1
|
Cai P, Casas CJ, Quintero Plancarte G, Mikawa T, Hua LL. Ipsilateral restriction of chromosome movement along a centrosome, and apical-basal axis during the cell cycle. Chromosome Res 2025; 33:1. [PMID: 39751905 PMCID: PMC11698895 DOI: 10.1007/s10577-024-09760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025]
Abstract
Little is known about how distance between homologous chromosomes are controlled during the cell cycle. Here, we show that the distribution of centromere components display two discrete clusters placed to either side of the centrosome and apical/basal axis from prophase to G1 interphase. 4-Dimensional live cell imaging analysis of centromere and centrosome tracking reveals that centromeres oscillate largely within one cluster, but do not cross over to the other cluster. We propose a model of an axis-dependent ipsilateral restriction of chromosome oscillations throughout mitosis.
Collapse
Affiliation(s)
- Pingping Cai
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Christian J Casas
- Department of Biology, Sonoma State University, Rohnert Park, CA, USA
| | | | - Takashi Mikawa
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA.
| | - Lisa L Hua
- Department of Biology, Sonoma State University, Rohnert Park, CA, USA.
| |
Collapse
|
2
|
Cai P, Casas CJ, Plancarte GQ, Mikawa T, Hua LL. Ipsilateral restriction of chromosome movement along a centrosome, and apical-basal axis during the cell cycle. RESEARCH SQUARE 2024:rs.3.rs-4283973. [PMID: 38746098 PMCID: PMC11092853 DOI: 10.21203/rs.3.rs-4283973/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Little is known about how distance between homologous chromosomes are controlled during the cell cycle. Here, we show that the distribution of centromere components display two discrete clusters placed to either side of the centrosome and apical/basal axis from prophase to G1 interphase. 4-Dimensional live cell imaging analysis of centromere and centrosome tracking reveals that centromeres oscillate largely within one cluster, but do not cross over to the other cluster. We propose a model of an axis-dependent ipsilateral restriction of chromosome oscillations throughout mitosis.
Collapse
|
3
|
Cai P, Casas CJ, Plancarte GQ, Hua LL, Mikawa T. Ipsilateral restriction of chromosome movement along a centrosome, and apical-basal axis during the cell cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.27.534352. [PMID: 37034601 PMCID: PMC10081237 DOI: 10.1101/2023.03.27.534352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Little is known about how distance between homologous chromosomes are controlled during the cell cycle. Here, we show that the distribution of centromere components display two discrete clusters placed to either side of the centrosome and apical/basal axis from prophase to G 1 interphase. 4-Dimensional live cell imaging analysis of centromere and centrosome tracking reveals that centromeres oscillate largely within one cluster, but do not cross over to the other cluster. We propose a model of an axis-dependent ipsilateral restriction of chromosome oscillations throughout mitosis.
Collapse
|
4
|
Danziger M, Noble H, Roque DM, Xu F, Rao GG, Santin AD. Microtubule-Targeting Agents: Disruption of the Cellular Cytoskeleton as a Backbone of Ovarian Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1452:1-19. [PMID: 38805122 DOI: 10.1007/978-3-031-58311-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Microtubules are dynamic polymers composed of α- and β-tubulin heterodimers. Microtubules are universally conserved among eukaryotes and participate in nearly every cellular process, including intracellular trafficking, replication, polarity, cytoskeletal shape, and motility. Due to their fundamental role in mitosis, they represent a classic target of anti-cancer therapy. Microtubule-stabilizing agents currently constitute a component of the most effective regimens for ovarian cancer therapy in both primary and recurrent settings. Unfortunately, the development of resistance continues to present a therapeutic challenge. An understanding of the underlying mechanisms of resistance to microtubule-active agents may facilitate the development of novel and improved approaches to this disease.
Collapse
Affiliation(s)
- Michael Danziger
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Helen Noble
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dana M Roque
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Fuhua Xu
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gautam G Rao
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
5
|
Baumann C, Zhang X, Kandasamy MK, Mei X, Chen S, Tehrani KF, Mortensen LJ, Watford W, Lall A, De La Fuente R. Acute irradiation induces a senescence-like chromatin structure in mammalian oocytes. Commun Biol 2023; 6:1258. [PMID: 38086992 PMCID: PMC10716162 DOI: 10.1038/s42003-023-05641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The mechanisms leading to changes in mesoscale chromatin organization during cellular aging are unknown. Here, we used transcriptional activator-like effectors, RNA-seq and superresolution analysis to determine the effects of genotoxic stress on oocyte chromatin structure. Major satellites are organized into tightly packed globular structures that coalesce into chromocenters and dynamically associate with the nucleolus. Acute irradiation significantly enhanced chromocenter mobility in transcriptionally inactive oocytes. In transcriptionally active oocytes, irradiation induced a striking unfolding of satellite chromatin fibers and enhanced the expression of transcripts required for protection from oxidative stress (Fermt1, Smg1), recovery from DNA damage (Tlk2, Rad54l) and regulation of heterochromatin assembly (Zfp296, Ski-oncogene). Non-irradiated, senescent oocytes exhibit not only high chromocenter mobility and satellite distension but also a high frequency of extra chromosomal satellite DNA. Notably, analysis of biological aging using an oocyte-specific RNA clock revealed cellular communication, posttranslational protein modifications, chromatin and histone dynamics as the top cellular processes that are dysregulated in both senescent and irradiated oocytes. Our results indicate that unfolding of heterochromatin fibers following acute genotoxic stress or cellular aging induced the formation of distended satellites and that abnormal chromatin structure together with increased chromocenter mobility leads to chromosome instability in senescent oocytes.
Collapse
Affiliation(s)
- Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, USA
| | - Xiangyu Zhang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, USA
| | | | - Xiaohan Mei
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Division of Surgical Research, University of Missouri, School of Medicine, Columbia, MO, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Shiyou Chen
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Division of Surgical Research, University of Missouri, School of Medicine, Columbia, MO, USA
| | - Kayvan F Tehrani
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, USA
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA, USA
- University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Luke J Mortensen
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, USA
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA, USA
| | - Wendy Watford
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Ashley Lall
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, USA
| | - Rabindranath De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, USA.
| |
Collapse
|
6
|
Ogushi S, Rattani A, Godwin J, Metson J, Schermelleh L, Nasmyth K. Loss of sister kinetochore co-orientation and peri-centromeric cohesin protection after meiosis I depends on cleavage of centromeric REC8. Dev Cell 2021; 56:3100-3114.e4. [PMID: 34758289 PMCID: PMC8629431 DOI: 10.1016/j.devcel.2021.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/28/2021] [Accepted: 10/18/2021] [Indexed: 11/27/2022]
Abstract
Protection of peri-centromeric (periCEN) REC8 cohesin from Separase and sister kinetochore (KT) attachment to microtubules emanating from the same spindle pole (co-orientation) ensures that sister chromatids remain associated after meiosis I. Both features are lost during meiosis II, resulting in sister chromatid disjunction and the production of haploid gametes. By transferring spindle-chromosome complexes (SCCs) between meiosis I and II in mouse oocytes, we discovered that both sister KT co-orientation and periCEN cohesin protection depend on the SCC, and not the cytoplasm. Moreover, the catalytic activity of Separase at meiosis I is necessary not only for converting KTs from a co- to a bi-oriented state but also for deprotection of periCEN cohesion, and cleavage of REC8 may be the key event. Crucially, selective cleavage of REC8 in the vicinity of KTs is sufficient to destroy co-orientation in univalent chromosomes, albeit not in bivalents where resolution of chiasmata may also be required.
Collapse
Affiliation(s)
- Sugako Ogushi
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK; The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan.
| | - Ahmed Rattani
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Jonathan Godwin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Jean Metson
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | - Kim Nasmyth
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
7
|
Balzano E, Pelliccia F, Giunta S. Genome (in)stability at tandem repeats. Semin Cell Dev Biol 2020; 113:97-112. [PMID: 33109442 DOI: 10.1016/j.semcdb.2020.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/26/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022]
Abstract
Repeat sequences account for over half of the human genome and represent a significant source of variation that underlies physiological and pathological states. Yet, their study has been hindered due to limitations in short-reads sequencing technology and difficulties in assembly. A important category of repetitive DNA in the human genome is comprised of tandem repeats (TRs), where repetitive units are arranged in a head-to-tail pattern. Compared to other regions of the genome, TRs carry between 10 and 10,000 fold higher mutation rate. There are several mutagenic mechanisms that can give rise to this propensity toward instability, but their precise contribution remains speculative. Given the high degree of homology between these sequences and their arrangement in tandem, once damaged, TRs have an intrinsic propensity to undergo aberrant recombination with non-allelic exchange and generate harmful rearrangements that may undermine the stability of the entire genome. The dynamic mutagenesis at TRs has been found to underlie individual polymorphism associated with neurodegenerative and neuromuscular disorders, as well as complex genetic diseases like cancer and diabetes. Here, we review our current understanding of the surveillance and repair mechanisms operating within these regions, and we describe how alterations in these protective processes can readily trigger mutational signatures found at TRs, ultimately resulting in the pathological correlation between TRs instability and human diseases. Finally, we provide a viewpoint to counter the detrimental effects that TRs pose in light of their selection and conservation, as important drivers of human evolution.
