1
|
Mahalingan KK, Grotjahn DA, Li Y, Lander GC, Zehr EA, Roll-Mecak A. Structural basis for α-tubulin-specific and modification state-dependent glutamylation. Nat Chem Biol 2024; 20:1493-1504. [PMID: 38658656 PMCID: PMC11529724 DOI: 10.1038/s41589-024-01599-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/06/2024] [Indexed: 04/26/2024]
Abstract
Microtubules have spatiotemporally complex posttranslational modification patterns. Tubulin tyrosine ligase-like (TTLL) enzymes introduce the most prevalent modifications on α-tubulin and β-tubulin. How TTLLs specialize for specific substrate recognition and ultimately modification-pattern generation is largely unknown. TTLL6, a glutamylase implicated in ciliopathies, preferentially modifies tubulin α-tails in microtubules. Cryo-electron microscopy, kinetic analysis and single-molecule biochemistry reveal an unprecedented quadrivalent recognition that ensures simultaneous readout of microtubule geometry and posttranslational modification status. By binding to a β-tubulin subunit, TTLL6 modifies the α-tail of the longitudinally adjacent tubulin dimer. Spanning two tubulin dimers along and across protofilaments (PFs) ensures fidelity of recognition of both the α-tail and the microtubule. Moreover, TTLL6 reads out and is stimulated by glutamylation of the β-tail of the laterally adjacent tubulin dimer, mediating crosstalk between α-tail and β-tail. This positive feedback loop can generate localized microtubule glutamylation patterns. Our work uncovers general principles that generate tubulin chemical and topographic complexity.
Collapse
Affiliation(s)
- Kishore K Mahalingan
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Danielle A Grotjahn
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute La Jolla, La Jolla, CA, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute La Jolla, La Jolla, CA, USA
| | - Elena A Zehr
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
- Biochemistry & Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| |
Collapse
|
2
|
Algül S, Dorsch LM, Sorop O, Vink A, Michels M, Dos Remedios CG, Dalinghaus M, Merkus D, Duncker DJ, Kuster DWD, van der Velden J. The microtubule signature in cardiac disease: etiology, disease stage, and age dependency. J Comp Physiol B 2023; 193:581-595. [PMID: 37644284 PMCID: PMC10533615 DOI: 10.1007/s00360-023-01509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/31/2023]
Abstract
Employing animal models to study heart failure (HF) has become indispensable to discover and test novel therapies, but their translatability remains challenging. Although cytoskeletal alterations are linked to HF, the tubulin signature of common experimental models has been incompletely defined. Here, we assessed the tubulin signature in a large set of human cardiac samples and myocardium of animal models with cardiac remodeling caused by pressure overload, myocardial infarction or a gene defect. We studied levels of total, acetylated, and detyrosinated α-tubulin and desmin in cardiac tissue from hypertrophic (HCM) and dilated cardiomyopathy (DCM) patients with an idiopathic (n = 7), ischemic (n = 7) or genetic origin (n = 59), and in a pressure-overload concentric hypertrophic pig model (n = 32), pigs with a myocardial infarction (n = 28), mature pigs (n = 6), and mice (n = 15) carrying the HCM-associated MYBPC32373insG mutation. In the human samples, detyrosinated α-tubulin was increased 4-fold in end-stage HCM and 14-fold in pediatric DCM patients. Acetylated α-tubulin was increased twofold in ischemic patients. Across different animal models, the tubulin signature remained mostly unaltered. Only mature pigs were characterized by a 0.5-fold decrease in levels of total, acetylated, and detyrosinated α-tubulin. Moreover, we showed increased desmin levels in biopsies from NYHA class II HCM patients (2.5-fold) and the pressure-overload pig model (0.2-0.3-fold). Together, our data suggest that desmin levels increase early on in concentric hypertrophy and that animal models only partially recapitulate the proliferated and modified tubulin signature observed clinically. Our data warrant careful consideration when studying maladaptive responses to changes in the tubulin content in animal models.
Collapse
Affiliation(s)
- Sıla Algül
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 Building, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands.
| | - Larissa M Dorsch
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 Building, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Oana Sorop
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Aryan Vink
- Department of Pathology, University Medical Center, Utrecht, The Netherlands
| | - Michelle Michels
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Cristobal G Dos Remedios
- Mechanobiology Laboratory at Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia
| | - Michiel Dalinghaus
- Department of Pediatric Cardiology, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 Building, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, O2 Building, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Zhang R, Wu Z, Li M, Yang J, Cheng R, Hu T. Canonical and noncanonical pyroptosis are both activated in periodontal inflammation and bone resorption. J Periodontal Res 2022; 57:1183-1197. [PMID: 36146901 DOI: 10.1111/jre.13055] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/04/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND OBJECTIVE Pyroptosis has both a caspase-1-dependent canonical pathway and a caspase-4/-5/-11-dependent noncanonical pathway. They play an important role in inflammatory damage and related diseases. Canonical pyroptosis was reported to be involved in periodontitis. However, knowledge of caspase-4/-5/-11-dependent noncanonical pathway involvement remains limited. The aim of this study was to investigate the outcomes of pyroptosis inhibition on periodontitis as well as the possible mechanism, in order to provide a potential target for alleviating periodontitis. METHODS Human and rat periodontitis tissues were collected for immunohistochemistry (IHC). Micro-computed tomography was used to assess alveolar bone loss in experimental periodontitis model. Pyroptosis-related proteins were tested by western blot. propidium iodide staining and lactate dehydrogenase release were used to verify pyroptosis activation. RNA sequencing was applied to investigate the preliminary mechanism of the reduced periodontal inflammation induced by YVAD-CHO. RESULTS Both canonical- and noncanonical-related proteins were detected in human and rat periodontitis tissue. The pyroptosis-inhibited group demonstrated less inflammatory response and bone absorption. In vitro, pyroptosis was activated by lipopolysaccharide and inhibited by YVAD-CHO. RNA sequencing demonstrated that the expression of A20 and IκB-ζ was increased and verified by western blot in vitro and IHC in vivo. CONCLUSION These results suggest that inhibition of pyroptosis-reduced inflammation and alveolar bone resorption in periodontitis.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases and Department of Preventive Dentistry, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhiwu Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases and Department of Preventive Dentistry, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingming Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases and Department of Preventive Dentistry, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jin Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ran Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases and Department of Preventive Dentistry, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases and Department of Preventive Dentistry, National Center of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Surolia R, Antony VB. Pathophysiological Role of Vimentin Intermediate Filaments in Lung Diseases. Front Cell Dev Biol 2022; 10:872759. [PMID: 35573702 PMCID: PMC9096236 DOI: 10.3389/fcell.2022.872759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Vimentin intermediate filaments, a type III intermediate filament, are among the most widely studied IFs and are found abundantly in mesenchymal cells. Vimentin intermediate filaments localize primarily in the cytoplasm but can also be found on the cell surface and extracellular space. The cytoplasmic vimentin is well-recognized for its role in providing mechanical strength and regulating cell migration, adhesion, and division. The post-translationally modified forms of Vimentin intermediate filaments have several implications in host-pathogen interactions, cancers, and non-malignant lung diseases. This review will analyze the role of vimentin beyond just the epithelial to mesenchymal transition (EMT) marker highlighting its role as a regulator of host-pathogen interactions and signaling pathways for the pathophysiology of various lung diseases. In addition, we will also examine the clinically relevant anti-vimentin compounds and antibodies that could potentially interfere with the pathogenic role of Vimentin intermediate filaments in lung disease.
Collapse
Affiliation(s)
| | - Veena B. Antony
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
5
|
Maciejewska N, Olszewski M, Jurasz J, Serocki M, Dzierzynska M, Cekala K, Wieczerzak E, Baginski M. Novel chalcone-derived pyrazoles as potential therapeutic agents for the treatment of non-small cell lung cancer. Sci Rep 2022; 12:3703. [PMID: 35260633 PMCID: PMC8904451 DOI: 10.1038/s41598-022-07691-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
Lung cancer is considered to account for approximately one-fifth of all malignant tumor-related deaths worldwide and is therefore one of the most lethal malignancies. Pyrazole scaffold possesses a wide range of biological and pharmacological activities, which play important roles in medicinal chemistry. The present study reports the synthesis and in vitro biological characterization of nine pyrazoles derived from chalcones as potential anticancer agents for non-small cell lung cancer A-549, H226, and H460 cell lines. Most of the compounds efficiently inhibited the growth of all the tested cancer cell lines at micromolar concentrations. One of the most active compounds (PCH-1) was further evaluated for its effect on cell cycle distribution, apoptosis, migration, epithelial–mesenchymal transition, and oxidative stress. Furthermore, studies on the mechanism of action revealed that PCH-1 disrupts microtubule assembly, leading to cancer cell death. Molecular modeling studies confirmed the potent interaction of PCH-1 with the vinblastine binding site on tubulin. Overall, this study provides novel opportunities to identify anticancer agents in the pyrazole series.
Collapse
Affiliation(s)
- Natalia Maciejewska
- Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Mateusz Olszewski
- Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Jakub Jurasz
- Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Marcin Serocki
- Ryvu Therapeutics, Leona Henryka Sternbacha 2, 30-394, Kraków, Poland
| | - Maria Dzierzynska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Katarzyna Cekala
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Ewa Wieczerzak
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Maciej Baginski
- Faculty of Chemistry, Gdansk University of Technology, Gabriela Narutowicza 11/12, 80-233, Gdańsk, Poland
| |
Collapse
|
6
|
Desmin intermediate filaments and tubulin detyrosination stabilize growing microtubules in the cardiomyocyte. Basic Res Cardiol 2022; 117:53. [PMID: 36326891 PMCID: PMC9633452 DOI: 10.1007/s00395-022-00962-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/26/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
In heart failure, an increased abundance of post-translationally detyrosinated microtubules stiffens the cardiomyocyte and impedes its contractile function. Detyrosination promotes interactions between microtubules, desmin intermediate filaments, and the sarcomere to increase cytoskeletal stiffness, yet the mechanism by which this occurs is unknown. We hypothesized that detyrosination may regulate the growth and shrinkage of dynamic microtubules to facilitate interactions with desmin and the sarcomere. Through a combination of biochemical assays and direct observation of growing microtubule plus-ends in adult cardiomyocytes, we find that desmin is required to stabilize growing microtubules at the level of the sarcomere Z-disk, where desmin also rescues shrinking microtubules from continued depolymerization. Further, reducing detyrosination (i.e. tyrosination) below basal levels promotes frequent depolymerization and less efficient growth of microtubules. This is concomitant with tyrosination promoting the interaction of microtubules with the depolymerizing protein complex of end-binding protein 1 (EB1) and CAP-Gly domain-containing linker protein 1 (CLIP1/CLIP170). The dynamic growth and shrinkage of tyrosinated microtubules reduce their opportunity for stabilizing interactions at the Z-disk region, coincident with tyrosination globally reducing microtubule stability. These data provide a model for how intermediate filaments and tubulin detyrosination establish long-lived and physically reinforced microtubules that stiffen the cardiomyocyte and inform both the mechanism of action and therapeutic index for strategies aimed at restoring tyrosination for the treatment of cardiac disease.
