1
|
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) senses nutrient levels in the cell and based on the availability, regulates cellular growth and proliferation. Its activity is tightly modulated by two GTPase units, the Rag GTPases and the Rheb GTPase. The Rag GTPases are the central hub of amino acid sensing as they summarize the amino acid signals from upstream regulators and control the subcellular localization of mTORC1. Unique from canonical signaling GTPases, the Rag GTPases are obligatory heterodimers, and the two subunits coordinate their nucleotide loading states to regulate their functional states. Robust biochemical analysis is indispensable to understanding the molecular mechanism governing the GTPase cycle. This chapter discusses protocols for purifying and biochemically characterizing the Rag GTPase heterodimer. We described two purification protocols to recombinantly produce the Rag GTPase heterodimer in large quantities. We then described assays to quantitatively measure the nucleotide binding and hydrolysis by the Rag GTPases. These assays allow for a thorough investigation of this unique heterodimeric GTPase, and they could be applicable to investigations of other noncanonical GTPases.
Collapse
Affiliation(s)
- Dylan D Doxsey
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Kuang Shen
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, United States.
| |
Collapse
|
2
|
Shen K, Choe A, Sabatini DM. Intersubunit Crosstalk in the Rag GTPase Heterodimer Enables mTORC1 to Respond Rapidly to Amino Acid Availability. Mol Cell 2017; 68:552-565.e8. [PMID: 29056322 PMCID: PMC5674802 DOI: 10.1016/j.molcel.2017.09.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/14/2017] [Accepted: 09/19/2017] [Indexed: 01/03/2023]
Abstract
mTOR complex I (mTORC1) is a central growth regulator that senses amino acids through a pathway that converges on the Rag GTPases, an obligate heterodimer of two related GTPases. Despite their central role in amino acid sensing, it is unknown why the Rag GTPases are heterodimeric and whether their subunits communicate with each other. Here, we find that the binding of guanosine triphosphate (GTP) to one subunit inhibits the binding and induces the hydrolysis of GTP by the other. This intersubunit communication pushes the Rag GTPases into either of two stable configurations, which represent active "on" or "off" states that interconvert via transient intermediates. Subunit coupling confers on the mTORC1 pathway its capacity to respond rapidly to the amino acid level. Thus, the dynamic response of mTORC1 requires intersubunit communication by the Rag GTPases, providing a rationale for why they exist as a dimer and revealing a distinct mode of control for a GTP-binding protein.
Collapse
Affiliation(s)
- Kuang Shen
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Abigail Choe
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA.
| |
Collapse
|
3
|
Wu L, Wu X, Du M. Identification and expression localization of a Ran homologue in mollusc abalone, Haliotis diversicolor supertexta. FISH & SHELLFISH IMMUNOLOGY 2011; 30:986-991. [PMID: 21232607 DOI: 10.1016/j.fsi.2010.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 09/10/2010] [Accepted: 10/07/2010] [Indexed: 05/30/2023]
Abstract
Ran protein is a central molecular in several key nuclear functions, including nucleocytoplasmic transport, cell-cycle progression and nuclear envelope assembly. In this study, we have isolated and characterized a Ran homologue from a gastropod abalone which we named ab-Ran. The full-length cDNA consists of 1239 bp with an ORF encoding a 220 amino acid protein. The deduced amino acid sequence of ab-Ran shows highly similar to that of other Ran members (84-88%). Moreover, the ab-Ran contains five conserved regions and four carboxy-terminal residues CAAX-box. RT-PCR analysis showed that the ab-Ran was ubiquitously expressed in abalone tissues. The intracellular localization examined by immunofluorescence and immunohistochemistry staining displayed that ab-Ran was largely concentrated in the nuclei and partially in the cytoplasm. To the best of our knowledge, this is the first identification and characterization of a Ran homologue in mollusk.
Collapse
Affiliation(s)
- Liuji Wu
- College of Agronomy, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, PR China.
| | | | | |
Collapse
|
4
|
Woo IS, Jang HS, Eun SY, Kim HJ, Ham SA, Kim HJ, Lee JH, Chang KC, Kim JH, Han CW, Seo HG. Ran suppresses paclitaxel-induced apoptosis in human glioblastoma cells. Apoptosis 2008; 13:1223-31. [DOI: 10.1007/s10495-008-0247-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
5
|
Hallhuber M, Ritter O. New approach to prevent myocardial hypertrophy: the import blocking peptide. Future Cardiol 2007; 3:91-8. [PMID: 19804210 DOI: 10.2217/14796678.3.1.91] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Calcineurin, a serine/threonine phosphatase, plays a crucial role in the development of myocardial hypertrophy. Calcineurin is a cytosolic phosphatase that dephosphorylates the nuclear factor of activated T cells (NFAT), a transcription factor. Until now, it has been postulated that dephosphorylated NFAT is shuttled into the nucleus. Recent evidence demonstrates that not only NFAT, but also calcineurin, is localized in the nucleus. Once calcineurin and NFAT enter the nucleus of cardiomyocytes, transcription of genes that are characteristic for myocardial hypertrophy (e.g., brain natriuretic peptide and atrial natriuretic peptide) occurs. Although the exact nuclear function of calcineurin remains unclear, its co-existence with NFAT is important for the full transcriptional activity of the calcineurin/NFAT signaling cascade. The principal effect of nuclear calcineurin is likely the prolonged nuclear retention period of NFAT. Potential effects of nuclear calcineurin include an antagonistic function to glycogen synthase kinase 3beta, which phosphorylates NFAT for its export out of the nucleus, or direct antagonization of the export of NFAT, catalyzed by the chromosome region maintenance 1, which would leave NFAT nuclear. The nuclear localization sequence (NLS) region at the amino acid sequence from position 172 to 183 of calcineurin Abeta is essential for shuttling calcineurin into the nucleus by importinbeta(1). A synthetic import blocking peptide (IBP) that mimics the nuclear localization sequence of calcineurin was generated. The NLS analog on IBP saturates the calcineurin binding site of importinbeta(1). This prevents the binding of calcineurin to importin and inhibits the nuclear shuttling of calcineurin. Inhibition of the calcineurin/importinbeta(1) interaction by competing synthetic peptides represents a new approach to the inhibition of the development of myocardial hypertrophy.
Collapse
Affiliation(s)
- Matthias Hallhuber
- University of Wuerzburg, Department of Medicine I, Department of Molecular Cardiology, Josef-Schneider-Str. 2, 97080 Wuerzburg, Germany.
| | | |
Collapse
|
6
|
Shan SO, Walter P. Molecular crosstalk between the nucleotide specificity determinant of the SRP GTPase and the SRP receptor. Biochemistry 2005; 44:6214-22. [PMID: 15835909 DOI: 10.1021/bi0500980] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In signal recognition particle (SRP)-dependent targeting of proteins to the bacterial plasma membrane, two GTPases, Ffh (the SRP GTPase) and FtsY (the receptor GTPase), form a complex in which both proteins reciprocally stimulate each other's GTPase activities. We mutated Asp251 in the Ffh active site to Asn (D251N), converting Ffh to a xanthosine 5'-triphosphate (XTP)-specific protein as has been observed in many other GTPases. Unexpectedly, mutant SRP(D251N) is severely compromised in the formation of an active SRP.FtsY complex when bound with cognate XTP, and even more surprisingly, mutant SRP(D251N) works better when bound with noncognate GTP. These paradoxical results are explained by a model in which Ffh Asp251 forms a bidentate interaction with not only the bound GTP but also the receptor FtsY across the dimer interface. These interactions form part of the network that seals the lateral entrance to the composite active site at the dimer interface, thereby ensuring the electrostatic and/or structural integrity of the active site and contributing to the formation of an active SRP.FtsY complex.