Collapse
Affiliation(s)
- Elisa Balzano
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, 00185 Roma, Italy
| | - Franca Pelliccia
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, 00185 Roma, Italy
| | - Simona Giunta
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, 00185 Roma, Italy.
| |
Collapse
|
8
|
Serganova I, Blasberg RG. Molecular Imaging with Reporter Genes: Has Its Promise Been Delivered? J Nucl Med 2020; 60:1665-1681. [PMID: 31792128 DOI: 10.2967/jnumed.118.220004] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
The first reporter systems were developed in the early 1980s and were based on measuring the activity of an enzyme-as a surrogate measure of promoter-driven transcriptional activity-which is now known as a reporter gene system. The initial objective and application of reporter techniques was to analyze the activity of a specific promoter (namely, the expression of a gene that is under the regulation of the specific promoter that is linked to the reporter gene). This system allows visualization of specific promoter activity with great sensitivity. In general, there are 2 classes of reporter systems: constitutively expressed (always-on) reporter constructs used for cell tracking, and inducible reporter systems sensitive to endogenous signaling molecules and transcription factors that characterize specific tissues, tumors, or signaling pathways.This review traces the development of different reporter systems, using fluorescent and bioluminescent proteins as well as radionuclide-based reporter systems. The development and application of radionuclide-based reporter systems is the focus of this review. The question at the end of the review is whether the "promise" of reporter gene imaging has been realized. What is required for moving forward with radionuclide-based reporter systems, and what is required for successful translation to clinical applications?
Collapse
Affiliation(s)
- Inna Serganova
- Department of Neurology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ronald G Blasberg
- Department of Neurology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York .,Department of Radiology, Memorial Hospital, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York; and.,Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
9
|
Kixmoeller K, Allu PK, Black BE. The centromere comes into focus: from CENP-A nucleosomes to kinetochore connections with the spindle. Open Biol 2020; 10:200051. [PMID: 32516549 PMCID: PMC7333888 DOI: 10.1098/rsob.200051] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic chromosome segregation relies upon specific connections from DNA to the microtubule-based spindle that forms at cell division. The chromosomal locus that directs this process is the centromere, where a structure called the kinetochore forms upon entry into mitosis. Recent crystallography and single-particle electron microscopy have provided unprecedented high-resolution views of the molecular complexes involved in this process. The centromere is epigenetically specified by nucleosomes harbouring a histone H3 variant, CENP-A, and we review recent progress on how it differentiates centromeric chromatin from the rest of the chromosome, the biochemical pathway that mediates its assembly and how two non-histone components of the centromere specifically recognize CENP-A nucleosomes. The core centromeric nucleosome complex (CCNC) is required to recruit a 16-subunit complex termed the constitutive centromere associated network (CCAN), and we highlight recent structures reported of the budding yeast CCAN. Finally, the structures of multiple modular sub-complexes of the kinetochore have been solved at near-atomic resolution, providing insight into how connections are made to the CCAN on one end and to the spindle microtubules on the other. One can now build molecular models from the DNA through to the physical connections to microtubules.
Collapse
Affiliation(s)
- Kathryn Kixmoeller
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Praveen Kumar Allu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Lawrimore CJ, Lawrimore J, He Y, Chavez S, Bloom K. Polymer perspective of genome mobilization. Mutat Res 2020; 821:111706. [PMID: 32516654 DOI: 10.1016/j.mrfmmm.2020.111706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
Chromosome motion is an intrinsic feature of all DNA-based metabolic processes and is a particularly well-documented response to both DNA damage and repair. By using both biological and polymer physics approaches, many of the contributing factors of chromatin motility have been elucidated. These include the intrinsic properties of chromatin, such as stiffness, as well as the loop modulators condensin and cohesin. Various biological factors such as external tethering to nuclear domains, ATP-dependent processes, and nucleofilaments further impact chromatin motion. DNA damaging agents that induce double-stranded breaks also cause increased chromatin motion that is modulated by recruitment of repair and checkpoint proteins. Approaches that integrate biological experimentation in conjunction with models from polymer physics provide mechanistic insights into the role of chromatin dynamics in biological function. In this review we discuss the polymer models and the effects of both DNA damage and repair on chromatin motion as well as mechanisms that may underlie these effects.
Collapse
Affiliation(s)
- Colleen J Lawrimore
- Department of Biology, 623 Fordham Hall CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, United States
| | - Josh Lawrimore
- Department of Biology, 623 Fordham Hall CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, United States
| | - Yunyan He
- Department of Biology, 623 Fordham Hall CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, United States
| | - Sergio Chavez
- Department of Biology, 623 Fordham Hall CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, United States
| | - Kerry Bloom
- Department of Biology, 623 Fordham Hall CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, United States.
| |
Collapse
|
11
|
Jin X, Hapsari ND, Lee S, Jo K. DNA binding fluorescent proteins as single-molecule probes. Analyst 2020; 145:4079-4095. [DOI: 10.1039/d0an00218f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA binding fluorescent proteins are useful probes for a broad range of biological applications.
Collapse
Affiliation(s)
- Xuelin Jin
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology
- Sogang University
- Seoul
- Republic of Korea
| | - Natalia Diyah Hapsari
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology
- Sogang University
- Seoul
- Republic of Korea
- Chemistry Education Program
| | - Seonghyun Lee
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology
- Sogang University
- Seoul
- Republic of Korea
| | - Kyubong Jo
- Department of Chemistry and Interdisciplinary Program of Integrated Biotechnology
- Sogang University
- Seoul
- Republic of Korea
| |
Collapse
|
12
|
Chagin VO, Reinhart B, Becker A, Mortusewicz O, Jost KL, Rapp A, Leonhardt H, Cardoso MC. Processive DNA synthesis is associated with localized decompaction of constitutive heterochromatin at the sites of DNA replication and repair. Nucleus 2019; 10:231-253. [PMID: 31744372 PMCID: PMC6949026 DOI: 10.1080/19491034.2019.1688932] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/01/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022] Open
Abstract
Constitutive heterochromatin is considered as a functionally inert genome compartment, important for its architecture and stability. How such stable structure is maintained is not well understood. Here, we apply four different visualization schemes to label it and investigate its dynamics during DNA replication and repair. We show that replisomes assemble over the heterochromatin in a temporally ordered manner. Furthermore, heterochromatin undergoes transient decompaction locally at the active sites of DNA synthesis. Using selective laser microirradiation conditions that lead to damage repaired via processive DNA synthesis, we measured similarly local decompaction of heterochromatin. In both cases, we could not observe large-scale movement of heterochromatin to the domain surface. Instead, the processive DNA synthesis machinery assembled at the replication/repair sites. Altogether, our data are compatible with a progression of DNA replication/repair along the chromatin in a dynamic mode with localized and transient decompaction that does not globally remodels the whole heterochromatin compartment.
Collapse
Affiliation(s)
- Vadim O. Chagin
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Britta Reinhart
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Annette Becker
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | | | - K. Laurence Jost
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Alexander Rapp
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | | | - M. Cristina Cardoso
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
13
|
Galander S, Barton RE, Kelly DA, Marston AL. Spo13 prevents premature cohesin cleavage during meiosis. Wellcome Open Res 2019; 4:29. [PMID: 30906881 PMCID: PMC6426077 DOI: 10.12688/wellcomeopenres.15066.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2019] [Indexed: 01/21/2024] Open
Abstract
Background: Meiosis produces gametes through two successive nuclear divisions, meiosis I and meiosis II. In contrast to mitosis and meiosis II, where sister chromatids are segregated, during meiosis I, homologous chromosomes are segregated. This requires the monopolar attachment of sister kinetochores and the loss of cohesion from chromosome arms, but not centromeres, during meiosis I. The establishment of both sister kinetochore mono-orientation and cohesion protection rely on the budding yeast meiosis I-specific Spo13 protein, the functional homolog of fission yeast Moa1 and mouse MEIKIN. Methods: Here we investigate the effects of loss of SPO13 on cohesion during meiosis I using a live-cell imaging approach. Results: Unlike wild type, cells lacking SPO13 fail to maintain the meiosis-specific cohesin subunit, Rec8, at centromeres and segregate sister chromatids to opposite poles during anaphase I. We show that the cohesin-destabilizing factor, Wpl1, is not primarily responsible for the loss of cohesion during meiosis I. Instead, premature loss of centromeric cohesin during anaphase I in spo13 Δ cells relies on separase-dependent cohesin cleavage. Further, cohesin loss in spo13 Δ anaphase I cells is blocked by forcibly tethering the regulatory subunit of protein phosphatase 2A, Rts1, to Rec8. Conclusions: Our findings indicate that separase-dependent cleavage of phosphorylated Rec8 causes premature cohesin loss in spo13 Δ cells.
