1
|
Zhang J, Qiu R, Bieger BD, Oakley CE, Oakley BR, Egan MJ, Xiang X. Aspergillus SUMOylation mutants exhibit chromosome segregation defects including chromatin bridges. Genetics 2023; 225:iyad169. [PMID: 37724751 PMCID: PMC10697819 DOI: 10.1093/genetics/iyad169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023] Open
Abstract
Functions of protein SUMOylation remain incompletely understood in different cell types. Via forward genetics, here we identified ubaBQ247*, a loss-of-function mutation in a SUMO activation enzyme UbaB in the filamentous fungus Aspergillus nidulans. The ubaBQ247*, ΔubaB, and ΔsumO mutants all produce abnormal chromatin bridges, indicating the importance of SUMOylation in the completion of chromosome segregation. The bridges are enclosed by nuclear membrane containing peripheral nuclear pore complex proteins that normally get dispersed during mitosis, and the bridges are also surrounded by cytoplasmic microtubules typical of interphase cells. Time-lapse sequences further indicate that most bridges persist through interphase prior to the next mitosis, and anaphase chromosome segregation can produce new bridges that persist into the next interphase. When the first mitosis happens at a higher temperature of 42°C, SUMOylation deficiency produces not only chromatin bridges but also many abnormally shaped single nuclei that fail to divide. UbaB-GFP localizes to interphase nuclei just like the previously studied SumO-GFP, but the nuclear signals disappear during mitosis when the nuclear pores are partially open, and the signals reappear after mitosis. The nuclear localization is consistent with many SUMO targets being nuclear proteins. Finally, although the budding yeast SUMOylation machinery interacts with LIS1, a protein critical for dynein activation, loss of SUMOylation does not cause any obvious defect in dynein-mediated transport of nuclei and early endosomes, indicating that SUMOylation is unnecessary for dynein activation in A. nidulans.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Baronger D Bieger
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA
| | - C Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Martin J Egan
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, AR 72701, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences-F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| |
Collapse
|
2
|
Son YE, Yu JH, Park HS. Regulators of the Asexual Life Cycle of Aspergillus nidulans. Cells 2023; 12:1544. [PMID: 37296664 PMCID: PMC10253035 DOI: 10.3390/cells12111544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
The genus Aspergillus, one of the most abundant airborne fungi, is classified into hundreds of species that affect humans, animals, and plants. Among these, Aspergillus nidulans, as a key model organism, has been extensively studied to understand the mechanisms governing growth and development, physiology, and gene regulation in fungi. A. nidulans primarily reproduces by forming millions of asexual spores known as conidia. The asexual life cycle of A. nidulans can be simply divided into growth and asexual development (conidiation). After a certain period of vegetative growth, some vegetative cells (hyphae) develop into specialized asexual structures called conidiophores. Each A. nidulans conidiophore is composed of a foot cell, stalk, vesicle, metulae, phialides, and 12,000 conidia. This vegetative-to-developmental transition requires the activity of various regulators including FLB proteins, BrlA, and AbaA. Asymmetric repetitive mitotic cell division of phialides results in the formation of immature conidia. Subsequent conidial maturation requires multiple regulators such as WetA, VosA, and VelB. Matured conidia maintain cellular integrity and long-term viability against various stresses and desiccation. Under appropriate conditions, the resting conidia germinate and form new colonies, and this process is governed by a myriad of regulators, such as CreA and SocA. To date, a plethora of regulators for each asexual developmental stage have been identified and investigated. This review summarizes our current understanding of the regulators of conidial formation, maturation, dormancy, and germination in A. nidulans.
Collapse
Affiliation(s)
- Ye-Eun Son
- Major in Food Biomaterials, School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Jae-Hyuk Yu
- Department of Bacteriology, Food Research Institute, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Hee-Soo Park
- Major in Food Biomaterials, School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Rogers AM, Egan MJ. Septum-associated microtubule organizing centers within conidia support infectious development by the blast fungus Magnaporthe oryzae. Fungal Genet Biol 2023; 165:103768. [PMID: 36596442 DOI: 10.1016/j.fgb.2022.103768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
Cytoplasmic microtubule arrays play important and diverse roles within fungal cells, including serving as molecular highways for motor-driven organelle motility. While the dynamic plus ends of cytoplasmic microtubules are free to explore the cytoplasm through their stochastic growth and shrinkage, their minus ends are nucleated at discrete organizing centers, composed of large multi-subunit protein complexes. The location and composition of these microtubule organizing centers varies depending on genus, cell type, and in some instances cell-cycle stage. Despite their obvious importance, our understanding of the nature, diversity, and regulation of microtubule organizing centers in fungi remains incomplete. Here, using three-color fluorescence microscopy based live-cell imaging, we investigate the organization and dynamic behavior of the microtubule cytoskeleton within infection-related cell types of the filamentous fungus,Magnaporthe oryzae, a highly destructive pathogen of rice and wheat. We provide data to support the idea that cytoplasmic microtubules are nucleated at septa, rather than at nuclear spindle pole bodies, within the three-celled blast conidium, and provide new insight into remodeling of the microtubule cytoskeleton during nuclear division and inheritance. Lastly, we provide a more complete picture of the architecture and subcellular organization of the prototypical blast appressorium, a specialized pressure-generating cell type used to invade host tissue. Taken together, our study provides new insight into microtubule nucleation, organization, and dynamics in specialized and differentiated fungal cell types.
Collapse
Affiliation(s)
- Audra Mae Rogers
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Martin John Egan
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
4
|
Ramírez-Cota R, Espino-Vazquez AN, Carolina Rodriguez-Vega T, Evelyn Macias-Díaz R, Alicia Callejas-Negrete O, Freitag M, Fischer R, Roberson RW, Mouriño-Pérez RR. The cytoplasmic microtubule array in Neurospora crassa depends on microtubule-organizing centers at spindle pole bodies and microtubule +end-depending pseudo-MTOCs at septa. Fungal Genet Biol 2022; 162:103729. [DOI: 10.1016/j.fgb.2022.103729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022]
|
5
|
Tracking Fungal Growth: Establishment of Arp1 as a Marker for Polarity Establishment and Active Hyphal Growth in Filamentous Ascomycetes. J Fungi (Basel) 2021; 7:jof7070580. [PMID: 34356959 PMCID: PMC8304394 DOI: 10.3390/jof7070580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/20/2022] Open
Abstract
Polar growth is a key characteristic of all filamentous fungi. It allows these eukaryotes to not only effectively explore organic matter but also interact within its own colony, mating partners, and hosts. Therefore, a detailed understanding of the dynamics in polar growth establishment and maintenance is crucial for several fields of fungal research. We developed a new marker protein, the actin-related protein 1 (Arp1) fused to red and green fluorescent proteins, which allows for the tracking of polar axis establishment and active hyphal growth in microscopy approaches. To exclude a probable redundancy with known polarity markers, we compared the localizations of the Spitzenkörper (SPK) and Arp1 using an FM4-64 staining approach. As we show in applications with the coprophilous fungus Sordaria macrospora and the hemibiotrophic plant pathogen Colletotrichum graminicola, the monitoring of Arp1 can be used for detailed studies of hyphal growth dynamics and ascospore germination, the interpretation of chemotropic growth processes, and the tracking of elongating penetration pegs into plant material. Since the Arp1 marker showed the same dynamics in both fungi tested, we believe this marker can be broadly applied in fungal research to study the manifold polar growth processes determining fungal life.
Collapse
|
6
|
Weerasinghe H, Bugeja HE, Andrianopoulos A. The novel Dbl homology/BAR domain protein, MsgA, of Talaromyces marneffei regulates yeast morphogenesis during growth inside host cells. Sci Rep 2021; 11:2334. [PMID: 33504839 PMCID: PMC7840665 DOI: 10.1038/s41598-020-79593-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 12/09/2020] [Indexed: 01/30/2023] Open
Abstract
Microbial pathogens have evolved many strategies to evade recognition by the host immune system, including the use of phagocytic cells as a niche within which to proliferate. Dimorphic pathogenic fungi employ an induced morphogenetic transition, switching from multicellular hyphae to unicellular yeast that are more compatible with intracellular growth. A switch to mammalian host body temperature (37 °C) is a key trigger for the dimorphic switch. This study describes a novel gene, msgA, from the dimorphic fungal pathogen Talaromyces marneffei that controls cell morphology in response to host cues rather than temperature. The msgA gene is upregulated during murine macrophage infection, and deletion results in aberrant yeast morphology solely during growth inside macrophages. MsgA contains a Dbl homology domain, and a Bin, Amphiphysin, Rvs (BAR) domain instead of a Plekstrin homology domain typically associated with guanine nucleotide exchange factors (GEFs). The BAR domain is crucial in maintaining yeast morphology and cellular localisation during infection. The data suggests that MsgA does not act as a canonical GEF during macrophage infection and identifies a temperature independent pathway in T. marneffei that controls intracellular yeast morphogenesis.
Collapse
Affiliation(s)
- Harshini Weerasinghe
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Victoria, 3010, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, 3800, Australia
| | - Hayley E Bugeja
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Victoria, 3010, Australia
| | - Alex Andrianopoulos
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
7
|
Markus SM, Marzo MG, McKenney RJ. New insights into the mechanism of dynein motor regulation by lissencephaly-1. eLife 2020; 9:59737. [PMID: 32692650 PMCID: PMC7373426 DOI: 10.7554/elife.59737] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Lissencephaly (‘smooth brain’) is a severe brain disease associated with numerous symptoms, including cognitive impairment, and shortened lifespan. The main causative gene of this disease – lissencephaly-1 (LIS1) – has been a focus of intense scrutiny since its first identification almost 30 years ago. LIS1 is a critical regulator of the microtubule motor cytoplasmic dynein, which transports numerous cargoes throughout the cell, and is a key effector of nuclear and neuronal transport during brain development. Here, we review the role of LIS1 in cellular dynein function and discuss recent key findings that have revealed a new mechanism by which this molecule influences dynein-mediated transport. In addition to reconciling prior observations with this new model for LIS1 function, we also discuss phylogenetic data that suggest that LIS1 may have coevolved with an autoinhibitory mode of cytoplasmic dynein regulation.