Collapse
Affiliation(s)
- Shu-ou Shan
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-2200, USA.
| | | |
Collapse
|
7
|
Gille A, Seifert R. Xanthine nucleotide-specific G-protein alpha-subunits: a novel approach for the analysis of G-protein-mediated signal transduction. Naunyn Schmiedebergs Arch Pharmacol 2003; 369:141-50. [PMID: 14654999 DOI: 10.1007/s00210-003-0844-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Accepted: 10/13/2003] [Indexed: 11/28/2022]
Abstract
Pro- and eukaryotic cells express multiple GTP-binding proteins that play crucial roles in signal transduction. GTP-binding proteins possess a highly conserved NKX D motif critically involved in guanine binding. In order to selectively activate a defined GTP-binding protein, base-specificity can be switched from guanine to xanthine by mutating the conserved aspartate into asparagine (D/N-mutation). This approach was very successful at elucidating the function of structurally diverse GTP-binding proteins in complex systems. However, attempts to generate functional xanthine nucleotide-specific alpha-subunits of heterotrimeric GTP-binding proteins (G-proteins) met more difficulties. Recent studies have shown that a sufficiently high GDP-affinity is critical for functional expression of xanthine nucleotide-selective G-protein mutants. Moreover, xanthosine 5'-[gamma-thio]triphosphate and xanthosine 5'-[gamma, beta-imido]triphosphate are not functionally equivalent activators of D/N-G-protein mutants. We are now in the position to exploit xanthine nucleotide-specific G-proteins to dissect signaling pathways activated by a given G-protein in complex systems.
Collapse
Affiliation(s)
- Andreas Gille
- Department of Pharmacology and Toxicology, The University of Kansas, 1251 Wescoe Hall Drive, Malott Hall, Room 5064, Lawrence, KS 66045-7582, USA
| | | |
Collapse
|
8
|
Abstract
In signal-recognition particle (SRP)-dependent protein targeting to the bacterial plasma membrane, two GTPases, Ffh (a subunit of the bacterial SRP) and FtsY (the bacterial SRP receptor), act as GTPase activating proteins for one another. The molecular mechanism of this reciprocal GTPase activation is poorly understood. In this work, we show that, unlike other GTPases, free FtsY exhibits only low preference for GTP over other nucleotides. On formation of the SRP.FtsY complex, however, the nucleotide specificity of FtsY is enhanced 10(3)-fold. Thus, interactions with SRP must induce conformational changes that directly affect the FtsY GTP-binding site: in response to SRP binding, FtsY switches from a nonspecific "open" state to a "closed" state that provides discrimination between cognate and noncognate nucleotides. We propose that this conformational change leads to more accurate positioning of the nucleotide and thus could contribute to activation of FtsY's GTPase activity by a novel mechanism.
Collapse
Affiliation(s)
- Shu-ou Shan
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143-0448, USA
| | | |
Collapse
|
9
|
Lyman SK, Guan T, Bednenko J, Wodrich H, Gerace L. Influence of cargo size on Ran and energy requirements for nuclear protein import. J Cell Biol 2002; 159:55-67. [PMID: 12370244 PMCID: PMC2173498 DOI: 10.1083/jcb.200204163] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Previous work has shown that the transport of some small protein cargoes through the nuclear pore complex (NPC) can occur in vitro in the absence of nucleoside triphosphate hydrolysis. We now demonstrate that in the importin alpha/beta and transportin import pathways, efficient in vitro transport of large proteins, in contrast to smaller proteins, requires hydrolyzable GTP and the small GTPase Ran. Morphological and biochemical analysis indicates that the presence of Ran and GTP allows large cargo to efficiently cross central regions of the NPC. We further demonstrate that this function of RanGTP at least partly involves its direct binding to importin beta and transportin. We suggest that RanGTP functions in these pathways to promote the transport of large cargo by enhancing the ability of import complexes to traverse diffusionally restricted areas of the NPC.
Collapse
Affiliation(s)
- Susan K Lyman
- Departments of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
10
|
Bishop A, Buzko O, Heyeck-Dumas S, Jung I, Kraybill B, Liu Y, Shah K, Ulrich S, Witucki L, Yang F, Zhang C, Shokat KM. Unnatural ligands for engineered proteins: new tools for chemical genetics. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 29:577-606. [PMID: 10940260 DOI: 10.1146/annurev.biophys.29.1.577] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Small molecules that modulate the activity of biological signaling molecules can be powerful probes of signal transduction pathways. Highly specific molecules with high affinity are difficult to identify because of the conserved nature of many protein active sites. A newly developed approach to discovery of such small molecules that relies on protein engineering and chemical synthesis has yielded powerful tools for the study of a wide variety of proteins involved in signal transduction (G-proteins, protein kinases, 7-transmembrane receptors, nuclear hormone receptors, and others). Such chemical genetic tools combine the advantages of traditional genetics and the unparalleled temporal control over protein function afforded by small molecule inhibitors/activators that act at diffusion controlled rates with targets.
Collapse
Affiliation(s)
- A Bishop
- Department of Chemistry, Princeton University, New Jersey 08544, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sweitzer TD, Love DC, Hanover JA. Regulation of nuclear import and export. CURRENT TOPICS IN CELLULAR REGULATION 2000; 36:77-94. [PMID: 10842747 DOI: 10.1016/s0070-2137(01)80003-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- T D Sweitzer
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
12
|
Goldberg MW, Rutherford SA, Hughes M, Cotter LA, Bagley S, Kiseleva E, Allen TD, Clarke PR. Ran alters nuclear pore complex conformation. J Mol Biol 2000; 300:519-29. [PMID: 10884348 DOI: 10.1006/jmbi.2000.3891] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transport across the nuclear membranes occurs through the nuclear pore complex (NPC), and is mediated by soluble transport factors including Ran, a small GTPase that is generally GDP-bound during import and GTP-bound for export. The dynamic nature of the NPC structure suggests a possible active role for it in driving translocation. Here we show that RanGTP but not RanGDP causes alterations of NPC structure when injected into the cytoplasm of Xenopus oocytes, including compaction of the NPC and extension of the cytoplasmic filaments. RanGTP caused accumulation of nucleoplasmin-gold along the length of extended cytoplasmic filaments, whereas RanGDP caused accumulation around the cytoplasmic rim of the NPC. This suggests a possible role for Ran in altering the conformation of the cytoplasmic filaments during transport.
