRNA) are critical steps in regulating the spatial and temporal components of gene expression, but it has not been possible to observe the dynamics of endogenous mRNA in primary mammalian tissues. We have developed a transgenic mouse in which all β-actin mRNA is fluorescently labeled. We found that β-actin mRNA in primary fibroblasts localizes predominantly by diffusion and trapping as single mRNAs. In cultured neurons and acute brain slices, we found that multiple β-actin mRNAs can assemble together, travel by active transport, and disassemble upon depolarization by potassium chloride. Imaging of brain slices revealed immediate early induction of β-actin transcription after depolarization. Studying endogenous mRNA in live mouse tissues provides insight into its dynamic regulation within the context of the cellular and tissue microenvironment.
Collapse
Affiliation(s)
- Hye Yoon Park
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Li P, Grigorenko E, Funari V, Enright E, Zhang H, Kim HL. Evaluation of a high-throughput, microfluidics platform for performing TaqMan™ qPCR using formalin-fixed paraffin-embedded tumors. Bioanalysis 2013; 5:1623-33. [PMID: 23822126 PMCID: PMC3816109 DOI: 10.4155/bio.13.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Compared with the standard qPCR, nanoliter-scale qPCR can use smaller quantities of RNA and increase throughput. The TaqMan™ OpenArray® NT Cycler System was assessed for use with degraded RNA from formalin-fixed paraffin-embedded (FFPE) tumors. RESULTS Expression of candidate prognostic genes was quantified using the OpenArray platform and matching fresh frozen and FFPE patient renal cell carcinomas. Reverse transcription, with gene-specific reverse transcription and preamplification, optimized the percentage of detectable transcripts. When using high quality RNA from fresh frozen tumors, the OpenArray platform identified 30 prognostic genes. However, when using RNA from FFPE tumors, only 13 prognostic genes were identified, but this increased to 33 with addition of preamplification. CONCLUSION The OpenArray platform can be optimized to quantify gene expressions from FFPE tumors.
Collapse
Affiliation(s)
- Ping Li
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Vince Funari
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Edward Enright
- Life Technologies, Beverly, MA, USA and San Diego, CA, USA
| | - Hao Zhang
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hyung L Kim
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
16
|
Eliscovich C, Buxbaum AR, Katz ZB, Singer RH. mRNA on the move: the road to its biological destiny. J Biol Chem 2013; 288:20361-8. [PMID: 23720759 DOI: 10.1074/jbc.r113.452094] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cells have evolved to regulate the asymmetric distribution of specific mRNA targets to institute spatial and temporal control over gene expression. Over the last few decades, evidence has mounted as to the importance of localization elements in the mRNA sequence and their respective RNA-binding proteins. Live imaging methodologies have shown mechanistic details of this phenomenon. In this minireview, we focus on the advanced biochemical and cell imaging techniques used to tweeze out the finer aspects of mechanisms of mRNA movement.
Collapse
Affiliation(s)
- Carolina Eliscovich
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
17
|
Yamagishi M, Shirasaki Y, Funatsu T. Single-molecule tracking of mRNA in living cells. Methods Mol Biol 2013; 950:153-67. [PMID: 23086875 DOI: 10.1007/978-1-62703-137-0_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Some mRNAs localize to specific regions within eukaryotic cells to express their functions. The movement and localization of mRNA molecules provides valuable information about how they concentrate to particular regions. Recent technical advances in optical microscopy and image analysis algorithms enable real-time tracking of single mRNA molecules in living cells. This chapter presents the methods to visualize and track single β-actin mRNA molecules that localize at the leading edge of chicken embryo fibroblasts. Furthermore, this chapter presents an analysis approach for single-molecule tracking data to extract quantitative information about the microenvironments of the mRNA molecules.
Collapse
Affiliation(s)
- Mai Yamagishi
- Laboratory for Immunogenomics, RIKEN Research Center for Allergy and Immunology, Kanagawa, Japan
| | | | | |
Collapse
|
18
|
Xing L, Bassell GJ. mRNA localization: an orchestration of assembly, traffic and synthesis. Traffic 2012; 14:2-14. [PMID: 22913533 DOI: 10.1111/tra.12004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/20/2012] [Accepted: 08/22/2012] [Indexed: 12/14/2022]
Abstract
Asymmetrical mRNA localization and subsequent local translation provide efficient mechanisms for protein sorting in polarized cells. Defects in mRNA localization have been linked to developmental abnormalities and neurological diseases. Thus, it is critical to understand the machineries mediating and mechanisms underlying the asymmetrical distribution of mRNA and its regulation. The goal of this review is to summarize recent advances in the understanding of mRNA transport and localization, including the assembly and sorting of transport messenger ribonucleic protein (mRNP) granules, molecular mechanisms of active mRNP transport, cytoskeletal interactions and regulation of these events by extracellular signals.
Collapse
Affiliation(s)
- Lei Xing
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
19
|
Park HY, Trcek T, Wells AL, Chao JA, Singer RH. An unbiased analysis method to quantify mRNA localization reveals its correlation with cell motility. Cell Rep 2012; 1:179-84. [PMID: 22832165 PMCID: PMC4079260 DOI: 10.1016/j.celrep.2011.12.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/22/2011] [Accepted: 12/23/2011] [Indexed: 12/03/2022] Open
Abstract
Localization of mRNA is a critical mechanism used by a large fraction of transcripts to restrict its translation to specific cellular regions. Although current high- resolution imaging techniques provide ample information, the analysis methods for localization have either been qualitative or employed quantification in non-randomly selected regions of interest. Here, we describe an analytical method for objective quantification of mRNA localization using a combination of two characteristics of its molecular distribution, polarization and dispersion. The validity of the method is demonstrated using single-molecule FISH images of budding yeast and fibroblasts. Live-cell analysis of endogenous β-actin mRNA in mouse fibroblasts reveals that mRNA polarization has a half- life of ~16 min and is cross-correlated with directed cell migration. This novel approach provides insights into the dynamic regulation of mRNA localization and its physiological roles.