Collapse
Affiliation(s)
- Stefan Galander
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Rachael E. Barton
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - David A. Kelly
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Adèle L. Marston
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
14
|
Galander S, Barton RE, Kelly DA, Marston AL. Spo13 prevents premature cohesin cleavage during meiosis. Wellcome Open Res 2019; 4:29. [PMID: 30906881 PMCID: PMC6426077 DOI: 10.12688/wellcomeopenres.15066.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2019] [Indexed: 01/11/2023] Open
Abstract
Background: Meiosis produces gametes through two successive nuclear divisions, meiosis I and meiosis II. In contrast to mitosis and meiosis II, where sister chromatids are segregated, during meiosis I, homologous chromosomes are segregated. This requires the monopolar attachment of sister kinetochores and the loss of cohesion from chromosome arms, but not centromeres, during meiosis I. The establishment of both sister kinetochore mono-orientation and cohesion protection rely on the budding yeast meiosis I-specific Spo13 protein, the functional homolog of fission yeast Moa1 and mouse MEIKIN. Methods: Here we investigate the effects of loss of
SPO13 on cohesion during meiosis I using a live-cell imaging approach. Results: Unlike wild type, cells lacking
SPO13 fail to maintain the meiosis-specific cohesin subunit, Rec8, at centromeres and segregate sister chromatids to opposite poles during anaphase I. We show that the cohesin-destabilizing factor, Wpl1, is not primarily responsible for the loss of cohesion during meiosis I. Instead, premature loss of centromeric cohesin during anaphase I in
spo13Δ cells relies on separase-dependent cohesin cleavage. Further, cohesin loss in
spo13Δ anaphase I cells is blocked by forcibly tethering the regulatory subunit of protein phosphatase 2A, Rts1, to Rec8. Conclusions: Our findings indicate that separase-dependent cleavage of phosphorylated Rec8 causes premature cohesin loss in
spo13Δ cells.
Collapse
Affiliation(s)
- Stefan Galander
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Rachael E Barton
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - David A Kelly
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Adèle L Marston
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| |
Collapse
|
15
|
Anton T, Karg E, Bultmann S. Applications of the CRISPR/Cas system beyond gene editing. Biol Methods Protoc 2018; 3:bpy002. [PMID: 32161796 PMCID: PMC6994046 DOI: 10.1093/biomethods/bpy002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/28/2018] [Accepted: 04/03/2018] [Indexed: 12/26/2022] Open
Abstract
Since the discovery of the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas) as a tool for gene editing a plethora of locus-specific as well as genome-wide approaches have been developed that allow efficient and reproducible manipulation of genomic sequences. However, the seemingly unbound potential of CRISPR/Cas does not stop with its utilization as a site-directed nuclease. Mutations in its catalytic centers render Cas9 (dCas9) a universal recruitment platform that can be utilized to control transcription, visualize DNA sequences, investigate in situ proteome compositions and manipulate epigenetic modifications at user-defined genomic loci. In this review, we give a comprehensive introduction and overview of the development, improvement and application of recent dCas9-based approaches.
Collapse
Affiliation(s)
- Tobias Anton
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), LMU Munich, 82152 Martinsried, Germany
| | - Elisabeth Karg
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), LMU Munich, 82152 Martinsried, Germany
| | - Sebastian Bultmann
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), LMU Munich, 82152 Martinsried, Germany
| |
Collapse
|
16
|
Charó NL, Rodríguez Ceschan MI, Galigniana NM, Toneatto J, Piwien-Pilipuk G. Organization of nuclear architecture during adipocyte differentiation. Nucleus 2017; 7:249-69. [PMID: 27416359 DOI: 10.1080/19491034.2016.1197442] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Obesity is a serious health problem worldwide since it is a major risk factor for chronic diseases such as type II diabetes. Obesity is the result of hyperplasia (associated with increased adipogenesis) and hypertrophy (associated with decreased adipogenesis) of the adipose tissue. Therefore, understanding the molecular mechanisms underlying the process of adipocyte differentiation is relevant to delineate new therapeutic strategies for treatment of obesity. As in all differentiation processes, temporal patterns of transcription are exquisitely controlled, allowing the acquisition and maintenance of the adipocyte phenotype. The genome is spatially organized; therefore decoding local features of the chromatin language alone does not suffice to understand how cell type-specific gene expression patterns are generated. Elucidating how nuclear architecture is built during the process of adipogenesis is thus an indispensable step to gain insight in how gene expression is regulated to achieve the adipocyte phenotype. Here we will summarize the recent advances in our understanding of the organization of nuclear architecture as progenitor cells differentiate in adipocytes, and the questions that still remained to be answered.
Collapse
Affiliation(s)
- Nancy L Charó
- a Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET , Buenos Aires , Argentina
| | - María I Rodríguez Ceschan
- a Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET , Buenos Aires , Argentina
| | - Natalia M Galigniana
- a Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET , Buenos Aires , Argentina
| | - Judith Toneatto
- a Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET , Buenos Aires , Argentina
| | - Graciela Piwien-Pilipuk
- a Laboratory of Nuclear Architecture, Instituto de Biología y Medicina Experimental (IByME) - CONICET , Buenos Aires , Argentina
| |
Collapse
|
17
|
Dixon CR, Platani M, Makarov AA, Schirmer EC. Microinjection of Antibodies Targeting the Lamin A/C Histone-Binding Site Blocks Mitotic Entry and Reveals Separate Chromatin Interactions with HP1, CenpB and PML. Cells 2017; 6:cells6020009. [PMID: 28346356 PMCID: PMC5492013 DOI: 10.3390/cells6020009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/24/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
Lamins form a scaffold lining the nucleus that binds chromatin and contributes to spatial genome organization; however, due to the many other functions of lamins, studies knocking out or altering the lamin polymer cannot clearly distinguish between direct and indirect effects. To overcome this obstacle, we specifically targeted the mapped histone-binding site of A/C lamins by microinjecting antibodies specific to this region predicting that this would make the genome more mobile. No increase in chromatin mobility was observed; however, interestingly, injected cells failed to go through mitosis, while control antibody-injected cells did. This effect was not due to crosslinking of the lamin polymer, as Fab fragments also blocked mitosis. The lack of genome mobility suggested other lamin-chromatin interactions. To determine what these might be, mini-lamin A constructs were expressed with or without the histone-binding site that assembled into independent intranuclear structures. HP1, CenpB and PML proteins accumulated at these structures for both constructs, indicating that other sites supporting chromatin interactions exist on lamin A. Together, these results indicate that lamin A-chromatin interactions are highly redundant and more diverse than generally acknowledged and highlight the importance of trying to experimentally separate their individual functions.
Collapse
Affiliation(s)
- Charles R Dixon
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Max Born Crescent, Edinburgh EH9 3BF, UK.
| | - Melpomeni Platani
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Max Born Crescent, Edinburgh EH9 3BF, UK.
| | - Alexandr A Makarov
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Max Born Crescent, Edinburgh EH9 3BF, UK.
| | - Eric C Schirmer
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Kings Buildings, Swann 5.22, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
18
|
Abstract
The Cas9 protein (CRISPR-associated protein 9), derived from type II CRISPR (clustered regularly interspaced short palindromic repeats) bacterial immune systems, is emerging as a powerful tool for engineering the genome in diverse organisms. As an RNA-guided DNA endonuclease, Cas9 can be easily programmed to target new sites by altering its guide RNA sequence, and its development as a tool has made sequence-specific gene editing several magnitudes easier. The nuclease-deactivated form of Cas9 further provides a versatile RNA-guided DNA-targeting platform for regulating and imaging the genome, as well as for rewriting the epigenetic status, all in a sequence-specific manner. With all of these advances, we have just begun to explore the possible applications of Cas9 in biomedical research and therapeutics. In this review, we describe the current models of Cas9 function and the structural and biochemical studies that support it. We focus on the applications of Cas9 for genome editing, regulation, and imaging, discuss other possible applications and some technical considerations, and highlight the many advantages that CRISPR/Cas9 technology offers.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of Bioengineering, Stanford University, Stanford, California 94305; , ,
| | - Marie La Russa
- Department of Bioengineering, Stanford University, Stanford, California 94305; , ,
- Biomedical Sciences Graduate Program, University of California, San Francisco, California 94158
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, California 94305; , ,
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305
- Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, California 94305
| |
Collapse
|
19
|
Jiang E. Differences in the origins of kinetochore-positive and kinetochore-negative micronuclei: A live cell imaging study. Mutat Res 2016; 787:7-14. [PMID: 26938028 DOI: 10.1016/j.mrfmmm.2016.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 02/06/2016] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
Micronuclei (MNi) are extensively used to evaluate genotoxicity and chromosomal instability. Classification of kinetochore-negative (K-MNi) and kinetochore-positive micronuclei (K+MNi) improves the specificity and sensitivity of the micronucleus (MN) test; however, the fundamental differences in the origins of K-MNi and K+MNi have not been addressed due to the limitations of traditional methods. In the current study, HeLa CENP B-GFP H2B-mCherry cells were constructed in which histone 2B (H2B) and centromere protein B (CENP B) were expressed as fusion proteins to monomeric Cherry (mCherry) and EGFP, respectively. MNi were identified using H2B-mCherry; K+MN contained CENP B-GFP, while K-MN did not. Long-term live cell imaging was conducted to examine MN formation in the dual-color fluorescent HeLa cells. The results suggested that K-MNi were derived from kinetochore-negative displaced chromosomes (K-DCs), kinetochore-negative lagging chromosomes (K-LCs) and fragments of broken chromosome bridges (CBs) during late mitotic stages. The results also indicated that K+MNi are derived from kinetochore-positive displaced chromosomes (K+DCs), kinetochore-positive lagging chromosomes (K+LCs), and fragments of broken CBs. Different aberrant chromosomes emerged during mitosis at different frequencies and developed into K-MNi and/or K+MNi in the daughter cells at different rates. K+LCs formed K+MNi at a higher frequency than K+DCs, and K-LCs formed K-MNi at a higher rate than K-DCs; however, broken CBs transformed into K-MNi and/or K+MNi. In summary, these results show that K-MNi and K+MNi have different origins in HeLa cells and that each mechanism of MN formation contributes differently to the overall number of K-MNi and K+MNi.