Collapse
|
7
|
Vimentin intermediate filaments stabilize dynamic microtubules by direct interactions. Nat Commun 2021; 12:3799. [PMID: 34145230 PMCID: PMC8213705 DOI: 10.1038/s41467-021-23523-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/13/2021] [Indexed: 12/23/2022] Open
Abstract
The cytoskeleton determines cell mechanics and lies at the heart of important cellular functions. Growing evidence suggests that the manifold tasks of the cytoskeleton rely on the interactions between its filamentous components-actin filaments, intermediate filaments, and microtubules. However, the nature of these interactions and their impact on cytoskeletal dynamics are largely unknown. Here, we show in a reconstituted in vitro system that vimentin intermediate filaments stabilize microtubules against depolymerization and support microtubule rescue. To understand these stabilizing effects, we directly measure the interaction forces between individual microtubules and vimentin filaments. Combined with numerical simulations, our observations provide detailed insight into the physical nature of the interactions and how they affect microtubule dynamics. Thus, we describe an additional, direct mechanism by which cells establish the fundamental cross talk of cytoskeletal components alongside linker proteins. Moreover, we suggest a strategy to estimate the binding energy of tubulin dimers within the microtubule lattice.
Collapse
|
8
|
Patteson AE, Vahabikashi A, Goldman RD, Janmey PA. Mechanical and Non-Mechanical Functions of Filamentous and Non-Filamentous Vimentin. Bioessays 2020; 42:e2000078. [PMID: 32893352 PMCID: PMC8349470 DOI: 10.1002/bies.202000078] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/04/2020] [Indexed: 12/20/2022]
Abstract
Intermediate filaments (IFs) formed by vimentin are less understood than their cytoskeletal partners, microtubules and F-actin, but the unique physical properties of IFs, especially their resistance to large deformations, initially suggest a mechanical function. Indeed, vimentin IFs help regulate cell mechanics and contractility, and in crowded 3D environments they protect the nucleus during cell migration. Recently, a multitude of studies, often using genetic or proteomic screenings show that vimentin has many non-mechanical functions within and outside of cells. These include signaling roles in wound healing, lipogenesis, sterol processing, and various functions related to extracellular and cell surface vimentin. Extracellular vimentin is implicated in marking circulating tumor cells, promoting neural repair, and mediating the invasion of host cells by viruses, including SARS-CoV, or bacteria such as Listeria and Streptococcus. These findings underscore the fundamental role of vimentin in not only cell mechanics but also a range of physiological functions. Also see the video abstract here https://youtu.be/YPfoddqvz-g.
Collapse
Affiliation(s)
- Alison E Patteson
- Physics Department, Syracuse University, Syracuse, NY 13244
- BioInspired Institute, Syracuse University, Syracuse, NY 13244
| | - Amir Vahabikashi
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611
| | - Paul A. Janmey
- Institute for Medicine and Engineering, Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
9
|
Chung SSW, Vizcarra N, Wolgemuth DJ. Filamentous actin disorganization and absence of apical ectoplasmic specialization disassembly during spermiation upon interference with retinoid signaling†. Biol Reprod 2020; 103:378-389. [PMID: 32678439 PMCID: PMC7401411 DOI: 10.1093/biolre/ioaa123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 11/29/2022] Open
Abstract
Spermiation is a multiple-step process involving profound cellular changes in both spermatids and Sertoli cells. We have observed spermiation defects, including abnormalities in spermatid orientation, translocation and release, in mice deficient in the retinoic acid receptor alpha (RARA) and upon treatment with a pan-RAR antagonist. To elucidate the role of retinoid signaling in regulating spermiation, we first characterized the time course of appearance of spermiogenic defects in response to treatment with the pan-RAR antagonist. The results revealed that defects in spermiation are indeed among the earliest abnormalities in spermatogenesis observed upon inhibition of retinoid signaling. Using fluorescent dye-conjugated phalloidin to label the ectoplasmic specialization (ES), we showed for the first time that these defects involved improper formation of filamentous actin (F-actin) bundles in step 8–9 spermatids and a failure of the actin-surrounded spermatids to move apically to the lumen and to disassemble the ES. The aberrant F-actin organization is associated with diminished nectin-3 expression in both RARA-deficient and pan-RAR antagonist-treated testes. An abnormal localization of both tyrosinated and detyrosinated tubulins was also observed during spermatid translocation in the seminiferous epithelium in drug-treated testes. These results highlight a crucial role of RAR receptor-mediated retinoid signaling in regulating microtubules and actin dynamics in the cytoskeleton rearrangements, required for proper spermiation. This is critical to understand in light of ongoing efforts to inhibit retinoid signaling as a novel approach for male contraception and may reveal spermiation components that could also be considered as new targets for male contraception.
Collapse
Affiliation(s)
- Sanny S W Chung
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Nika Vizcarra
- The Institute of Human Nutrition Columbia University Irving Medical Center, New York, NY, USA
| | - Debra J Wolgemuth
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
- The Institute of Human Nutrition Columbia University Irving Medical Center, New York, NY, USA
- The Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Correspondence: Department of Genetics & Development, Columbia University Irving Medical Center , Russ Berrie Pavilion, Room 608, 1150 St. Nicholas Avenue, New York, NY 10032, USA. Tel: (212) 851-4754; E-mail:
| |
Collapse
|
10
|
Roll-Mecak A. The Tubulin Code in Microtubule Dynamics and Information Encoding. Dev Cell 2020; 54:7-20. [PMID: 32634400 PMCID: PMC11042690 DOI: 10.1016/j.devcel.2020.06.008] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 05/08/2020] [Accepted: 06/03/2020] [Indexed: 01/05/2023]
Abstract
Microtubules are non-covalent mesoscale polymers central to the eukaryotic cytoskeleton. Microtubule structure, dynamics, and mechanics are modulated by a cell's choice of tubulin isoforms and post-translational modifications, a "tubulin code," which is thought to support the diverse morphology and dynamics of microtubule arrays across various cell types, cell cycle, and developmental stages. We give a brief historical overview of research into tubulin diversity and highlight recent progress toward uncovering the mechanistic underpinnings of the tubulin code. As a large number of essential pathways converge upon the microtubule cytoskeleton, understanding how cells utilize tubulin diversity is crucial to understanding cellular physiology and disease.
Collapse
Affiliation(s)
- Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA; Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Logan CM, Menko AS. Microtubules: Evolving roles and critical cellular interactions. Exp Biol Med (Maywood) 2019; 244:1240-1254. [PMID: 31387376 DOI: 10.1177/1535370219867296] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microtubules are cytoskeletal elements known as drivers of directed cell migration, vesicle and organelle trafficking, and mitosis. In this review, we discuss new research in the lens that has shed light into further roles for stable microtubules in the process of development and morphogenesis. In the lens, as well as other systems, distinct roles for characteristically dynamic microtubules and stabilized populations are coming to light. Understanding the mechanisms of microtubule stabilization and the associated microtubule post-translational modifications is an evolving field of study. Appropriate cellular homeostasis relies on not only one cytoskeletal element, but also rather an interaction between cytoskeletal proteins as well as other cellular regulators. Microtubules are key integrators with actin and intermediate filaments, as well as cell–cell junctional proteins and other cellular regulators including myosin and RhoGTPases to maintain this balance.Impact statementThe role of microtubules in cellular functioning is constantly expanding. In this review, we examine new and exciting fields of discovery for microtubule’s involvement in morphogenesis, highlight our evolving understanding of differential roles for stabilized versus dynamic subpopulations, and further understanding of microtubules as a cellular integrator.
Collapse
Affiliation(s)
- Caitlin M Logan
- Pathology Anatomy and Cell Biology Department, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - A Sue Menko
- Pathology Anatomy and Cell Biology Department, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
12
|
Joshi D, Inamdar MS. Rudhira/BCAS3 couples microtubules and intermediate filaments to promote cell migration for angiogenic remodeling. Mol Biol Cell 2019; 30:1437-1450. [PMID: 30995157 PMCID: PMC6724693 DOI: 10.1091/mbc.e18-08-0484] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Blood vessel formation requires endothelial cell (EC) migration that depends on dynamic remodeling of the cytoskeleton. Rudhira/Breast Carcinoma Amplified Sequence 3 (BCAS3) is a cytoskeletal protein essential for EC migration and sprouting angiogenesis during mouse development and is implicated in metastatic disease. Here, we report that Rudhira mediates cytoskeleton organization and dynamics during EC migration. Rudhira binds to both microtubules (MTs) and vimentin intermediate filaments (IFs) and stabilizes MTs. Rudhira depletion impairs cytoskeletal cross-talk, MT stability, and hence focal adhesion disassembly. The BCAS3 domain of Rudhira is necessary and sufficient for MT-IF cross-linking and cell migration. Pharmacologically restoring MT stability rescues gross cytoskeleton organization and angiogenic sprouting in Rudhira-depleted cells. Our study identifies the novel and essential role of Rudhira in cytoskeletal cross-talk and assigns function to the conserved BCAS3 domain. Targeting Rudhira could allow tissue-restricted cytoskeleton modulation to control cell migration and angiogenesis in development and disease.
Collapse
Affiliation(s)
- Divyesh Joshi
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Maneesha S Inamdar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India.,Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| |
Collapse
|
13
|
Springer R, Zielinski A, Pleschka C, Hoffmann B, Merkel R. Unbiased pattern analysis reveals highly diverse responses of cytoskeletal systems to cyclic straining. PLoS One 2019; 14:e0210570. [PMID: 30865622 PMCID: PMC6415792 DOI: 10.1371/journal.pone.0210570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 12/26/2018] [Indexed: 01/09/2023] Open
Abstract
In mammalian cells, actin, microtubules, and various types of cytoplasmic intermediate filaments respond to external stretching. Here, we investigated the underlying processes in endothelial cells plated on soft substrates from silicone elastomer. After cyclic stretch (0.13 Hz, 14% strain amplitude) for periods ranging from 5 min to 8 h, cells were fixed and double-stained for microtubules and either actin or vimentin. Cell images were analyzed by a two-step routine. In the first step, micrographs were segmented for potential fibrous structures. In the second step, the resulting binary masks were auto- or cross-correlated. Autocorrelation of segmented images provided a sensitive and objective measure of orientational and translational order of the different cytoskeletal systems. Aligning of correlograms from individual cells removed the influence of only partial alignment between cells and enabled determination of intrinsic cytoskeletal order. We found that cyclic stretching affected the actin cytoskeleton most, microtubules less, and vimentin mostly only via reorientation of the whole cell. Pharmacological disruption of microtubules had barely any influence on actin ordering. The similarity, i.e., cross-correlation, between vimentin and microtubules was much higher than the one between actin and microtubules. Moreover, prolonged cyclic stretching slightly decoupled the cytoskeletal systems as it reduced the cross-correlations in both cases. Finally, actin and microtubules were more correlated at peripheral regions of cells whereas vimentin and microtubules correlated more in central regions.