Collapse
Affiliation(s)
- Hye Yoon Park
- Department of Anatomy and Structural Biology
- Gruss Lipper Biophotonics Center Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | - Robert H. Singer
- Department of Anatomy and Structural Biology
- Gruss Lipper Biophotonics Center Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Correspondence:
| |
Collapse
|
20
|
Casolari JM, Thompson MA, Salzman J, Champion LM, Moerner WE, Brown PO. Widespread mRNA association with cytoskeletal motor proteins and identification and dynamics of myosin-associated mRNAs in S. cerevisiae. PLoS One 2012; 7:e31912. [PMID: 22359641 PMCID: PMC3281097 DOI: 10.1371/journal.pone.0031912] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 01/15/2012] [Indexed: 01/08/2023] Open
Abstract
Programmed mRNA localization to specific subcellular compartments for localized translation is a fundamental mechanism of post-transcriptional regulation that affects many, and possibly all, mRNAs in eukaryotes. We describe here a systematic approach to identify the RNA cargoes associated with the cytoskeletal motor proteins of Saccharomyces cerevisiae in combination with live-cell 3D super-localization microscopy of endogenously tagged mRNAs. Our analysis identified widespread association of mRNAs with cytoskeletal motor proteins, including association of Myo3 with mRNAs encoding key regulators of actin branching and endocytosis such as WASP and WIP. Using conventional fluorescence microscopy and expression of MS2-tagged mRNAs from endogenous loci, we observed a strong bias for actin patch nucleator mRNAs to localize to the cell cortex and the actin patch in a Myo3- and F-actin dependent manner. Use of a double-helix point spread function (DH-PSF) microscope allowed super-localization measurements of single mRNPs at a spatial precision of 25 nm in x and y and 50 nm in z in live cells with 50 ms exposure times, allowing quantitative profiling of mRNP dynamics. The actin patch mRNA exhibited distinct and characteristic diffusion coefficients when compared to a control mRNA. In addition, disruption of F-actin significantly expanded the 3D confinement radius of an actin patch nucleator mRNA, providing a quantitative assessment of the contribution of the actin cytoskeleton to mRNP dynamic localization. Our results provide evidence for specific association of mRNAs with cytoskeletal motor proteins in yeast, suggest that different mRNPs have distinct and characteristic dynamics, and lend insight into the mechanism of actin patch nucleator mRNA localization to actin patches.
Collapse
Affiliation(s)
- Jason M. Casolari
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Michael A. Thompson
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Julia Salzman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Statistics, Stanford University, Stanford, California, United States of America
| | - Lowry M. Champion
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - W. E. Moerner
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Patrick O. Brown
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
21
|
Shahbabian K, Chartrand P. Control of cytoplasmic mRNA localization. Cell Mol Life Sci 2012; 69:535-52. [PMID: 21984598 PMCID: PMC11115051 DOI: 10.1007/s00018-011-0814-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 08/09/2011] [Accepted: 09/01/2011] [Indexed: 12/17/2022]
Abstract
mRNA localization is a mechanism used by various organisms to control the spatial and temporal production of proteins. This process is a highly regulated event that requires multiple cis- and trans-acting elements that mediate the accurate localization of target mRNAs. The intrinsic nature of localization elements, together with their interaction with different RNA-binding proteins, establishes control mechanisms that can oversee the transcript from its birth in the nucleus to its specific final destination. In this review, we aim to summarize the different mechanisms of mRNA localization, with a particular focus on the various control mechanisms that affect the localization of mRNAs in the cytoplasm.
Collapse
Affiliation(s)
- Karen Shahbabian
- Department of Biochemistry, Université de Montréal, 2900 Edouard-Montpetit, Montréal, Qc Canada
| | - Pascal Chartrand
- Department of Biochemistry, Université de Montréal, 2900 Edouard-Montpetit, Montréal, Qc Canada
| |
Collapse
|
22
|
Abstract
beta-Actin mRNA is localized near the leading edge in several cell types where actin polymerization is actively promoting forward protrusion. The localization of the beta-actin mRNA near the leading edge is facilitated by a short sequence in the 3'UTR (untranslated region), the 'zipcode'. Localization of the mRNA at this region is important physiologically. Treatment of chicken embryo fibroblasts with antisense oligonucleotides complementary to the localization sequence (zipcode) in the 3'UTR leads to delocalization of beta-actin mRNA, alteration of cell phenotype and a decrease in cell motility. The dynamic image analysis system (DIAS) used to quantify movement of cells in the presence of sense and antisense oligonucleotides to the zipcode showed that net pathlength and average speed of antisense-treated cells were significantly lower than in sense-treated cells. This suggests that a decrease in persistence of direction of movement and not in velocity results from treatment of cells with zipcode-directed antisense oligonucleotides. We postulate that delocalization of beta-actin mRNA results in delocalization of nucleation sites and beta-actin protein from the leading edge followed by loss of cell polarity and directional movement. Hence the physiological consequences of beta-actin mRNA delocalization affect the stability of the cell phenotype.