Collapse
Affiliation(s)
- M W Goldberg
- CRC Department of Structural Cell Biology, Paterson Institute for Cancer Research, Christie Hospital, Wilmslow Road, Manchester, M20 9BX, UK.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Saphire AC, Guan T, Schirmer EC, Nemerow GR, Gerace L. Nuclear import of adenovirus DNA in vitro involves the nuclear protein import pathway and hsc70. J Biol Chem 2000; 275:4298-304. [PMID: 10660598 DOI: 10.1074/jbc.275.6.4298] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenovirus, a respiratory virus with a double-stranded DNA genome, replicates in the nuclei of mammalian cells. We have developed a cytosol-dependent in vitro assay utilizing adenovirus nucleocapsids to examine the requirements for adenovirus docking to the nuclear pore complex and for DNA import into the nucleus. Our assay reveals that adenovirus DNA import is blocked by a competitive excess of classical protein nuclear localization sequences and other inhibitors of nuclear protein import and indicates that this process is dependent on hsc70. Previous work revealed that the hexon (coat) protein of adenovirus is the only major protein on the surface of the adenovirus nucleocapsid that docks at the nuclear pore complex. This, together with our finding that in vitro nuclear import of hexon is inhibited by an excess of classical nuclear localization sequences, suggests a role for the hexon protein in adenovirus DNA import. However, recombinant transport factors that are sufficient for hexon import in permeabilized cells do not support DNA import, indicating that there are other as yet unidentified factors required for this process.
Collapse
Affiliation(s)
- A C Saphire
- Departments of Cell and Molecular Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
14
|
Lorenz P, Misteli T, Baker BF, Bennett CF, Spector DL. Nucleocytoplasmic shuttling: a novel in vivo property of antisense phosphorothioate oligodeoxynucleotides. Nucleic Acids Res 2000; 28:582-92. [PMID: 10606658 PMCID: PMC102511 DOI: 10.1093/nar/28.2.582] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/1999] [Revised: 11/11/1999] [Accepted: 11/11/1999] [Indexed: 11/14/2022] Open
Abstract
Phosphorothioate oligodeoxynucleotides (P=S ODNs) are frequently used as antisense agents to specifically interfere with the expression of cellular target genes. However, the cell biological properties of P=S ODNs are poorly understood. Here we show that P=S ODNs were able to continuously shuttle between the nucleus and the cytoplasm and that shuttling P=S ODNs retained their ability to act as antisense agents. The shuttling process shares characteristics with active transport since it was inhibited by chilling and ATP depletion in vivo. Transport was carrier-mediated as it was saturable, and nuclear pore complex-mediated as it was sensitive to treatment with wheatgerm agglutinin. Oligonucleotides without a P=S backbone chemistry were only weakly restricted in their migration by chilling, ATP depletion and wheatgerm agglutinin and thus moved by diffusion. P=S ODN shuttling was only moderately affected by disruption of the Ran/RCC1 system. We propose that P=S ODNs shuttle through their binding to yet unidentified cellular molecules that undergo nucleocytoplasmic transport via a pathway that is not as strongly dependent on the Ran/RCC1 system as nuclear export signal-mediated protein export, U-snRNA, tRNA and mRNA export. The shuttling property of P=S ODNs must be taken into account when considering the mode and site of action of these antisense agents.
Collapse
Affiliation(s)
- P Lorenz
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | |
Collapse
|
15
|
Ferrigno P, Silver PA. Regulated nuclear localization of stress-responsive factors: how the nuclear trafficking of protein kinases and transcription factors contributes to cell survival. Oncogene 1999; 18:6129-34. [PMID: 10557104 DOI: 10.1038/sj.onc.1203132] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The details of nuclear transport mechanisms are emerging rapidly, largely through work with model organisms. Here, we briefly describe these advances, with an emphasis on the remaining challenges. We then address the nuclear transport of some high profile cellular regulators, including p53 and the proto-oncogene PKB/Akt. We discuss the mechanisms that contribute to the differential subcellular localization of these proteins. Finally, we analyse the provocative patterns that emerge from our overview.
Collapse
Affiliation(s)
- P Ferrigno
- Department of Cancer Biology, The Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts, MA 02115, USA
| | | |
Collapse
|
16
|
Hieda M, Tachibana T, Yokoya F, Kose S, Imamoto N, Yoneda Y. A monoclonal antibody to the COOH-terminal acidic portion of Ran inhibits both the recycling of Ran and nuclear protein import in living cells. J Cell Biol 1999; 144:645-55. [PMID: 10037787 PMCID: PMC2132938 DOI: 10.1083/jcb.144.4.645] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A small GTPase Ran is a key regulator for active nuclear transport. In immunoblotting analysis, a monoclonal antibody against recombinant human Ran, designated ARAN1, was found to recognize an epitope in the COOH-terminal domain of Ran. In a solution binding assay, ARAN1 recognized Ran when complexed with importin beta, transportin, and CAS, but not the Ran-GTP or the Ran-GDP alone, indicating that the COOH-terminal domain of Ran is exposed via its interaction with importin beta-related proteins. In addition, ARAN1 suppressed the binding of RanBP1 to the Ran-importin beta complex. When injected into the nucleus of BHK cells, ARAN1 was rapidly exported to the cytoplasm, indicating that the Ran-importin beta-related protein complex is exported as a complex from the nucleus to the cytoplasm in living cells. Moreover, ARAN1, when injected into the cultured cells induces the accumulation of endogenous Ran in the cytoplasm and prevents the nuclear import of SV-40 T-antigen nuclear localization signal substrates. From these findings, we propose that the binding of RanBP1 to the Ran-importin beta complex is required for the dissociation of the complex in the cytoplasm and that the released Ran is recycled to the nucleus, which is essential for the nuclear protein transport.
Collapse
Affiliation(s)
- M Hieda
- Department of Anatomy and Cell Biology, Osaka University Medical School, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Stewart M, Kent HM, McCoy AJ. The structure of the Q69L mutant of GDP-Ran shows a major conformational change in the switch II loop that accounts for its failure to bind nuclear transport factor 2 (NTF2). J Mol Biol 1998; 284:1517-27. [PMID: 9878368 DOI: 10.1006/jmbi.1998.2204] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report the 2.3 A resolution X-ray crystal structure of the GDP-bound form of the RanQ69L mutant that is used extensively in studies of nucleocytoplasmic transport and cell-cycle progression. When the structure of GDP-RanQ69L from monoclinic crystals with P21 symmetry was compared with the structure of wild-type Ran obtained from monoclinic crystals, the Q69L mutant showed a large conformational change in residues 68-74, which are in the switch II region of the molecule which changes conformation in response to nucleotide state and which forms the major interaction interface with nuclear transport factor 2 (NTF2, sometimes called p10). This conformational change alters the positions of key residues such as Lys71, Phe72 and Arg76 that are crucial for the interaction of GDP-Ran with NTF2 and indeed, solution binding studies were unable to detect any interaction between NTF2 and GDP-RanQ69L under conditions where GDP-Ran bound effectively. This interaction between NTF2 and GDP-Ran is required for efficient nuclear protein import and may function between the docking and translocation steps of the pathway.