Collapse
Affiliation(s)
- Ronald Springer
- Institute of Complex Systems 7, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Alexander Zielinski
- Institute of Complex Systems 7, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Catharina Pleschka
- Institute of Complex Systems 7, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Bernd Hoffmann
- Institute of Complex Systems 7, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Rudolf Merkel
- Institute of Complex Systems 7, Forschungszentrum Jülich GmbH, Jülich, Germany
- * E-mail:
| |
Collapse
|
14
|
Zhu J, Chen Y, Chen Z, Wei J, Zhang H, Ding L. Leukamenin E, an ent-kaurane diterpenoid, is a novel and potential keratin intermediate filament inhibitor. Eur J Pharmacol 2019; 846:86-99. [PMID: 30641059 DOI: 10.1016/j.ejphar.2019.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/19/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Abstract
Many ent-kaurane diterpenoids exhibit notable antitumor activity in vitro and in vivo, and some have been used as cancer therapeutic agents in China. In this study, we identified a novel molecular target of leukamenin E, an ent-kaurane diterpenoid, using an available whole-cell model in combination with immunofluorescence imaging and mass spectrometry (MS). The cytoskeleton-disrupting drugs cytochalasin B and colchicine caused the depolymerization of microfilaments and the collapse of microtubules and vimentin filaments, respectively, but had little effects on HepG2 and NCI-H1299 cells spreading as well as keratin filament (KF) reassembly, indicating that KFs are involved in cell spreading. Leukamenin E blocked HepG2 and NCI-H1299 cells adhesion/spreading and KF reassembly at subtoxic concentrations, indicating that leukamenin E may target KFs. Moreover, leukamenin E, at 3 μM for 24 h or 10 μM for 3 h, induced massive KF depolymerization in well-spread HepG2 and NCI-H1299 cells treated with/without cytochalasin B and colchicine. MS analysis indicated that leukamenin E could covalently modify amino acid residue(s) in a synthetic peptide based on keratin 1 and keratin 10 sequences, suggesting that covalent modification of the synthetic peptide by leukamenin E caused assembly inhibition or disrupted KF polymerization in HepG2 and NCI-H1299 cells. In addition, acridine orange/ethidium bromide staining and western blotting confirmed that there was no correlation between the KF-disrupting effects and apoptosis or keratin expression. Thus, we propose that leukamenin E is a novel inhibitor of KF assembly, and as such, can serve as a chemical probe of KF functions and a potential molecular target for ent-kaurane diterpenoid-based therapeutics.
Collapse
Affiliation(s)
- Jinhui Zhu
- Northwest Normal University School of Life Sciences, No. 967, east Anning road, Lanzhou, Gansu province 730070, PR China
| | - Yiping Chen
- Northwest Normal University School of Life Sciences, No. 967, east Anning road, Lanzhou, Gansu province 730070, PR China
| | - Zongru Chen
- Northwest Normal University School of Life Sciences, No. 967, east Anning road, Lanzhou, Gansu province 730070, PR China
| | - Jingxin Wei
- Northwest Normal University School of Life Sciences, No. 967, east Anning road, Lanzhou, Gansu province 730070, PR China
| | - Hui Zhang
- Northwest Normal University School of Life Sciences, No. 967, east Anning road, Lanzhou, Gansu province 730070, PR China
| | - Lan Ding
- Northwest Normal University School of Life Sciences, No. 967, east Anning road, Lanzhou, Gansu province 730070, PR China.
| |
Collapse
|
15
|
Caporizzo MA, Chen CY, Salomon AK, Margulies KB, Prosser BL. Microtubules Provide a Viscoelastic Resistance to Myocyte Motion. Biophys J 2018; 115:1796-1807. [PMID: 30322798 DOI: 10.1016/j.bpj.2018.09.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/16/2018] [Accepted: 09/13/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Microtubules (MTs) buckle and bear load during myocyte contraction, a behavior enhanced by post-translational detyrosination. This buckling suggests a spring-like resistance against myocyte shortening, which could store energy and aid myocyte relaxation. Despite this visual suggestion of elastic behavior, the precise mechanical contribution of the cardiac MT network remains to be defined. METHODS Here we experimentally and computationally probe the mechanical contribution of stable MTs and their influence on myocyte function. We use multiple approaches to interrogate viscoelasticity and cell shortening in primary murine myocytes in which either MTs are depolymerized or detyrosination is suppressed and use the results to inform a mathematical model of myocyte viscoelasticity. RESULTS MT ablation by colchicine concurrently enhances both the degree of shortening and speed of relaxation, a finding inconsistent with simple spring-like MT behavior and suggestive of a viscoelastic mechanism. Axial stretch and transverse indentation confirm that MTs increase myocyte viscoelasticity. Specifically, increasing the rate of strain amplifies the MT contribution to myocyte stiffness. Suppressing MT detyrosination with parthenolide or via overexpression of tubulin tyrosine ligase has mechanical consequences that closely resemble colchicine, suggesting that the mechanical impact of MTs relies on a detyrosination-dependent linkage with the myocyte cytoskeleton. Mathematical modeling affirms that alterations in cell shortening conferred by either MT destabilization or tyrosination can be attributed to internal changes in myocyte viscoelasticity. CONCLUSIONS The results suggest that the cardiac MT network regulates contractile amplitudes and kinetics by acting as a cytoskeletal shock-absorber, whereby MTs provide breakable cross-links between the sarcomeric and nonsarcomeric cytoskeleton that resist rapid length changes during both shortening and stretch.
Collapse
Affiliation(s)
- Matthew Alexander Caporizzo
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christina Yingxian Chen
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexander Koizumi Salomon
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kenneth B Margulies
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania; Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania
| | - Benjamin L Prosser
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, The University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
16
|
Soda N, Gupta BK, Anwar K, Sharan A, Govindjee, Singla-Pareek SL, Pareek A. Rice intermediate filament, OsIF, stabilizes photosynthetic machinery and yield under salinity and heat stress. Sci Rep 2018; 8:4072. [PMID: 29511223 PMCID: PMC5840354 DOI: 10.1038/s41598-018-22131-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 02/19/2018] [Indexed: 02/07/2023] Open
Abstract
Cytoskeleton plays a vital role in stress tolerance; however, involvement of intermediate filaments (IFs) in such a response remains elusive in crop plants. This study provides clear evidence about the unique involvement of IFs in cellular protection against abiotic stress in rice. Transcript abundance of Oryza sativa intermediate filament (OsIF) encoding gene showed 2-10 fold up-regulation under different abiotic stress. Overexpression of OsIF in transgenic rice enhanced tolerance to salinity and heat stress, while its knock-down (KD) rendered plants more sensitive thereby indicating the role of IFs in promoting survival under stress. Seeds of OsIF overexpression rice germinated normally in the presence of high salt, showed better growth, maintained chloroplast ultrastructure and favourable K+/Na+ ratio than the wild type (WT) and KD plants. Analysis of photosynthesis and chlorophyll a fluorescence data suggested better performance of both photosystem I and II in the OsIF overexpression rice under salinity stress as compared to the WT and KD. Under salinity and high temperature stress, OsIF overexpressing plants could maintain significantly high yield, while the WT and KD plants could not. Further, metabolite profiling revealed a 2-4 fold higher accumulation of proline and trehalose in OsIF overexpressing rice than WT, under salinity stress.
Collapse
Affiliation(s)
- Neelam Soda
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Brijesh K Gupta
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Khalid Anwar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashutosh Sharan
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Govindjee
- Department of Biochemistry, Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, 265 Morrill Hall, 505 South Goodwin Av, Urbana, IL, 61801-3707, USA
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
- The UWA Institute of Agriculture, School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
17
|
Shen T, Gao K, Miao Y, Hu Z. Exogenous growth factors enhance the expression of cola1, cola3, and Elastin in fibroblasts via activating MAPK signaling pathway. Mol Cell Biochem 2017; 442:203-210. [PMID: 29185160 DOI: 10.1007/s11010-017-3204-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 10/14/2017] [Indexed: 02/03/2023]
Abstract
Exogenous growth factors could accelerate the process of wound healing. However, the underlying mechanisms have not been clearly clarified. The aim of the present study was to investigate the effect of epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) on the expression of type I collagen (cola1), type III collagen (cola3), and Elastin in fibroblasts, which are widely expressed in fibroblasts and promote the function of fibroblasts. We measured the levels of cola1 and cola3 in human fibroblast cells cultured in medium containing EGF or bFGF at concentrations ranging from 0.1 to 1000 μg/L by Western blotting and RT-PCR assays, and found that EGF or bFGF enhanced the expression of cola1 and cola3 in a concentration-dependent manner. We further discovered that after stimulation with EGF or bFGF in human fibroblast cells, mitogen-activated protein kinases (MAPK) family members were generally activated, whose expression trend was consistent with that of cola1, cola3, and Elastin. In summary, in this study, we uncovered that exogenous growth factors enhance the expression of cola1, cola3, and Elastin, which is probably regulated via activating MAPK signaling pathway.
Collapse
Affiliation(s)
- TianDing Shen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, No.1023 South Shatai Road, Baiyun District, Guangzhou, 510515, China
| | - Kai Gao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, No.1023 South Shatai Road, Baiyun District, Guangzhou, 510515, China
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, No.1023 South Shatai Road, Baiyun District, Guangzhou, 510515, China
| | - ZhiQi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, No.1023 South Shatai Road, Baiyun District, Guangzhou, 510515, China.
| |
Collapse
|
18
|
Robison P, Prosser BL. Microtubule mechanics in the working myocyte. J Physiol 2017; 595:3931-3937. [PMID: 28116814 DOI: 10.1113/jp273046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/05/2016] [Indexed: 11/08/2022] Open
Abstract
The mechanical role of cardiac microtubules (MTs) has been a topic of some controversy. Early studies, which relied largely on pharmacological interventions that altered the MT cytoskeleton as a whole, presented no consistent role. Recent advances in the ability to observe and manipulate specific properties of the cytoskeleton have strengthened our understanding. Direct observation of MTs in working myocytes suggests a spring-like function, one that is surprisingly tunable by post-translational modification (PTM). Specifically, detyrosination of MTs facilitates an interaction with intermediate filaments that complex with the sarcomere, altering myocyte stiffness, contractility, and mechanosignalling. Such results support a paradigm of cytoskeletal regulation based on not only polymerization, but also associations with binding partners and PTMs that divide the MT cytoskeleton into functionally distinct subsets. The evolutionary costs and benefits of tuning cytoskeletal mechanics remain an open question, one that we discuss herein. Nevertheless, mechanically distinct MT subsets provide a rich new source of therapeutic targets for a variety of phenomena in the heart.
Collapse
Affiliation(s)
- Patrick Robison
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Benjamin L Prosser
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|
19
|
Nüße J, Mirastschijski U, Waespy M, Oetjen J, Brandes N, Rebello O, Paroni F, Kelm S, Dietz F. Two new isoforms of the human hepatoma-derived growth factor interact with components of the cytoskeleton. Biol Chem 2016; 397:417-36. [PMID: 26845719 DOI: 10.1515/hsz-2015-0273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/28/2016] [Indexed: 01/27/2023]
Abstract
Hepatoma-derived growth factor (HDGF) is involved in diverse, apparently unrelated processes, such as cell proliferation, apoptosis, DNA-repair, transcriptional control, ribosome biogenesis and cell migration. Most of the interactions of HDGF with diverse molecules has been assigned to the hath region of HDGF. In this study we describe two previously unknown HDGF isoforms, HDGF-B and HDGF-C, generated via alternative splicing with structurally unrelated N-terminal regions of their hath region, which is clearly different from the well described isoform, HDGF-A. In silico modeling revealed striking differences near the PHWP motif, an essential part of the binding site for glycosaminoglycans and DNA/RNA. This observation prompted the hypothesis that these isoforms would have distinct interaction patterns with correspondingly diverse roles on cellular processes. Indeed, we discovered specific associations of HDGF-B and HDGF-C with cytoskeleton elements, such as tubulin and dynein, suggesting previously unknown functions of HDGF in retrograde transport, site directed localization and/or cytoskeleton organization. In contrast, the main isoform HDGF-A does not interact directly with the cytoskeleton, but via RNA with messenger ribonucleoprotein (mRNP) complexes. In summary, the discovery of HDGF splice variants with their discrete binding activities and subcellular distributions opened new avenues for understanding its biological function and importance.