Collapse
Affiliation(s)
- Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Matthew G Marzo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| |
Collapse
|
8
|
Mucha J, Pawłowski TA, Klupczyńska EA, Guzicka M, Zadworny M. The Effect of Hydroxamic Siderophores Structure on Acetylation of Histone H3 and Alpha Tubulin in Pinus sylvestris Root Cells. Int J Mol Sci 2019; 20:E6099. [PMID: 31816938 PMCID: PMC6928989 DOI: 10.3390/ijms20236099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/18/2019] [Accepted: 11/30/2019] [Indexed: 12/03/2022] Open
Abstract
Protein acetylation affects gene expression, as well as other processes in cells, and it might be dependent on the availability of the metals. However, whether iron chelating compounds (siderophores) can have an effect on the acetylation process in plant roots is largely unknown. In the present study, western blotting and confocal microscopy was used to examine the degree of acetylation of histone H3 and alpha tubulin in Pinus sylvestris root cells in the presence of structurally different siderophores. The effect of metabolites that were produced by pathogenic and mycorrhizal fungi was also assessed. No effect was observed on histone acetylation. By contrast, the metabolites of the pathogenic fungus were able to decrease the level of microtubule acetylation, whereas treatment with iron-free ferrioxamine (DFO) was able to increase it. This latter was not observed when ferrioxamine-iron complexes were used. The pathogen metabolites induced important modifications of cytoskeleton organization. Siderophores also induced changes in the tubulin skeleton and these changes were iron-dependent. The effect of siderophores on the microtubule network was dependent on the presence of iron. More root cells with a depolymerized cytoskeleton were observed when the roots were exposed to iron-free siderophores and the metabolites of pathogenic fungi; whereas, the metabolites from mycorrhizal fungi and iron-enriched forms of siderophores slightly altered the cytoskeleton network of root cells. Collectively, these data indicated that the metabolites of pathogenic fungi mirror siderophore action, and iron limitation can lead to enhanced alternations in cell structure and physiology.
Collapse
Affiliation(s)
- Joanna Mucha
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland; (T.A.P.); (E.A.K.); (M.G.); (M.Z.)
| | | | | | | | | |
Collapse
|
9
|
Payne M, Weerasinghe H, Tedja I, Andrianopoulos A. A unique aspartyl protease gene expansion in Talaromyces marneffei plays a role in growth inside host phagocytes. Virulence 2019; 10:277-291. [PMID: 30880596 PMCID: PMC6527018 DOI: 10.1080/21505594.2019.1593776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/05/2019] [Accepted: 03/05/2019] [Indexed: 11/05/2022] Open
Abstract
Aspartyl proteases are a widely represented class of proteolytic enzymes found in eukaryotes and retroviruses. They have been associated with pathogenicity in a range of disease-causing microorganisms. The dimorphic human-pathogenic fungus Talaromyces marneffei has a large expansion of these proteases identified through genomic analyses. Here we characterize the expansion of these genes (pop - paralogue of pep) and their role in T. marneffei using computational and molecular approaches. Many of the genes in this monophyletic family show copy number variation and positive selection despite the preservation of functional regions and possible redundancy. We show that the expression profile of these genes differs and some are expressed during intracellular growth in the host. Several of these proteins have distinctive localization as well as both additive and epistatic effects on the formation of yeast cells during macrophage infections. The data suggest that this is a recently evolved aspartyl protease gene family which affects intracellular growth and contributes to the pathogenicity of T. marneffei.
Collapse
Affiliation(s)
- Michael Payne
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Harshini Weerasinghe
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Australia
| | - Irma Tedja
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Australia
| | - Alex Andrianopoulos
- Genetics, Genomics and Systems Biology, School of BioSciences, University of Melbourne, Australia
| |
Collapse
|
10
|
Kozlova MV, Bilanenko EN, Grum-Grzhimaylo AA, Kamzolkina OV. An unusual sexual stage in the alkalophilic ascomycete Sodiomyces alkalinus. Fungal Biol 2019; 123:140-150. [PMID: 30709519 DOI: 10.1016/j.funbio.2018.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/26/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
Abstract
Exploring life cycles of fungi is insightful for understanding their basic biology and can highlight their ecology. Here, we dissected the sexual and asexual life cycles of the obligate alkalophilic ascomycete Sodiomyces alkalinus that thrives at extremely high pH of soda lakes. S.alkalinus develops acremonium-type asexual sporulation, commonly found in ascomycetous fungi. However, the sexual stage was unusual, featuring very early lysis of asci which release young ascospores inside a fruit body long before its maturation. In a young fruit body, a slimy matrix which originates from the combined epiplasm of asci and united cytoplasm of the pseudoparenchymal cells, surrounds pooled maturing ascospores. Upon maturity, the ascospores are forcibly released through a crack in the fruit body, presumably due to an increased turgor pressure. These features of the sexual stage development resemble the ones found in unrelated marine fungi, indicating convergent evolution of the trait. We hypothesise these developmental features of S. alkalinus to be adaptive in the conditions of periodically inundated rims of soda lakes where the fungus thrives.
Collapse
Affiliation(s)
- Maria V Kozlova
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia; State Oceanographic Institute, Kropotkinsky Lane 6, 119034 Moscow, Russia
| | - Elena N Bilanenko
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia
| | - Alexey A Grum-Grzhimaylo
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708PB Wageningen, the Netherlands.
| | - Olga V Kamzolkina
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia
| |
Collapse
|
11
|
Verma S, Varma A, Rexer KH, Hassel A, Kost G, Sarbhoy A, Bisen P, Bütehorn B, Franken P. Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia 2018. [DOI: 10.1080/00275514.1998.12026983] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Savita Verma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ajit Varma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Karl-Heinz Rexer
- Fachbereich Biologie der Philipps-Universität, Spezielle Botanik and Mykologie, Karl-von-Frisch-Straβe, 35043 Marburg, Germany
| | - Annette Hassel
- Fachbereich Biologie der Philipps-Universität, Spezielle Botanik and Mykologie, Karl-von-Frisch-Straβe, 35043 Marburg, Germany
| | - Gerhard Kost
- Fachbereich Biologie der Philipps-Universität, Spezielle Botanik and Mykologie, Karl-von-Frisch-Straβe, 35043 Marburg, Germany
| | - Ashok Sarbhoy
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Prakash Bisen
- Microbiology Department, Barkatullah Khan University, Bhopal, India
| | - Britta Bütehorn
- Max-Planck-Institut für terrestrische Mikrobiologie, and Laboratorium für Mikrobiologie des Fachbereichs Biologie der Philipps-Universität, Karl-von-Frisch-Straβe, 35043 Marburg, Germany
| | - Philipp Franken
- Max-Planck-Institut für terrestrische Mikrobiologie, and Laboratorium für Mikrobiologie des Fachbereichs Biologie der Philipps-Universität, Karl-von-Frisch-Straβe, 35043 Marburg, Germany
| |
Collapse
|
12
|
Riquelme M, Aguirre J, Bartnicki-García S, Braus GH, Feldbrügge M, Fleig U, Hansberg W, Herrera-Estrella A, Kämper J, Kück U, Mouriño-Pérez RR, Takeshita N, Fischer R. Fungal Morphogenesis, from the Polarized Growth of Hyphae to Complex Reproduction and Infection Structures. Microbiol Mol Biol Rev 2018; 82:e00068-17. [PMID: 29643171 PMCID: PMC5968459 DOI: 10.1128/mmbr.00068-17] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Filamentous fungi constitute a large group of eukaryotic microorganisms that grow by forming simple tube-like hyphae that are capable of differentiating into more-complex morphological structures and distinct cell types. Hyphae form filamentous networks by extending at their tips while branching in subapical regions. Rapid tip elongation requires massive membrane insertion and extension of the rigid chitin-containing cell wall. This process is sustained by a continuous flow of secretory vesicles that depends on the coordinated action of the microtubule and actin cytoskeletons and the corresponding motors and associated proteins. Vesicles transport cell wall-synthesizing enzymes and accumulate in a special structure, the Spitzenkörper, before traveling further and fusing with the tip membrane. The place of vesicle fusion and growth direction are enabled and defined by the position of the Spitzenkörper, the so-called cell end markers, and other proteins involved in the exocytic process. Also important for tip extension is membrane recycling by endocytosis via early endosomes, which function as multipurpose transport vehicles for mRNA, septins, ribosomes, and peroxisomes. Cell integrity, hyphal branching, and morphogenesis are all processes that are largely dependent on vesicle and cytoskeleton dynamics. When hyphae differentiate structures for asexual or sexual reproduction or to mediate interspecies interactions, the hyphal basic cellular machinery may be reprogrammed through the synthesis of new proteins and/or the modification of protein activity. Although some transcriptional networks involved in such reprogramming of hyphae are well studied in several model filamentous fungi, clear connections between these networks and known determinants of hyphal morphogenesis are yet to be established.