Collapse
Affiliation(s)
- M Stewart
- MRC Laboratory of Molecular Biology, Hills Rd., Cambridge, CB2 2QH,
| | | | | |
Collapse
|
18
|
Abstract
A concentration gradient of the GTP-bound form of the GTPase Ran across nuclear pores is essential for the transport of many proteins and nucleic acids between the nuclear and cytoplasmic compartments of eukaryotic cells [1] [2] [3] [4]. The mechanisms responsible for the dynamics and maintenance of this Ran gradient have been unclear. We now show that Ran shuttles between the nucleosol and cytosol, and that cytosolic Ran accumulates rapidly in the nucleus in a saturable manner that is dependent on temperature and on the guanine-nucleotide exchange factor RCC1. Nuclear import in digitonin-permeabilized cells in the absence of added factors was minimal. The addition of energy and nuclear transport factor 2 (NTF2) [5] was sufficient for the accumulation of Ran in the nucleus. An NTF2 mutant that cannot bind Ran [6] was unable to facilitate Ran import. A GTP-bound form of a Ran mutant that cannot bind NTF2 was not a substrate for import. A dominant-negative importin-beta mutant inhibited nuclear import of Ran, whereas addition of transportin, which accumulates in the nucleus, enhanced NTF2-dependent Ran import. We conclude that NTF2 functions as a transport receptor for Ran, permitting rapid entry into the nucleus where GTP-GDP exchange mediated by RCC1 [7] converts Ran into its GTP-bound state. The Ran-GTP can associate with nuclear Ran-binding proteins, thereby creating a Ran gradient across nuclear pores.
Collapse
Affiliation(s)
- A Smith
- Center for Cell Signaling, Health Sciences Center, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
19
|
Affiliation(s)
- I M Krab
- Equipe 2 du Groupe de Biophysique, Ecole Polytechnique, F-91128 Palaiseau, France
| | | |
Collapse
|
20
|
Cavallius J, Merrick WC. Site-directed mutagenesis of yeast eEF1A. Viable mutants with altered nucleotide specificity. J Biol Chem 1998; 273:28752-8. [PMID: 9786872 DOI: 10.1074/jbc.273.44.28752] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Site-directed mutants of eEF1A (formerly eEF-1alpha) were generated using a modification of a highly versatile yeast shuttle vector (Cavallius, J., Popkie, A. P., and Merrick, W. C. (1997) Biochim. Biophys. Acta 1350, 345-358). The nucleotide specificity sequence NKMD (residues number 153-156) was targeted for mutagenesis, and the following mutants were obtained: N153D (DKMD), N153T (TKMD), D156N (NKMN), D156W (NKMW), and the double mutant N153T,D156E (TKNE). All of the yeast strains containing the mutant eEF1As as the sole source of eEF1A were viable except for the N153D mutant. Most of the purified mutant eEF1As had specific activities in the poly(U)-directed synthesis of polyphenylalanine similar to wild type, although with a Km for GTP increased by 1-2 orders of magnitude. The mutants showed a reduced rate of GTP hydrolysis, and most displayed misincorporation rates greater than wild type. The mutant NKMW eEF1A showed unusual properties. The yeast strain was temperature sensitive for growth, although the purified protein was not. Second, this form of eEF1A was 10-fold more accurate in protein synthesis, and its rate of GTP hydrolysis was about 20% of wild type. In total, the wild-type protein contains the most optimal nucleotide specificity sequence, NKMD, and even subtle changes in this sequence have drastic consequences on eEF1A function in vitro or yeast viability.
Collapse
Affiliation(s)
- J Cavallius
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4935, USA
| | | |
Collapse
|
21
|
Abstract
Active transport between the nucleus and cytoplasm involves primarily three classes of macromolecules: substrates, adaptors, and receptors. Some transport substrates bind directly to an import or an export receptor while others require one or more adaptors to mediate formation of a receptor-substrate complex. Once assembled, these transport complexes are transferred in one direction across the nuclear envelope through aqueous channels that are part of the nuclear pore complexes (NPCs). Dissociation of the transport complex must then take place, and both adaptors and receptors must be recycled through the NPC to allow another round of transport to occur. Directionality of either import or export therefore depends on association between a substrate and its receptor on one side of the nuclear envelope and dissociation on the other. The Ran GTPase is critical in generating this asymmetry. Regulation of nucleocytoplasmic transport generally involves specific inhibition of the formation of a transport complex; however, more global forms of regulation also occur.
Collapse
Affiliation(s)
- I W Mattaj
- European Molecular Biology Laboratory, Heidelberg, Germany.
| | | |
Collapse
|
22
|
Barbieri MA, Hoffenberg S, Roberts R, Mukhopadhyay A, Pomrehn A, Dickey BF, Stahl PD. Evidence for a symmetrical requirement for Rab5-GTP in in vitro endosome-endosome fusion. J Biol Chem 1998; 273:25850-5. [PMID: 9748259 DOI: 10.1074/jbc.273.40.25850] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Early endosome fusion, which has been extensively characterized using an in vitro reconstitution assay, is Rab5-dependent. To examine the requirement for Rab5 on both fusion partners, we prepared cytosol and endosomes depleted of Rab5. Unlike control cytosol, Rab5-depleted cytosol was only marginally active in the in vitro endosome fusion. However, fusion could be restored by the addition of wild-type Rab5 or Rab5 D136N, a mutant whose nucleotide specificity favors xanthine over guanine. The addition of Rab5 D136N restored fusion only in the presence of XTP. In the absence of XTP or in the presence of XDP, Rab5 D136N failed to restore fusion. When fusion was carried out with endosomal vesicles depleted of Rab GTPases (by preincubation of vesicles with GDP dissociation inhibitor), together with cytosol immunodepleted of Rab5, fusion was virtually absent. We then used immunodepleted cytosol and GDP dissociation inhibitor-treated vesicles to determine whether Rab5 is required by both fusion partners. Using separate sets of endosomal vesicles, we found that priming both sets of Rab5-depleted vesicles with Rab5 Q79L, a GTPase-defective mutant, substantially stimulated endosome fusion. Priming one set of vesicles with Rab5 Q79L and a second set of vesicles with Rab5 S34N failed to activate fusion. When both sets of Rab5-depleted vesicles were primed with Rab5 D136N supplemented with XTP, endosome fusion was stimulated, similar to that observed with Rab5 Q79L. However, when one set of vesicles was preincubated with Rab5 D136N plus XTP and the second set with Rab5 D136N and XDP, no stimulation of fusion was observed. We conclude that Rab5-GTP is required on both fusion partners for docking and fusion of early endosomes. To confirm the fusion of Rab5-GTP-positive vesicles in vivo, we expressed GFP-Rab5 Q79L in fibroblasts and observed fusion of Rab5-positive vesicles. We failed to record fusion of Rab5-positive vesicles with Rab5-negative vesicles. We conclude that Rab5-GTP is required on both sets of endosomes for fusion in vitro and in living cells.
Collapse
Affiliation(s)
- M A Barbieri
- Department of Cell Biology and Physiology, Washington University, School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- M S Moore
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
24
|
Jans DA, Briggs LJ, Jans P, Froelich CJ, Parasivam G, Kumar S, Sutton VR, Trapani JA. Nuclear targeting of the serine protease granzyme A (fragmentin-1). J Cell Sci 1998; 111 ( Pt 17):2645-54. [PMID: 9701563 DOI: 10.1242/jcs.111.17.2645] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytolytic granule-mediated target cell killing is effected in part through synergistic action of the membrane-acting protein perforin and serine proteases such as granzymes A (GrA) or B (GrB). In the present study we examine GrA cellular entry and nuclear uptake in intact mouse myeloid FDC-P1 cells exposed to perforin using confocal laser scanning microscopy, as well as reconstitute GrA nuclear uptake in vitro. GrA alone was found to be able to enter the cytoplasm of intact cells but did not accumulate in nuclei. In the presence of perforin, it specifically accumulated in the cell nuclei, with maximal levels about 2.5 times those in the cytoplasm after 2. 5 hours. In vitro, GrA accumulated in the nucleus and nucleolus maximally to levels that were four- and sixfold, respectively, those in the cytoplasm. In contrast, the active form of the apoptotic cysteine protease CPP32 did not accumulate in nuclei in vitro. Nuclear/nucleolar import of GrA in vitro was independent of ATP and not inhibitable by the non-hydrolyzable GTP analog GTPgammaS, but was dependent on exogenously added cytosol. Importantly, GrA was found to be able to accumulate in the nucleus of semi-intact cells in the presence of the nuclear envelope-permeabilizing detergent CHAPS, implying that the mechanism of nuclear accumulation was through binding to insoluble factors in the nucleus. GrB was found for the first time to be similar in this regard. The results support the contention that GrA and GrB accumulate in the nucleus through a novel nuclear import pathway, and that this is integral to induction of the nuclear changes associated with cytolytic granule-mediated apoptosis.