Collapse
Affiliation(s)
- John Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | |
Collapse
|
23
|
Hébert SS, Nelson PT. Studying microRNAs in the brain: technical lessons learned from the first ten years. Exp Neurol 2011; 235:397-401. [PMID: 22178329 DOI: 10.1016/j.expneurol.2011.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Sandbo N, Dulin N. Actin cytoskeleton in myofibroblast differentiation: ultrastructure defining form and driving function. Transl Res 2011; 158:181-96. [PMID: 21925115 PMCID: PMC3324184 DOI: 10.1016/j.trsl.2011.05.004] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 05/04/2011] [Accepted: 05/24/2011] [Indexed: 01/14/2023]
Abstract
Myofibroblasts are modified fibroblasts characterized by the presence of a well-developed contractile apparatus and the formation of robust actin stress fibers. These mechanically active cells are thought to orchestrate extracellular matrix remodeling during normal wound healing in response to tissue injury; these cells are found also in aberrant tissue remodeling in fibrosing disorders. This review surveys the understanding of the role of actin stress fibers in myofibroblast biology. Actin stress fibers are discussed as a defining ultrastructural and morphologic feature and well-accepted observations demonstrating its participation in contraction, focal adhesion maturation, and extracellular matrix reorganization are presented. Finally, more recent observations are reviewed, demonstrating its role in transducing mechanical force into biochemical signals, transcriptional control of genes involved in locomotion, contraction, and matrix reorganization, as well as the localized regulation of messenger RNA (mRNA) translation. This breadth of functionality of the actin stress fiber serves to reinforce and amplify its mechanical function, via induced expression of proteins that themselves augment contraction, focal adhesion formation, and matrix remodeling. In composite, the functions of the actin cytoskeleton are most often aligned, allowing for the integration and amplification of signals promoting both myofibroblast differentiation and matrix remodeling during fibrogenesis.
Collapse
|
25
|
Sharp JA, Plant JJ, Ohsumi TK, Borowsky M, Blower MD. Functional analysis of the microtubule-interacting transcriptome. Mol Biol Cell 2011; 22:4312-23. [PMID: 21937723 PMCID: PMC3216657 DOI: 10.1091/mbc.e11-07-0629] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A combination of bioinformatic and RNA interference analysis of Xenopus tropicalis RNA-seq data shows that the identification of microtubule-associated (MT) mRNAs can be used for discovering novel factors in the processes of spindle pole organization and centrosome structure. MT-RNAs are likely to contribute to spindle-localized mitotic translation. RNA localization is an important mechanism for achieving precise control of posttranscriptional gene expression. Previously, we demonstrated that a subset of cellular mRNAs copurify with mitotic microtubules in egg extracts of Xenopus laevis. Due to limited genomic sequence information available for X. laevis, we used RNA-seq to comprehensively identify the microtubule-interacting transcriptome of the related frog Xenopus tropicalis. We identified ∼450 mRNAs that showed significant enrichment on microtubules (MT-RNAs). In addition, we demonstrated that the MT-RNAs incenp, xrhamm, and tpx2 associate with spindle microtubules in vivo. MT-RNAs are enriched with transcripts associated with cell division, spindle formation, and chromosome function, demonstrating an overrepresentation of genes involved in mitotic regulation. To test whether uncharacterized MT-RNAs have a functional role in mitosis, we performed RNA interference and discovered that several MT-RNAs are required for normal spindle pole organization and γ-tubulin distribution. Together, these data demonstrate that microtubule association is one mechanism for compartmentalizing functionally related mRNAs within the nucleocytoplasmic space of mitotic cells and suggest that MT-RNAs are likely to contribute to spindle-localized mitotic translation.
Collapse
Affiliation(s)
- Judith A Sharp
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
26
|
p70 S6 kinase in the control of actin cytoskeleton dynamics and directed migration of ovarian cancer cells. Oncogene 2011; 30:2420-32. [PMID: 21258406 DOI: 10.1038/onc.2010.615] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ovarian cancer is highly metastatic with a poor prognosis. The serine/threonine kinase, p70 S6 kinase (p70(S6K)), which is a downstream effector of phosphatidylinositol 3-kinase/Akt pathway, is frequently activated in ovarian cancer. Here, we show that p70(S6K) is a critical regulator of the actin cytoskeleton in the acquisition of the metastatic phenotype. This regulation is through two important activities: p70(S6K) acts as an actin filament cross-linking protein and as a Rho family GTPase-activating protein. Ectopic expression of constitutively active p70(S6K) in ovarian cancer cells induced a marked reorganization of the actin cytoskeleton and promoted directional cell migration. Using cosedimentation and differential sedimentation assays, p70(S6K) was found to directly bind to and cross-link actin filaments. Immunofluorescence studies showed p70(S6K) colocalized with cytochalasin D-sensitive actin at the leading edge of motile cells. The p70(S6K) did not affect the kinetics of spontaneous actin polymerization, but could stabilize actin filaments by the inhibition of cofilin-induced actin depolymerization. In addition, we showed that p70(S6K) stimulated the rapid activation of both Rac1 and Cdc42, and their downstream effector p21-activated kinase (PAK1), but not RhoA. Depletion of p70(S6K) expression or inhibition of its activity resulted in significant inhibition of actin cytoskeleton reorganization and reduced migration, with a concomitant reduction in Rac1, Cdc42 and PAK1 activation, confirming that the effect was p70(S6K) specific. Similarly, the actin cytoskeleton reorganization/migratory phenotype could be reversed by expression of dominant negative Rac1 and Cdc42, or inhibition of PAK1. These results reveal a new direction for understanding the oncogenic roles of p70(S6K) in tumor progression.
Collapse
|
27
|
Ben-Ari Y, Brody Y, Kinor N, Mor A, Tsukamoto T, Spector DL, Singer RH, Shav-Tal Y. The life of an mRNA in space and time. J Cell Sci 2010; 123:1761-74. [PMID: 20427315 DOI: 10.1242/jcs.062638] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nuclear transcribed genes produce mRNA transcripts destined to travel from the site of transcription to the cytoplasm for protein translation. Certain transcripts can be further localized to specific cytoplasmic regions. We examined the life cycle of a transcribed beta-actin mRNA throughout gene expression and localization, in a cell system that allows the in vivo detection of the gene locus, the transcribed mRNAs and the cytoplasmic beta-actin protein that integrates into the actin cytoskeleton. Quantification showed that RNA polymerase II elongation progressed at a rate of 3.3 kb/minute and that transactivator binding to the promoter was transient (40 seconds), and demonstrated the unique spatial structure of the coding and non-coding regions of the integrated gene within the transcription site. The rates of gene induction were measured during interphase and after mitosis, demonstrating that daughter cells were not synchronized in respect to transcription initiation of the studied gene. Comparison of the spatial and temporal kinetics of nucleoplasmic and cytoplasmic mRNA transport showed that the beta-actin-localization response initiates from the existing cytoplasmic mRNA pool and not from the newly synthesized transcripts arising after gene induction. It was also demonstrated that mechanisms of random movement were predominant in mediating the efficient translocation of mRNA in the eukaryotic cell.