Collapse
Affiliation(s)
- Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Jesús Aguirre
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Salomon Bartnicki-García
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Michael Feldbrügge
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Ursula Fleig
- Institute for Functional Genomics of Microorganisms, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Wilhelm Hansberg
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Jörg Kämper
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Ulrich Kück
- Ruhr University Bochum, Lehrstuhl für Allgemeine und Molekulare Botanik, Bochum, Germany
| | - Rosa R Mouriño-Pérez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Norio Takeshita
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Japan
| | - Reinhard Fischer
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| |
Collapse
|
13
|
Xiang X. Nuclear movement in fungi. Semin Cell Dev Biol 2017; 82:3-16. [PMID: 29241689 DOI: 10.1016/j.semcdb.2017.10.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022]
Abstract
Nuclear movement within a cell occurs in a variety of eukaryotic organisms including yeasts and filamentous fungi. Fungal molecular genetic studies identified the minus-end-directed microtubule motor cytoplasmic dynein as a critical protein for nuclear movement or orientation of the mitotic spindle contained in the nucleus. Studies in the budding yeast first indicated that dynein anchored at the cortex via its anchoring protein Num1 exerts pulling force on an astral microtubule to orient the anaphase spindle across the mother-daughter axis before nuclear division. Prior to anaphase, myosin V interacts with the plus end of an astral microtubule via Kar9-Bim1/EB1 and pulls the plus end along the actin cables to move the nucleus/spindle close to the bud neck. In addition, pushing or pulling forces generated from cortex-linked polymerization or depolymerization of microtubules drive nuclear movements in yeasts and possibly also in filamentous fungi. In filamentous fungi, multiple nuclei within a hyphal segment undergo dynein-dependent back-and-forth movements and their positioning is also influenced by cytoplasmic streaming toward the hyphal tip. In addition, nuclear movement occurs at various stages of fungal development and fungal infection of plant tissues. This review discusses our current understanding on the mechanisms of nuclear movement in fungal organisms, the importance of nuclear positioning and the regulatory strategies that ensure the proper positioning of nucleus/spindle.
Collapse
Affiliation(s)
- Xin Xiang
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD, USA.
| |
Collapse
|
14
|
Dikaryotic fruiting body development in a single dikaryon of Agrocybe aegerita and the spectrum of monokaryotic fruiting types in its monokaryotic progeny. Mycol Prog 2016. [DOI: 10.1007/s11557-016-1221-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Ananthanarayanan V. Activation of the motor protein upon attachment: Anchors weigh in on cytoplasmic dynein regulation. Bioessays 2016; 38:514-25. [PMID: 27143631 DOI: 10.1002/bies.201600002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cytoplasmic dynein is the major minus-end-directed motor protein in eukaryotes, and has functions ranging from organelle and vesicle transport to spindle positioning and orientation. The mode of regulation of dynein in the cell remains elusive, but a tantalising possibility is that dynein is maintained in an inhibited, non-motile state until bound to cargo. In vivo, stable attachment of dynein to the cell membrane via anchor proteins enables dynein to produce force by pulling on microtubules and serves to organise the nuclear material. Anchor proteins of dynein assume diverse structures and functions and differ in their interaction with the membrane. In yeast, the anchor protein has come to the fore as one of the key mediators of dynein activity. In other systems, much is yet to be discovered about the anchors, but future work in this area will prove invaluable in understanding dynein regulation in the cell.
Collapse
|
16
|
Mouriño-Pérez RR, Riquelme M, Callejas-Negrete OA, Galván-Mendoza JI. Microtubules and associated molecular motors in Neurospora crassa. Mycologia 2016; 108:515-27. [PMID: 26951369 DOI: 10.3852/15-323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/02/2016] [Indexed: 11/10/2022]
Abstract
The cytoskeleton provides structure, shape and movement to various cells. Microtubules (MTs) are tubular structures made of α and β-tubulin heterodimers organized in 13 protofilaments, forming a hollow cylinder. A vast group of MT-associated proteins determines the function, behavior and interaction of the MTs with other cellular components. Among these proteins, molecular motors such as the dynein-dynactin complex and kinesin superfamily play roles in MT organization and organelle transport. This article focuses on the MT cytoskeleton and associated molecular motors in the filamentous fungus Neurospora crassa In addition to reviewing current available information for this fungus and contrasting it with knowledge of other fungal species, we present new experimental results that support the role of dynein, dynactin and conventional kinesin in MT organization, dynamics and transport of subcellular structures (nuclei and secretory vesicles). In wild type hyphae of N. crassa, cytoplasmic MTs are arranged longitudinally along hyphae and display a helical curvature. They interlace with one another to form a network throughout the cytoplasm. N. crassa dynein and dynactin mutants have a scant and disorganized MT cytoskeleton, an erratic and reduced Spitzenkörper (Spk) and distorted hyphal morphology. In contrast, hyphae of mutants with defective conventional kinesin exhibit only minor disruptions in MT and Spk organization. Although nuclear positioning is affected in all mutants, the MT-associated motor proteins are not major contributors to nuclear movement during hyphal growth. Cytoplasmic bulk flow is the vehicle for nuclear displacement in growing hyphal regions of N. crassa Motors are involved in nuclei saltatory movements in both retrograde or anterograde direction. In the dynein and kinesin mutants, micro and macrovesicles can reach the Spk, although growth is slightly impaired and the Spk displays an erratic path. Hyphal growth requires MTs, and their associated motors are required for their organization and dynamics and Spk integrity.
Collapse
Affiliation(s)
- Rosa Reyna Mouriño-Pérez
- Departamento de Microbiología. Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE, Ensenada B.C. 22860 Mexico
| | - Meritxell Riquelme
- Departamento de Microbiología. Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE, Ensenada B.C. 22860 Mexico
| | - Olga Alicia Callejas-Negrete
- Departamento de Microbiología. Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE, Ensenada B.C. 22860 Mexico
| | - José Iván Galván-Mendoza
- Unidad de Microscopia Confocal y Multifotónica, CINVESTAV-Zacatenco. San Pedro Zacatenco, 07360 Ciudad de México DF, Mexico
| |
Collapse
|
17
|
Schlunk I, Krause K, Wirth S, Kothe E. A transporter for abiotic stress and plant metabolite resistance in the ectomycorrhizal fungus Tricholoma vaccinum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:19384-19393. [PMID: 25563836 DOI: 10.1007/s11356-014-4044-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/22/2014] [Indexed: 06/04/2023]
Abstract
Fungi exposed to toxic substances including heavy metals, xenobiotics, or secondary metabolites formed by co-occurring plants or other microorganisms require a detoxification system provided by exporters of several classes of transmembrane proteins. In case of mycorrhiza, plant metabolites need to be exported at the plant interface, while the extraradical hyphae may prevent heavy metal uptake, thus acting as a biofilter to the host plant at high environmental concentrations. One major family of such transporter proteins is the multidrug and toxic compound extrusion (MATE) class, a member of which, Mte1, was studied in the ectomycorrhizal fungus Tricholoma vaccinum. Phylogenetic analyses placed the protein in a subgroup of basidiomycete MATE sequences. The gene mte1 was found to be induced during symbiotic interaction. It mediated detoxification of xenobiotics and metal ions such as Cu, Li, Al, and Ni, as well as secondary plant metabolites if heterologously expressed in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Ines Schlunk
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University, Neugasse 25, 07743, Jena, Germany
| | - Katrin Krause
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University, Neugasse 25, 07743, Jena, Germany
| | - Sophia Wirth
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University, Neugasse 25, 07743, Jena, Germany
| | - Erika Kothe
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University, Neugasse 25, 07743, Jena, Germany.
| |
Collapse
|
18
|
Wagner K, Linde J, Krause K, Gube M, Koestler T, Sammer D, Kniemeyer O, Kothe E. Tricholoma vaccinum host communication during ectomycorrhiza formation. FEMS Microbiol Ecol 2015; 91:fiv120. [PMID: 26449385 DOI: 10.1093/femsec/fiv120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2015] [Indexed: 11/14/2022] Open
Abstract
The genome sequence of Tricholoma vaccinum was obtained to predict its secretome in order to elucidate communication of T. vaccinum with its host tree spruce (Picea abies) in interkingdom signaling. The most prominent protein domains within the 206 predicted secreted proteins belong to energy and nutrition (52%), cell wall degradation (19%) and mycorrhiza establishment (9%). Additionally, we found small secreted proteins that show typical features of effectors potentially involved in host communication. From the secretome, 22 proteins could be identified, two of which showed higher protein abundances after spruce root exudate exposure, while five were downregulated in this treatment. The changes in T. vaccinum protein excretion with first recognition of the partner were used to identify small secreted proteins with the potential to act as effectors in the mutually beneficial symbiosis. Our observations support the hypothesis of a complex communication network including a cocktail of communication molecules induced long before physical contact of the partners.
Collapse
Affiliation(s)
- Katharina Wagner
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, 07745 Jena, Germany
| | - Jörg Linde
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Beutenbergstraße 11a, 07745 Jena, Germany
| | - Katrin Krause
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, 07745 Jena, Germany
| | - Matthias Gube
- Soil Science of Temperate Ecosystems, Georg August University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Tina Koestler
- Center for Integrative Bioinformatics Vienna (CIBIV), Max F. Perutz Laboratories, A-1030 Vienna, Austria
| | - Dominik Sammer
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, 07745 Jena, Germany
| | - Olaf Kniemeyer
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute Beutenbergstraße 11a, 07745 Jena, Germany
| | - Erika Kothe
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, 07745 Jena, Germany
| |
Collapse
|
19
|
Brunsch M, Schubert D, Gube M, Ring C, Hanisch L, Linde J, Krause K, Kothe E. Dynein Heavy Chain, Encoded by Two Genes in Agaricomycetes, Is Required for Nuclear Migration in Schizophyllum commune. PLoS One 2015; 10:e0135616. [PMID: 26284622 PMCID: PMC4540427 DOI: 10.1371/journal.pone.0135616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/24/2015] [Indexed: 01/17/2023] Open
Abstract
The white-rot fungus Schizophyllum commune (Agaricomycetes) was used to study the cell biology of microtubular trafficking during mating interactions, when the two partners exchange nuclei, which are transported along microtubule tracks. For this transport activity, the motor protein dynein is required. In S. commune, the dynein heavy chain is encoded in two parts by two separate genes, dhc1 and dhc2. The N-terminal protein Dhc1 supplies the dimerization domain, while Dhc2 encodes the motor machinery and the microtubule binding domain. This split motor protein is unique to Basidiomycota, where three different sequence patterns suggest independent split events during evolution. To investigate the function of the dynein heavy chain, the gene dhc1 and the motor domain in dhc2 were deleted. Both resulting mutants were viable, but revealed phenotypes in hyphal growth morphology and mating behavior as well as in sexual development. Viability of strain Δdhc2 is due to the higher expression of kinesin-2 and kinesin-14, which was proven via RNA sequencing.