Collapse
|
20
|
Mapping intracellular mechanics on micropatterned substrates. Proc Natl Acad Sci U S A 2016; 113:E7159-E7168. [PMID: 27799529 DOI: 10.1073/pnas.1605112113] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The mechanical properties of cells impact on their architecture, their migration, intracellular trafficking, and many other cellular functions and have been shown to be modified during cancer progression. We have developed an approach to map the intracellular mechanical properties of living cells by combining micropatterning and optical tweezers-based active microrheology. We optically trap micrometer-sized beads internalized in cells plated on crossbow-shaped adhesive micropatterns and track their displacement following a step displacement of the cell. The local intracellular complex shear modulus is measured from the relaxation of the bead position assuming that the intracellular microenvironment of the bead obeys power-law rheology. We also analyze the data with a standard viscoelastic model and compare with the power-law approach. We show that the shear modulus decreases from the cell center to the periphery and from the cell rear to the front along the polarity axis of the micropattern. We use a variety of inhibitors to quantify the spatial contribution of the cytoskeleton, intracellular membranes, and ATP-dependent active forces to intracellular mechanics and apply our technique to differentiate normal and cancer cells.
Collapse
|
21
|
Wen R, Xiao Y, Zhang Y, Yang M, Lin Y, Tang J. Identification of a novel transcript isoform of the TTLL12 gene in human cancers. Oncol Rep 2016; 36:3172-3180. [PMID: 27748896 PMCID: PMC5112610 DOI: 10.3892/or.2016.5135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/28/2016] [Indexed: 02/06/2023] Open
Abstract
Tubulin tyrosine ligase like 12 (TTLL12), a member of the tubulin tyrosine ligase (TTLL) family, has not been completely characterized to date. It is reported that histone methylation, tubulin modifications, mitotic duration and chromosome ploidy play crucial roles in a variety of cancers, and are related to tumorigenesis and cancer progression. A recent study showed that TTLL12 may be a pseudo-enzyme which has a SET-like domain and a TTL-like domain. In the present study, we first used 3′-rapid amplification of cDNA ends (3′-RACE) to amplify the transcripts of the TTLL12 gene from a human lung cancer cell line H1299, and unexpectedly discovered a new transcript isoform characterized with an additional 108-bp nucleotide sequence inserted at the location from 902 to 903 bases of the TTLL12 coding sequence (CDS), where it also locates between exons 5 and 6. Next, utilizing RT-PCR and Sanger sequencing, we further confirmed the existence of such a new transcript isoform of TTLL12 in more human cancer cells including lung cancer cells and other cancer cells. Moreover, several lung cancer cell lines were found to display a much higher proportion of the new isoform compared with TTLL12 wild-type transcript. These results suggest that the new TTLL12 isoform may be of importance for proper maintenance of lung cancer cells. Therefore, the new isoform of TTLL12, with the inserted sequences probably acting as a disordered region, provides a novel perspective regarding TTLL12 functions in human cancers including lung cancer.
Collapse
Affiliation(s)
- Ruiling Wen
- KingMed Diagnostics and KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong 510330, P.R. China
| | - Yingying Xiao
- KingMed Diagnostics and KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong 510330, P.R. China
| | - Yuhua Zhang
- Cytate Institute for Precision Medicine and Innovation, Guangzhou Cytate Biomedical Technologies Inc., Guangzhou, Guangdong 510663, P.R. China
| | - Min Yang
- Cytate Institute for Precision Medicine and Innovation, Guangzhou Cytate Biomedical Technologies Inc., Guangzhou, Guangdong 510663, P.R. China
| | - Yongping Lin
- Department of Clinical Laboratory and Research Center of Translational Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, P.R. China
| | - Jun Tang
- KingMed Diagnostics and KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong 510330, P.R. China
| |
Collapse
|
22
|
Gan Z, Ding L, Burckhardt CJ, Lowery J, Zaritsky A, Sitterley K, Mota A, Costigliola N, Starker CG, Voytas DF, Tytell J, Goldman RD, Danuser G. Vimentin Intermediate Filaments Template Microtubule Networks to Enhance Persistence in Cell Polarity and Directed Migration. Cell Syst 2016; 3:252-263.e8. [PMID: 27667364 PMCID: PMC5055390 DOI: 10.1016/j.cels.2016.08.007] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/01/2016] [Accepted: 08/05/2016] [Indexed: 10/24/2022]
Abstract
Increased expression of vimentin intermediate filaments (VIFs) enhances directed cell migration, but the mechanism behind VIFs' effect on motility is not understood. VIFs interact with microtubules, whose organization contributes to polarity maintenance in migrating cells. Here, we characterize the dynamic coordination of VIF and microtubule networks in wounded monolayers of retinal pigment epithelial cells. By genome editing, we fluorescently labeled endogenous vimentin and α-tubulin, and we developed computational image analysis to delineate architecture and interactions of the two networks. Our results show that VIFs assemble an ultrastructural copy of the previously polarized microtubule network. Because the VIF network is long-lived compared to the microtubule network, VIFs template future microtubule growth along previous microtubule tracks, thus providing a feedback mechanism that maintains cell polarity. VIF knockdown prevents cells from polarizing and migrating properly during wound healing. We suggest that VIFs' templating function establishes a memory in microtubule organization that enhances persistence in cell polarization in general and migration in particular.
Collapse
Affiliation(s)
- Zhuo Gan
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75235, USA
| | - Liya Ding
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75235, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christoph J Burckhardt
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75235, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Jason Lowery
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Evanston, IL 60208, USA
| | - Assaf Zaritsky
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75235, USA
| | | | - Andressa Mota
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Nancy Costigliola
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Colby G Starker
- Department of Genetics, Cell Biology & Development and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel F Voytas
- Department of Genetics, Cell Biology & Development and Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jessica Tytell
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Evanston, IL 60208, USA
| | - Gaudenz Danuser
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75235, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Flynn MP, Fiedler SE, Karlsson AB, Carr DW, Maizels ET, Hunzicker-Dunn M. Dephosphorylation of MAP2D enhances its binding to vimentin in preovulatory ovarian granulosa cells. J Cell Sci 2016; 129:2983-96. [PMID: 27335427 DOI: 10.1242/jcs.190397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/10/2016] [Indexed: 12/28/2022] Open
Abstract
Preovulatory granulosa cells express the low-molecular-mass MAP2D variant of microtubule-associated protein 2 (MAP2). Activation of the luteinizing hormone choriogonadotropin receptor by human choriogonadotropin (hCG) promotes dephosphorylation of MAP2D on Thr256 and Thr259. We sought to evaluate the association of MAP2D with the cytoskeleton, and the effect of hCG on this association. MAP2D partially colocalized, as assessed by confocal immunofluorescence microscopy, with the vimentin intermediate filament and microtubule cytoskeletons in naive cells. In vitro binding studies showed that MAP2D bound directly to vimentin and β-tubulin. Phosphorylation of recombinant MAP2D on Thr256 and Thr259, which mimics the phosphorylation status of MAP2D in naive cells, reduces binding of MAP2D to vimentin and tubulin by two- and three-fold, respectively. PKA-dependent phosphorylation of vimentin (Ser32 and Ser38) promoted binding of vimentin to MAP2D and increased contraction of granulosa cells with reorganization of vimentin filaments and MAP2D from the periphery into a thickened layer surrounding the nucleus and into prominent cellular extensions. Chemical disruption of vimentin filament organization increased progesterone production. Taken together, these results suggest that hCG-stimulated dephosphorylation of MAP2D at Thr256 and Thr259, phosphorylation of vimentin at Ser38 and Ser72, and the resulting enhanced binding of MAP2D to vimentin might contribute to the progesterone synthetic response required for ovulation.
Collapse
Affiliation(s)
- Maxfield P Flynn
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sarah E Fiedler
- Department of Medicine, Oregon Health and Sciences University and VA Portland Health Care System, Portland, OR 97239, USA
| | - Amelia B Karlsson
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Daniel W Carr
- Department of Medicine, Oregon Health and Sciences University and VA Portland Health Care System, Portland, OR 97239, USA
| | - Evelyn T Maizels
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mary Hunzicker-Dunn
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
24
|
Liu CY, Lin HH, Tang MJ, Wang YK. Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation. Oncotarget 2016; 6:15966-83. [PMID: 25965826 PMCID: PMC4599250 DOI: 10.18632/oncotarget.3862] [Citation(s) in RCA: 354] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/30/2015] [Indexed: 01/16/2023] Open
Abstract
Modulations of cytoskeletal organization and focal adhesion turnover correlate to tumorigenesis and epithelial-mesenchymal transition (EMT), the latter process accompanied by the loss of epithelial markers and the gain of mesenchymal markers (e.g., vimentin). Clinical microarray results demonstrated that increased levels of vimentin mRNA after chemotherapy correlated to a poor prognosis of breast cancer patients. We hypothesized that vimentin mediated the reorganization of cytoskeletons to maintain the mechanical integrity in EMT cancer cells. By using knockdown strategy, the results showed reduced cell proliferation, impaired wound healing, loss of directional migration, and increased large membrane extension in MDA-MB 231 cells. Vimentin depletion also induced reorganization of cytoskeletons and reduced focal adhesions, which resulted in impaired mechanical strength because of reduced cell stiffness and contractile force. In addition, overexpressing vimentin in MCF7 cells increased cell stiffness, elevated cell motility and directional migration, reoriented microtubule polarity, and increased EMT phenotypes due to the increased β1-integrin and the loss of junction protein E-cadherin. The EMT-related transcription factor slug was also mediated by vimentin. The current study demonstrated that vimentin serves as a regulator to maintain intracellular mechanical homeostasis by mediating cytoskeleton architecture and the balance of cell force generation in EMT cancer cells.
Collapse
Affiliation(s)
- Ching-Yi Liu
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan.,Department of Physiology, National Cheng Kung University, Tainan, Taiwan
| | - Hsi-Hui Lin
- Department of Physiology, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Jer Tang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan.,Department of Physiology, National Cheng Kung University, Tainan, Taiwan
| | - Yang-Kao Wang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan.,Center of Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
25
|
Robison P, Caporizzo MA, Ahmadzadeh H, Bogush AI, Chen CY, Margulies KB, Shenoy VB, Prosser BL. Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes. Science 2016; 352:aaf0659. [PMID: 27102488 PMCID: PMC5441927 DOI: 10.1126/science.aaf0659] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 01/29/2016] [Indexed: 12/24/2022]
Abstract
The microtubule (MT) cytoskeleton can transmit mechanical signals and resist compression in contracting cardiomyocytes. How MTs perform these roles remains unclear because of difficulties in observing MTs during the rapid contractile cycle. Here, we used high spatial and temporal resolution imaging to characterize MT behavior in beating mouse myocytes. MTs deformed under contractile load into sinusoidal buckles, a behavior dependent on posttranslational "detyrosination" of α-tubulin. Detyrosinated MTs associated with desmin at force-generating sarcomeres. When detyrosination was reduced, MTs uncoupled from sarcomeres and buckled less during contraction, which allowed sarcomeres to shorten and stretch with less resistance. Conversely, increased detyrosination promoted MT buckling, stiffened the myocyte, and correlated with impaired function in cardiomyopathy. Thus, detyrosinated MTs represent tunable, compression-resistant elements that may impair cardiac function in disease.