Collapse
Affiliation(s)
- Erkang Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agriculture University, Hefei, Anhui 230036, People's Republic of China.
| |
Collapse
|
20
|
Fritz A, Barutcu AR, Martin-Buley L, vanWijnen AJ, Zaidi SK, Imbalzano AN, Lian JB, Stein JL, Stein GS. Chromosomes at Work: Organization of Chromosome Territories in the Interphase Nucleus. J Cell Biochem 2016; 117:9-19. [PMID: 26192137 PMCID: PMC4715719 DOI: 10.1002/jcb.25280] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 07/17/2015] [Indexed: 12/26/2022]
Abstract
The organization of interphase chromosomes in chromosome territories (CTs) was first proposed more than one hundred years ago. The introduction of increasingly sophisticated microscopic and molecular techniques, now provide complementary strategies for studying CTs in greater depth than ever before. Here we provide an overview of these strategies and how they are being used to elucidate CT interactions and the role of these dynamically regulated, nuclear-structure building blocks in directly supporting nuclear function in a physiologically responsive manner.
Collapse
Affiliation(s)
- Andrew Fritz
- University of Vermont Cancer Center, Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - A. Rasim Barutcu
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Lori Martin-Buley
- University of Vermont Cancer Center, Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - André J. vanWijnen
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Sayyed K. Zaidi
- University of Vermont Cancer Center, Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Anthony N. Imbalzano
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Jane B. Lian
- University of Vermont Cancer Center, Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Janet L. Stein
- University of Vermont Cancer Center, Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Gary S. Stein
- University of Vermont Cancer Center, Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| |
Collapse
|
21
|
Ollion J, Loll F, Cochennec J, Boudier T, Escudé C. Proliferation-dependent positioning of individual centromeres in the interphase nucleus of human lymphoblastoid cell lines. Mol Biol Cell 2015; 26:2550-60. [PMID: 25947134 PMCID: PMC4571307 DOI: 10.1091/mbc.e14-05-1002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 04/27/2015] [Indexed: 01/01/2023] Open
Abstract
Centromeres are not randomly distributed in interphase nuclei. High-throughput imaging provides an accurate characterization of how their organization varies as a function of the proliferation state in human lymphoblastoid cells. The results suggest the existence of mechanisms that drive the nuclear positioning of centromeres. The cell nucleus is a highly organized structure and plays an important role in gene regulation. Understanding the mechanisms that sustain this organization is therefore essential for understanding genome function. Centromeric regions (CRs) of chromosomes have been known for years to adopt specific nuclear positioning patterns, but the significance of this observation is not yet completely understood. Here, using a combination of fluorescence in situ hybridization and immunochemistry on fixed human cells and high-throughput imaging, we directly and quantitatively investigated the nuclear positioning of specific human CRs. We observe differential attraction of individual CRs toward both the nuclear border and the nucleoli, the former being enhanced in nonproliferating cells and the latter being enhanced in proliferating cells. Similar positioning patterns are observed in two different lymphoblastoid cell lines. Moreover, the positioning of CRs differs from that of noncentromeric regions, and CRs display specific orientations within chromosome territories. These results suggest the existence of not-yet-characterized mechanisms that drive the nuclear positioning of CRs and therefore pave the way toward a better understanding of how CRs affect nuclear organization.
Collapse
Affiliation(s)
- Jean Ollion
- Institut National de la Santé et de la Recherche Médicale U1154, Centre National de la Recherche Scientifique UMR7196, Muséum National d'Histoire Naturelle, 75231 Paris, France
| | - François Loll
- Institut National de la Santé et de la Recherche Médicale U1154, Centre National de la Recherche Scientifique UMR7196, Muséum National d'Histoire Naturelle, 75231 Paris, France
| | - Julien Cochennec
- Institut National de la Santé et de la Recherche Médicale U1154, Centre National de la Recherche Scientifique UMR7196, Muséum National d'Histoire Naturelle, 75231 Paris, France
| | - Thomas Boudier
- Université Pierre et Marie Curie, Sorbonne Universités, 75005 Paris, France
| | - Christophe Escudé
- Institut National de la Santé et de la Recherche Médicale U1154, Centre National de la Recherche Scientifique UMR7196, Muséum National d'Histoire Naturelle, 75231 Paris, France
| |
Collapse
|
22
|
Fritz AJ, Stojkovic B, Ding H, Xu J, Bhattacharya S, Berezney R. Cell type specific alterations in interchromosomal networks across the cell cycle. PLoS Comput Biol 2014; 10:e1003857. [PMID: 25275626 PMCID: PMC4183423 DOI: 10.1371/journal.pcbi.1003857] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/16/2014] [Indexed: 11/18/2022] Open
Abstract
The interchromosomal organization of a subset of human chromosomes (#1, 4, 11, 12, 16, 17, and 18) was examined in G1 and S phase of human WI38 lung fibroblast and MCF10A breast epithelial cells. Radial positioning of the chromosome territories (CTs) was independent of gene density, but size dependent. While no changes in radial positioning during the cell cycle were detected, there were stage-specific differences between cell types. Each CT was in close proximity (interaction) with a similar number of other CT except the gene rich CT17 which had significantly more interactions. Furthermore, CT17 was a member of the highest pairwise CT combinations with multiple interactions. Major differences were detected in the pairwise interaction profiles of MCF10A versus WI38 including cell cycle alterations from G1 to S. These alterations in interaction profiles were subdivided into five types: overall increase, overall decrease, switching from 1 to ≥2 interactions, vice versa, or no change. A global data mining program termed the chromatic median determined the most probable overall association network for the entire subset of CT. This probabilistic interchromosomal network was nearly completely different between the two cell lines. It was also strikingly altered across the cell cycle in MCF10A, but only slightly in WI38. We conclude that CT undergo multiple and preferred interactions with other CT in the nucleus and form preferred -albeit probabilistic- interchromosomal networks. This network of interactions is altered across the cell cycle and between cell types. It is intriguing to consider the relationship of these alterations to the corresponding changes in the gene expression program across the cell cycle and in different cell types.
Collapse
Affiliation(s)
- Andrew J. Fritz
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Branislav Stojkovic
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Hu Ding
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Jinhui Xu
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Sambit Bhattacharya
- Department of Computer Sciences, Fayetteville State University, Fayetteville, North Carolina, United States of America
| | - Ronald Berezney
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| |
Collapse
|
23
|
Mukhtar E, Adhami VM, Mukhtar H. Targeting microtubules by natural agents for cancer therapy. Mol Cancer Ther 2014; 13:275-84. [PMID: 24435445 DOI: 10.1158/1535-7163.mct-13-0791] [Citation(s) in RCA: 384] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Natural compounds that target microtubules and disrupt the normal function of the mitotic spindle have proven to be one of the best classes of cancer chemotherapeutic drugs available in clinics to date. There is increasing evidence showing that even minor alteration of microtubule dynamics can engage the spindle checkpoint, arresting cell-cycle progression at mitosis and subsequently leading to cell death. Our improved understanding of tumor biology and our continued appreciation for what the microtubule targeting agents (MTAs) can do have helped pave the way for a new era in the treatment of cancer. The effectiveness of these agents for cancer therapy has been impaired, however, by various side effects and drug resistance. Several new MTAs have shown potent activity against the proliferation of various cancer cells, including resistance to the existing MTAs. Sustained investigation of the mechanisms of action of MTAs, development and discovery of new drugs, and exploring new treatment strategies that reduce side effects and circumvent drug resistance could provide more effective therapeutic options for patients with cancer. This review focuses on the successful cancer chemotherapy from natural compounds in clinical settings and the challenges that may abort their usefulness.