Collapse
Affiliation(s)
- Melanie Brunsch
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University, Neugasse 25, 07743, Jena, Germany
| | - Daniela Schubert
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University, Neugasse 25, 07743, Jena, Germany
| | - Matthias Gube
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University, Neugasse 25, 07743, Jena, Germany
| | - Christiane Ring
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University, Neugasse 25, 07743, Jena, Germany
| | - Lisa Hanisch
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University, Neugasse 25, 07743, Jena, Germany
| | - Jörg Linde
- Research Group Systems Biology and Bioinformatics, Leibniz-Institute for Natural Product Research and Infection Biology–Hans-Knöll-Institute, Beutenbergstraße 11a, 07745, Jena, Germany
| | - Katrin Krause
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University, Neugasse 25, 07743, Jena, Germany
| | - Erika Kothe
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University, Neugasse 25, 07743, Jena, Germany
- * E-mail:
| |
Collapse
|
20
|
Manck R, Ishitsuka Y, Herrero S, Takeshita N, Nienhaus GU, Fischer R. Genetic evidence for a microtubule-capture mechanism during polarised growth of Aspergillus nidulans. J Cell Sci 2015; 128:3569-82. [PMID: 26272919 DOI: 10.1242/jcs.169094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 08/10/2015] [Indexed: 12/13/2022] Open
Abstract
The cellular switch from symmetry to polarity in eukaryotes depends on the microtubule (MT) and actin cytoskeletons. In fungi such as Schizosaccharomyces pombe or Aspergillus nidulans, the MT cytoskeleton determines the sites of actin polymerization through cortical cell-end marker proteins. Here we describe A. nidulans MT guidance protein A (MigA) as the first ortholog of the karyogamy protein Kar9 from Saccharomyces cerevisiae in filamentous fungi. A. nidulans MigA interacts with the cortical ApsA protein and is involved in spindle positioning during mitosis. MigA is also associated with septal and nuclear MT organizing centers (MTOCs). Super-resolution photoactivated localization microscopy (PALM) analyses revealed that MigA is recruited to assembling and retracting MT plus ends in an EbA-dependent manner. MigA is required for MT convergence in hyphal tips and plays a role in correct localization of the cell-end markers TeaA and TeaR. In addition, MigA interacts with a class-V myosin, suggesting that an active mechanism exists to capture MTs and to pull the ends along actin filaments. Hence, the organization of MTs and actin depend on each other, and positive feedback loops ensure robust polar growth.
Collapse
Affiliation(s)
- Raphael Manck
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Hertzstrasse 16, Karlsruhe D-76187, Germany
| | - Yuji Ishitsuka
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Physics and Center for Functional Nanostructures, Karlsruhe 76131, Germany
| | - Saturnino Herrero
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Hertzstrasse 16, Karlsruhe D-76187, Germany
| | - Norio Takeshita
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Hertzstrasse 16, Karlsruhe D-76187, Germany University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Ibaraki 305-8572, Japan
| | - G Ulrich Nienhaus
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Physics and Center for Functional Nanostructures, Karlsruhe 76131, Germany
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Department of Microbiology, Hertzstrasse 16, Karlsruhe D-76187, Germany
| |
Collapse
|
21
|
Virágh M, Marton A, Vizler C, Tóth L, Vágvölgyi C, Marx F, Galgóczy L. Insight into the antifungal mechanism of Neosartorya fischeri antifungal protein. Protein Cell 2015; 6:518-28. [PMID: 25994413 PMCID: PMC4491047 DOI: 10.1007/s13238-015-0167-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/10/2015] [Indexed: 11/28/2022] Open
Abstract
Small, cysteine-rich, highly stable antifungal proteins secreted by filamentous Ascomycetes have great potential for the development of novel antifungal strategies. However, their practical application is still limited due to their not fully clarified mode of action. The aim of this work was to provide a deep insight into the antifungal mechanism of Neosartorya fischeri antifungal protein (NFAP), a novel representative of this protein group. Within a short exposure time to NFAP, reduced cellular metabolism, apoptosis induction, changes in the actin distribution and chitin deposition at the hyphal tip were observed in NFAP-sensitive Aspergillus nidulans. NFAP did show neither a direct membrane disrupting-effect nor uptake by endocytosis. Investigation of A. nidulans signalling mutants revealed that NFAP activates the cAMP/protein kinase A pathway via G-protein signalling which leads to apoptosis and inhibition of polar growth. In contrast, NFAP does not have any influence on the cell wall integrity pathway, but an unknown cell wall integrity pathway-independent mitogen activated protein kinase A-activated target is assumed to be involved in the cell death induction. Taken together, it was concluded that NFAP shows similarities, but also differences in its mode of antifungal action compared to two most investigated NFAP-related proteins from Aspergillus giganteus and Penicillium chrysogenum.
Collapse
Affiliation(s)
- Máté Virágh
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
22
|
Fluorescence-Based Methods for the Study of Protein Localization, Interaction, and Dynamics in Filamentous Fungi. Fungal Biol 2015. [DOI: 10.1007/978-3-319-22437-4_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Jeon J, Rho H, Kim S, Kim KS, Lee YH. Role of MoAND1-mediated nuclear positioning in morphogenesis and pathogenicity in the rice blast fungus, Magnaporthe oryzae. Fungal Genet Biol 2014; 69:43-51. [DOI: 10.1016/j.fgb.2014.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 05/13/2014] [Accepted: 05/15/2014] [Indexed: 10/25/2022]
|
24
|
Knabe N, Jung EM, Freihorst D, Hennicke F, Horton JS, Kothe E. A central role for Ras1 in morphogenesis of the basidiomycete Schizophyllum commune. EUKARYOTIC CELL 2013; 12:941-52. [PMID: 23606288 PMCID: PMC3675993 DOI: 10.1128/ec.00355-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/17/2013] [Indexed: 11/20/2022]
Abstract
Fungi have been used as model systems to define general processes in eukaryotes, for example, the one gene-one enzyme hypothesis, as well as to study polar growth or pathogenesis. Here, we show a central role for the regulator protein Ras in a mushroom-forming, filamentous basidiomycete linking growth, pheromone signaling, sexual development, and meiosis to different signal transduction pathways. ras1 and Ras-specific gap1 mutants were generated and used to modify the intracellular activation state of the Ras module. Transformants containing constitutive ras1 alleles (ras1(G12V) and ras1(Q61L)), as well as their compatible mating interactions, did show strong phenotypes for growth (associated with Cdc42 signaling) and mating (associated with mitogen-activated protein kinase signaling). Normal fruiting bodies with abnormal spores exhibiting a reduced germination rate were produced by outcrossing of these mutant strains. Homozygous Δgap1 primordia, expected to experience increased Ras signaling, showed overlapping phenotypes with a block in basidium development and meiosis. Investigation of cyclic AMP (cAMP)-dependent protein kinase A indicated that constitutively active ras1, as well as Δgap1 mutant strains, exhibit a strong increase in Tpk activity. Ras1-dependent, cAMP-mediated signal transduction is, in addition to the known signaling pathways, involved in fruiting body formation in Schizophyllum commune. To integrate these analyses of Ras signaling, microarray studies were performed. Mutant strains containing constitutively active Ras1, deletion of RasGap1, or constitutively active Cdc42 were characterized and compared. At the transcriptome level, specific regulation highlighting the phenotypic differences of the mutants is clearly visible.
Collapse
Affiliation(s)
- Nicole Knabe
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Elke-Martina Jung
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Daniela Freihorst
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Florian Hennicke
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Junior Research Group Fundamental Molecular Biology of Pathogenic Fungi, Jena, Germany
| | - J. Stephen Horton
- Department of Biological Sciences, Science and Engineering Center, Union College, Schenectady, New York, USA
| | - Erika Kothe
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
25
|
Gene expression in human fungal pathogen Coccidioides immitis changes as arthroconidia differentiate into spherules and mature. BMC Microbiol 2013; 13:121. [PMID: 23714098 PMCID: PMC3693894 DOI: 10.1186/1471-2180-13-121] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 05/20/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coccidioides immitis is a dimorphic fungus that causes disease in mammals, including human beings. It grows as a mycelium containing arthroconidia in the soil and in the host arthroconidia differentiates into a unique structure called a spherule. We used a custom open reading frame oligonucleotide microarray to compare the transcriptome of C. immitis mycelia with early (day 2) and late stage (day 8) spherules grown in vitro. All hybridizations were done in quadruplicate and stringent criteria were used to identify significantly differentially expressed genes. RESULTS 22% of C. immitis genes were differentially expressed in either day 2 or day 8 spherules compared to mycelia, and about 12% of genes were differentially expressed comparing the two spherule time points. Oxireductases, including an extracellular superoxide dismutase, were upregulated in spherules and they may be important for defense against oxidative stress. Many signal transduction molecules, including pleckstrin domain proteins, protein kinases and transcription factors were downregulated in day 2 spherules. Several genes involved in sulfur metabolism were downregulated in day 8 spherules compared to day 2 spherules. Transcription of amylase and α (1,3) glucan synthase was upregulated in spherules; these genes have been found to be important for differentiation to yeast in Histoplasma. There were two homologs of 4-hydroxyphenylpyruvate dioxygenase (4-HPPD); transcription of one was up- and the other downregulated. We tested the effect of a 4-HPPD inhibitor, nitisinone, on mycelial and spherule growth and found that it inhibited mycelial but not spherule growth. CONCLUSIONS Transcription of many genes was differentially expressed in the process of arthroconidia to spherule conversion and spherule maturation, as would be expected given the magnitude of the morphologic change. The transcription profile of early stage (day 2) spherules was different than late stage (day 8) endosporulating spherules. In addition, very few genes that are important for spore to yeast conversion in other dimorphic fungi are differentially expressed in C. immitis mycelia and spherules suggesting that dimorphic fungi may have evolved different mechanisms to differentiate from mycelia to tissue invasive forms.