Collapse
Affiliation(s)
- D A Jans
- Nuclear Signalling Laboratory, Division for Biochemistry and Molecular Biology, John Curtin School of Medical Research, PO Box 334, Canberra City, ACT 2601, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Turner H, Gomez M, McKenzie E, Kirchem A, Lennard A, Cantrell DA. Rac-1 regulates nuclear factor of activated T cells (NFAT) C1 nuclear translocation in response to Fcepsilon receptor type 1 stimulation of mast cells. J Exp Med 1998; 188:527-37. [PMID: 9687530 PMCID: PMC2212472 DOI: 10.1084/jem.188.3.527] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/1997] [Revised: 04/21/1998] [Indexed: 12/14/2022] Open
Abstract
Transcription factors of the nuclear factor of activated T cells (NFAT) family play a key role in antigen receptor-mediated responses in lymphocytes by controlling induction of a wide variety of cytokine genes. The GTPases Ras and Rac-1 have essential functions in regulation of NFAT transcriptional activity in the mast cell system, where Fcepsilon receptor type 1 (FcepsilonR1) ligation results in induction of multiple NFAT target genes. This report examines the precise biochemical basis for the Rac-1 dependency of FcepsilonR1 activation of NFAT in mast cells. We are able to place Rac-1 in two positions in the signaling network that regulates the assembly and activation of NFAT transcriptional complexes in lymphocytes. First, we show that activity of Rac-1 is required for FcepsilonR1-mediated NFATC1 dephosphorylation and nuclear import. Regulation of NFAT localization by the FcepsilonR1 is a Rac-dependent but Ras-independent process. This novel signaling role for Rac-1 is distinct from its established regulation of the actin cytoskeleton. Our data also reveal a second GTPase signaling pathway regulating NFAT transcriptional activity, in which Rac-1 mediates a Ras signal. These data illustrate that the GTPase Rac-1 should now be considered as a component of the therapeutically important pathways controlling NFATC1 subcellular localization. They also reveal that GTPases may serve multiple functions in cellular responses to antigen receptor ligation.
Collapse
Affiliation(s)
- H Turner
- Lymphocyte Activation Laboratory, Imperial Cancer Research Fund, London WC2A 3PX, United Kingdom
| | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- M Dasso
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-5431, USA.
| | | |
Collapse
|
27
|
Snay-Hodge CA, Colot HV, Goldstein AL, Cole CN. Dbp5p/Rat8p is a yeast nuclear pore-associated DEAD-box protein essential for RNA export. EMBO J 1998; 17:2663-76. [PMID: 9564048 PMCID: PMC1170607 DOI: 10.1093/emboj/17.9.2663] [Citation(s) in RCA: 213] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To identify Saccharomyces cerevisiae genes important for nucleocytoplasmic export of messenger RNA, we screened mutant strains to identify those in which poly(A)+ RNA accumulated in nuclei under nonpermissive conditions. We describe the identification of DBP5 as the gene defective in the strain carrying the rat8-1 allele (RAT = ribonucleic acid trafficking). Dbp5p/Rat8p, a previously uncharacterized member of the DEAD-box family of proteins, is closely related to eukaryotic initiation factor 4A(eIF4A) an RNA helicase essential for protein synthesis initiation. Analysis of protein databases suggests most eukaryotic genomes encode a DEAD-box protein that is probably a homolog of yeast Dbp5p/Rat8p. Temperature-sensitive alleles of DBP5/RAT8 were prepared. In rat8 mutant strains, cells displayed rapid, synchronous accumulation of poly(A)+ RNA in nuclei when shifted to the non-permissive temperature. Dbp5p/Rat8p is located within the cytoplasm and concentrated in the perinuclear region. Analysis of the distribution of Dbp5p/Rat8p in yeast strains where nuclear pore complexes are tightly clustered indicated that a fraction of this protein associates with nuclear pore complexes (NPCs). The strong mutant phenotype, association of the protein with NPCs and genetic interaction with factors involved in RNA export provide strong evidence that Dbp5p/Rat8p plays a direct role in RNA export.
Collapse
Affiliation(s)
- C A Snay-Hodge
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
28
|
Stewart M, Kent HM, McCoy AJ. Structural basis for molecular recognition between nuclear transport factor 2 (NTF2) and the GDP-bound form of the Ras-family GTPase Ran. J Mol Biol 1998; 277:635-46. [PMID: 9533885 DOI: 10.1006/jmbi.1997.1602] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nuclear transport factor 2 (NTF2) and the Ras-family GTPase Ran are two soluble components of the nuclear protein import machinery. NTF2 binds GDP-Ran selectively and this interaction is important for efficient nuclear protein import in vivo. We have used X-ray crystallography to determine the structure of the macromolecular complex formed between GDP-Ran and nuclear transport factor 2 (NTF2) at 2.5 A resolution. The interaction interface involves primarily the putative switch II loop of Ran (residues 65 to 78) and the hydrophobic cavity and surrounding surface of NTF2. The major contribution to the interaction made by the switch II loop accounts for the ability of NTF2 to discriminate between GDP and GTP-bound forms of Ran. The aromatic side-chain of Ran Phe72 inserts into the NTF2 cavity and accounts for 22% of the surface area buried by the interaction interface, while salt bridges are formed between Lys71 and Arg76 of Ran with Asp92/Asp94 and Glu42 of NTF2, respectively. These salt bridges account for the inhibition of the Ran-NTF2 interaction by NTF2 mutants such as E42 K and D92/94N in which the negatively charged residues surrounding the cavity were altered. Because the interaction interface maintains the positions of key Ran residues involved in binding MgGDP, NTF2 binding may help stabilize the switch state of Ran, possibly in the context of targeting it to other components of the nuclear protein import machinery to specify directionality of transport. The binding of GDP-Ran at the NTF2 cavity raises the possibility that this interaction might be modulated by a metabolite or small molecule substrate for NTF2's putative enzymatic activity.
Collapse
Affiliation(s)
- M Stewart
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, England
| | | | | |
Collapse
|
29
|
Izaurralde E, Adam S. Transport of macromolecules between the nucleus and the cytoplasm. RNA (NEW YORK, N.Y.) 1998; 4:351-364. [PMID: 9630243 PMCID: PMC1369623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Nuclear transport is an energy-dependent process mediated by saturable receptors. Import and export receptors are thought to recognize and bind to nuclear localization signals or nuclear export signals, respectively, in the transported molecules. The receptor-substrate interaction can be direct or mediated by an additional adapter protein. The transport receptors dock their cargoes to the nuclear pore complexes (NPC) and facilitate their translocation through the NPC. After delivering their cargoes, the receptors are recycled to initiate additional rounds of transport. Because a transport event for a cargo molecule is unidirectional, the transport receptors engage in asymmetric cycles of translocation across the NPC. The GTPase Ran acts as a molecular switch for receptor-cargo interaction and imparts directionality to the transport process. Recently, the combined use of different in vitro and in vivo approaches has led to the characterization of novel import and export signals and to the identification of the first nuclear import and export receptors.