Collapse
Affiliation(s)
- Eiman Mukhtar
- Corresponding Author: Hasan Mukhtar, Department of Dermatology, University of Wisconsin-Madison, 410 Medical Sciences Center, 1300 University Avenue, Madison, WI 53706.
| | | | | |
Collapse
|
24
|
Enukashvily NI, Ponomartsev NV. Mammalian satellite DNA: a speaking dumb. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2013; 90:31-65. [PMID: 23582201 DOI: 10.1016/b978-0-12-410523-2.00002-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The tandemly organized highly repetitive satellite DNA is the main DNA component of centromeric/pericentromeric constitutive heterochromatin. For almost a century, it was considered as "junk DNA," only a small portion of which is used for kinetochore formation. The current review summarizes recent data about satellite DNA transcription. The possible functions of the transcripts are discussed.
Collapse
|
25
|
Stumpff J, Wagenbach M, Franck A, Asbury CL, Wordeman L. Kif18A and chromokinesins confine centromere movements via microtubule growth suppression and spatial control of kinetochore tension. Dev Cell 2012; 22:1017-29. [PMID: 22595673 DOI: 10.1016/j.devcel.2012.02.013] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 12/08/2011] [Accepted: 02/28/2012] [Indexed: 10/28/2022]
Abstract
Alignment of chromosomes at the metaphase plate is a signature of cell division in metazoan cells, yet the mechanisms controlling this process remain ambiguous. Here we use a combination of quantitative live-cell imaging and reconstituted dynamic microtubule assays to investigate the molecular control of mitotic centromere movements. We establish that Kif18A (kinesin-8) attenuates centromere movement by directly promoting microtubule pausing in a concentration-dependent manner. This activity provides the dominant mechanism for restricting centromere movement to the spindle midzone. Furthermore, polar ejection forces spatially confine chromosomes via position-dependent regulation of kinetochore tension and centromere switch rates. We demonstrate that polar ejection forces are antagonistically modulated by chromokinesins. These pushing forces depend on Kid (kinesin-10) activity and are antagonized by Kif4A (kinesin-4), which functions to directly suppress microtubule growth. These data support a model in which Kif18A and polar ejection forces synergistically promote centromere alignment via spatial control of kinetochore-microtubule dynamics.
Collapse
Affiliation(s)
- Jason Stumpff
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
26
|
Krawczyk PM, Borovski T, Stap J, Cijsouw T, ten Cate R, Medema JP, Kanaar R, Franken NAP, Aten JA. Chromatin mobility is increased at sites of DNA double-strand breaks. J Cell Sci 2012; 125:2127-33. [PMID: 22328517 DOI: 10.1242/jcs.089847] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DNA double-strand breaks (DSBs) can efficiently kill cancer cells, but they can also produce unwanted chromosome rearrangements when DNA ends from different DSBs are erroneously joined. Movement of DSB-containing chromatin domains might facilitate these DSB interactions and promote the formation of chromosome rearrangements. Therefore, we analyzed the mobility of chromatin domains containing DSBs, marked by the fluorescently tagged DSB marker 53BP1, in living mammalian cells and compared it with the mobility of undamaged chromatin on a time-scale relevant for DSB repair. We found that chromatin domains containing DSBs are substantially more mobile than intact chromatin, and are capable of roaming a more than twofold larger area of the cell nucleus. Moreover, this increased DSB mobility, but not the mobility of undamaged chromatin, can be reduced by agents that affect higher-order chromatin organization.
Collapse
Affiliation(s)
- P M Krawczyk
- van Leeuwenhoek Centre for Advanced Microscopy-AMC, Department of Cell Biology & Histology, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Label-free 3D visualization of cellular and tissue structures in intact muscle with second and third harmonic generation microscopy. PLoS One 2011; 6:e28237. [PMID: 22140560 PMCID: PMC3225396 DOI: 10.1371/journal.pone.0028237] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 11/04/2011] [Indexed: 11/19/2022] Open
Abstract
Second and Third Harmonic Generation (SHG and THG) microscopy is based on optical effects which are induced by specific inherent physical properties of a specimen. As a multi-photon laser scanning approach which is not based on fluorescence it combines the advantages of a label-free technique with restriction of signal generation to the focal plane, thus allowing high resolution 3D reconstruction of image volumes without out-of-focus background several hundred micrometers deep into the tissue. While in mammalian soft tissues SHG is mostly restricted to collagen fibers and striated muscle myosin, THG is induced at a large variety of structures, since it is generated at interfaces such as refraction index changes within the focal volume of the excitation laser. Besides, colorants such as hemoglobin can cause resonance enhancement, leading to intense THG signals. We applied SHG and THG microscopy to murine (Mus musculus) muscles, an established model system for physiological research, to investigate their potential for label-free tissue imaging. In addition to collagen fibers and muscle fiber substructure, THG allowed us to visualize blood vessel walls and erythrocytes as well as white blood cells adhering to vessel walls, residing in or moving through the extravascular tissue. Moreover peripheral nerve fibers could be clearly identified. Structure down to the nuclear chromatin distribution was visualized in 3D and with more detail than obtainable by bright field microscopy. To our knowledge, most of these objects have not been visualized previously by THG or any label-free 3D approach. THG allows label-free microscopy with inherent optical sectioning and therefore may offer similar improvements compared to bright field microscopy as does confocal laser scanning microscopy compared to conventional fluorescence microscopy.
Collapse
|
28
|
Hagan RS, Manak MS, Buch HK, Meier MG, Meraldi P, Shah JV, Sorger PK. p31(comet) acts to ensure timely spindle checkpoint silencing subsequent to kinetochore attachment. Mol Biol Cell 2011; 22:4236-46. [PMID: 21965286 PMCID: PMC3216650 DOI: 10.1091/mbc.e11-03-0216] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The spindle assembly checkpoint links the onset of anaphase to completion of chromosome-microtubule attachment and is mediated by the binding of Mad and Bub proteins to kinetochores of unattached or maloriented chromosomes. Mad2 and BubR1 traffic between kinetochores and the cytosol, thereby transmitting a "wait anaphase" signal to the anaphase-promoting complex. It is generally assumed that this signal dissipates automatically upon kinetochore-microtubule binding, but it has been shown that under conditions of nocodazole-induced arrest p31(comet), a Mad2-binding protein, is required for mitotic progression. In this article we investigate the localization and function of p31(comet) during normal, unperturbed mitosis in human and marsupial cells. We find that, like Mad2, p31(comet) traffics on and off kinetochores and is also present in the cytosol. Cells depleted of p31(comet) arrest in metaphase with mature bipolar kinetochore-microtubule attachments, a satisfied checkpoint, and high cyclin B levels. Thus p31(comet) is required for timely mitotic exit. We propose that p31(comet) is an essential component of the machinery that silences the checkpoint during each cell cycle.
Collapse
Affiliation(s)
- Robert S Hagan
- Center for Cell Decision Processes, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Yamamoto N, Tsuchiya H, Hoffman RM. Tumor imaging with multicolor fluorescent protein expression. Int J Clin Oncol 2011; 16:84-91. [PMID: 21347627 DOI: 10.1007/s10147-011-0201-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Indexed: 01/30/2023]
Abstract
Imaging with fluorescent proteins has been revolutionary and has led to the new field of in vivo cell biology. Many new applications of this technology have been developed. Green fluorescent protein (GFP)-labeled or red fluorescent protein (RFP)-labeled HT-1080 human fibrosarcoma cells were used to determine clonality of metastasis by imaging of metastatic colonies after mixed implantation of the red and green fluorescent cells. Resulting pure red or pure green colonies were scored as clonal, whereas mixed yellow colonies were scored as nonclonal. Dual-color fluorescent cancer cells expressing GFP in the nucleus and RFP in the cytoplasm were engineered. The dual-color cancer cells enable real-time nuclear-cytoplasmic dynamics to be visualized in living cells in vivo, including mitosis and apoptosis. The nuclear and cytoplasmic behavior of dual-color cancer cells in real time in blood vessels was observed as they trafficked by various means or extravasated in an abdominal skin flap. Dual-color cancer cells were also visualized trafficking through lymphatic vessels where they were imaged via a skin flap. Seeding and arresting of single dual-color cancer cells in the lung, accumulation of cancer-cell emboli, cancer-cell viability, and metastatic colony formation were imaged in real time in an open-chest nude mouse model using assisted ventilation. Novel treatment was evaluated in these imageable models. UVC irradiation killed approximately 70% of the dual-color cancer cells in a nude mouse model. An RFP-expressing glioma was transplanted to the spinal cord of transgenic nude mice expressing nestin-driven green fluorescent protein (ND-GFP). In ND-GFP mice, GFP is expressed in nascent blood vessels and neural stem cells. ND-GFP cells staining positively for neuronal class III-β-tubulin or CD31 surrounded the tumor, suggesting that the tumor stimulated both neurogenesis and angiogenesis. The tumor caused paralysis and also metastasized to the brain. The Salmonella typhimurium A1-R tumor-targeting bacterial strain was administered in the orthotopic spinal cord glioma model. The treated animals had a significant increase in survival and decrease in paralysis. S. typhimurium A1-R was effective against primary bone tumor and lung metastasis expressing RFP in a nude mouse model. S. typhimurium A1-R was effective against both axillary lymph and popliteal lymph node metastases of human dual-color pancreatic cancer and fibrosarcoma cells, respectively, as well as lung metastasis of the fibrosarcoma in nude mice. Imaging with fluorescent proteins will reveal mechanisms of cancer progression and provide visual targets for novel therapeutics.