Collapse
|
26
|
Comparative transcriptomics of infectious spores from the fungal pathogen Histoplasma capsulatum reveals a core set of transcripts that specify infectious and pathogenic states. EUKARYOTIC CELL 2013; 12:828-52. [PMID: 23563482 DOI: 10.1128/ec.00069-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Histoplasma capsulatum is a fungal pathogen that infects both healthy and immunocompromised hosts. In regions where it is endemic, H. capsulatum grows in the soil and causes respiratory and systemic disease when inhaled by humans. An interesting aspect of H. capsulatum biology is that it adopts specialized developmental programs in response to its environment. In the soil, it grows as filamentous chains of cells (mycelia) that produce asexual spores (conidia). When the soil is disrupted, conidia aerosolize and are inhaled by mammalian hosts. Inside a host, conidia germinate into yeast-form cells that colonize immune cells and cause disease. Despite the ability of conidia to initiate infection and disease, they have not been explored on a molecular level. We developed methods to purify H. capsulatum conidia, and we show here that these cells germinate into filaments at room temperature and into yeast-form cells at 37°C. Conidia internalized by macrophages germinate into the yeast form and proliferate within macrophages, ultimately lysing the host cells. Similarly, infection of mice with purified conidia is sufficient to establish infection and yield viable yeast-form cells in vivo. To characterize conidia on a molecular level, we performed whole-genome expression profiling of conidia, yeast, and mycelia from two highly divergent H. capsulatum strains. In parallel, we used homology and protein domain analysis to manually annotate the predicted genes of both strains. Analyses of the resultant data defined sets of transcripts that reflect the unique molecular states of H. capsulatum conidia, yeast, and mycelia.
Collapse
|
27
|
Yao X, Zhang J, Zhou H, Wang E, Xiang X. In vivo roles of the basic domain of dynactin p150 in microtubule plus-end tracking and dynein function. Traffic 2011; 13:375-87. [PMID: 22106867 DOI: 10.1111/j.1600-0854.2011.01312.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 11/18/2011] [Accepted: 11/22/2011] [Indexed: 12/22/2022]
Abstract
Microtubule (MT) plus-end-tracking proteins accumulate at MT plus ends for various cellular functions, but their targeting mechanisms are not fully understood (Akhmanova A and Steinmetz MO. Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat Rev Mol Cell Biol 2008;9:309-322.). Here, we tested in the filamentous fungus Aspergillus nidulans the requirement for plus-end localization of dynactin p150, a protein essential for dynein function. Deletion of the N-terminal MT-binding region of p150 significantly diminishes the MT plus-end accumulation of both dynein heavy chain and p150, and causes a partial defect in nuclear distribution. Surprisingly, within the MT-binding region, the basic domain is more critical than the CAP-Gly (cytoskeleton-associated protein glycine-rich) domain for maintaining plus-end tracking of p150, as well as for the functions of dynein in nuclear distribution and early endosome movement. Our results show that the basic domain of A. nidulans p150 is important for p150-MT interaction both in vivo and in vitro, and the basic amino acids within this domain are crucial for the plus-end accumulation of p150 in the wild-type background and for the p150-MT interaction in the ΔkinA (kinesin-1) background. We suggest that the basic amino acids are required for the electrostatic interaction between p150 and MTs, which is important for kinesin-1-mediated plus-end targeting of dynactin and dynein in A. nidulans.
Collapse
Affiliation(s)
- Xuanli Yao
- Department of Biochemistry and Molecular Biology, The Uniformed Services University, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
Eukaryotic cells use cytoskeletal motor proteins to transport many different intracellular cargos. Numerous kinesins and myosins have evolved to cope with the various transport needs that have arisen during eukaryotic evolution. Surprisingly, a single cytoplasmic dynein (a minus end-directed microtubule motor) carries out similarly diverse transport activities as the many different types of kinesin. How is dynein coupled to its wide range of cargos and how is it spatially and temporally regulated? The answer could lie in the several multifunctional adaptors, including dynactin, lissencephaly 1, nuclear distribution protein E (NUDE) and NUDE-like, Bicaudal D, Rod-ZW10-Zwilch and Spindly, that regulate dynein function and localization.
Collapse
|
29
|
Boyce KJ, Schreider L, Andrianopoulos A. In vivo yeast cell morphogenesis is regulated by a p21-activated kinase in the human pathogen Penicillium marneffei. PLoS Pathog 2009; 5:e1000678. [PMID: 19956672 PMCID: PMC2777384 DOI: 10.1371/journal.ppat.1000678] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 10/30/2009] [Indexed: 11/18/2022] Open
Abstract
Pathogens have developed diverse strategies to infect their hosts and evade the host defense systems. Many pathogens reside within host phagocytic cells, thus evading much of the host immune system. For dimorphic fungal pathogens which grow in a multicellular hyphal form, a central attribute which facilitates growth inside host cells without rapid killing is the capacity to switch from the hyphal growth form to a unicellular yeast form. Blocking this transition abolishes or severely reduces pathogenicity. Host body temperature (37°C) is the most common inducer of the hyphal to yeast transition in vitro for many dimorphic fungi, and it is often assumed that this is the inducer in vivo. This work describes the identification and analysis of a new pathway involved in sensing the environment inside a host cell by a dimorphic fungal pathogen, Penicillium marneffei. The pakB gene, encoding a p21-activated kinase, defines this pathway and operates independently of known effectors in P. marneffei. Expression of pakB is upregulated in P. marneffei yeast cells isolated from macrophages but absent from in vitro cultured yeast cells produced at 37°C. Deletion of pakB leads to a failure to produce yeast cells inside macrophages but no effect in vitro at 37°C. Loss of pakB also leads to the inappropriate production of yeast cells at 25°C in vitro, and the mechanism underlying this requires the activity of the central regulator of asexual development. The data shows that this new pathway is central to eliciting the appropriate morphogenetic response by the pathogen to the host environment independently of the common temperature signal, thus clearly separating the temperature- and intracellular-dependent signaling systems. Dimorphic fungal pathogens pose significant health and agricultural problems worldwide. These fungi have the capacity to switch between a multicellular hyphal growth form and a unicellular yeast growth form. Often one form is pathogenic, found in infected hosts, and the other is not. Many dimorphic fungal pathogens of humans produce the yeast form during infection and this form resides within host phagocytic immune cells, where it can tolerate killing by these cells and is not exposed to the acquired immune system. Inhibiting the pathogen's ability to switch growth forms has been shown to block pathogenicity. This study identifies a pathway used by the fungal pathogen to sense the host and switch to the appropriate growth form. This study provides new insights into the molecular mechanisms which are important for pathogenicity and may identify factors which can be targeted to block the ability of the pathogen to successfully reside within host cells.
Collapse
Affiliation(s)
- Kylie J. Boyce
- Department of Genetics, University of Melbourne, Parkville, Victoria, Australia
| | - Lena Schreider
- Department of Genetics, University of Melbourne, Parkville, Victoria, Australia
| | - Alex Andrianopoulos
- Department of Genetics, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
30
|
Cytoplasmic bulk flow propels nuclei in mature hyphae of Neurospora crassa. EUKARYOTIC CELL 2009; 8:1880-90. [PMID: 19684281 DOI: 10.1128/ec.00062-09] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We used confocal microscopy to evaluate nuclear dynamics in mature, growing hyphae of Neurospora crassa whose nuclei expressed histone H1-tagged green fluorescent protein (GFP). In addition to the H1-GFP wild-type (WT) strain, we examined nuclear displacement (passive transport) in four mutants deficient in microtubule-related motor proteins (ro-1, ro-3, kin-1, and a ro-1 kin-1 double mutant). We also treated the WT strain with benomyl and cytochalasin A to disrupt microtubules and actin microfilaments, respectively. We found that the degree of nuclear displacement in the subapical regions of all strains correlated with hyphal elongation rate. The WT strain and that the ro-1 kin-1 double mutant showed the highest correlation between nuclear movement and hyphal elongation. Although most nuclei seemed to move forward passively, presumably carried by the cytoplasmic bulk flow, a small proportion of the movement detected was either retrograde or accelerated anterograde. The absence of a specific microtubule motor in the mutants ro-1, ro-3, or kin-1 did not prevent the anterograde and retrograde migration of nuclei; however, in the ro-1 kin-1 double mutant retrograde migration was absent. In the WT strain, almost all nuclei were elongated, whereas in all other strains a majority of nuclei were nearly spherical. With only one exception, a sizable exclusion zone was maintained between the apex and the leading nucleus. The ro-1 mutant showed the largest nucleus exclusion zone; only the treatment with cytochalasin A abolished the exclusion zone. In conclusion, the movement and distribution of nuclei in mature hyphae appear to be determined by a combination of forces, with cytoplasmic bulk flow being a major determinant. Motor proteins probably play an active role in powering the retrograde or accelerated anterograde migrations of nuclei and may also contribute to passive anterograde displacement by binding nuclei to microtubules.