Collapse
Affiliation(s)
- Ya'ara Ben-Ari
- The Mina and Everard Goodman Faculty of Life Sciences and Institute of Nanotechnology, Bar-Ilan University, Ramat Gan 52900, Israel
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Chao JA, Patskovsky Y, Patel V, Levy M, Almo SC, Singer RH. ZBP1 recognition of beta-actin zipcode induces RNA looping. Genes Dev 2010; 24:148-58. [PMID: 20080952 DOI: 10.1101/gad.1862910] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
ZBP1 (zipcode-binding protein 1) was originally discovered as a trans-acting factor for the "zipcode" in the 3' untranslated region (UTR) of the beta-actin mRNA that is important for its localization and translational regulation. Subsequently, ZBP1 has been found to be a multifunctional regulator of RNA metabolism that controls aspects of localization, stability, and translation for many mRNAs. To reveal how ZBP1 recognizes its RNA targets, we biochemically characterized the interaction between ZBP1 and the beta-actin zipcode. The third and fourth KH (hnRNP K homology) domains of ZBP1 specifically recognize a bipartite RNA element located within the first 28 nucleotides of the zipcode. The spacing between the RNA sequences is consistent with the structure of IMP1 KH34, the human ortholog of ZBP1, that we solved by X-ray crystallography. The tandem KH domains are arranged in an intramolecular anti-parallel pseudodimer conformation with the canonical RNA-binding surfaces at opposite ends of the molecule. This orientation of the KH domains requires that the RNA backbone must undergo an approximately 180 degrees change in direction in order for both KH domains to contact the RNA simultaneously. The RNA looping induced by ZBP1 binding provides a mechanism for specific recognition and may facilitate the assembly of post-transcriptional regulatory complexes by remodeling the bound transcript.
Collapse
Affiliation(s)
- Jeffrey A Chao
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
29
|
Size-dependent accumulation of mRNA at the leading edge of chicken embryo fibroblasts. Biochem Biophys Res Commun 2009; 390:750-4. [PMID: 19835844 DOI: 10.1016/j.bbrc.2009.10.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 10/09/2009] [Indexed: 11/21/2022]
Abstract
beta-actin mRNA localizes to the leading edge of a living chicken embryo fibroblast. Recently we proposed that the mRNA maintains its localization at the leading edge by utilizing the heterogeneity of cytoplasmic microstructure (Yamagishi et al., 2009 [10]). In this study, we observed the intracellular distribution of beta-actin mRNA variants to elucidate the mechanism of mRNA localization at the leading edge. We found that the degree of localization correlated positively with the molecular mass of the mRNA variants. We further demonstrated that the molecular mass-dependent localization was found even with dextrans, which have no biological function. The dependency of localization on molecular mass suggested that the barrier effect caused by the physical obstruction of the cytoplasmic microstructure is one of the major factors controlling mRNA localization in motile fibroblasts.
Collapse
|
30
|
Mingle LA, Bonamy G, Barroso M, Liao G, Liu G. LPA-induced mutually exclusive subcellular localization of active RhoA and Arp2 mRNA revealed by sequential FRET and FISH. Histochem Cell Biol 2009; 132:47-58. [PMID: 19365637 PMCID: PMC2753266 DOI: 10.1007/s00418-009-0589-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2009] [Indexed: 11/26/2022]
Abstract
We previously demonstrated that mRNAs for the subunits of the Arp2/3 complex localize to protrusions in fibroblasts (Mingle et al. in J Cell Sci 118:2425-2433, 2005). However, the signaling pathway that regulates Arp2/3 complex mRNA localization remains unknown. In this study we have identified lysophosphatidic acid (LPA) as a potent inducer of Arp2 mRNA localization to protrusions in fibroblasts via the RhoA-ROCK pathway. As RhoA is known to be activated locally in the cells, we sought to understand how spatial activation of Rho affects Arp2 mRNA localization. By sequentially performing fluorescence resonance energy transfer (FRET) and fluorescence in situ hybridization (FISH), we have visualized active RhoA and Arp2 mRNA in the same cells. Upon LPA stimulation, approximately two times more cells than those in the serum-free medium showed mutually exclusive localization of active RhoA and Arp2 mRNA. These results demonstrate the importance of localized activation of Rho in Arp2 mRNA localization and provide new insights as to how Rho regulates Arp2/3 complex mRNA localization. To our best knowledge, this is the first report in which FRET and FISH are combined to detect localized protein activity and mRNA in the same cells. This method should be easily adopted for the detection of other fluorescence protein based biosensors and DNA/RNA in the same cells.
Collapse
Affiliation(s)
- Lisa A. Mingle
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA, e-mail:
| | - Ghislain Bonamy
- Hudson Alpha Institute for Biotechnology, 127 Holmes Ave, Huntsville, AL 35801, USA
| | - Margarida Barroso
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Guoning Liao
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA, e-mail:
| | - Gang Liu
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA, e-mail:
| |
Collapse
|
31
|
Single molecule-sensitive probes for imaging RNA in live cells. Nat Methods 2009; 6:347-9. [PMID: 19349979 DOI: 10.1038/nmeth.1316] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 02/20/2009] [Indexed: 11/08/2022]
Abstract
To visualize native or non-engineered RNA in live cells with single-molecule sensitivity, we developed multiply labeled tetravalent RNA imaging probes (MTRIPs). When delivered with streptolysin O into living human epithelial cancer cells and primary chicken fibroblasts, MTRIPs allowed the accurate imaging of native mRNAs and a non-engineered viral RNA, of RNA co-localization with known RNA-binding proteins, and of RNA dynamics and interactions with stress granules.