Collapse
|
30
|
Truant R, Fridell RA, Benson RE, Bogerd H, Cullen BR. Identification and functional characterization of a novel nuclear localization signal present in the yeast Nab2 poly(A)+ RNA binding protein. Mol Cell Biol 1998; 18:1449-58. [PMID: 9488461 PMCID: PMC108859 DOI: 10.1128/mcb.18.3.1449] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The nuclear import of proteins bearing a basic nuclear localization signal (NLS) is dependent on karyopherin alpha/importin alpha, which acts as the NLS receptor, and karyopherin beta1/importin beta, which binds karyopherin alpha and mediates the nuclear import of the resultant ternary complex. Recently, a second nuclear import pathway that allows the rapid reentry into the nucleus of proteins that participate in the nuclear export of mature mRNAs has been identified. In mammalian cells, a single NLS specific for this alternate pathway, the M9 NLS of heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), has been described. The M9 NLS binds a transport factor related to karyopherin beta1, termed karyopherin beta2 or transportin, and does not require a karyopherin alpha-like adapter protein. A yeast homolog of karyopherin beta2, termed Kap104p, has also been described and proposed to play a role in the nuclear import of a yeast hnRNP-like protein termed Nab2p. Here, we define a Nab2p sequence that binds to Kap104p and that functions as an NLS in both human and yeast cells despite lacking any evident similarity to basic or M9 NLSs. Using an in vitro nuclear import assay, we demonstrate that Kap104p can direct the import into isolated human cell nuclei of a substrate containing a wild-type, but not a defective mutant, Nab2p NLS. In contrast, other NLSs, including the M9 NLS, could not function as substrates for Kap104p. Surprisingly, this in vitro assay also revealed that human karyopherin beta1, but not the Kap104p homolog karyopherin beta2, could direct the efficient nuclear import of a Nab2p NLS substrate in vitro in the absence of karyopherin alpha. These data therefore identify a novel NLS sequence, active in both yeast and mammalian cells, that is functionally distinct from both basic and M9 NLS sequences.
Collapse
Affiliation(s)
- R Truant
- Howard Hughes Medical Institute and Department of Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
31
|
Efthymiadis A, Briggs LJ, Jans DA. The HIV-1 Tat nuclear localization sequence confers novel nuclear import properties. J Biol Chem 1998; 273:1623-8. [PMID: 9430704 DOI: 10.1074/jbc.273.3.1623] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The different classes of conventional nuclear localization sequences (NLSs) resemble one another in that NLS-dependent nuclear protein import is energy-dependent and mediated by the cytosolic NLS-binding importin/karyopherin subunits and monomeric GTP-binding protein Ran/TC4. Based on analysis of the nuclear import kinetics mediated by the NLS of the human immunodeficiency virus accessory protein Tat using in vivo and in vitro nuclear transport assays and confocal laser scanning microscopy, we report a novel nuclear import pathway. We demonstrate that the Tat-NLS, not recognized by importin 58/97 subunits as shown using an enzyme-linked immunosorbent assay-based binding assay, is sufficient to target the 476-kDa heterologous beta-galactosidase protein to the nucleus in ATP-dependent but cytosolic factor-independent fashion. Excess SV40 large tumor antigen (T-ag) NLS-containing peptide had no significant effect on the nuclear import kinetics implying that the Tat-NLS was able to confer nuclear accumulation through a pathway distinct from conventional NLS-dependent pathways. Nucleoplasmic accumulation of the Tat-NLS-beta-galactosidase fusion protein, in contrast to that of a T-ag-NLS-containing fusion protein, also occurred in the absence of an intact nuclear envelope, implying that the Tat-NLS conferred binding to nuclear components. This is in stark contrast to known NLSs such as those of T-ag which confer nuclear entry rather than retention. Significantly, the ability to accumulate in the nucleus in the absence of an intact nuclear envelope was blocked in the absence of ATP, as well as by nonhydrolyzable ATP and GTP analogs, demonstrating that ATP is required to effect release from a complex with insoluble cytoplasmic components. Taken together, the results demonstrate that, dependent on ATP for release from cytoplasmic retention, the Tat-NLS is able to confer nuclear entry and binding to nuclear components. These unique properties indicate that Tat accumulates in the nucleus through a novel import pathway.
Collapse
Affiliation(s)
- A Efthymiadis
- Nuclear Signaling Laboratory, John Curtin School of Medical Research, Canberra, Australia
| | | | | |
Collapse
|
32
|
Nakielny S, Dreyfuss G. Import and export of the nuclear protein import receptor transportin by a mechanism independent of GTP hydrolysis. Curr Biol 1998; 8:89-95. [PMID: 9427645 DOI: 10.1016/s0960-9822(98)70039-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Nuclear protein import and export are mediated by receptor proteins that recognize nuclear localization sequences (NLSs) or nuclear export sequences (NESs) and target the NLS-bearing or NES-bearing protein to the nuclear pore complex (NPC). Temperature-dependent translocation of the receptor-cargo complex in both directions through the NPC requires the GTPase Ran, and it has been proposed that the Ran GTPase cycle mediates translocation. We have addressed the role of GTP hydrolysis in these processes by studying the import receptor transportin, which mediates the import of a group of abundant heterogeneous nuclear RNA-binding proteins bearing the M9 NLS. RESULTS We investigated the transport properties of transportin and found that the carboxy-terminal region of transportin could, by itself, be imported into the nucleus. Transportin import and export were inhibited by low temperature in vitro, but were unaffected by the non-hydrolyzable GTP analogue GMP-PNP. CONCLUSIONS Temperature-dependent import and export through the NPC can be uncoupled from the Ran GTPase cycle and can occur without GTP hydrolysis.
Collapse
Affiliation(s)
- S Nakielny
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA
| | | |
Collapse
|
33
|
Dingwall C, Palacios I. In vitro systems for the reconstitution of snRNP and protein nuclear import. Methods Cell Biol 1997; 53:517-43. [PMID: 9348523 DOI: 10.1016/s0091-679x(08)60893-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this chapter we have presented the most recent methods for the preparation of cell extracts and recombinant protein factors for the reconstitution of nuclear protein and snRNP import in vitro. In addition, we have discussed methods available for the quantitation of the level of import into nuclei. Accurate quantitation is particularly important when the effects of inhibitors are to be compared and when estimates of nuclear import rate are required.