Collapse
Affiliation(s)
- Patrick Robison
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Matthew A Caporizzo
- Department of Materials Science and Engineering, University of Pennsylvania School of Engineering and Applied Science, Philadelphia, PA 19104, USA
| | - Hossein Ahmadzadeh
- Department of Materials Science and Engineering, University of Pennsylvania School of Engineering and Applied Science, Philadelphia, PA 19104, USA
| | - Alexey I Bogush
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Christina Yingxian Chen
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kenneth B Margulies
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, University of Pennsylvania School of Engineering and Applied Science, Philadelphia, PA 19104, USA
| | - Benjamin L Prosser
- Department of Physiology, Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
26
|
Kerr JP, Robison P, Shi G, Bogush AI, Kempema AM, Hexum JK, Becerra N, Harki DA, Martin SS, Raiteri R, Prosser BL, Ward CW. Detyrosinated microtubules modulate mechanotransduction in heart and skeletal muscle. Nat Commun 2015; 6:8526. [PMID: 26446751 PMCID: PMC4633818 DOI: 10.1038/ncomms9526] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 09/01/2015] [Indexed: 01/19/2023] Open
Abstract
In striated muscle, X-ROS is the mechanotransduction pathway by which mechanical stress transduced by the microtubule network elicits reactive oxygen species. X-ROS tunes Ca(2+) signalling in healthy muscle, but in diseases such as Duchenne muscular dystrophy (DMD), microtubule alterations drive elevated X-ROS, disrupting Ca(2+) homeostasis and impairing function. Here we show that detyrosination, a post-translational modification of α-tubulin, influences X-ROS signalling, contraction speed and cytoskeletal mechanics. In the mdx mouse model of DMD, the pharmacological reduction of detyrosination in vitro ablates aberrant X-ROS and Ca(2+) signalling, and in vivo it protects against hallmarks of DMD, including workload-induced arrhythmias and contraction-induced injury in skeletal muscle. We conclude that detyrosinated microtubules increase cytoskeletal stiffness and mechanotransduction in striated muscle and that targeting this post-translational modification may have broad therapeutic potential in muscular dystrophies.
Collapse
Affiliation(s)
- Jaclyn P. Kerr
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Patrick Robison
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Guoli Shi
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Alexey I. Bogush
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Aaron M. Kempema
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Joseph K. Hexum
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Natalia Becerra
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genova, Genova 16146, Italy
| | - Daniel A. Harki
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Stuart S. Martin
- Marlene and Stuart Greenebaum National Cancer Institute Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Roberto Raiteri
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genova, Genova 16146, Italy
| | - Benjamin L. Prosser
- Department of Physiology, Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christopher W. Ward
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Center for Biomedical Engineering and Technology (BioMET), University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
27
|
Hookway C, Ding L, Davidson MW, Rappoport JZ, Danuser G, Gelfand VI. Microtubule-dependent transport and dynamics of vimentin intermediate filaments. Mol Biol Cell 2015; 26:1675-86. [PMID: 25717187 PMCID: PMC4436779 DOI: 10.1091/mbc.e14-09-1398] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/19/2015] [Indexed: 02/05/2023] Open
Abstract
We studied two aspects of vimentin intermediate filament dynamics-transport of filaments and subunit exchange. We observed transport of long filaments in the periphery of cells using live-cell structured illumination microscopy. We studied filament transport elsewhere in cells using a photoconvertible-vimentin probe and total internal reflection microscopy. We found that filaments were rapidly transported along linear tracks in both anterograde and retrograde directions. Filament transport was microtubule dependent but independent of microtubule polymerization and/or an interaction with the plus end-binding protein APC. We also studied subunit exchange in filaments by long-term imaging after photoconversion. We found that converted vimentin remained in small clusters along the length of filaments rather than redistributing uniformly throughout the network, even in cells that divided after photoconversion. These data show that vimentin filaments do not depolymerize into individual subunits; they recompose by severing and reannealing. Together these results show that vimentin filaments are very dynamic and that their transport is required for network maintenance.
Collapse
Affiliation(s)
- Caroline Hookway
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Liya Ding
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Michael W Davidson
- National High Magnetic Field Laboratory and Department of Biological Science, Florida State University, Tallahassee, FL 32310
| | - Joshua Z Rappoport
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Gaudenz Danuser
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Vladimir I Gelfand
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
28
|
Lipka E, Müller S. Nitrosative stress triggers microtubule reorganization in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4177-89. [PMID: 24803503 PMCID: PMC4112629 DOI: 10.1093/jxb/eru194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Microtubules (MTs) are essential components of the cytoskeleton and fulfil multiple cellular functions in developmental processes, readily responding to intrinsic and external cues. Nitric oxide signalling is well established in plants, and the MT cytoskeleton is one of its potential targets. To mimic low level nitrosative stress, growth medium was supplemented with 3-nitro-L-tyrosine (NO2-Tyr), a nitrated form of the amino acid tyrosine, and concentration-dependent changes in root growth rate and a reduction in cell division frequencies in Arabidopsis thaliana were observed. In addition, it is reported that exposure to low NO2-Tyr concentrations was not detrimental to plant health and caused subtle and reversible defects. In contrast, growth defects caused by high NO2-Tyr concentrations could not be reversed. Live cell imaging of an MT reporter line revealed that treatment with a low concentration of NO2-Tyr correlated with disorganized cortical MT arrays and associated non-polar cell expansion in the elongation zone. NO2-Tyr treatment antagonized the effects of taxol and oryzalin, further supporting the association of NO2-Tyr with MTs. Furthermore, oblique division plane orientations were observed which were probably induced prior to cytokinesis.
Collapse
Affiliation(s)
- Elisabeth Lipka
- ZMBP, Developmental Genetics, University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Sabine Müller
- ZMBP, Developmental Genetics, University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| |
Collapse
|
29
|
Morris EJ, Nader GPF, Ramalingam N, Bartolini F, Gundersen GG. Kif4 interacts with EB1 and stabilizes microtubules downstream of Rho-mDia in migrating fibroblasts. PLoS One 2014; 9:e91568. [PMID: 24658398 PMCID: PMC3962350 DOI: 10.1371/journal.pone.0091568] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 02/12/2014] [Indexed: 01/03/2023] Open
Abstract
Selectively stabilized microtubules (MTs) form in the lamella of fibroblasts and contribute to cell migration. A Rho-mDia-EB1 pathway regulates the formation of stable MTs, yet how selective stabilization of MTs is achieved is unknown. Kinesin activity has been implicated in selective MT stabilization and a number of kinesins regulate MT dynamics both in vitro and in cells. Here, we show that the mammalian homolog of Xenopus XKLP1, Kif4, is both necessary and sufficient for the induction of selective MT stabilization in fibroblasts. Kif4 localized to the ends of stable MTs and participated in the Rho-mDia-EB1 MT stabilization pathway since Kif4 depletion blocked mDia- and EB1-induced selective MT stabilization and EB1 was necessary for Kif4 induction of stable MTs. Kif4 and EB1 interacted in cell extracts, and binding studies revealed that the tail domain of Kif4 interacted directly with the N-terminal domain of EB1. Consistent with its role in regulating formation of stable MTs in interphase cells, Kif4 knockdown inhibited migration of cells into wounded monolayers. These data identify Kif4 as a novel factor in the Rho-mDia-EB1 MT stabilization pathway and cell migration.
Collapse
Affiliation(s)
- Edward J. Morris
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | - Guilherme P. F. Nader
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | - Nagendran Ramalingam
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
| | - Gregg G. Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
30
|
Charpentier MS, Whipple RA, Vitolo MI, Boggs AE, Slovic J, Thompson KN, Bhandary L, Martin SS. Curcumin targets breast cancer stem-like cells with microtentacles that persist in mammospheres and promote reattachment. Cancer Res 2013; 74:1250-60. [PMID: 24371229 DOI: 10.1158/0008-5472.can-13-1778] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer stem-like cells (CSC) and circulating tumor cells (CTC) have related properties associated with distant metastasis, but the mechanisms through which CSCs promote metastasis are unclear. In this study, we report that breast cancer cell lines with more stem-like properties display higher levels of microtentacles (McTN), a type of tubulin-based protrusion of the plasma cell membrane that forms on detached or suspended cells and aid in cell reattachment. We hypothesized that CSCs with large numbers of McTNs would more efficiently attach to distant tissues, promoting metastatic efficiency. The naturally occurring stem-like subpopulation of the human mammary epithelial (HMLE) cell line presents increased McTNs compared with its isogenic non-stem-like subpopulation. This increase was supported by elevated α-tubulin detyrosination and vimentin protein levels and organization. Increased McTNs in stem-like HMLEs promoted a faster initial reattachment of suspended cells that was inhibited by the tubulin-directed drug, colchicine, confirming a functional role for McTNs in stem cell reattachment. Moreover, live-cell confocal microscopy showed that McTNs persist in breast stem cell mammospheres as flexible, motile protrusions on the surface of the mammosphere. Although exposed to the environment, they also function as extensions between adjacent cells along cell-cell junctions. We found that treatment with the breast CSC-targeting compound curcumin rapidly extinguished McTN in breast CSC, preventing reattachment from suspension. Together, our results support a model in which breast CSCs with cytoskeletal alterations that promote McTNs can mediate attachment and metastasis but might be targeted by curcumin as an antimetastatic strategy.
Collapse
Affiliation(s)
- Monica S Charpentier
- Authors' Affiliations: Marlene and Stewart Greenebaum National Cancer Institute Cancer Center; Program in Molecular Medicine; and Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Atherton J, Houdusse A, Moores C. MAPping out distribution routes for kinesin couriers. Biol Cell 2013; 105:465-87. [PMID: 23796124 DOI: 10.1111/boc.201300012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/17/2013] [Indexed: 12/14/2022]
Abstract
In the crowded environment of eukaryotic cells, diffusion is an inefficient distribution mechanism for cellular components. Long-distance active transport is required and is performed by molecular motors including kinesins. Furthermore, in highly polarised, compartmentalised and plastic cells such as neurons, regulatory mechanisms are required to ensure appropriate spatio-temporal delivery of neuronal components. The kinesin machinery has diversified into a large number of kinesin motor proteins as well as adaptor proteins that are associated with subsets of cargo. However, many mechanisms contribute to the correct delivery of these cargos to their target domains. One mechanism is through motor recognition of sub-domain-specific microtubule (MT) tracks, sign-posted by different tubulin isoforms, tubulin post-translational modifications, tubulin GTPase activity and MT-associated proteins (MAPs). With neurons as a model system, a critical review of these regulatory mechanisms is presented here, with a particular focus on the emerging contribution of compartmentalised MAPs. Overall, we conclude that - especially for axonal cargo - alterations to the MT track can influence transport, although in vivo, it is likely that multiple track-based effects act synergistically to ensure accurate cargo distribution.