Collapse
|
32
|
Single-molecule imaging of beta-actin mRNAs in the cytoplasm of a living cell. Exp Cell Res 2009; 315:1142-7. [PMID: 19245805 DOI: 10.1016/j.yexcr.2009.02.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Revised: 01/16/2009] [Accepted: 02/13/2009] [Indexed: 11/20/2022]
Abstract
Beta-actin mRNA labeled with an MS2-EGFP fusion protein was expressed in chicken embryo fibroblasts and its localization and movement were analyzed by single-molecule imaging. Most beta-Actin mRNAs localized to the leading edge, while some others were observed in the perinuclear region. Singe-molecule tracking of individual mRNAs revealed that the majority of mRNAs were in unrestricted Brownian motion at the leading edge and in restricted Brownian motion in the perinuclear region. The macroscopic diffusion coefficient of mRNA (D(MACRO)) at the leading edge was 0.3 microm(2)/s. On the other hand, D(MACRO) in the perinuclear region was 0.02 microm(2)/s. The destruction of microfilaments with cytochalasin D, which is known to delocalize beta-actin mRNAs, led to an increase in D(MACRO) to 0.2 microm(2)/s in the perinuclear region. These results suggest that the microstructure, composed of microfilaments, serves as a barrier for the movement of beta-actin mRNA.
Collapse
|
33
|
Vainer G, Vainer-Mosse E, Pikarsky A, Shenoy SM, Oberman F, Yeffet A, Singer RH, Pikarsky E, Yisraeli JK. A role for VICKZ proteins in the progression of colorectal carcinomas: regulating lamellipodia formation. J Pathol 2008; 215:445-56. [PMID: 18535985 DOI: 10.1002/path.2376] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
VICKZ proteins are a highly conserved family of RNA binding proteins, implicated in RNA regulatory processes such as intracellular RNA localization, RNA stability, and translational control. During embryogenesis, VICKZ proteins are required for neural crest migration and in adults, the proteins are overexpressed primarily in different cancers. We hypothesized that VICKZ proteins may play a role in cancer cell migration. In patients, VICKZ expression varies with tumour type, with over 60% of colon, lung, and ovarian tumours showing strong expression. In colorectal carcinomas (CRCs), expression is detected at early stages, and the frequency and intensity of staining increase with progression of the disease to lymph node metastases, of which 97% express the protein at high levels. Indeed, in stage II CRC, the level of VICKZ expression in the primary lesion correlates with the degree of lymph node metastasis. In culture, VICKZ proteins rapidly accumulate in processes at the leading edge of PMA-stimulated SW480 CRC cells, where they co-localize with beta-actin mRNA. Two distinct cocktails of shRNAs, each targeting all three VICKZ paralogues, cause a dramatic drop in lamellipodia and ruffle formation in stimulated cells. Thus, VICKZ proteins help to facilitate the dynamic cell surface morphology required for cell motility. We propose that these proteins play an important role in CRC metastasis by shuttling requisite RNAs to the lamellipodia of migrating cells.
Collapse
Affiliation(s)
- G Vainer
- Department of Anatomy and Cell Biology, Institute for Medical Research, Hebrew University, POB 12272, Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Salerno VP, Calliari A, Provance DW, Sotelo-Silveira JR, Sotelo JR, Mercer JA. Myosin-Va mediates RNA distribution in primary fibroblasts from multiple organs. ACTA ACUST UNITED AC 2008; 65:422-33. [PMID: 18357619 DOI: 10.1002/cm.20272] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Myosin-Va has been shown to have multiple functions in a variety of cell types, including a role in RNA transport in neurons. Using primary cultures of cells from organs of young dilute-lethal (Myo5a(d-l)/Myo5a(d-l)) null mutant mice and wild-type controls, we show that in some, but not all, tissues, RNA distribution is dramatically different in the homozygous null mutant cells. The dependence of RNA localization on myosin-Va correlates with the relative abundance of the brain-specific splicing pattern of the myosin-Va tail. We also show that myosin-Va is involved in RNA localization soon after synthesis, because the effects of its absence are diminished for RNAs that are more than 30 min old. Finally, we show that localization of beta-actin mRNA is significantly changed by the absence of myosin-Va. These results suggest that myosin-Va is involved in a transient transport or tethering function in the perinuclear region.
Collapse
|
35
|
Mechanisms and cellular roles of local protein synthesis in mammalian cells. Curr Opin Cell Biol 2008; 20:144-9. [PMID: 18378131 DOI: 10.1016/j.ceb.2008.02.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Revised: 02/09/2008] [Accepted: 02/11/2008] [Indexed: 11/21/2022]
Abstract
After the export from the nucleus it turns out that all mRNAs are not treated equally. Not only is mRNA subject to translation, but also through RNA-binding proteins and other trans-acting factors, eukaryotic cells interpret codes for spatial sorting within the mRNA sequence. These codes instruct the cytoskeleton and translation apparatus to make decisions about where to transport and when to translate the intended protein product. Signaling pathways decode extra-cellular cues and can modify transport and translation factors in the appropriate cytoplasmic space to achieve translation locally. Identifying regulatory sites on transport factors as well as novel physiological functions for well-known translation factors has provided significant advances in how spatially controlled translation impacts cell function.