Collapse
Affiliation(s)
- Norio Yamamoto
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8641, Japan.
| | | | | |
Collapse
|
30
|
Abstract
The expression patterns of many protein-coding genes are orchestrated in response to exogenous stimuli, as well as cell-type-specific developmental programs. In recent years, researchers have shown that dynamic chromatin movements and interactions in the nucleus play a crucial role in gene regulation. In this review, we highlight our current understanding of the organization of chromatin in the interphase nucleus and the impact of chromatin dynamics on gene expression. We also discuss the current state of knowledge with regard to the localization of active and inactive genes within the three-dimensional nuclear space. Furthermore, we address recent findings that demonstrate the movements of chromosomal regions and genomic loci in association with changes in transcriptional activity. Finally, we discuss the role of intra- and interchromosomal interactions in the control of coregulated genes.
Collapse
Affiliation(s)
- Michael R Hübner
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.
| | | |
Collapse
|
31
|
Abstract
The primary role of the nucleus as an information storage, retrieval, and replication site requires the physical organization and compaction of meters of DNA. Although it has been clear for many years that nucleosomes constitute the first level of chromatin compaction, this contributes a relatively small fraction of the condensation needed to fit the typical genome into an interphase nucleus or set of metaphase chromosomes, indicating that there are additional "higher order" levels of chromatin condensation. Identifying these levels, their interrelationships, and the principles that govern their occurrence has been a challenging and much discussed problem. In this article, we focus on recent experimental advances and the emerging evidence indicating that structural plasticity and chromatin dynamics play dominant roles in genome organization. We also discuss novel approaches likely to yield important insights in the near future, and suggest research areas that merit further study.
Collapse
|
32
|
Abstract
Mitosis is the process by which a cell divides its genetic material equally into two daughter cells. Successful division requires that the two identical sister chromatids of a mitotic chromosome attach to the plus-ends of spindle microtubules (MTs) via their kinetochores, which are large protein structures built on centromeric DNA. Attachments between kinetochores and MTs must be persistent so that forces can be generated for chromosome movements, but at the same time they must be compliant, because attached MT plus-ends continuously polymerize and depolymerize to provide force for chromosome congression to the spindle equator. Both the attachment stability of kinetochore-MTs and the degree of dynamic instability exhibited by kinetochore-MTs must be precisely controlled to avoid errors in chromosome segregation. This chapter provides an overview of techniques used in cultured mammalian cells that measure stability and polymerization/depolymerization dynamics of kinetochore-MTs during mitosis.
Collapse
Affiliation(s)
- Jennifer G DeLuca
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
33
|
Tirichine L, Andrey P, Biot E, Maurin Y, Gaudin V. 3D fluorescent in situ hybridization using Arabidopsis leaf cryosections and isolated nuclei. PLANT METHODS 2009; 5:11. [PMID: 19650905 PMCID: PMC2731090 DOI: 10.1186/1746-4811-5-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 08/03/2009] [Indexed: 05/23/2023]
Abstract
BACKGROUND Fluorescent hybridization techniques are widely used to study the functional organization of different compartments within the mammalian nucleus. However, few examples of such studies are known in the plant kingdom. Indeed, preservation of nuclei 3D structure, which is required for nuclear organization studies, is difficult to fulfill. RESULTS We report a rapid protocol for fluorescent in situ hybridization (FISH) performed on 3D isolated nuclei and thin cryosectioned leaves of Arabidopsis thaliana. The use of direct labeling minimized treatment steps, shortening the overall procedure. Using image analysis, we measured different parameters related to nucleus morphology and overall 3D structure. CONCLUSION Our work describes a 3D-FISH protocol that preserves the 3D structure of Arabidopsis interphase nuclei. Moreover, we report for the first time FISH using cryosections of Arabidopsis leaves. This protocol is a valuable tool to investigate nuclear architecture and chromatin organization.
Collapse
Affiliation(s)
- Leïla Tirichine
- Laboratoire de Biologie Cellulaire, INRA UR 501, IJPB, Route de Saint-Cyr, F-78026 Versailles, France
- Institut des Sciences du Végétal, CNRS, avenue de la Terrasse, F-91198 Gif-sur-Yvette, France
| | - Philippe Andrey
- Neurobiologie de l'Olfaction et de la Prise Alimentaire, INRA UMR 1197, Domaine de Vilvert, F-78350 Jouy-en-Josas, France
- Université Paris-Sud 11, UMR 1197, F-91400 Orsay, France
- IFR 144 Neuro-Sud, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Eric Biot
- Laboratoire de Biologie Cellulaire, INRA UR 501, IJPB, Route de Saint-Cyr, F-78026 Versailles, France
| | - Yves Maurin
- Neurobiologie de l'Olfaction et de la Prise Alimentaire, INRA UMR 1197, Domaine de Vilvert, F-78350 Jouy-en-Josas, France
- Université Paris-Sud 11, UMR 1197, F-91400 Orsay, France
- IFR 144 Neuro-Sud, Paris, France
| | - Valérie Gaudin
- Laboratoire de Biologie Cellulaire, INRA UR 501, IJPB, Route de Saint-Cyr, F-78026 Versailles, France
| |
Collapse
|
34
|
Neurohr G, Gerlich DW. Assays for mitotic chromosome condensation in live yeast and mammalian cells. Chromosome Res 2009; 17:145-54. [PMID: 19308697 DOI: 10.1007/s10577-008-9010-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The dynamic reorganization of chromatin into rigid and compact mitotic chromosomes is of fundamental importance for faithful chromosome segregation. Owing to the difficulty of investigating this process under physiological conditions, the exact morphological transitions and the molecular machinery driving chromosome condensation remain poorly defined. Here, we review how imaging-based methods can be used to quantitate chromosome condensation in vivo, focusing on yeast and animal tissue culture cells as widely used model systems. We discuss approaches how to address structural dynamics of condensing chromosomes and chromosome segments, as well as to probe for mechanical properties of mitotic chromosomes. Application of such methods to systematic perturbation studies will provide a means to reveal the molecular networks underlying the regulation of mitotic chromosome condensation.
Collapse
Affiliation(s)
- Gabriel Neurohr
- Institute of Biochemistry, Swiss Institute of Technology Zurich (ETHZ), Schafmattstr. 18, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
35
|
|
36
|
Caldwell CM, Kaplan KB. The role of APC in mitosis and in chromosome instability. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 656:51-64. [PMID: 19928352 DOI: 10.1007/978-1-4419-1145-2_5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The established role of APC in regulating microtubules and actin in polarized epithelia naturally raises the possibility that APC similarly influences the mitotic cytoskeleton. The recent accumulation of experimental evidence in mitotic cells supports this supposition. APC associates with mitotic spindle microtubules, most notably at the plus-ends of microtubules that interact with kinetochores. Genetic experiments implicate APC in the regulation of spindle microtubule dynamics, probably through its interaction with the microtubule plus-end binding protein, EB1. Moreover, functional data show that APC modulates kinetochore-microtubule attachments and is required for the spindle checkpoint to detect transiently misaligned chromosomes. Together this evidence points to a role for APC in maintaining mitotic fidelity. Such a role is particularly significant when considered in the context of the chromosome instability observed in colorectal tumors bearing mutations in APC. The prevalence of APC truncation mutants in colorectal tumors and the ability of these alleles to act dominantly to inhibit the mitotic spindle place chromosome instability at the earliest stage of colorectal cancer progression (i.e., prior to deregulation of beta-catenin). This may contribute to the autosomal dominant predisposition of patients with familial adenomatous polyposis to develop colon cancer. In this chapter, we will review the literature linking APC to regulation of mitotic fidelity and discuss the implications for dividing epithelial cells in the intestine.