Collapse
|
31
|
Mucha J, Zadworny M, Werner A. Cytoskeleton and mitochondrial morphology of saprotrophs and the pathogen Heterobasidion annosum in the presence of Suillus bovinus metabolites. ACTA ACUST UNITED AC 2009; 113:981-90. [PMID: 19539761 DOI: 10.1016/j.mycres.2009.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 06/06/2009] [Accepted: 06/09/2009] [Indexed: 11/28/2022]
Abstract
Ectomycorrhizal fungi are known to synthesize antifungal compounds both in vitro and in symbiosis with the host-plants. Culture filtrates of the ectomycorrhizal fungus Suillus bovinus (at pHs of 2.5-6) showed antifungal activity towards saprotrophs Trichoderma harzianum, and Trichoderma virens and the pathogen Heterobasidion annosum, by significantly suppressing their growth relative to sterile liquid medium at the same pHs. In the presence of the culture filtrates, hyphae of the saprotrophs and the pathogen were characterized by distensions, irregular and frequent branching, tip damage and cytoplasm coagulation. Since hyphal abnormalities may be evoked by disruptions in the cytoskeleton and mitochondria, their structural changes were also examined. Depolymerization of microtubules was confirmed for all of the fungi. Serious damage to mitochondria morphology may cause significant functional impairment. Growth of mycelia was inhibited in the lower pH S. bovinus culture filtrate, and the mitochondrial morphology was altered. This suggests that the activity of antifungal compounds synthesized by ectomycorrhizal fungus is significantly affected by pH.
Collapse
Affiliation(s)
- Joanna Mucha
- Laboratory of Root System Pathology, Institute of Dendrology, Polish Academy of Science, Parkowa 5, 62-035 Kórnik, Poland.
| | | | | |
Collapse
|
32
|
Bagniewska-Zadworna A. The root microtubule cytoskeleton and cell cycle analysis through desiccation of Brassica napus seedlings. PROTOPLASMA 2008; 233:177-185. [PMID: 18568382 DOI: 10.1007/s00709-008-0001-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 03/27/2008] [Indexed: 05/26/2023]
Abstract
Desiccation tolerance (DT) of orthodox seeds is reduced upon their germination. The main aim of this study was to estimate the range of rape seedling DT by examining the consequences of desiccation on the distribution, stability and orientation of microtubules in diverse cells. Using different parameters, such as relative water content (RWC), the tetrazolium viability test and electrolyte leakage, it has been demonstrated that a small percentage decrease in relative humidity can cause irreparable changes in membrane permeability, as well as in nuclear structure and microtubule cytoskeleton stability. Seedling root tips survived when exposed to low desiccation stress intensity, but small changes in microtubule behavior were observed. Cortical microtubules formed thick arrays, especially near the plasma membrane. Water loss also resulted in a reduction of the mitotic activity. More rapid desiccation caused microtubule depolymerization. Occasionally, abnormal tubulin aggregates were visible. Cell divisions were not detectable under these conditions. Due to the observable microtubule defects, the hypersensitivity of the microtubule cytoskeleton might be a useful and simple parameter for estimating environmental stress intensity.
Collapse
|
33
|
Soanes DM, Alam I, Cornell M, Wong HM, Hedeler C, Paton NW, Rattray M, Hubbard SJ, Oliver SG, Talbot NJ. Comparative genome analysis of filamentous fungi reveals gene family expansions associated with fungal pathogenesis. PLoS One 2008; 3:e2300. [PMID: 18523684 PMCID: PMC2409186 DOI: 10.1371/journal.pone.0002300] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 04/15/2008] [Indexed: 12/30/2022] Open
Abstract
Fungi and oomycetes are the causal agents of many of the most serious diseases of plants. Here we report a detailed comparative analysis of the genome sequences of thirty-six species of fungi and oomycetes, including seven plant pathogenic species, that aims to explore the common genetic features associated with plant disease-causing species. The predicted translational products of each genome have been clustered into groups of potential orthologues using Markov Chain Clustering and the data integrated into the e-Fungi object-oriented data warehouse (http://www.e-fungi.org.uk/). Analysis of the species distribution of members of these clusters has identified proteins that are specific to filamentous fungal species and a group of proteins found only in plant pathogens. By comparing the gene inventories of filamentous, ascomycetous phytopathogenic and free-living species of fungi, we have identified a set of gene families that appear to have expanded during the evolution of phytopathogens and may therefore serve important roles in plant disease. We have also characterised the predicted set of secreted proteins encoded by each genome and identified a set of protein families which are significantly over-represented in the secretomes of plant pathogenic fungi, including putative effector proteins that might perturb host cell biology during plant infection. The results demonstrate the potential of comparative genome analysis for exploring the evolution of eukaryotic microbial pathogenesis.
Collapse
Affiliation(s)
- Darren M. Soanes
- School of Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| | - Intikhab Alam
- School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Mike Cornell
- School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Han Min Wong
- School of Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| | - Cornelia Hedeler
- School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Norman W. Paton
- School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Magnus Rattray
- School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Simon J. Hubbard
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Stephen G. Oliver
- Department of Biochemistry, University of Cambridge, Sanger Building, Cambridge, United Kingdom
| | - Nicholas J. Talbot
- School of Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
34
|
Fischer R, Zekert N, Takeshita N. Polarized growth in fungi--interplay between the cytoskeleton, positional markers and membrane domains. Mol Microbiol 2008; 68:813-26. [PMID: 18399939 DOI: 10.1111/j.1365-2958.2008.06193.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One kind of the most extremely polarized cells in nature are the indefinitely growing hyphae of filamentous fungi. A continuous flow of secretion vesicles from the hyphal cell body to the growing hyphal tip is essential for cell wall and membrane extension. Because microtubules (MT) and actin, together with their corresponding motor proteins, are involved in the process, the arrangement of the cytoskeleton is a crucial step to establish and maintain polarity. In Saccharomyces cerevisiae and Schizosaccharomyces pombe, actin-mediated vesicle transportation is sufficient for polar cell extension, but in S. pombe, MTs are in addition required for the establishment of polarity. The MT cytoskeleton delivers the so-called cell-end marker proteins to the cell pole, which in turn polarize the actin cytoskeleton. Latest results suggest that this scenario may principally be conserved from S. pombe to filamentous fungi. In addition, in filamentous fungi, MTs could provide the tracks for long-distance vesicle movement. In this review, we will compare the interaction of the MT and the actin cytoskeleton and their relation to the cortex between yeasts and filamentous fungi. In addition, we will discuss the role of sterol-rich membrane domains in combination with cell-end marker proteins for polarity establishment.
Collapse
Affiliation(s)
- Reinhard Fischer
- Department of Applied Microbiology, University of Karlsruhe, Hertzstrasse 16, D-76187 Karlsruhe, Germany
| | | | | |
Collapse
|
35
|
Boyce KJ, Andrianopoulos A. A p21-activated kinase is required for conidial germination in Penicillium marneffei. PLoS Pathog 2008; 3:e162. [PMID: 17983267 PMCID: PMC2048533 DOI: 10.1371/journal.ppat.0030162] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 09/19/2007] [Indexed: 11/18/2022] Open
Abstract
Asexual spores (conidia) are the infectious propagules of many pathogenic fungi, and the capacity to sense the host environment and trigger conidial germination is a key pathogenicity determinant. Germination of conidia requires the de novo establishment of a polarised growth axis and consequent germ tube extension. The molecular mechanisms that control polarisation during germination are poorly understood. In the dimorphic human pathogenic fungus Penicillium marneffei, conidia germinate to produce one of two cell types that have very different fates in response to an environmental cue. At 25 degrees C, conidia germinate to produce the saprophytic cell type, septate, multinucleate hyphae that have the capacity to undergo asexual development. At 37 degrees C, conidia germinate to produce the pathogenic cell type, arthroconidiating hyphae that liberate uninucleate yeast cells. This study shows that the p21-activated kinase pakA is an essential component of the polarity establishment machinery during conidial germination and polarised growth of yeast cells at 37 degrees C but is not required for germination or polarised growth at 25 degrees C. Analysis shows that the heterotrimeric G protein alpha subunit GasC and the CDC42 orthologue CflA lie upstream of PakA for germination at both temperatures, while the Ras orthologue RasA only functions at 25 degrees C. These findings suggest that although some proteins that regulate the establishment of polarised growth in budding yeast are conserved in filamentous fungi, the circuitry and downstream effectors are differentially regulated to give rise to distinct cell types.
Collapse
Affiliation(s)
- Kylie J Boyce
- Department of Genetics, University of Melbourne, Victoria, Australia
| | | |
Collapse
|
36
|
Zadworny M, Tuszyńska S, Samardakiewicz S, Werner A. Effects of mutual interaction of Laccaria laccata with Trichoderma harzianum and T. virens on the morphology of microtubules and mitochondria. PROTOPLASMA 2008; 232:45-53. [PMID: 18176836 DOI: 10.1007/s00709-007-0276-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 05/23/2007] [Indexed: 05/25/2023]
Abstract
Organelles are known to respond to challenges caused by many stress factors. The morphology of the microtubular cytoskeleton and mitochondria during mutual interaction in coculture of Laccaria laccata with Trichoderma harzianum and T. virens were examined. Hyphae from the interaction region were sampled between 4 and 12 days of growth. Microtubules were labelled with a specific antibody and mitochondria with 3,3'-dihexyloxacarbocyanine iodide, and the organelles were examined microscopically. The morphology of microtubules and mitochondria were similar in all three fungi. Microtubules were arranged in long arrays parallel to the hyphal axis and mitochondria formed an interconnected network. In hyphae growing within the interaction zone, microtubules became wavy and eventually fragmented or depolymerised, and mitochondria also became fragmented. The effects were time-dependent. In general, the organelles of all three fungi were affected during the interaction, but L. laccata was affected the least and to the same extent by each of the saprotrophic fungi. The saprotrophic fungi were affected by L. laccata to a similar extent at 4 and 8 days of interaction. Our results suggest that the studied fungi antagonistically affect each other at the cellular level, although the mechanisms involved remain to be elucidated.
