1
|
Fan S, Liu J, Chofflet N, Bailey AO, Russell WK, Zhang Z, Takahashi H, Ren G, Rudenko G. Molecular mechanism of contactin 2 homophilic interaction. Structure 2024; 32:1652-1666.e8. [PMID: 38968938 PMCID: PMC11455609 DOI: 10.1016/j.str.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 07/07/2024]
Abstract
Contactin 2 (CNTN2) is a cell adhesion molecule involved in axon guidance, neuronal migration, and fasciculation. The ectodomains of CNTN1-CNTN6 are composed of six Ig domains (Ig1-Ig6) and four FN domains. Here, we show that CNTN2 forms transient homophilic interactions (KD ∼200 nM). Cryo-EM structures of full-length CNTN2 and CNTN2_Ig1-Ig6 reveal a T-shaped homodimer formed by intertwined, parallel monomers. Unexpectedly, the horseshoe-shaped Ig1-Ig4 headpieces extend their Ig2-Ig3 tips outwards on either side of the homodimer, while Ig4, Ig5, Ig6, and the FN domains form a central stalk. Cross-linking mass spectrometry and cell-based binding assays confirm the 3D assembly of the CNTN2 homodimer. The interface mediating homodimer formation differs between CNTNs, as do the homophilic versus heterophilic interaction mechanisms. The CNTN family thus encodes a versatile molecular platform that supports a very diverse portfolio of protein interactions and that can be leveraged to strategically guide neural circuit development.
Collapse
Affiliation(s)
- Shanghua Fan
- Department of Pharmacology and Toxicology; University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Nicolas Chofflet
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B2, Canada
| | - Aaron O Bailey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ziqi Zhang
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada
| | - Hideto Takahashi
- Synapse Development and Plasticity Research Unit, Institut de Recherches Cliniques de Montréal, Montreal, QC H2W 1R7, Canada; Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada.
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Gabby Rudenko
- Department of Pharmacology and Toxicology; University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
2
|
Wang P, Liao H, Wang Q, Xie H, Wang H, Yang M, Liu S. L1 Syndrome Prenatal Diagnosis Supplemented by Functional Analysis of One L1CAM Gene Missense Variant. Reprod Sci 2021; 29:768-780. [PMID: 34914080 PMCID: PMC8863719 DOI: 10.1007/s43032-021-00828-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022]
Abstract
L1 syndrome, a complex X-linked neurological disorder, is caused by mutations in the L1 cell adhesion molecule (L1CAM) gene. L1CAM molecule is a member of immunoglobulin (Ig) superfamily of neural cell adhesion molecules (CAMs), which plays a pivotal role in the developing nervous system. In this study, a L1CAM gene exonic missense variant (c.1108G > A, p.G370R) was identified in two induced fetuses (abnormal fetuses), who presented corpus callosum agenesis accompanied with hydrocephalus. Clinical data, published literature, online database, and bioinformatic analysis suggest that the single-nucleotide variant of L1CAM gene is a likely pathogenic mutation. In vitro assays were performed to evaluate the effects of this variant. Based on NSC-34/COS-7 cells transfected with wild-type (L1-WT) and mutated (L1-G370R) plasmids, the L1CAM gene exonic missense variant (c.1108G > A, p.G370R) reduced cell surface expression, induced partial endoplasmic reticulum retention, affected posttranslational modification, and reduced protein’s homophilic adhesive ability, but did not induce endoplasmic reticulum stress, which might probably associate with L1 syndrome. Finally, 35 isolated fetuses were screened for L1CAM gene variants by Sanger sequencing. These cases all prenatally suspected of corpus callosum agenesis accompanied with hydrocephalus, which may relate to L1 syndrome. Consequently, one L1CAM gene single missense variant (c.550C > T, p.R184W) was detected in one fetus. Our results provided evidence that the L1CAM gene missense variant (c.1108G > A, p.G370R) may relate to L1 syndrome. The findings of this study suggest a potential possibility of L1CAM gene screening for prenatal diagnoses for fetuses presented corpus callosum agenesis accompanied with hydrocephalus.
Collapse
Affiliation(s)
- Ping Wang
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Hong Liao
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Quyou Wang
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Hanbing Xie
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - He Wang
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Mei Yang
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China
| | - Shanling Liu
- Department of Obstetrics & Gynecology, West China Second University Hospital, Sichuan University, No. 20, Section 3, Renminnan Road, Chengdu, 610041, Sichuan, China. .,Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Spead O, Weaver CJ, Moreland T, Poulain FE. Live imaging of retinotectal mapping reveals topographic map dynamics and a previously undescribed role for Contactin 2 in map sharpening. Development 2021; 148:272618. [PMID: 34698769 DOI: 10.1242/dev.199584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 10/07/2021] [Indexed: 11/20/2022]
Abstract
Organization of neuronal connections into topographic maps is essential for processing information. Yet, our understanding of topographic mapping has remained limited by our inability to observe maps forming and refining directly in vivo. Here, we used Cre-mediated recombination of a new colorswitch reporter in zebrafish to generate the first transgenic model allowing the dynamic analysis of retinotectal mapping in vivo. We found that the antero-posterior retinotopic map forms early but remains dynamic, with nasal and temporal retinal axons expanding their projection domains over time. Nasal projections initially arborize in the anterior tectum but progressively refine their projection domain to the posterior tectum, leading to the sharpening of the retinotopic map along the antero-posterior axis. Finally, using a CRISPR-mediated mutagenesis approach, we demonstrate that the refinement of nasal retinal projections requires the adhesion molecule Contactin 2. Altogether, our study provides the first analysis of a topographic map maturing in real time in a live animal and opens new strategies for dissecting the molecular mechanisms underlying precise topographic mapping in vertebrates.