Collapse
Affiliation(s)
- C Dingwall
- Department of Pharmacology, State University of New York at Stony Brook 11794-8651, USA
| | | |
Collapse
|
34
|
Murphy GA, Moore MS, Drivas G, Pérez de la Ossa P, Villamarin A, D'Eustachio P, Rush MG. A T42A Ran mutation: differential interactions with effectors and regulators, and defect in nuclear protein import. Mol Biol Cell 1997; 8:2591-604. [PMID: 9398678 PMCID: PMC25730 DOI: 10.1091/mbc.8.12.2591] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ran, the small, predominantly nuclear GTPase, has been implicated in the regulation of a variety of cellular processes including cell cycle progression, nuclear-cytoplasmic trafficking of RNA and protein, nuclear structure, and DNA synthesis. It is not known whether Ran functions directly in each process or whether many of its roles may be secondary to a direct role in only one, for example, nuclear protein import. To identify biochemical links between Ran and its functional target(s), we have generated and examined the properties of a putative Ran effector mutation, T42A-Ran. T42A-Ran binds guanine nucleotides as well as wild-type Ran and responds as well as wild-type Ran to GTP or GDP exchange stimulated by the Ran-specific guanine nucleotide exchange factor, RCC1. T42A-Ran.GDP also retains the ability to bind p10/NTF2, a component of the nuclear import pathway. In contrast to wild-type Ran, T42A-Ran.GTP binds very weakly or not detectably to three proposed Ran effectors, Ran-binding protein 1 (RanBP1), Ran-binding protein 2 (RanBP2, a nucleoporin), and karyopherin beta (a component of the nuclear protein import pathway), and is not stimulated to hydrolyze bound GTP by Ran GTPase-activating protein, RanGAP1. Also in contrast to wild-type Ran, T42A-Ran does not stimulate nuclear protein import in a digitonin permeabilized cell assay and also inhibits wild-type Ran function in this system. However, the T42A mutation does not block the docking of karyophilic substrates at the nuclear pore. These properties of T42A-Ran are consistent with its classification as an effector mutant and define the exposed region of Ran containing the mutation as a probable effector loop.
Collapse
Affiliation(s)
- G A Murphy
- Department of Biochemistry, New York University Medical Center, New York, New York 10016, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Haberland J, Becker J, Gerke V. The acidic C-terminal domain of rna1p is required for the binding of Ran.GTP and for RanGAP activity. J Biol Chem 1997; 272:24717-26. [PMID: 9305944 DOI: 10.1074/jbc.272.39.24717] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The small GTP binding protein Ran is an essential component of the nuclear protein import machinery whose GTPase cycle is regulated by the nuclear guanosine nucleotide exchange factor RCC1 and by the cytosolic GTPase activating protein RanGAP. In the yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae the RanGAP activity is encoded by the RNA1 genes which are essential for cell viability and nucleocytoplasmic transport in vivo. Although of limited sequence identity the two yeast proteins show a conserved structural organization characterized by an N-terminal domain of eight leucine-rich repeats, motifs implicated in protein-protein interactions, and a C-terminal domain rich in acidic amino acid residues. By analyzing the RanGAP activity of a series of recombinantly expressed rna1p mutant derivatives, we show that the highly acidic sequence in the C-terminal domain of both yeast proteins is indispensable for activating Ran-mediated GTP hydrolysis. Chemical cross-linking reveals that the same sequence in rna1p is required for rna1p.Ran complex formation indicating that the loss of GAP activity in the C-terminally truncated rna1p mutants results from an impaired interaction with Ran. The predominant species stabilized through the covalent cross-link is a rna1p.Ran heterodimer whose formation requires the GTP-bound conformation of Ran. As the acidic C-terminal domain of rna1p is required for establishing the interaction with Ran, the leucine-rich repeats domain in rna1p is potentially available for additional protein interactions perhaps required for directing a fraction of rna1p to the nuclear pore.
Collapse
Affiliation(s)
- J Haberland
- Institute for Medical Biochemistry, University of Münster, Von-Esmarch-Strasse 56, D-48149 Münster, Federal Republic of Germany
| | | | | |
Collapse
|
36
|
Abstract
CRM1 is distantly related to receptors that mediate nuclear protein import and was previously shown to interact with the nuclear pore complex. Overexpression of CRM1 in Xenopus oocytes stimulates Rev and U snRNA export from the nucleus. Conversely, leptomycin B, a cytotoxin that is shown to bind to CRM1 protein, specifically inhibits the nuclear export of Rev and U snRNAs. In vitro, CRM1 forms a leptomycin B-sensitive complex involving cooperative binding of both RanGTP and the nuclear export signal (NES) from either the Rev or PKI proteins. We conclude that CRM1 is an export receptor for leucine-rich nuclear export signals and discuss a model for the role of RanGTP in CRM1 function and in nuclear export in general.
Collapse
Affiliation(s)
- M Fornerod
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | |
Collapse
|
37
|
Efthymiadis A, Shao H, Hübner S, Jans DA. Kinetic characterization of the human retinoblastoma protein bipartite nuclear localization sequence (NLS) in vivo and in vitro. A comparison with the SV40 large T-antigen NLS. J Biol Chem 1997; 272:22134-9. [PMID: 9268357 DOI: 10.1074/jbc.272.35.22134] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The retinoblastoma (RB) tumor suppressor is a nuclear phosphoprotein important for cell growth control and able to bind specifically to viral oncoproteins such as the SV40 large tumor antigen (T-ag). Human RB possesses a bipartite nuclear localization sequence (NLS) consisting of two clusters of basic amino acids within amino acids 860-877, also present in mouse and Xenopus homologs, which resembles that of nucleoplasmin. The T-ag NLS represents a different type of NLS, consisting of only one stretch of basic amino acids. To compare the nuclear import kinetics conferred by the bipartite NLS of RB to those conferred by the T-ag NLS, we used beta-galactosidase fusion proteins containing the NLSs of either RB or T-ag. The RB NLS was able to target beta-galactosidase to the nucleus both in vivo (in microinjected cells of the HTC rat hepatoma line) and in vitro (in mechanically perforated HTC cells). Mutational substitution of the proximal basic residues of the NLS abolished nuclear targeting activity, confirming its bipartite character. Nuclear accumulation of the RB fusion protein was half-maximal within about 8 min in vivo, maximal levels being between 3-4-fold those in the cytoplasm, which was less than 50% of the maximal levels attained by the T-ag fusion protein, while the initial rate of nuclear import of the RB protein was also less than half that of T-ag. Nuclear import conferred by both NLSs in vitro was dependent on cytosol and ATP and inhibited by the nonhydrolyzable GTP analog GTPgammaS. Using an ELISA-based binding assay, we determined that the RB bipartite NLS had severely reduced affinity, compared with the T-ag NLS, for the high affinity heterodimeric NLS-binding protein complex importin 58/97, this difference presumably representing the basis of the reduced maximal nuclear accumulation and import rate in vivo. The results support the hypothesis that the affinity of NLS recognition by NLS-binding proteins is critical in determining the kinetics of nuclear protein import.