Collapse
|
36
|
Lapidus K, Wyckoff J, Mouneimne G, Lorenz M, Soon L, Condeelis JS, Singer RH. ZBP1 enhances cell polarity and reduces chemotaxis. J Cell Sci 2007; 120:3173-8. [PMID: 17878234 PMCID: PMC4956933 DOI: 10.1242/jcs.000638] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interaction of beta-actin mRNA with zipcode-binding protein 1 (ZBP1) is necessary for its localization to the lamellipod of fibroblasts and plays a crucial role in cell polarity and motility. Recently, we have shown that low ZBP1 levels correlate with tumor-cell invasion and metastasis. In order to establish a cause and effect relationship, we expressed ZBP1 in a metastatic rat mammary adenocarcinoma cell line (MTLn3) that has low endogenous ZBP1 levels and delocalized beta-actin mRNA. This leads to localization of beta-actin mRNA, and eventually reduces the chemotactic potential of the cells as well as their ability to move and orient towards vessels in tumors. To determine how ZBP1 leads to these two apparently contradictory aspects of cell behavior--increased cell motility but decreased chemotaxis--we examined cell motility in detail, both in cell culture and in vivo in tumors. We found that ZBP1 expression resulted in tumor cells with a stable polarized phenotype, and reduced their ability to move in response to a gradient in culture. To connect these results on cultured cells to the reduced metastatic ability of these cells, we used multiphoton imaging in vivo to examine tumor cell behavior in primary tumors. We found that ZBP1 expression actually reduced tumor cell motility and chemotaxis, presumably mediating their decreased metastatic potential by reducing their ability to respond to signals necessary for invasion.
Collapse
|
37
|
|
38
|
Jambhekar A, Derisi JL. Cis-acting determinants of asymmetric, cytoplasmic RNA transport. RNA (NEW YORK, N.Y.) 2007; 13:625-42. [PMID: 17449729 PMCID: PMC1852811 DOI: 10.1261/rna.262607] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Asymmetric subcellular distribution of RNA is used by many organisms to establish cell polarity, differences in cell fate, or to sequester protein activity. Accurate localization of RNA requires specific sequence and/or structural elements in the localized RNA, as well as proteins that recognize these elements and link the RNA to the appropriate molecular motors. Recent advances in biochemistry, molecular biology, and cell imaging have enabled the identification of many RNA localization elements, or "zipcodes," from a variety of systems. This review focuses on the mechanisms by which various zipcodes direct RNA transport and on the known sequence/structural requirements for their recognition by transport complexes. Computational and experimental methods for predicting and identifying zipcodes are also discussed.
Collapse
Affiliation(s)
- Ashwini Jambhekar
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA.
| | | |
Collapse
|
39
|
Willett M, Flint SA, Morley SJ, Pain VM. Compartmentalisation and localisation of the translation initiation factor (eIF) 4F complex in normally growing fibroblasts. Exp Cell Res 2006; 312:2942-53. [PMID: 16822502 DOI: 10.1016/j.yexcr.2006.05.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 05/22/2006] [Accepted: 05/30/2006] [Indexed: 11/16/2022]
Abstract
Previous observations of association of mRNAs and ribosomes with subcellular structures highlight the importance of localised translation. However, little is known regarding associations between eukaryotic translation initiation factors and cellular structures within the cytoplasm of normally growing cells. We have used detergent-based cellular fractionation coupled with immunofluorescence microscopy to investigate the subcellular localisation in NIH3T3 fibroblasts of the initiation factors involved in recruitment of mRNA for translation, focussing on eIF4E, the mRNA cap-binding protein, the scaffold protein eIF4GI and poly(A) binding protein (PABP). We find that these proteins exist mainly in a soluble cytosolic pool, with only a subfraction tightly associated with cellular structures. However, this "associated" fraction was enriched in active "eIF4F" complexes (eIF4E.eIF4G.eIF4A.PABP). Immunofluorescence analysis reveals both a diffuse and a perinuclear distribution of eIF4G, with the perinuclear staining pattern similar to that of the endoplasmic reticulum. eIF4E also shows both a diffuse staining pattern and a tighter perinuclear stain, partly coincident with vimentin intermediate filaments. All three proteins localise to the lamellipodia of migrating cells in close proximity to ribosomes, microtubules, microfilaments and focal adhesions, with eIF4G and eIF4E at the periphery showing a similar staining pattern to the focal adhesion protein vinculin.
Collapse
Affiliation(s)
- Mark Willett
- Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | | | | | | |
Collapse
|
40
|
Mingle LA, Okuhama NN, Shi J, Singer RH, Condeelis J, Liu G. Localization of all seven messenger RNAs for the actin-polymerization nucleator Arp2/3 complex in the protrusions of fibroblasts. J Cell Sci 2005; 118:2425-33. [PMID: 15923655 PMCID: PMC1283079 DOI: 10.1242/jcs.02371] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The actin-related protein 2/3 (Arp2/3) complex is a crucial actin polymerization nucleator and is localized to the leading protrusions of migrating cells. However, how the multiprotein complex is targeted to the protrusions remains unknown. Here, we demonstrate that mRNAs for the seven subunits of the Arp2/3 complex are localized to the protrusions in fibroblasts, supporting a hypothesis that the Arp2/3 complex is targeted to its site of function by mRNA localization. Depletion of serum from culture medium inhibits Arp2/3-complex mRNA localization to the protrusion, whereas serum stimulation leads to significant mRNA localization within 30 minutes. The effect of serum suggests that Arp2/3-complex mRNA localization is a cellular response to extracellular stimuli. The localization of the Arp2/3 complex mRNAs is dependent on both actin filaments and microtubules, because disruption of either cytoskeletal system (with cytochalasin D and colchicine, respectively) inhibited the localization of all seven subunit mRNAs. In addition, myosin inhibitors significantly inhibit Arp2 mRNA localization in chicken embryo fibroblasts, suggesting a myosin motor dependent mechanism for Arp2/3-complex mRNA localization.
Collapse
Affiliation(s)
- Lisa A. Mingle
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Nataly N. Okuhama
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Jian Shi
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Robert H. Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - John Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Gang Liu
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
- *Author for correspondence (e-mail:
)
| |
Collapse
|
41
|
Abstract
mRNA localization is a common mechanism for targeting proteins to regions of the cell where they are required. It has an essential role in localizing cytoplasmic determinants, controlling the direction of protein secretion and allowing the local control of protein synthesis in neurons. New methods for in vivo labelling have revealed that several mRNAs are transported by motor proteins, but how most mRNAs are coupled to these proteins remains obscure.