Collapse
Affiliation(s)
- Joseph Atherton
- Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX, UK
| | | | | |
Collapse
|
32
|
Bartolini F, Ramalingam N, Gundersen GG. Actin-capping protein promotes microtubule stability by antagonizing the actin activity of mDia1. Mol Biol Cell 2012; 23:4032-40. [PMID: 22918941 PMCID: PMC3469518 DOI: 10.1091/mbc.e12-05-0338] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Actin-capping protein induced stable microtubules in an mDia1-dependent manner and inhibited the translocation of mDia on the ends of growing actin filaments. Knockdown of capping protein by small interfering RNA reduced stable microtubule levels in proliferating cells and in starved cells stimulated with lysophosphatidic acid. In migrating fibroblasts, RhoA and its effector mDia1 regulate the selective stabilization of microtubules (MTs) polarized in the direction of migration. The conserved formin homology 2 domain of mDia1 is involved both in actin polymerization and MT stabilization, and the relationship between these two activities is unknown. We found that latrunculin A (LatA) and jasplakinolide, actin drugs that release mDia1 from actin filament barbed ends, stimulated stable MT formation in serum-starved fibroblasts and caused a redistribution of mDia1 onto MTs. Knockdown of mDia1 by small interfering RNA (siRNA) prevented stable MT induction by LatA, whereas blocking upstream Rho or integrin signaling had no effect. In search of physiological regulators of mDia1, we found that actin-capping protein induced stable MTs in an mDia1-dependent manner and inhibited the translocation of mDia on the ends of growing actin filaments. Knockdown of capping protein by siRNA reduced stable MT levels in proliferating cells and in starved cells stimulated with lysophosphatidic acid. These results show that actin-capping protein is a novel regulator of MT stability that functions by antagonizing mDia1 activity toward actin filaments and suggest a novel form of actin–MT cross-talk in which a single factor acts sequentially on actin and MTs.
Collapse
Affiliation(s)
- Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
33
|
Arama J, Boulay AC, Bosc C, Delphin C, Loew D, Rostaing P, Amigou E, Ezan P, Wingertsmann L, Guillaud L, Andrieux A, Giaume C, Cohen-Salmon M. Bmcc1s, a novel brain-isoform of Bmcc1, affects cell morphology by regulating MAP6/STOP functions. PLoS One 2012; 7:e35488. [PMID: 22523599 PMCID: PMC3327665 DOI: 10.1371/journal.pone.0035488] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/16/2012] [Indexed: 12/21/2022] Open
Abstract
The BCH (BNIP2 and Cdc42GAP Homology) domain-containing protein Bmcc1/Prune2 is highly enriched in the brain and is involved in the regulation of cytoskeleton dynamics and cell survival. However, the molecular mechanisms accounting for these functions are poorly defined. Here, we have identified Bmcc1s, a novel isoform of Bmcc1 predominantly expressed in the mouse brain. In primary cultures of astrocytes and neurons, Bmcc1s localized on intermediate filaments and microtubules and interacted directly with MAP6/STOP, a microtubule-binding protein responsible for microtubule cold stability. Bmcc1s overexpression inhibited MAP6-induced microtubule cold stability by displacing MAP6 away from microtubules. It also resulted in the formation of membrane protrusions for which MAP6 was a necessary cofactor of Bmcc1s. This study identifies Bmcc1s as a new MAP6 interacting protein able to modulate MAP6-induced microtubule cold stability. Moreover, it illustrates a novel mechanism by which Bmcc1 regulates cell morphology.
Collapse
Affiliation(s)
- Jessica Arama
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France
- University Pierre et Marie Curie, ED, N°158, Paris, France
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France
| | - Anne-Cécile Boulay
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France
- University Pierre et Marie Curie, ED, N°158, Paris, France
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France
| | - Christophe Bosc
- Equipe Physiopathologie du Cytosquelette, Institut National de la Santé et de la Recherche Médicale U836, Institut des Neurosciences, Université Joseph Fourier, Faculté de Médecine, Domaine de la Merci, La Tronche, France
| | - Christian Delphin
- Equipe Physiopathologie du Cytosquelette, Institut National de la Santé et de la Recherche Médicale U836, Institut des Neurosciences, Université Joseph Fourier, Faculté de Médecine, Domaine de la Merci, La Tronche, France
| | - Damarys Loew
- Institut Curie, Laboratory of Proteomic Mass Spectrometry, Paris, France
| | - Philippe Rostaing
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Institut National de la Santé et de la Recherche Médicale U1024, Paris, France
| | - Edwige Amigou
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France
- University Pierre et Marie Curie, ED, N°158, Paris, France
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France
| | - Pascal Ezan
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France
- University Pierre et Marie Curie, ED, N°158, Paris, France
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France
| | - Laure Wingertsmann
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Institut National de la Santé et de la Recherche Médicale U1024, Paris, France
| | - Laurent Guillaud
- Cell and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Annie Andrieux
- Equipe Physiopathologie du Cytosquelette, Institut National de la Santé et de la Recherche Médicale U836, Institut des Neurosciences, Université Joseph Fourier, Faculté de Médecine, Domaine de la Merci, La Tronche, France
| | - Christian Giaume
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France
- University Pierre et Marie Curie, ED, N°158, Paris, France
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France
| | - Martine Cohen-Salmon
- Collège de France, Center for Interdisciplinary Research in Biology (CIRB)/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241/Institut National de la Santé et de la Recherche Médicale U1050, Paris, France
- University Pierre et Marie Curie, ED, N°158, Paris, France
- MEMOLIFE Laboratory of Excellence and Paris Science Lettre Research University, Paris, France
- * E-mail:
| |
Collapse
|
34
|
Sahab ZJ, Man YG, Byers SW, Sang QXA. Putative biomarkers and targets of estrogen receptor negative human breast cancer. Int J Mol Sci 2011; 12:4504-21. [PMID: 21845093 PMCID: PMC3155366 DOI: 10.3390/ijms12074504] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/27/2011] [Accepted: 07/04/2011] [Indexed: 11/26/2022] Open
Abstract
Breast cancer is a progressive and potentially fatal disease that affects women of all ages. Like all progressive diseases, early and reliable diagnosis is the key for successful treatment and annihilation. Biomarkers serve as indicators of pathological, physiological, or pharmacological processes. Her2/neu, CA15.3, estrogen receptor (ER), progesterone receptor (PR), and cytokeratins are biomarkers that have been approved by the Food and Drug Administration for disease diagnosis, prognosis, and therapy selection. The structural and functional complexity of protein biomarkers and the heterogeneity of the breast cancer pathology present challenges to the scientific community. Here we review estrogen receptor-related putative breast cancer biomarkers, including those of putative breast cancer stem cells, a minor population of estrogen receptor negative tumor cells that retain the stem cell property of self-renewal. We also review a few promising cytoskeleton targets for ER alpha negative breast cancer.
Collapse
Affiliation(s)
- Ziad J. Sahab
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA; E-Mail:
| | - Yan-Gao Man
- Diagnostic and Translational Research Center, Henry Jackson Foundation for the Advancement of Military Medicine, Gaithersburg, MD 20789, USA; E-Mail:
- Jilin University, Changchun 130012, China
| | - Stephen W. Byers
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA; E-Mail:
| | - Qing-Xiang A. Sang
- Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, 102 Varsity Way, Tallahassee, FL 32306, USA; E-Mail:
| |
Collapse
|
35
|
Bayless KJ, Johnson GA. Role of the cytoskeleton in formation and maintenance of angiogenic sprouts. J Vasc Res 2011; 48:369-85. [PMID: 21464572 DOI: 10.1159/000324751] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 01/10/2011] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis is the formation of new blood vessels from pre-existing structures, and is a key step in tissue and organ development, wound healing and pathological events. Changes in cell shape orchestrated by the cytoskeleton are integral to accomplishing the various steps of angiogenesis, and an intact cytoskeleton is also critical for maintaining newly formed structures. This review focuses on how the 3 main cytoskeletal elements--microfilaments, microtubules, and intermediate filaments--regulate the formation and maintenance of angiogenic sprouts. Multiple classes of compounds target microtubules and microfilaments, revealing much about the role of actin and tubulin and their associated molecules in angiogenic sprout formation and maintenance. In contrast, intermediate filaments are much less studied, yet intriguing evidence suggests a vital, but unresolved, role in angiogenic sprouting. This review discusses evidence for regulatory molecules and pharmacological compounds that affect actin, microtubule and intermediate filament dynamics to alter various steps of angiogenesis, including endothelial sprout formation and maintenance.
Collapse
Affiliation(s)
- Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA.
| | | |
Collapse
|
36
|
Yoon JR, Whipple RA, Balzer EM, Cho EH, Matrone MA, Peckham M, Martin SS. Local anesthetics inhibit kinesin motility and microtentacle protrusions in human epithelial and breast tumor cells. Breast Cancer Res Treat 2010; 129:691-701. [PMID: 21069453 DOI: 10.1007/s10549-010-1239-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 10/20/2010] [Indexed: 11/28/2022]
Abstract
Detached breast tumor cells produce dynamic microtubule protrusions that promote reattachment of cells and are termed tubulin microtentacles (McTNs) due to their mechanistic distinctions from actin-based filopodia/invadopodia and tubulin-based cilia. McTNs are enriched with vimentin and detyrosinated α-tubulin, (Glu-tubulin). Evidence suggests that vimentin and Glu-tubulin are cross-linked by kinesin motor proteins. Using known kinesin inhibitors, Lidocaine and Tetracaine, the roles of kinesins in McTN formation and function were tested. Live-cell McTN counts, adhesion assays, immunofluorescence, and video microscopy were performed to visualize inhibitor effects on McTNs. Viability and apoptosis assays were used to confirm the non-toxicity of the inhibitors. Treatments of human non-tumorigenic mammary epithelial and breast tumor cells with Lidocaine or Tetracaine caused rapid collapse of vimentin filaments. Live-cell video microscopy demonstrated that Tetracaine reduces motility of intracellular GFP-kinesin and causes centripetal collapse of McTNs. Treatment with Tetracaine inhibited the extension of McTNs and their ability to promote tumor cell aggregation and reattachment. Lidocaine showed similar effects but to a lesser degree. Our current data support a model in which the inhibition of kinesin motor proteins by Tetracaine leads to the reductions in McTNs, and provides a novel mechanism for the ability of this anesthetic to decrease metastatic progression.
Collapse
Affiliation(s)
- Jennifer R Yoon
- Marlene and Stewart Greenebaum Cancer Center, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Wasylyk C, Zambrano A, Zhao C, Brants J, Abecassis J, Schalken JA, Rogatsch H, Schaefer G, Pycha A, Klocker H, Wasylyk B. Tubulin tyrosine ligase like 12 links to prostate cancer through tubulin posttranslational modification and chromosome ploidy. Int J Cancer 2010; 127:2542-53. [PMID: 20162578 DOI: 10.1002/ijc.25261] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prostate cancer is a common cause of death, and an important goal is to establish the pathways and functions of causative genes. We isolated RNAs that are differentially expressed in macrodissected prostate cancer samples. This study focused on 1 identified gene, TTLL12, which was predicted to modify tubulins, an established target for tumor therapy. TTLL12 is the most poorly characterized member of a recently discovered 14-member family of proteins that catalyze posttranslational modification of tubulins. We show that human TTLL12 is expressed in the proliferating layer of benign prostate. Expression increases during cancer progression to metastasis. It is highly expressed in many metastatic prostate cancer cell lines. It partially colocalizes with vimentin intermediate filaments and cellular structures containing tubulin, including midbodies, centrosomes, intercellular bridges and the mitotic spindle. Downregulation of TTLL12 affects several posttranslational modifications of tubulin (detyrosination and subsequent deglutamylation and polyglutamylation). Overexpression alters chromosomal ploidy. These results raise the possibility that TTLL12 could contribute to tumorigenesis through effects on the cytoskeleton, tubulin modification and chromosome number stability. This study contributes a step toward developing more selective agents targeting microtubules, an already successful target for tumor therapy.