Collapse
Affiliation(s)
- Olivia Spead
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Cory J Weaver
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Trevor Moreland
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Fabienne E Poulain
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
4
|
Weghorst F, Mirzakhanyan Y, Samimi K, Dhillon M, Barzik M, Cunningham LL, Gershon PD, Cramer KS. Caspase-3 Cleaves Extracellular Vesicle Proteins During Auditory Brainstem Development. Front Cell Neurosci 2020; 14:573345. [PMID: 33281555 PMCID: PMC7689216 DOI: 10.3389/fncel.2020.573345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022] Open
Abstract
Sound localization requires extremely precise development of auditory brainstem circuits, the molecular mechanisms of which are largely unknown. We previously demonstrated a novel requirement for non-apoptotic activity of the protease caspase-3 in chick auditory brainstem development. Here, we used mass spectrometry to identify proteolytic substrates of caspase-3 during chick auditory brainstem development. These auditory brainstem caspase-3 substrates were enriched for proteins previously shown to be cleaved by caspase-3, especially in non-apoptotic contexts. Functional annotation analysis revealed that our caspase-3 substrates were also enriched for proteins associated with several protein categories, including proteins found in extracellular vesicles (EVs), membrane-bound nanoparticles that function in intercellular communication. The proteome of EVs isolated from the auditory brainstem was highly enriched for our caspase-3 substrates. Additionally, we identified two caspase-3 substrates with known functions in axon guidance, namely Neural Cell Adhesion Molecule (NCAM) and Neuronal-glial Cell Adhesion Molecule (Ng-CAM), that were found in auditory brainstem EVs and expressed in the auditory pathway alongside cleaved caspase-3. Taken together, these data suggest a novel developmental mechanism whereby caspase-3 influences auditory brainstem circuit formation through the proteolytic cleavage of extracellular vesicle (EV) proteins.
Collapse
Affiliation(s)
- Forrest Weghorst
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Yeva Mirzakhanyan
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Kian Samimi
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Mehron Dhillon
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Melanie Barzik
- Section on Sensory Cell Biology, NIDCD, NIH, Bethesda, MD, United States
| | - Lisa L. Cunningham
- Section on Sensory Cell Biology, NIDCD, NIH, Bethesda, MD, United States
| | - Paul D. Gershon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Karina S. Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
5
|
Gurung S, Asante E, Hummel D, Williams A, Feldman-Schultz O, Halloran MC, Sittaramane V, Chandrasekhar A. Distinct roles for the cell adhesion molecule Contactin2 in the development and function of neural circuits in zebrafish. Mech Dev 2018; 152:1-12. [PMID: 29777776 DOI: 10.1016/j.mod.2018.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/02/2018] [Accepted: 05/09/2018] [Indexed: 01/17/2023]
Abstract
Contactin2 (Cntn2)/Transient Axonal Glycoprotein 1 (Tag1), a neural cell adhesion molecule, has established roles in neuronal migration and axon fasciculation in chick and mouse. In zebrafish, antisense morpholino-based studies have indicated roles for cntn2 in the migration of facial branchiomotor (FBM) neurons, the guidance of the axons of the nucleus of the medial longitudinal fascicle (nucMLF), and the outgrowth of Rohon-Beard (RB) central axons. To study functions of Cntn2 in later stages of neuronal development, we generated cntn2 mutant zebrafish using CRISPR-Cas9. Using a null mutant allele, we detected genetic interactions between cntn2 and the planar cell polarity gene vangl2, as shown previously with cntn2 morphants, demonstrating a function for cntn2 during FBM neuron migration in a sensitized background of reduced planar cell polarity signaling. In addition, maternal-zygotic (MZ) cntn2 mutant larvae exhibited aberrant touch responses and swimming, suggestive of defects in sensorimotor circuits, consistent with studies in mice. However, the nucMLF axon convergence, FBM neuron migration, and RB outgrowth defects seen in morphants were not seen in the mutants, and we show here that they are likely off-target effects of morpholinos. However, MLF axons exhibited local defasciculation in MZcntn2 mutants, consistent with a role for Cntn2 in axon fasciculation. These data demonstrate distinct roles for zebrafish cntn2 in neuronal migration and axon fasciculation, and in the function of sensorimotor circuits.