Collapse
Affiliation(s)
- Daniel St Johnston
- The Gurdon Institute and The Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| |
Collapse
|
42
|
Affiliation(s)
- R H Singer
- Dept of Anatomy and Structural Biology at The Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
43
|
Smith CL, Afroz R, Bassell GJ, Furneaux HM, Perrone-Bizzozero NI, Burry RW. GAP-43 mRNA in growth cones is associated with HuD and ribosomes. ACTA ACUST UNITED AC 2005; 61:222-35. [PMID: 15389607 DOI: 10.1002/neu.20038] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The neuron-specific ELAV/Hu family member, HuD, interacts with and stabilizes GAP-43 mRNA in developing neurons, and leads to increased levels of GAP-43 protein. As GAP-43 protein is enriched in growth cones, it is of interest to determine if HuD and GAP-43 mRNA are associated in developing growth cones. HuD granules in growth cones are found in the central domain that is rich in microtubules and ribosomes, in the peripheral domain with its actin network, and in filopodia. This distribution of HuD granules in growth cones is dependent on actin filaments but not on microtubules. GAP-43 mRNA is localized in granules found in both the central and peripheral domains, but not in filopodia. Ribosomes were extensively colocalized with HuD and GAP-43 mRNA granules in the central domain, consistent with a role in the control of GAP-43 mRNA stability in the growth cone. Together, these results demonstrate that many of the components necessary for GAP-43 mRNA translation/stabilization are present within growth cones.
Collapse
Affiliation(s)
- Catherine L Smith
- Department of Neuroscience, College of Medicine and Public Health, The Ohio State University, Columbus, Ohio 43210-1239, USA
| | | | | | | | | | | |
Collapse
|
44
|
Brock A, Huang S, Ingber DE. Identification of a distinct class of cytoskeleton-associated mRNAs using microarray technology. BMC Cell Biol 2003; 4:6. [PMID: 12848903 PMCID: PMC167255 DOI: 10.1186/1471-2121-4-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2003] [Accepted: 07/08/2003] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Interactions between mRNA and the cytoskeleton are critical for the localization of a number of transcripts in eukaryotic somatic cells. To characterize additional transcripts that may be subject to this form of regulation, we developed a two-step approach that utilizes biochemical fractionation of cells to isolate transcripts from different subcellular compartments followed by microarray analysis to examine and compare these subpopulations of transcripts in a massively-parallel manner. RESULTS Using this approach, mRNA was extracted from the cytoskeleton-rich and the cytosolic fractions of the promyelocytic HL-60 cell line. We identify a subset of 22 transcripts that are significantly enriched in the cytoskeleton-associated population. The majority of these encode structural proteins and/or proteins known to interact with elements of the cytoskeleton. Localization required an intact actin cytoskeleton and was largely conserved upon differentiation of precursor HL-60 cells to a macrophage-like phenotype. CONCLUSIONS We conclude that the association of transcripts with the actin cytoskeleton in somatic cells may be a critical post-transcriptional regulatory event that controls a larger class of genes than has previously been recognized.
Collapse
Affiliation(s)
- Amy Brock
- Vascular Biology Program, Departments of Pathology and Surgery, Harvard Medical School and Children's Hospital, Enders 1007, 300 Longwood Ave, Boston, MA 02115, USA
| | - Sui Huang
- Vascular Biology Program, Departments of Pathology and Surgery, Harvard Medical School and Children's Hospital, Enders 1007, 300 Longwood Ave, Boston, MA 02115, USA
| | - Donald E Ingber
- Vascular Biology Program, Departments of Pathology and Surgery, Harvard Medical School and Children's Hospital, Enders 1007, 300 Longwood Ave, Boston, MA 02115, USA
| |
Collapse
|
45
|
Osada T, Uehara H, Kim H, Ikai A. mRNA analysis of single living cells. J Nanobiotechnology 2003; 1:2. [PMID: 12646067 PMCID: PMC151804 DOI: 10.1186/1477-3155-1-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2002] [Accepted: 02/14/2003] [Indexed: 01/21/2023] Open
Abstract
Analysis of specific gene expression in single living cells may become an important technique for cell biology. So far, no method has been available to detect mRNA in living cells without killing or destroying them. We have developed here a novel method to examine gene expression of living cells using an atomic force microscope (AFM). AFM tip was inserted into living cells to extract mRNAs. The obtained mRNAs were analyzed with RT-PCR, nested PCR, and quantitative PCR. This method enabled us to examine time-dependent gene expression of single living cells without serious damage to the cells.
Collapse
Affiliation(s)
- Toshiya Osada
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Hironori Uehara
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Hyonchol Kim
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Atsushi Ikai
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
46
|
Farina KL, Huttelmaier S, Musunuru K, Darnell R, Singer RH. Two ZBP1 KH domains facilitate beta-actin mRNA localization, granule formation, and cytoskeletal attachment. J Cell Biol 2003; 160:77-87. [PMID: 12507992 PMCID: PMC2172732 DOI: 10.1083/jcb.200206003] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chicken embryo fibroblasts (CEFs) localize beta-actin mRNA to their lamellae, a process important for the maintenance of cell polarity and motility. The localization of beta-actin mRNA requires a cis localization element (zipcode) and involves zipcode binding protein 1 (ZBP1), a protein that specifically binds to the zipcode. Both localize to the lamellipodia of polarized CEFs. ZBP1 and its homologues contain two NH2-terminal RNA recognition motifs (RRMs) and four COOH-terminal hnRNP K homology (KH) domains. By using ZBP1 truncations fused to GFP in conjunction with in situ hybridization analysis, we have determined that KH domains three and four were responsible for granule formation and cytoskeletal association. When the NH2 terminus was deleted, granules formed by the KH domains alone did not accumulate at the leading edge, suggesting a role for the NH2 terminus in targeting transport granules to their destination. RNA binding studies were used to show that the third and fourth KH domains, not the RRM domains, bind the zipcode of beta-actin mRNA. Overexpression of the four KH domains or certain subsets of these domains delocalized beta-actin mRNA in CEFs and inhibited fibroblast motility, demonstrating the importance of ZBP1 function in both beta-actin mRNA localization and cell motility.