Collapse
Affiliation(s)
- Christine Wasylyk
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104 CNRS UDS-U 964 INSERM, Illkirch, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Liang Y, Niederstrasser H, Edwards M, Jackson CE, Cooper JA. Distinct roles for CARMIL isoforms in cell migration. Mol Biol Cell 2010; 20:5290-305. [PMID: 19846667 DOI: 10.1091/mbc.e08-10-1071] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Molecular mechanisms for cell migration, especially how signaling and cytoskeletal systems are integrated, are not understood well. Here, we examined the role of CARMIL (capping protein, Arp2/3, and Myosin-I linker) family proteins in migrating cells. Vertebrates express three conserved genes for CARMIL, and we examined the functions of the two CARMIL genes expressed in migrating human cultured cells. Both isoforms, CARMIL1 and 2, were necessary for cell migration, but for different reasons. CARMIL1 localized to lamellipodia and macropinosomes, and loss of its function caused loss of lamellipodial actin, along with defects in protrusion, ruffling, and macropinocytosis. CARMIL1-knockdown cells showed loss of activation of Rac1, and CARMIL1 was biochemically associated with the GEF Trio. CARMIL2, in contrast, colocalized with vimentin intermediate filaments, and loss of its function caused a distinctive multipolar phenotype. Loss of CARMIL2 also caused decreased levels of myosin-IIB, which may contribute to the polarity phenotype. Expression of one CARMIL isoform was not able to rescue the knockdown phenotypes of the other. Thus, the two isoforms are both important for cell migration, but they have distinct functions.
Collapse
Affiliation(s)
- Yun Liang
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
39
|
Pelling AE, Veraitch FS, Chu CPK, Mason C, Horton MA. Mechanical dynamics of single cells during early apoptosis. ACTA ACUST UNITED AC 2009; 66:409-22. [PMID: 19492400 DOI: 10.1002/cm.20391] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dynamic mechanical properties of cells are becoming recognized as indicators and regulators of physiological processes such as differentiation, malignant phenotypes and mitosis. A key process in development and homeostasis is apoptosis and whilst the molecular control over this pathway is well studied, little is known about the mechanical consequences of cell death. Here, we study the caspase-dependent mechanical kinetics of single cells during early apoptosis initiated with the general protein-kinase inhibitor staurosporine. This results in internal remodelling of the cytoskeleton and nucleus which is reflected in dynamic changes in the mechanical properties of the cell. Utilizing simultaneous confocal and atomic force microscopy (AFM), we measured distinct mechanical dynamics in the instantaneous cellular Young's Modulus and longer timescale viscous deformation. This allowed us to visualize time-dependent nuclear and cytoskeletal control of force dissipation with fluorescent fusion proteins throughout the cell. This work reveals that the cell death program not only orchestrates biochemical dynamics but also controls the mechanical breakdown of the cell. Importantly, the consequences of mechanical disregulation during apoptosis may be a contributing factor to several human pathologies through the poorly timed release of dead cells and cell debris.
Collapse
Affiliation(s)
- Andrew E Pelling
- Centre for Nanomedicine, The London Centre for Nanotechnology, University College London, London, United Kingdom.
| | | | | | | | | |
Collapse
|
40
|
Bartolini F, Gundersen GG. Formins and microtubules. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1803:164-73. [PMID: 19631698 DOI: 10.1016/j.bbamcr.2009.07.006] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/29/2009] [Accepted: 07/04/2009] [Indexed: 02/06/2023]
Abstract
Formins have recently been recognized as prominent regulators of the microtubule (MT) cytoskeleton where they modulate the dynamics of selected MTs in interphase and mitosis. The association of formins with the MT cytoskeleton and their action on MT dynamics are relatively unexplored areas, yet growing evidence supports a direct role in their regulation of MT stability independent of their activity on actin. Formins regulate MT stability alone or in combination with accessory MT binding proteins that have previously been implicated in the stabilization of MTs downstream of polarity cues. As actin and MT arrays are typically remodeled downstream of signaling pathways that orchestrate cell shape and division, formins are emerging as excellent candidates for coordinating the responses of the cytoskeletal in diverse regulated and homeostatic processes.
Collapse
Affiliation(s)
- F Bartolini
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | | |
Collapse
|
41
|
Mukai M, Ikegami K, Sugiura Y, Takeshita K, Nakagawa A, Setou M. Recombinant mammalian tubulin polyglutamylase TTLL7 performs both initiation and elongation of polyglutamylation on beta-tubulin through a random sequential pathway. Biochemistry 2009; 48:1084-93. [PMID: 19152315 DOI: 10.1021/bi802047y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tubulins undergo unique post-translational modifications, such as tyrosination, polyglutamylation, and polyglycylation. These modifications are performed by members of a protein family, the tubulin tyrosine ligase (TTL)-like (TTLL) family, which is characterized by the presence of a highly conserved TTL domain. We and others have recently identified tubulin polyglutamylases in the TTLL family [Janke, C., et al. (2005) Science 308, 1758-1762; Ikegami, K., et al. (2006) J. Biol. Chem. 281, 30707-30716; van Dijk, J., et al. (2007) Mol. Cell 26, 437-448]. Previously, we identified TTLL7 as a beta-tubulin-selective polyglutamylase. However, there is controversy over whether TTLL7 functions as an initiase, elongase, or both in polyglutamylation. In this report, we investigate the polyglutamylation reaction by TTLL7 by employing a recombinant enzyme and in vitro reaction. Two-dimensional electrophoresis and tandem mass spectrometry showed that TTLL7 performed both the initiation and elongation of polyglutamylation on beta-tubulin. Recombinant TTLL7 performed with a maximal and specific activity to polymerized tubulin at a neutral pH and a lower salt concentration. The initial rate and inhibitor analyses revealed that the mechanism of binding of three substrates, glutamate, ATP, and tubulin, to the enzyme was a random sequential pathway. Our findings provide evidence that mammalian TTLL7 performs both initiation and elongation in the polyglutamylation reaction on beta-tubulin through a random sequential pathway.
Collapse
Affiliation(s)
- Masahiro Mukai
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), Minamiooya, Machida, Tokyo 194-8511, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Cleveland DW, Yamanaka K, Bomont P. Gigaxonin controls vimentin organization through a tubulin chaperone-independent pathway. Hum Mol Genet 2009; 18:1384-94. [PMID: 19168853 DOI: 10.1093/hmg/ddp044] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Gigaxonin mutations cause the fatal human neurodegenerative disorder giant axonal neuropathy (GAN). Broad deterioration of the nervous system in GAN patients is accompanied by massive disorganization of intermediate filaments (IFs) both in neurons and many non-neuronal cells. With newly developed antibodies, gigaxonin is now shown to be expressed at extremely low levels throughout the nervous system. In lymphoblast cell lines derived from severe and mild forms of GAN, mutations in gigaxonin are shown to yield highly unstable proteins, thereby permitting a rapid diagnostic test for the spectrum of GAN mutations as an alternative to invasive nerve biopsy or systematic sequencing of the GAN gene. Gigaxonin has been proposed as a substrate adaptor for an E3 ubiquitin ligase, which affects proteasome-dependent degradation of microtubule-related proteins including MAP1B, MAP8 and the tubulin folding chaperone TBCB. We demonstrate that, unlike its counterpart TBCE, TBCB only moderately destabilizes microtubules. Neither TBCB abundance nor microtubule organization or densities are altered in GAN mutant fibroblasts, thus demonstrating that altered TBCB levels are not primary determinants of IF disorganization in GAN. Characteristic GAN mutant-induced ovoid aggregates of vimentin are not produced in normal fibroblasts after disrupting microtubule assembly, either by TBCE overexpression or depolymerizing drugs. Thus, IF disorganization in GAN fibroblasts is independent of TBCB and microtubule loss and must be regulated by a yet unidentified mechanism.
Collapse
Affiliation(s)
- Don W Cleveland
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
43
|
Whipple RA, Balzer EM, Cho EH, Matrone MA, Yoon JR, Martin SS. Vimentin filaments support extension of tubulin-based microtentacles in detached breast tumor cells. Cancer Res 2008; 68:5678-88. [PMID: 18632620 DOI: 10.1158/0008-5472.can-07-6589] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Solid tumor metastasis often involves detachment of epithelial carcinoma cells into the vasculature or lymphatics. However, most studies of cytoskeletal rearrangement in solid tumors focus on attached cells. In this study, we report for the first time that human breast tumor cells produce unique tubulin-based protrusions when detached from extracellular matrix. Tumor cell lines of high metastatic potential show significantly increased extension and frequency of microtubule protrusions, which we have termed tubulin microtentacles. Our previous studies in nontumorigenic mammary epithelial cells showed that such detachment-induced microtentacles are enriched in detyrosinated alpha-tubulin. However, amounts of detyrosinated tubulin were similar in breast tumor cell lines despite varying microtentacle levels. Because detyrosinated alpha-tubulin associates strongly with intermediate filament proteins, we examined the contribution of cytokeratin and vimentin filaments to tumor cell microtentacles. Increased microtentacle frequency and extension correlated strongly with loss of cytokeratin expression and up-regulation of vimentin, as is often observed during tumor progression. Moreover, vimentin filaments coaligned with microtentacles, whereas cytokeratin did not. Disruption of vimentin with PP1/PP2A-specific inhibitors significantly reduced microtentacles and inhibited cell reattachment to extracellular matrix. Furthermore, expression of a dominant-negative vimentin mutant disrupted endogenous vimentin filaments and significantly reduced microtentacles, providing specific genetic evidence that vimentin supports microtentacles. Our results define a novel model in which coordination of vimentin and detyrosinated microtubules provides structural support for the extensive microtentacles observed in detached tumor cells and a possible mechanism to promote successful metastatic spread.
Collapse
Affiliation(s)
- Rebecca A Whipple
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum Cancer Center, Department of Physiology, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
44
|
Dunn S, Morrison EE, Liverpool TB, Molina-París C, Cross RA, Alonso MC, Peckham M. Differential trafficking of Kif5c on tyrosinated and detyrosinated microtubules in live cells. J Cell Sci 2008; 121:1085-95. [PMID: 18334549 DOI: 10.1242/jcs.026492] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Kinesin-1 is a molecular transporter that trafficks along microtubules. There is some evidence that kinesin-1 targets specific cellular sites, but it is unclear how this spatial regulation is achieved. To investigate this process, we used a combination of in vivo imaging of kinesin heavy-chain Kif5c (an isoform of kinesin-1) fused to GFP, in vitro analyses and mathematical modelling. GFP-Kif5c fluorescent puncta localised to a subset of microtubules in live cells. These puncta moved at speeds of up to 1 microm second(-1) and exchanged into cortically labelled clusters at microtubule ends. This behaviour depended on the presence of a functional motor domain, because a rigor-mutant GFP-Kif5c bound to microtubules but did not move along them. Further analysis indicated that the microtubule subset decorated by GFP-Kif5c was highly stable and primarily composed of detyrosinated tubulin. In vitro motility assays showed that the motor domain of Kif5c moved detyrosinated microtubules at significantly lower velocities than tyrosinated (unmodified) microtubules. Mathematical modelling predicted that a small increase in detyrosination would bias kinesin-1 occupancy towards detyrosinated microtubules. These data suggest that kinesin-1 preferentially binds to and trafficks on detyrosinated microtubules in vivo, providing a potential basis for the spatial targeting of kinesin-1-based cargo transport.