Collapse
|
37
|
Yenjerla M, Cox C, Wilson L, Jordan MA. Carbendazim inhibits cancer cell proliferation by suppressing microtubule dynamics. J Pharmacol Exp Ther 2008; 328:390-8. [PMID: 19001156 DOI: 10.1124/jpet.108.143537] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carbendazim (methyl 2-benzimidazolecarbamate) is widely used as a systemic fungicide in human food production and appears to act on fungal tubulin. However, it also inhibits proliferation of human cancer cells, including drug- and multidrug-resistant and p53-deficient cell lines. Because of its promising preclinical anti-tumor activity, it has undergone phase I clinical trials and is under further clinical development. Although it weakly inhibits polymerization of brain microtubules and induces G(2)/M arrest in tumor cells, its mechanism of action in human cells has not been fully elucidated. We examined its mechanism of action in MCF7 human breast cancer cells and found that it inhibits proliferation (IC(50), 10 microM) and half-maximally arrests mitosis at a similar concentration (8 microM), in concert with suppression of microtubule dynamic instability without appreciable microtubule depolymerization. It induces mitotic spindle abnormalities and reduces the metaphase intercentromere distance of sister chromatids, indicating reduction of tension on kinetochores, thus leading to metaphase arrest. With microtubules assembled in vitro from pure tubulin, carbendazim also suppresses dynamic instability, reducing the dynamicity by 50% at 10 microM, with only minimal (21%) reduction of polymer mass. Carbendazim binds to mammalian tubulin (K(d), 42.8 +/- 4.0 microM). Unlike some benzimidazoles that bind to the colchicine site in tubulin, carbendazim neither competes with colchicine nor competes with vinblastine for binding to brain tubulin. Thus, carbendazim binds to an as yet unidentified site in tubulin and inhibits tumor cell proliferation by suppressing the growing and shortening phases of microtubule dynamic instability, thus inducing mitotic arrest.
Collapse
Affiliation(s)
- Mythili Yenjerla
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, CA 93106-9610, USA
| | | | | | | |
Collapse
|
38
|
Wang X, Kam Z, Carlton PM, Xu L, Sedat JW, Blackburn EH. Rapid telomere motions in live human cells analyzed by highly time-resolved microscopy. Epigenetics Chromatin 2008; 1:4. [PMID: 19014413 PMCID: PMC2585561 DOI: 10.1186/1756-8935-1-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 10/27/2008] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Telomeres cap chromosome ends and protect the genome. We studied individual telomeres in live human cancer cells. In capturing telomere motions using quantitative imaging to acquire complete high-resolution three-dimensional datasets every second for 200 seconds, telomere dynamics were systematically analyzed. RESULTS The motility of individual telomeres within the same cancer cell nucleus was widely heterogeneous. One class of internal heterochromatic regions of chromosomes analyzed moved more uniformly and showed less motion and heterogeneity than telomeres. The single telomere analyses in cancer cells revealed that shorter telomeres showed more motion, and the more rapid telomere motions were energy dependent. Experimentally increasing bulk telomere length dampened telomere motion. In contrast, telomere uncapping, but not a DNA damaging agent, methyl methanesulfonate, significantly increased telomere motion. CONCLUSION New methods for seconds-scale, four-dimensional, live cell microscopic imaging and data analysis, allowing systematic tracking of individual telomeres in live cells, have defined a previously undescribed form of telomere behavior in human cells, in which the degree of telomere motion was dependent upon telomere length and functionality.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Biochemistry and Biophysics, University of California at San Francisco, California, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Okouneva T, Azarenko O, Wilson L, Littlefield BA, Jordan MA. Inhibition of centromere dynamics by eribulin (E7389) during mitotic metaphase. Mol Cancer Ther 2008; 7:2003-11. [PMID: 18645010 DOI: 10.1158/1535-7163.mct-08-0095] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Eribulin (E7389), a synthetic analogue of halichondrin B in phase III clinical trials for breast cancer, binds to tubulin and microtubules. At low concentrations, it suppresses the growth phase of microtubule dynamic instability in interphase cells, arrests mitosis, and induces apoptosis, suggesting that suppression of spindle microtubule dynamics induces mitotic arrest. To further test this hypothesis, we measured the effects of eribulin on dynamics of centromeres and their attached kinetochore microtubules by time-lapse confocal microscopy in living mitotic U-2 OS human osteosarcoma cells. Green fluorescent protein-labeled centromere-binding protein B marked centromeres and kinetochore-microtubule plus-ends. In control cells, sister chromatid centromere pairs alternated under tension between increasing and decreasing separation (stretching and relaxing). Eribulin suppressed centromere dynamics at concentrations that arrest mitosis. At 60 nmol/L eribulin (2 x mitotic IC(50)), the relaxation rate was suppressed 21%, the time spent paused increased 67%, and dynamicity decreased 35% (but without reduction in mean centromere separation), indicating that eribulin decreased normal microtubule-dependent spindle tension at the kinetochores, preventing the signal for mitotic checkpoint passage. We also examined a more potent, but in tumors less efficacious antiproliferative halichondrin derivative, ER-076349. At 2 x IC(50) (4 nmol/L), mitotic arrest also occurred in concert with suppressed centromere dynamics. Although media IC(50) values differed 15-fold between the two compounds, the intracellular concentrations were similar, indicating more extensive relative uptake of ER-076349 into cells compared with eribulin. The strong correlation between suppression of kinetochore-microtubule dynamics and mitotic arrest indicates that the primary mechanism by which eribulin blocks mitosis is suppression of spindle microtubule dynamics.
Collapse
Affiliation(s)
- Tatiana Okouneva
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | | | | | | | | |
Collapse
|
40
|
Hoebe RA, Van der Voort HTM, Stap J, Van Noorden CJF, Manders EMM. Quantitative determination of the reduction of phototoxicity and photobleaching by controlled light exposure microscopy. J Microsc 2008; 231:9-20. [PMID: 18638185 DOI: 10.1111/j.1365-2818.2008.02009.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phototoxicity and photobleaching are major limitations in live-cell fluorescence microscopy. They are caused by fluorophores in an excited singlet or triplet state that generate singlet oxygen and other reactive oxygen species. The principle of controlled light exposure microscopy (CLEM) is based on non-uniform illumination of the field of view to reduce the number of excited fluorophore molecules. This approach reduces phototoxicity and photobleaching 2- to 10-fold without deteriorating image quality. Reduction of phototoxicity and photobleaching depends on the fluorophore distribution in the studied object, the optical properties of the microscope and settings of CLEM electronics. Here, we introduce the CLEM factor as a quantitative measure of reduction in phototoxicity and photobleaching. Finally, we give a guideline to optimize the effect of CLEM without compromising image quality.
Collapse
Affiliation(s)
- R A Hoebe
- Centre for Microscopy Research (CMO), Department of Cell Biology & Histology, Academic Medical Centre, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
41
|
Warsi TH, Navarro MS, Bachant J. DNA topoisomerase II is a determinant of the tensile properties of yeast centromeric chromatin and the tension checkpoint. Mol Biol Cell 2008; 19:4421-33. [PMID: 18701701 DOI: 10.1091/mbc.e08-05-0547] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Centromeric (CEN) chromatin is placed under mechanical tension and stretches as kinetochores biorient on the mitotic spindle. This deformation could conceivably provide a readout of biorientation to error correction mechanisms that monitor kinetochore-spindle interactions, but whether CEN chromatin acts in a tensiometer capacity is unresolved. Here, we report observations linking yeast Topoisomerase II (Top2) to both CEN mechanics and assessment of interkinetochore tension. First, in top2-4 and sumoylation-resistant top2-SNM mutants CEN chromatin stretches extensively during biorientation, resulting in increased sister kinetochore separation and preanaphase spindle extension. Our data indicate increased CEN stretching corresponds with alterations to CEN topology induced in response to tension. Second, Top2 potentiates aspects of the tension checkpoint. Mutations affecting the Mtw1 kinetochore protein activate Ipl1 kinase to detach kinetochores and induce spindle checkpoint arrest. In mtw1top2-4 and mtw1top2-SNM mutants, however, kinetochores are resistant to detachment and checkpoint arrest is attenuated. For top2-SNM cells, CEN stretching and checkpoint attenuation occur even in the absence of catenation linking sister chromatids. In sum, Top2 seems to play a novel role in CEN compaction that is distinct from decatenation. Perturbations to this function may allow weakened kinetochores to stretch CENs in a manner that mimics tension or evades Ipl1 surveillance.
Collapse
Affiliation(s)
- Tariq H Warsi
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 92521, USA
| | | | | |
Collapse
|
42
|
HOFFMAN ROBERTM. In vivoreal-time imaging of nuclear-cytoplasmic dynamics of dormancy, proliferation and death of cancer cells. APMIS 2008; 116:716-29. [DOI: 10.1111/j.1600-0463.2008.01036.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
43
|
Midzone activation of aurora B in anaphase produces an intracellular phosphorylation gradient. Nature 2008; 453:1132-6. [PMID: 18463638 DOI: 10.1038/nature06923] [Citation(s) in RCA: 282] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 03/12/2008] [Indexed: 11/09/2022]
Abstract
Proper partitioning of the contents of a cell between two daughters requires integration of spatial and temporal cues. The anaphase array of microtubules that self-organize at the spindle midzone contributes to positioning the cell-division plane midway between the segregating chromosomes. How this signalling occurs over length scales of micrometres, from the midzone to the cell cortex, is not known. Here we examine the anaphase dynamics of protein phosphorylation by aurora B kinase, a key mitotic regulator, using fluorescence resonance energy transfer (FRET)-based sensors in living HeLa cells and immunofluorescence of native aurora B substrates. Quantitative analysis of phosphorylation dynamics, using chromosome- and centromere-targeted sensors, reveals that changes are due primarily to position along the division axis rather than time. These dynamics result in the formation of a spatial phosphorylation gradient early in anaphase that is centred at the spindle midzone. This gradient depends on aurora B targeting to a subpopulation of microtubules that activate it. Aurora kinase activity organizes the targeted microtubules to generate a structure-based feedback loop. We propose that feedback between aurora B kinase activation and midzone microtubules generates a gradient of post-translational marks that provides spatial information for events in anaphase and cytokinesis.