Collapse
Affiliation(s)
- A Efthymiadis
- Nuclear Signaling Laboratory, Division of Biochemistry and Molecular Biology, John Curtin School of Medical Research, Canberra City, A.C. T. 2601, Australia
| | | | | | | |
Collapse
|
38
|
Abstract
Nucleocytoplasmic transport is a complex process that consists of the movement of numerous macromolecules back and forth across the nuclear envelope. All macromolecules that move in and out of the nucleus do so via nuclear pore complexes that form large proteinaceous channels in the nuclear envelope. In addition to nuclear pores, nuclear transport of macromolecules requires a number of soluble factors that are found both in the cytoplasm and in the nucleus. A combination of biochemical, genetic, and cell biological approaches have been used to identify and characterize the various components of the nuclear transport machinery. Recent studies have shown that both import to and export from the nucleus are mediated by signals found within the transport substrates. Several studies have demonstrated that these signals are recognized by soluble factors that target these substrates to the nuclear pore. Once substrates have been directed to the pore, most transport events depend on a cycle of GTP hydrolysis mediated by the small Ras-like GTPase, Ran, as well as other proteins that regulate the guanine nucleotide-bound state of Ran. Many of the essential factors have been identified, and the challenge that remains is to determine the exact mechanism by which transport occurs. This review attempts to present an integrated view of our current understanding of nuclear transport while highlighting the contributions that have been made through studies with genetic organisms such as the budding yeast, Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- A H Corbett
- Division of Cellular and Molecular Biology, Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
39
|
Smith HM, Hicks GR, Raikhel NV. Importin alpha from Arabidopsis thaliana is a nuclear import receptor that recognizes three classes of import signals. PLANT PHYSIOLOGY 1997; 114:411-7. [PMID: 9193081 PMCID: PMC158320 DOI: 10.1104/pp.114.2.411] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Protein import into the nucleus is a two-step process. In vitro import systems from vertebrate cell extracts have shown several soluble factors are required. One of these factors is the receptor importin alpha, which binds to nuclear localization signals (NLS) in vitro. We previously cloned an importin alpha homolog from Arabidopsis thaliana (At-IMP alpha) and demonstrated that this protein was not depleted from tobacco (Nicotiana tabacum) protoplasts after permeabilization of the plasma membrane, (Hicks et al., 1996). To determine if At-IMP alpha is functional, we used an in vitro NLS-binding assay. We found that At-IMP alpha is specific, and the receptor is able to recognize three classes of NLS identified in plants. Purified antibodies to At-IMP alpha were used to determine the in vivo location of importin alpha in tobacco protoplasts. Importin alpha is found in the cytoplasm and nucleus, and it is most highly concentrated at the nuclear envelope. The biochemical properties of nuclear importin alpha and localization studies using purified nuclei demonstrate that importin alpha is tightly associated with the plant nucleus. Moreover, these results suggest that a fraction of nuclear importin alpha interacts with the nuclear pore complex.
Collapse
Affiliation(s)
- H M Smith
- Michigan State University-Department of Energy Plant Research Laboratory, East Lansing 48824-1312, USA
| | | | | |
Collapse
|
40
|
Abstract
In eukaryotic organisms, DNA replication and RNA biogenesis occur in the cell nucleus, whereas protein synthesis occurs in the cytoplasm. Integration of these activities depends on selective transport of proteins and ribonucleoprotein particles between the two compartments. Transport across the nuclear envelope occurs through large multiprotein structures, termed nuclear pore complexes. It is signal-mediated and requires both energy and soluble factors, including shuttling carriers. Here I summarize current understanding of nucleocytoplasmic transport and illustrate the importance of regulated transport for signal transduction.
Collapse
Affiliation(s)
- E A Nigg
- Department of Molecular Biology, Sciences II, University of Geneva, Switzerland.
| |
Collapse
|
41
|
Palacios I, Izaurralde E. An immersion in nucleocytoplasmic transport at the Garda lake. Trends Cell Biol 1997; 7:81-3. [PMID: 17708912 DOI: 10.1016/s0962-8924(96)30079-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- I Palacios
- The European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | |
Collapse
|
42
|
Mahajan R, Delphin C, Guan T, Gerace L, Melchior F. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 1997; 88:97-107. [PMID: 9019411 DOI: 10.1016/s0092-8674(00)81862-0] [Citation(s) in RCA: 961] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have found that the mammalian Ran GTPase-activating protein RanGAP1 is highly concentrated at the cytoplasmic periphery of the nuclear pore complex (NPC), where it associates with the 358-kDa Ran-GTP-binding protein RanBP2. This interaction requires the ATP-dependent posttranslational conjugation of RanGAP1 with SUMO-1 (for small ubiquitin-related modifier), a novel protein of 101 amino acids that contains low but significant homology to ubiquitin. SUMO-1 appears to represent the prototype for a novel family of ubiquitin-related protein modifiers. Inhibition of nuclear protein import resulting from antibodies directed at NPC-associated RanGAP1 cannot be overcome by soluble cytosolic RanGAP1, indicating that GTP hydrolysis by Ran at RanBP2 is required for nuclear protein import.
Collapse
Affiliation(s)
- R Mahajan
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
43
|
Weis K, Dingwall C, Lamond AI. Characterization of the nuclear protein import mechanism using Ran mutants with altered nucleotide binding specificities. EMBO J 1996; 15:7120-8. [PMID: 9003787 PMCID: PMC452537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The small nuclear GTP binding protein Ran is required for transport of nuclear proteins through the nuclear pore complex (NPC). Although it is known that GTP hydrolysis by Ran is essential for this reaction, it has been unclear whether additional energy-consuming steps are also required. To uncouple the energy requirements for Ran from other nucleoside triphosphatases, we constructed a mutant derivative of Ran that has an altered nucleotide specificity from GTP to xanthosine 5' triphosphate. Using this Ran mutant, we demonstrate that nucleotide hydrolysis by Ran is sufficient to promote efficient nuclear protein import in vitro. Under these conditions, protein import could no longer be inhibited with non-hydrolysable nucleotide analogues, indicating that no Ran-independent energy-requiring steps are essential for the protein translocation reaction through the NPC. We further provide evidence that nuclear protein import requires Ran in the GDP form in the cytoplasm. This suggests that a coordinated exchange reaction from Ran-GDP to Ran-GTP at the pore is necessary for translocation into the nucleus.
Collapse
Affiliation(s)
- K Weis
- Department of Microbiology and Immunology, University of California, San Francisco 94143-0414, USA
| | | | | |
Collapse
|
44
|
Görlich D, Panté N, Kutay U, Aebi U, Bischoff FR. Identification of different roles for RanGDP and RanGTP in nuclear protein import. EMBO J 1996; 15:5584-94. [PMID: 8896452 PMCID: PMC452303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The importin-alpha/beta heterodimer and the GTPase Ran play key roles in nuclear protein import. Importin binds the nuclear localization signal (NLS). Translocation of the resulting import ligand complex through the nuclear pore complex (NPC) requires Ran and is terminated at the nucleoplasmic side by its disassembly. The principal GTP exchange factor for Ran is the nuclear protein RCC1, whereas the major RanGAP is cytoplasmic, predicting that nuclear Ran is mainly in the GTP form and cytoplasmic Ran is in the GDP-bound form. Here, we show that nuclear import depends on cytoplasmic RanGDP and free GTP, and that RanGDP binds to the NPC. Therefore, import might involve nucleotide exchange and GTP hydrolysis on NPC-bound Ran. RanGDP binding to the NPC is not mediated by the Ran binding sites of importin-beta, suggesting that translocation is not driven from these sites. Consistently, a mutant importin-beta deficient in Ran binding can deliver its cargo up to the nucleoplasmic side of the NPC. However, the mutant is unable to release the import substrate into the nucleoplasm. Thus, binding of nucleoplasmic RanGTP to importin-beta probably triggers termination, i.e. the dissociation of importin-alpha from importin-beta and the subsequent release of the import substrate into the nucleoplasm.
Collapse
Affiliation(s)
- D Görlich
- Zentrum für Molekulare Biologie der Universität Heidelberg, Germany
| | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- D M Koepp
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|