Collapse
Affiliation(s)
- M Zadworny
- Laboratory of Root Pathology, Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland.
| | | | | | | |
Collapse
|
37
|
Perkhofer S, Niederegger H, Blum G, Burgstaller W, Ledochowski M, Dierich MP, Lass-Flörl C. Interaction of 5-hydroxytryptamine (serotonin) against Aspergillus spp. in vitro. Int J Antimicrob Agents 2007; 29:424-9. [PMID: 17276041 PMCID: PMC3010239 DOI: 10.1016/j.ijantimicag.2006.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Revised: 11/22/2006] [Accepted: 12/02/2006] [Indexed: 10/23/2022]
Abstract
This study examined the direct interaction of serotonin (5-hydroxytryptamine (5-HT)) with Aspergillus species. Accumulation of 5-HT in aspergilli was investigated by immunofluorescence staining and laser confocal scanning microscopy. The influence of 5-HT on fungal ergosterol content, cell membrane integrity, fungal growth and hyphal elongation was determined. 5-HT was localised in the cytoplasm of Aspergillus spp., as 5-HT fluorescent signals appeared after 30min at 4 degrees C and in the presence of inhibitors of oxidative phosphorylation. 5-HT treatment of Aspergillus spp. significantly affected ergosterol synthesis, fungal cell membrane integrity and hyphal elongation (P<0.05). 5-HT treatment for 4h resulted in a lag of re-growth (post-antifungal effect). In conclusion, our findings suggest that 5-HT affects hyphal growth and diminishes fungal cell membrane integrity.
Collapse
Affiliation(s)
- Susanne Perkhofer
- Department of Hygiene, Microbiology and Social Medicine, Medical University Innsbruck, Austria.
| | | | | | | | | | | | | |
Collapse
|
38
|
Yamashita A, Yamamoto M. Fission yeast Num1p is a cortical factor anchoring dynein and is essential for the horse-tail nuclear movement during meiotic prophase. Genetics 2006; 173:1187-96. [PMID: 16624923 PMCID: PMC1526665 DOI: 10.1534/genetics.105.050062] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
During meiotic prophase in the fission yeast Schizosaccharomyces pombe, the nucleus oscillates between the two ends of a cell. This oscillatory nuclear movement is important to promote accurate pairing of homologous chromosomes and requires cytoplasmic dynein. Dynein accumulates at the points where microtubule plus ends contact the cell cortex and generate a force to drive nuclear oscillation. However, it remains poorly understood how dynein associates with the cell cortex. Here we show that S. pombe Num1p functions as a cortical-anchoring factor for dynein. Num1p is expressed in a meiosis-specific manner and localized to the cell cortex through its C-terminal PH domain. The num1 deletion mutant shows microtubule dynamics comparable to that in the wild type. However, it lacks cortical accumulation of dynein and is defective in the nuclear oscillation as is the case for the dynein mutant. We also show that Num1p can recruit dynein independently of the CLIP-170 homolog Tip1p.
Collapse
Affiliation(s)
- Akira Yamashita
- Molecular Genetics Research Laboratory, University of Tokyo, Japan
| | | |
Collapse
|
39
|
Saito TT, Okuzaki D, Nojima H. Mcp5, a meiotic cell cortex protein, is required for nuclear movement mediated by dynein and microtubules in fission yeast. ACTA ACUST UNITED AC 2006; 173:27-33. [PMID: 16585273 PMCID: PMC2063782 DOI: 10.1083/jcb.200512129] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During meiotic prophase I of the fission yeast Schizosaccharomyces pombe, oscillatory nuclear movement occurs. This promotes homologous chromosome pairing and recombination and involves cortical dynein, which plays a pivotal role by generating a pulling force with the help of an unknown dynein anchor. We show that Mcp5, the homologue of the budding yeast dynein anchor Num1, may be this putative dynein anchor. mcp5+ is predominantly expressed during meiotic prophase, and GFP-Mcp5 localizes at the cell cortex. Moreover, the mcp5Δ strain lacks the oscillatory nuclear movement. Accordingly, homologous pairing and recombination rates of the mcp5Δ strain are significantly reduced. Furthermore, the cortical localization of dynein heavy chain 1 appears to be reduced in mcp5Δ cells. Finally, the full function of Mcp5 requires its coiled-coil and pleckstrin homology (PH) domains. Our results suggest that Mcp5 localizes at the cell cortex through its PH domain and functions as a dynein anchor, thereby facilitating nuclear oscillation.
Collapse
Affiliation(s)
- Takamune T Saito
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
40
|
Efimov VP, Zhang J, Xiang X. CLIP-170 homologue and NUDE play overlapping roles in NUDF localization in Aspergillus nidulans. Mol Biol Cell 2006; 17:2021-34. [PMID: 16467375 PMCID: PMC1415284 DOI: 10.1091/mbc.e05-11-1084] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Proteins in the cytoplasmic dynein pathway accumulate at the microtubule plus end, giving the appearance of comets when observed in live cells. The targeting mechanism for NUDF (LIS1/Pac1) of Aspergillus nidulans, a key component of the dynein pathway, has not been clear. Previous studies have demonstrated physical interactions of NUDF/LIS1/Pac1 with both NUDE/NUDEL/Ndl1 and CLIP-170/Bik1. Here, we have identified the A. nidulans CLIP-170 homologue, CLIPA. The clipA deletion did not cause an obvious nuclear distribution phenotype but affected cytoplasmic microtubules in an unexpected manner. Although more microtubules failed to undergo long-range growth toward the hyphal tip at 32 degrees C, those that reached the hyphal tip were less likely to undergo catastrophe. Thus, in addition to acting as a growth-promoting factor, CLIPA also promotes microtubule dynamics. In the absence of CLIPA, green fluorescent protein-labeled cytoplasmic dynein heavy chain, p150(Glued) dynactin, and NUDF were all seen as plus-end comets at 32 degrees C. However, under the same conditions, deletion of both clipA and nudE almost completely abolished NUDF comets, although nudE deletion itself did not cause a dramatic change in NUDF localization. Based on these results, we suggest that CLIPA and NUDE both recruit NUDF to the microtubule plus end. The plus-end localization of CLIPA itself seems to be regulated by different mechanisms under different physiological conditions. Although the KipA kinesin (Kip2/Tea2 homologue) did not affect plus-end localization of CLIPA at 32 degrees C, it was required for enhancing plus-end accumulation of CLIPA at an elevated temperature (42 degrees C).
Collapse
Affiliation(s)
- Vladimir P Efimov
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
41
|
Deng Y, Dong H, Jin Q, Dai C, Fang Y, Liang S, Wang K, Shao J, Lou Y, Shi W, Vakalounakis DJ, Li D. Analysis of expressed sequence tag data and gene expression profiles involved in conidial germination of Fusarium oxysporum. Appl Environ Microbiol 2006; 72:1667-71. [PMID: 16461724 PMCID: PMC1392917 DOI: 10.1128/aem.72.2.1667-1671.2006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Accepted: 11/08/2005] [Indexed: 11/20/2022] Open
Abstract
We obtained 3,372 tentative unique transcripts (TUTs) from a cDNA library of Fusarium oxysporum. A cDNA array with 3,158 TUTs was produced to analyze gene expression profiles in conidial germination. It seems that ras and other signaling genes, e.g., ccg, cooperatively initiate conidial germination in Fusarium by increasing protein synthesis.
Collapse
Affiliation(s)
- Ye Deng
- Bioinformatics and Gene Network Research Group, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Veith D, Scherr N, Efimov VP, Fischer R. Role of the spindle-pole-body protein ApsB and the cortex protein ApsA in microtubule organization and nuclear migration in Aspergillus nidulans. J Cell Sci 2006; 118:3705-16. [PMID: 16105883 DOI: 10.1242/jcs.02501] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Nuclear migration and positioning in Aspergillus nidulans depend on microtubules, the microtubule-dependent motor protein dynein, and auxiliary proteins, two of which are ApsA and ApsB. In apsA and apsB mutants nuclei are clustered and show various kinds of nuclear navigation defects, although nuclear migration itself is still possible. We studied the role of several components involved in nuclear migration through in vivo fluorescence microscopy using fluorescent-protein tagging. Because ApsA localizes to the cell cortex and mitotic spindles were immobile in apsA mutants, we suggest that astral microtubule-cortex interactions are necessary for oscillation and movement of mitotic spindles along hyphae, but not for post-mitotic nuclear migration. Mutation of apsA resulted in longer and curved microtubules and displayed synthetic lethality in combination with the conventional kinesin mutation DeltakinA. By contrast, ApsB localized to spindle-pole bodies (the fungal centrosome), to septa and to spots moving rapidly along microtubules. The number of cytoplasmic microtubules was reduced in apsB mutants in comparison to the wild type, indicating that cytoplasmic microtubule nucleation was affected, whereas mitotic spindle formation appeared normal. Mutation of apsB suppressed dynein null mutants, whereas apsA mutation had no effect. We suggest that nuclear positioning defects in the apsA and apsB mutants are due to different effects on microtbule organisation. A model of spindle-pole body led nuclear migration and the roles of dynein and microtubules are discussed.