Collapse
|
44
|
Tan F, Li G, Chitteti BR, Peng Z. Proteome and phosphoproteome analysis of chromatin associated proteins in rice (Oryza sativa). Proteomics 2007; 7:4511-27. [DOI: 10.1002/pmic.200700580] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Ocampo-Hafalla MT, Katou Y, Shirahige K, Uhlmann F. Displacement and re-accumulation of centromeric cohesin during transient pre-anaphase centromere splitting. Chromosoma 2007; 116:531-44. [PMID: 17763979 PMCID: PMC2075529 DOI: 10.1007/s00412-007-0118-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 07/05/2007] [Accepted: 07/06/2007] [Indexed: 01/22/2023]
Abstract
The ring-shaped cohesin complex links sister chromatids until their timely segregation during mitosis. Cohesin is enriched at centromeres where it provides the cohesive counterforce to bipolar tension produced by the mitotic spindle. As a consequence of spindle tension, centromeric sequences transiently split in pre-anaphase cells, in some organisms up to several micrometers. This 'centromere breathing' presents a paradox, how sister sequences separate where cohesin is most enriched. We now show that in the budding yeast Saccharomyces cerevisiae, cohesin binding diminishes over centromeric sequences that split during breathing. We see no evidence for cohesin translocation to surrounding sequences, suggesting that cohesin is removed from centromeres during breathing. Two pools of cohesin can be distinguished. Cohesin loaded before DNA replication, which has established sister chromatid cohesion, disappears during breathing. In contrast, cohesin loaded after DNA replication is partly retained. As sister centromeres re-associate after transient separation, cohesin is reloaded in a manner independent of the canonical cohesin loader Scc2/Scc4. Efficient centromere re-association requires the cohesion establishment factor Eco1, suggesting that re-establishment of sister chromatid cohesion contributes to the dynamic behaviour of centromeres in mitosis. These findings provide new insights into cohesin behaviour at centromeres.
Collapse
Affiliation(s)
- Maria T. Ocampo-Hafalla
- Chromosome Segregation Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3PX UK
| | - Yuki Katou
- Center for Biological Resources and Informatics, Division of Gene Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501 Japan
| | - Katsuhiko Shirahige
- Center for Biological Resources and Informatics, Division of Gene Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501 Japan
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3PX UK
| |
Collapse
|
46
|
Yamagata K, Yamazaki T, Miki H, Ogonuki N, Inoue K, Ogura A, Baba T. Centromeric DNA hypomethylation as an epigenetic signature discriminates between germ and somatic cell lineages. Dev Biol 2007; 312:419-26. [DOI: 10.1016/j.ydbio.2007.09.041] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 09/20/2007] [Accepted: 09/21/2007] [Indexed: 01/15/2023]
|
47
|
Wordeman L, Wagenbach M, von Dassow G. MCAK facilitates chromosome movement by promoting kinetochore microtubule turnover. ACTA ACUST UNITED AC 2007; 179:869-79. [PMID: 18039936 PMCID: PMC2099197 DOI: 10.1083/jcb.200707120] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Mitotic centromere-associated kinesin (MCAK)/Kif2C is the most potent microtubule (MT)-destabilizing enzyme identified thus far. However, MCAK's function at the centromere has remained mechanistically elusive because of interference from cytoplasmic MCAK's global regulation of MT dynamics. In this study, we present MCAK chimeras and mutants designed to target centromere-associated MCAK for mechanistic analysis. Live imaging reveals that depletion of centromere-associated MCAK considerably decreases the directional coordination between sister kinetochores. Sister centromere directional antagonism results in decreased movement speed and increased tension. Sister centromeres appear unable to detach from kinetochore MTs efficiently in response to directional switching cues during oscillatory movement. These effects are reversed by anchoring ectopic MCAK to the centromere. We propose that MCAK increases the turnover of kinetochore MTs at all centromeres to coordinate directional switching between sister centromeres and facilitate smooth translocation. This may contribute to error correction during chromosome segregation either directly via slow MT turnover or indirectly by mechanical release of MTs during facilitated movement.
Collapse
Affiliation(s)
- Linda Wordeman
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
48
|
Spence JM, Phua HH, Mills W, Carpenter AJ, Porter ACG, Farr CJ. Depletion of topoisomerase IIalpha leads to shortening of the metaphase interkinetochore distance and abnormal persistence of PICH-coated anaphase threads. J Cell Sci 2007; 120:3952-64. [PMID: 17956945 DOI: 10.1242/jcs.013730] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Topoisomerase II (topo II) is a major component of mitotic chromosomes, and its unique decatenating activity has been implicated in many aspects of chromosome dynamics, of which chromosome segregation is the most seriously affected by loss of topo II activity in living cells. There is considerable evidence that topo II plays a role at the centromere including: the centromere-specific accumulation of topo II protein; cytogenetic/molecular mapping of the catalytic activity of topo II to active centromeres; the influence of sumoylated topo II on sister centromere cohesion; and its involvement in the activation of a Mad2-dependent spindle checkpoint. By using a human cell line with a conditional-lethal mutation in the gene encoding DNA topoisomerase IIalpha, we find that depletion of topo IIalpha, while leading to a disorganised metaphase plate, does not have any overt effect on general assembly of kinetochores. Fluorescence in situ hybridisation suggested that centromeres segregate normally, most segregation errors being chromatin bridges involving longer chromosome arms. Strikingly, a linear human X centromere-based minichromosome also displayed a significantly increased rate of missegregation. This sensitivity to depletion of topo IIalpha might be linked to structural alterations within the centromere domain, as indicated by a significant shortening of the distance across metaphase sister centromeres and the abnormal persistence of PICH-coated connections between segregating chromatids.
Collapse
Affiliation(s)
- Jennifer M Spence
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | | | | | | | | | | |
Collapse
|
49
|
Chuang CH, Belmont AS. Moving chromatin within the interphase nucleus-controlled transitions? Semin Cell Dev Biol 2007; 18:698-706. [PMID: 17905613 PMCID: PMC2117624 DOI: 10.1016/j.semcdb.2007.08.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 08/22/2007] [Indexed: 12/17/2022]
Abstract
The past decade has seen an increasing appreciation for nuclear compartmentalization as an underlying determinant of interphase chromosome nuclear organization. To date, attention has focused primarily on describing differential localization of particular genes or chromosome regions as a function of differentiation, cell cycle position, and/or transcriptional activity. The question of how exactly interphase chromosome compartmentalization is established and in particular how interphase chromosomes might move during changes in nuclear compartmentalization has received less attention. Here we review what is known concerning chromatin mobility in relationship to physiologically regulated changes in nuclear interphase chromosome organization.
Collapse
Affiliation(s)
| | - Andrew S. Belmont
- * Corresponding author Andrew Belmont, Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, B107 CLSL, 601 S. Goodwin Ave., Urbana, IL 61801 USA, tel: +1 217-244-2311, fax: +1 217-244-1648, email address:
| |
Collapse
|
50
|
Berr A, Schubert I. Interphase chromosome arrangement in Arabidopsis thaliana is similar in differentiated and meristematic tissues and shows a transient mirror symmetry after nuclear division. Genetics 2007; 176:853-63. [PMID: 17409060 PMCID: PMC1894613 DOI: 10.1534/genetics.107.073270] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 03/15/2007] [Indexed: 12/21/2022] Open
Abstract
Whole-mount fluorescence in situ hybridization (FISH) was applied to Arabidopsis thaliana seedlings to determine the three-dimensional (3D) interphase chromosome territory (CT) arrangement and heterochromatin location within the positional context of entire tissues or in particular cell types of morphologically well-preserved seedlings. The interphase chromosome arrangement was found to be similar between all inspected meristematic and differentiated root and shoot cells, indicating a lack of a gross reorganization during differentiation. The predominantly random CT arrangement (except for a more frequent association of the homologous chromosomes bearing a nucleolus organizer) and the peripheric location of centromeric heterochromatin were as previously observed for flow-sorted nuclei, but centromeres tend to fuse more often in nonendoreduplicating cells and NORs in differentiated cells. After mitosis, sister nuclei revealed a symmetric arrangement of homologous CTs waning with the progress of the cell cycle or in the course of differentiation. Thus, the interphase chromosome arrangement in A. thaliana nuclei seems to be constrained mainly by morphological features such as nuclear shape, presence or absence of a nucleolus organizer on chromosomes, nucleolar volume, and/or endopolyploidy level.
Collapse
Affiliation(s)
| | - Ingo Schubert
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany
| |
Collapse
|