Collapse
Affiliation(s)
- Sarah Dunn
- Institute for Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | | | | | | | |
Collapse
|
45
|
Onishi K, Higuchi M, Asakura T, Masuyama N, Gotoh Y. The PI3K-Akt pathway promotes microtubule stabilization in migrating fibroblasts. Genes Cells 2007; 12:535-46. [PMID: 17397400 DOI: 10.1111/j.1365-2443.2007.01071.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Directed cell migration is controlled by extracellular cues such as growth factors/chemokines and extracellular matrix. In a migrating cell, a subset of microtubules becomes stabilized, and this stabilization is implicated in the establishment and maintenance of cell polarity. It is still not fully understood, however, how extracellular cues regulate the dynamics of microtubules. Here we show that the PI3K-Akt signaling pathway plays a pivotal role in growth factor regulation of microtubule stability. Treatment of NIH 3T3 fibroblasts with platelet-derived growth factor (PDGF) increases the amount of stabilized microtubules, and this increase is abrogated by the addition of a PI3K inhibitor or by expression of a dominant-negative form of Akt (DN-Akt), but not by the addition of a MEK inhibitor. Expression of an active form of Akt slightly increases the bulk amount of stabilized microtubules. Stabilization of microtubules induced in edge cells in the wounded monolayer culture is also attenuated by the PI3K inhibitor treatment or by expression of DN-Akt. Given that Akt is activated at the leading edge of a migrating cell and plays an essential role in directed cell migration, these results reveal a novel mechanism linking extracellular cues to directed cell migration, namely Akt regulation of microtubule stability.
Collapse
Affiliation(s)
- Keisuke Onishi
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | |
Collapse
|
46
|
Pelling AE, Dawson DW, Carreon DM, Christiansen JJ, Shen RR, Teitell MA, Gimzewski JK. Distinct contributions of microtubule subtypes to cell membrane shape and stability. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2007; 3:43-52. [PMID: 17379168 DOI: 10.1016/j.nano.2006.11.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 11/17/2006] [Accepted: 11/21/2006] [Indexed: 11/16/2022]
Abstract
Microtubules (MTs) are linked to cell mechanobiology. "Stable" and "dynamically unstable" microtubule (MT) subtypes are differentially sensitive to growth and distribution in serum starved (SS) versus full serum (FS) conditions. Atomic Force and Immunofluorescence microscopies were used to study the nanomechanical properties of the cell membrane in response to serum conditions and nocodazole. Nanomechanical properties of the cell membrane remain unchanged under SS/FS conditions even though there are drastic MT changes. The cell membrane is shown to depend on unstable MTs and the intermediate filament (IF) networks to maintain local stiffness. Measurements of local membrane nanomechanics in response to nocodazole display characteristic serum dependent decays. The responses suggest that the cell exists in a mechanical transition state. Stiffness is shown to depend on the interplay between dynamically unstable MTs, stable MTs and IFs which all act to impart a distinct cellular type of transient "metastability".
Collapse
Affiliation(s)
- Andrew E Pelling
- Department of Medicine and the London Centre for Nanotechnology, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Klaus Strebel
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious, Diseases, National Institutes of Health, 4/312, Bethesda, MD 20892, USA
| |
Collapse
|
48
|
Arachchige Don AS, Dallapiazza RF, Bennin DA, Brake T, Cowan CE, Horne MC. Cyclin G2 is a centrosome-associated nucleocytoplasmic shuttling protein that influences microtubule stability and induces a p53-dependent cell cycle arrest. Exp Cell Res 2006; 312:4181-204. [PMID: 17123511 PMCID: PMC1862360 DOI: 10.1016/j.yexcr.2006.09.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 09/21/2006] [Accepted: 09/26/2006] [Indexed: 01/14/2023]
Abstract
Cyclin G2 is an atypical cyclin that associates with active protein phosphatase 2A. Cyclin G2 gene expression correlates with cell cycle inhibition; it is significantly upregulated in response to DNA damage and diverse growth inhibitory stimuli, but repressed by mitogenic signals. Ectopic expression of cyclin G2 promotes cell cycle arrest, cyclin dependent kinase 2 inhibition and the formation of aberrant nuclei [Bennin, D. A., Don, A. S., Brake, T., McKenzie, J. L., Rosenbaum, H., Ortiz, L., DePaoli-Roach, A. A., and Horne, M. C. (2002). Cyclin G2 associates with protein phosphatase 2A catalytic and regulatory B' subunits in active complexes and induces nuclear aberrations and a G(1)/S-phase cell cycle arrest. J Biol Chem 277, 27449-67]. Here we report that endogenous cyclin G2 copurifies with centrosomes and microtubules (MT) and that ectopic G2 expression alters microtubule stability. We find exogenous and endogenous cyclin G2 present at microtubule organizing centers (MTOCs) where it colocalizes with centrosomal markers in a variety of cell lines. We previously reported that cyclin G2 forms complexes with active protein phosphatase 2A (PP2A) and colocalizes with PP2A in a detergent-resistant compartment. We now show that cyclin G2 and PP2A colocalize at MTOCs in transfected cells and that the endogenous proteins copurify with isolated centrosomes. Displacement of the endogenous centrosomal scaffolding protein AKAP450 that anchors PP2A at the centrosome resulted in the depletion of centrosomal cyclin G2. We find that ectopic expression of cyclin G2 induces microtubule bundling and resistance to depolymerization, inhibition of polymer regrowth from MTOCs and a p53-dependent cell cycle arrest. Furthermore, we determined that a 100 amino acid carboxy-terminal region of cyclin G2 is sufficient to both direct GFP localization to centrosomes and induce cell cycle inhibition. Colocalization of endogenous cyclin G2 with only one of two GFP-centrin-tagged centrioles, the mature centriole present at microtubule foci, indicates that cyclin G2 resides primarily on the mother centriole. Copurification of cyclin G2 and PP2A subunits with microtubules and centrosomes, together with the effects of ectopic cyclin G2 on cell cycle progression, nuclear morphology and microtubule growth and stability, suggests that cyclin G2 may modulate the cell cycle and cellular division processes through modulation of PP2A and centrosomal associated activities.
Collapse
Affiliation(s)
| | | | - David A. Bennin
- The Department of Pharmacology, University of Wisconsin, Madison, Wisconsin 53706-1532
| | - Tiffany Brake
- The Department of Pharmacology, University of Wisconsin, Madison, Wisconsin 53706-1532
| | - Colleen E. Cowan
- The Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242-1109
| | - Mary C. Horne
- The Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242-1109
- The Department of Pharmacology, University of Wisconsin, Madison, Wisconsin 53706-1532
- *Correspondence to: Mary C. Horne, 2-530 BSB, 51 Newton Rd, Department of Pharmacology, University of Iowa, Iowa City, IA 52242-1109, Phone: (319) 335-8267, FAX: (319) 335-8930, E-mail:
| |
Collapse
|
49
|
Eng CH, Huckaba TM, Gundersen GG. The formin mDia regulates GSK3beta through novel PKCs to promote microtubule stabilization but not MTOC reorientation in migrating fibroblasts. Mol Biol Cell 2006; 17:5004-16. [PMID: 16987962 PMCID: PMC1679669 DOI: 10.1091/mbc.e05-10-0914] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In migrating cells, external signals polarize the microtubule (MT) cytoskeleton by stimulating the formation of oriented, stabilized MTs and inducing the reorientation of the MT organizing center (MTOC). Glycogen synthase kinase 3beta (GSK3beta) has been implicated in each of these processes, although whether it regulates both processes in a single system and how its activity is regulated are unclear. We examined these issues in wound-edge, serum-starved NIH 3T3 fibroblasts where MT stabilization and MTOC reorientation are triggered by lysophosphatidic acid (LPA), but are regulated independently by distinct Rho GTPase-signaling pathways. In the absence of other treatments, the GSK3beta inhibitors, LiCl or SB216763, induced the formation of stable MTs, but not MTOC reorientation, in starved fibroblasts. Overexpression of GSK3beta in starved fibroblasts inhibited LPA-induced stable MTs without inhibiting MTOC reorientation. Analysis of factors involved in stable MT formation (Rho, mDia, and EB1) showed that GSK3beta functioned upstream of EB1, but downstream of Rho-mDia. mDia was both necessary and sufficient for inducing stable MTs and for up-regulating GSK3beta phosphorylation on Ser9, an inhibitory site. mDia appears to regulate GSK3beta through novel class PKCs because PKC inhibitors and dominant negative constructs of novel PKC isoforms prevented phosphorylation of GSK3beta Ser9 and stable MT formation. Novel PKCs also interacted with mDia in vivo and in vitro. These results identify a new activity for the formin mDia in regulating GSK3beta through novel PKCs and implicate novel PKCs as new factors in the MT stabilization pathway.
Collapse
Affiliation(s)
- Christina H. Eng
- *Department of Anatomy and Cell Biology and
- Integrated Program in Cellular, Molecular, and Biophysical Studies, Columbia University, New York, NY 10032
| | | | | |
Collapse
|
50
|
Soucek K, Kamaid A, Phung AD, Kubala L, Bulinski JC, Harper RW, Eiserich JP. Normal and prostate cancer cells display distinct molecular profiles of alpha-tubulin posttranslational modifications. Prostate 2006; 66:954-65. [PMID: 16541425 DOI: 10.1002/pros.20416] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Multiple diverse posttranslational modifications of alpha-tubulin such as detyrosination, further cleavage of the penultimate glutamate residue (Delta2-tubulin), acetylation, and polyglutamylation increase the structural and functional diversity of microtubules. METHODS Herein, we characterized the molecular profile of alpha-tubulin posttranslational modifications in normal human prostate epithelial cells (PrEC), immortalized normal prostate epithelial cells (PZ-HPV-7), androgen-dependent prostate cancer cells (LNCaP), transitional androgen-independent prostate cancer cells (LNCaP-cds and CWR22Rv1), and androgen-independent prostate cancer cells (PC3). RESULTS Compared to PrEC and PZ-HPV-7 cells, all cancer cells exhibited elevated levels of detyrosinated and polyglutamylated alpha-tubulin, that was paralleled by decreased protein levels of tubulin tyrosine ligase (TTL). In contrast, PrEC and PZ-HPV-7 cells expressed markedly higher levels of Delta2-tubulin. Whereas alpha-tubulin acetylation levels were generally equivalent in all the cell lines, PC3 cells did not display detectable levels of Ac-tubulin. CONCLUSION These data may reveal novel biomarkers of prostate cancer and new therapeutic targets.
Collapse
Affiliation(s)
- Karel Soucek
- Department of Internal Medicine, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|