Collapse
Affiliation(s)
- Daniel Veith
- Max-Planck-Institute for Terrestrial Microbiology, Department of Biochemistry, Karl-von Frisch Str., 35043 Marburg, Germany
| | | | | | | |
Collapse
|
43
|
Rischitor PE, Konzack S, Fischer R. The Kip3-like kinesin KipB moves along microtubules and determines spindle position during synchronized mitoses in Aspergillus nidulans hyphae. EUKARYOTIC CELL 2005; 3:632-45. [PMID: 15189985 PMCID: PMC420139 DOI: 10.1128/ec.3.3.632-645.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Kinesins are motor proteins which are classified into 11 different families. We identified 11 kinesin-like proteins in the genome of the filamentous fungus Aspergillus nidulans. Relatedness analyses based on the motor domains grouped them into nine families. In this paper, we characterize KipB as a member of the Kip3 family of microtubule depolymerases. The closest homologues of KipB are Saccharomyces cerevisiae Kip3 and Schizosaccharomyces pombe Klp5 and Klp6, but sequence similarities outside the motor domain are very low. A disruption of kipB demonstrated that it is not essential for vegetative growth. kipB mutant strains were resistant to high concentrations of the microtubule-destabilizing drug benomyl, suggesting that KipB destabilizes microtubules. kipB mutations caused a failure of spindle positioning in the cell, a delay in mitotic progression, an increased number of bent mitotic spindles, and a decrease in the depolymerization of cytoplasmic microtubules during interphase and mitosis. Meiosis and ascospore formation were not affected. Disruption of the kipB gene was synthetically lethal in combination with the temperature-sensitive mitotic kinesin motor mutation bimC4, suggesting an important but redundant role of KipB in mitosis. KipB localized to cytoplasmic, astral, and mitotic microtubules in a discontinuous pattern, and spots of green fluorescent protein moved along microtubules toward the plus ends.
Collapse
|
44
|
Ishi K, Maruyama JI, Juvvadi PR, Nakajima H, Kitamoto K. Visualizing nuclear migration during conidiophore development in Aspergillus nidulans and Aspergillus oryzae: multinucleation of conidia occurs through direct migration of plural nuclei from phialides and confers greater viability and early germination in Aspergillus oryzae. Biosci Biotechnol Biochem 2005; 69:747-54. [PMID: 15849413 DOI: 10.1271/bbb.69.747] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nuclear migration is indispensable for normal growth, differentiation, and development, and has been studied in several fungi including Aspergillus nidulans and Neurospora crassa. To better characterize nuclear movement and its consequences during conidiophore development, conidiation, and conidial germination, we performed confocal microscopy and time-lapse imaging on A. nidulans and Aspergillus oryzae strains expressing the histone H2B-EGFP fusion protein. Active trafficking of nuclei from a vesicle to a phialide and subsequently into a conidium provided the mechanistic basis for the formation of multinucleate conidia in A. oryzae. In particular, the first direct visual evidence on multinucleate conidium formation by the migration of nuclei from a phialide into the conidium, rather than by mitotic division in a newly formed conidium, was obtained. Interestingly, a statistical analysis on conidial germination revealed that conidia with more nuclei germinated earlier than those with fewer nuclei. Moreover, multinucleation of conidia conferred greater viability and resistance to UV-irradiation and freeze-thaw treatment.
Collapse
Affiliation(s)
- Kazutomo Ishi
- Department of Biotechnology, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
45
|
Bouhouche K, Zickler D, Debuchy R, Arnaise S. Altering a gene involved in nuclear distribution increases the repeat-induced point mutation process in the fungus Podospora anserina. Genetics 2005; 167:151-9. [PMID: 15166143 PMCID: PMC1470861 DOI: 10.1534/genetics.167.1.151] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Repeat-induced point mutation (RIP) is a homology-dependent gene-silencing mechanism that introduces C:G-to-T:A transitions in duplicated DNA segments. Cis-duplicated sequences can also be affected by another mechanism called premeiotic recombination (PR). Both are active over the sexual cycle of some filamentous fungi, e.g., Neurospora crassa and Podospora anserina. During the sexual cycle, several developmental steps require precise nuclear movement and positioning, but connections between RIP, PR, and nuclear distributions have not yet been established. Previous work has led to the isolation of ami1, the P. anserina ortholog of the Aspergillus nidulans apsA gene, which is required for nuclear positioning. We show here that ami1 is involved in nuclear distribution during the sexual cycle and that alteration of ami1 delays the fruiting-body development. We also demonstrate that ami1 alteration affects loss of transgene functions during the sexual cycle. Genetically linked multiple copies of transgenes are affected by RIP and PR much more frequently in an ami1 mutant cross than in a wild-type cross. Our results suggest that the developmental slowdown of the ami1 mutant during the period of RIP and PR increases time exposure to the duplication detection system and thus increases the frequency of RIP and PR.
Collapse
Affiliation(s)
- Khaled Bouhouche
- Institut de Génétique et Microbiologie, UMR CNRS Université 8621, Université Paris-Sud, F-91405 Orsay Cedex, France
| | | | | | | |
Collapse
|
46
|
Konzack S, Rischitor PE, Enke C, Fischer R. The role of the kinesin motor KipA in microtubule organization and polarized growth of Aspergillus nidulans. Mol Biol Cell 2004; 16:497-506. [PMID: 15563609 PMCID: PMC545884 DOI: 10.1091/mbc.e04-02-0083] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Polarized growth in filamentous fungi requires the integrity of the microtubule (MT) cytoskeleton. We found that growing MTs in Aspergillus nidulans merge at the center of fast growing tips and discovered that a kinesin motor protein, KipA, related to Tea2p of Schizosaccharomyces pombe, is required for this process. In a DeltakipA strain, MT plus ends reach the tip but show continuous lateral movement. Hyphae lose directionality and grow in curves, apparently due to mislocalization of the vesicle supply center (Spitzenkörper) in the apex. Green fluorescent protein (GFP)-KipA accumulates at MT plus ends, whereas a KipA rigor mutant protein, GFP-KipA(G223E), coated MTs evenly. These findings suggest that KipA requires its intrinsic motor activity to reach the MT plus end. Using KipA as an MT plus-end marker, we found bidirectional organization of MTs and determined the locations of microtubule organizing centers at nuclei, in the cytoplasm, and at septa.
Collapse
Affiliation(s)
- Sven Konzack
- Department of Microbiology, University of Marburg, Max-Planck-Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | | | | | | |
Collapse
|
47
|
Oberparleiter C, Kaiserer L, Haas H, Ladurner P, Andratsch M, Marx F. Active internalization of the Penicillium chrysogenum antifungal protein PAF in sensitive aspergilli. Antimicrob Agents Chemother 2004; 47:3598-601. [PMID: 14576124 PMCID: PMC253792 DOI: 10.1128/aac.47.11.3598-3601.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Penicillium chrysogenum antifungal protein PAF inhibits the growth of various filamentous fungi. In this study, PAF was found to localize to the cytoplasm of sensitive aspergilli by indirect immunofluorescence staining. The internalization process required active metabolism and ATP and was prevented by latrunculin B, suggesting an endocytotic mechanism.
Collapse
|
48
|
Abstract
Cytoplasmic dynein is a microtubule motor that mediates various biological processes, including nuclear migration and organelle transport, by moving on microtubules while associated with various cellular structures. The association of dynein with cellular structures and the activation of its motility are crucial steps in dynein-dependent processes. However, the mechanisms involved remain largely unknown. In fungi, dynein is required for nuclear migration. In budding yeast, nuclear migration is driven by the interaction of astral microtubules with the cell cortex; the interaction is mediated by dynein that is probably associated with the cortex. Recent studies suggest that budding yeast dynein is first recruited to microtubules, then delivered to the cortex by microtubules and finally activated by association with the cortex. Nuclear migration in many other fungi is probably driven by a similar mechanism. Recruitment of dynein to microtubules and its subsequent activation upon association with cellular structures are perhaps common to many dynein-dependent eukaryotic processes, including organelle transport.
Collapse
Affiliation(s)
- Ayumu Yamamoto
- CREST Research Project, Kansai Advanced Research Center, Communications Research Laboratory, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan.
| | | |
Collapse
|
49
|
Xiang X, Fischer R. Nuclear migration and positioning in filamentous fungi. Fungal Genet Biol 2004; 41:411-9. [PMID: 14998524 DOI: 10.1016/j.fgb.2003.11.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Accepted: 11/18/2003] [Indexed: 01/22/2023]
Abstract
Genetic analyses of nuclear distribution mutants have indicated that functions of the microtubule motor, cytoplasmic dynein, and its regulators are important for nuclear positioning in filamentous fungi. Here we review these studies and also present the need to further dissect how dynein and its associated microtubule cytoskeleton are involved mechanistically in nuclear positioning in the multinucleated hyphae.
Collapse
Affiliation(s)
- Xin Xiang
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | |
Collapse
|
50
|
Maruyama JI, Nakajima H, Kitamoto K. Novel role of cytoplasmic dynein motor in maintenance of the nuclear number in conidia through organized conidiation in Aspergillus oryzae. Biochem Biophys Res Commun 2003; 307:900-6. [PMID: 12878196 DOI: 10.1016/s0006-291x(03)01267-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cytoplasmic dynein is a minus-end-directed, microtubule-dependent motor protein complex. DhcA, cytoplasmic dynein heavy chain in Aspergillus oryzae, contained four P-loops involved in ATP binding which were conserved as in cytoplasmic dynein heavy chains of other organisms. The amino acid sequence of A. oryzae DhcA was similar to cytoplasmic dynein heavy chains from other organisms except for the N-terminus of Saccharomyces cerevisiae Dyn1. Disruption of dhcA gene in the region encoding four P-loop motifs resulted in a defective growth and perturbed distribution of nuclei and vacuoles. The dhcA disruptant exhibited an abnormal morphology of conidial heads and conidia with an increased nuclear number. The present study implicates a novel role of cytoplasmic dynein in maintenance of the nuclear number in conidia through an organized conidiation.
Collapse
Affiliation(s)
- Jun-ichi Maruyama
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | |
Collapse
|