Collapse
Affiliation(s)
- Kim L Farina
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
47
|
Aronov S, Aranda G, Behar L, Ginzburg I. Visualization of translated tau protein in the axons of neuronal P19 cells and characterization of tau RNP granules. J Cell Sci 2002; 115:3817-27. [PMID: 12235292 DOI: 10.1242/jcs.00058] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Localization of tau mRNA to the axon requires the axonal localization cis signal (ALS), which is located within the 3' untranslated region, and trans-acting binding proteins, which are part of the observed granular structures in neuronal cells. In this study, using both biochemical and morphological methods, we show that the granules contain tau mRNA, HuD RNA-binding protein, which stabilizes mRNA, and KIF3A, a member of the kinesin microtubule-associated motor protein family involved in anterograde transport. The granules are detected along the axon and accumulate in the growth cone. Inhibition of KIF3A expression caused neurite retraction and inhibited tau mRNA axonal targeting. Taken together, these results suggest that HuD and KIF3A proteins are present in the tau mRNA axonal granules and suggest an additional function for the kinesin motor family in the microtubule-dependent translocation of RNA granules. Localized tau-GFP expression was blocked by a protein synthesis inhibitor, and upon release from inhibition, nascent tau-GFP 'hot spots' were directly observed in the axon and growth cones. These observations are consistent with local protein synthesis in the axon resulting from the transported tau mRNA.
Collapse
Affiliation(s)
- Stella Aronov
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, 76100 Israel
| | | | | | | |
Collapse
|
48
|
Abstract
The stem cell factor c-kit signaling pathway (SCF/c-kit) has been previously implicated in normal hematopoiesis, melanogenesis, and gametogenesis through the formation and migration of c-kit+ cells. These biologic functions are also determinants in epithelial–mesenchymal transitions during embryonic development governed by the Snail family of transcription factors. Here we show that the activation of c-kit by SCF specifically induces the expression of Slug, a Snail family member. Slug mutant mice have a cell-intrinsic defect with pigment deficiency, gonadal defect, and impairment of hematopoiesis. Kit+ cells derived from Slug mutant mice exhibit migratory defects similar to those of c-kit+ cells derived from SCF and c-kit mutant mice. Endogenous Slug is expressed in migratory c-kit+ cells purified from control mice but is not present in c-kit+cells derived from SCF mutant mice or in bone marrow cells from W/Wv mice, though Slug is present in spleen c-kit+ cells of W/Wv (mutants expressing c-kit with reduced surface expression and activity). SCF-induced migration was affected in primary c-kit+ cells purified from Slug−/− mice, providing evidence for a role of Slug in the acquisition of c-kit+ cells with ability to migrate. Slug may thus be considered a molecular target that contributes to the biologic specificity to the SCF/c-kit signaling pathway, opening up new avenues for stem cell mobilization.
Collapse
|
49
|
Sirenko O, Böcker U, Morris JS, Haskill JS, Watson JM. IL-1 beta transcript stability in monocytes is linked to cytoskeletal reorganization and the availability of mRNA degradation factors. Immunol Cell Biol 2002; 80:328-39. [PMID: 12121221 DOI: 10.1046/j.1440-1711.2002.01085.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Monocyte extravasation initiates reorganization of the cytoskeleton (CSK) and adhesion-dependent cytokine gene transcription. The actin CSK is thought to be crucial for compartmentalization and translation of mRNA, many of which contain AU-rich (ARE) instability motifs in the 3' untranslated region. We investigated regulation of adhesion-induced IL-1 beta expression by the monocyte CSK. In serum-free adherent monocytes, the induced IL-1 beta mRNA was stable and did not coextract with actin filaments. In contrast, in cells adherent in autologous serum, IL-1 beta transcripts were unstable, coextracted with actin filaments and were associated with only transient activation of the mitogen-activated protein kinases (MAPK). Under both conditions of adherence, the ARE-binding protein AUF1/hnRNP D was readily extracted in the cytosolic fraction. Electro-injection with AUF1/hnRNP D modified the actin CSK and, surprisingly, stabilized IL-1 beta transcripts. These data suggest that the control of mRNA degradation is linked with changes in the CSK. Mitogen-activated protein kinase activation or alterations in the availability of mRNA degradation factors may mediate these effects.
Collapse
Affiliation(s)
- Oksana Sirenko
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | | | | | | | | |
Collapse
|
50
|
Nielsen FC, Nielsen J, Kristensen MA, Koch G, Christiansen J. Cytoplasmic trafficking of IGF-II mRNA-binding protein by conserved KH domains. J Cell Sci 2002; 115:2087-97. [PMID: 11973350 DOI: 10.1242/jcs.115.10.2087] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The IGF-II mRNA-binding proteins (IMPs), which are composed of two RNA recognition motifs, (RRM) and four hnRNP K homology (KH) domains, have been implicated in subcytoplasmic localization of mRNAs during embryogenesis. The IMP family originated via two gene duplications before the divergence of vertebrates, and IMP homologues consisting of only the four KH motifs have been identified in Drosophila and Caenorhabditis elegans. Here we characterise the trafficking of GFP-IMP1 fusion proteins and determine the structural determinants for proper cytoplasmic localization. GFP-IMP1 is present in large 200-700 nm RNP granules, which are distributed along microtubules. In motile cells, GFP-IMP1 is transported towards the leading edge into the cortical region of the lamellipodia where it is connected to microfilaments. Granules travel in an ATP-dependent fashion at an average speed of 0.12 μm/s (range 0.04-0.22 μm/s), and cells switch from a delocalized to a localized pattern within 15-20 minutes. Both granule formation and localization are unaffected by removal of the two RRMs, whereas deletion of the KH domains, which mediate RNA-binding, impairs these functions. We conclude that IMP1 localization is associated with motility and that the major functions of IMP1 are carried out by the phylogenetically conserved KH domains.
Collapse
Affiliation(s)
- Finn C Nielsen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|