Collapse
Affiliation(s)
- Suman Gurung
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Emilia Asante
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Devynn Hummel
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Ashley Williams
- Department of Biology, Georgia Southern University, Statesboro, GA 30458, USA
| | - Oren Feldman-Schultz
- Department of Integrative Biology, Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA
| | - Mary C Halloran
- Department of Integrative Biology, Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA
| | - Vinoth Sittaramane
- Department of Biology, Georgia Southern University, Statesboro, GA 30458, USA
| | - Anand Chandrasekhar
- Division of Biological Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
6
|
Tan RPA, Leshchyns'ka I, Sytnyk V. Glycosylphosphatidylinositol-Anchored Immunoglobulin Superfamily Cell Adhesion Molecules and Their Role in Neuronal Development and Synapse Regulation. Front Mol Neurosci 2017; 10:378. [PMID: 29249937 PMCID: PMC5715320 DOI: 10.3389/fnmol.2017.00378] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/30/2017] [Indexed: 01/01/2023] Open
Abstract
Immunoglobulin superfamily (IgSF) cell adhesion molecules (CAMs) are cell surface glycoproteins that not only mediate interactions between neurons but also between neurons and other cells in the nervous system. While typical IgSF CAMs are transmembrane molecules, this superfamily also includes CAMs, which do not possess transmembrane and intracellular domains and are instead attached to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. In this review, we focus on the role GPI-anchored IgSF CAMs have as signal transducers and ligands in neurons, and discuss their functions in regulation of neuronal development, synapse formation, synaptic plasticity, learning, and behavior. We also review the links between GPI-anchored IgSF CAMs and brain disorders.
Collapse
Affiliation(s)
- Rui P A Tan
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
7
|
Abstract
Contactin-2/transiently expressed axonal surface glycoprotein-1 (TAG-1) is a cell adhesion molecule belonging to the immunoglobulin superfamily (IgSF). It has six immunoglobulin-like extracellular domains and four fibronectin III-like ones, with anchoring to the cell membrane through glycosylphosphatidyl inositol. Contactin-2/TAG-1 is expressed in specific neurons transiently on the axonal surface during the fetal period. In postnatal stages, Contactin-2/TAG-1 is expressed in cerebellar granule cells, hippocampal pyramidal cells, and the juxtaparanodal regions of myelinated nerve fibers. In the embryonic nervous system, Contactin-2/TAG-1 plays important roles in axonal elongation, axonal guidance, and cellular migration. In the postnatal nervous system, it also plays an essential role in the formation of myelinated nerve fibers. Moreover, Contactin-2/TAG-1 has been linked to autoimmune diseases of the human nervous system. Taken together, Contactin-2/TAG-1 plays a central role in a variety of functions from development to disease.
Collapse
Affiliation(s)
- Tomoyuki Masuda
- a Doctoral and Master's Programs in Kansei, Behavioral and Brain Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba , Ibaraki , Japan.,b Department of Neurology , Faculty of Medicine, University of Tsukuba , Ibaraki , Japan.,c Department of Neurobiology , Faculty of Medicine, University of Tsukuba , Ibaraki , Japan
| |
Collapse
|
8
|
The CD24 surface antigen in neural development and disease. Neurobiol Dis 2016; 99:133-144. [PMID: 27993646 DOI: 10.1016/j.nbd.2016.12.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 12/11/2022] Open
Abstract
A cell's surface molecular signature enables its reciprocal interactions with the associated microenvironments in development, tissue homeostasis and pathological processes. The CD24 surface antigen (heat-stable antigen, nectadrin; small cell lung cancer antigen cluster-4) represents a prime example of a neural surface molecule that has long been known, but whose diverse molecular functions in intercellular communication we have only begun to unravel. Here, we briefly summarize the molecular fundamentals of CD24 structure and provide a comprehensive review of CD24 expression and functional studies in mammalian neural developmental systems and disease models (rodent, human). Striving for an integrated view of the intracellular signaling processes involved, we discuss the most pertinent routes of CD24-mediated signaling pathways and functional networks in neurobiology (neural migration, neurite extension, neurogenesis) and pathology (tumorigenesis, multiple sclerosis).
Collapse
|
9
|
Frei JA, Stoeckli ET. SynCAMs - From axon guidance to neurodevelopmental disorders. Mol Cell Neurosci 2016; 81:41-48. [PMID: 27594578 DOI: 10.1016/j.mcn.2016.08.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 08/28/2016] [Accepted: 08/31/2016] [Indexed: 12/22/2022] Open
Abstract
Many cell adhesion molecules are located at synapses but only few of them can be considered synaptic cell adhesion molecules in the strict sense. Besides the Neurexins and Neuroligins, the LRRTMs (leucine rich repeat transmembrane proteins) and the SynCAMs/CADMs can induce synapse formation when expressed in non-neuronal cells and therefore are true synaptic cell adhesion molecules. SynCAMs (synaptic cell adhesion molecules) are a subfamily of the immunoglobulin superfamily of cell adhesion molecules. As suggested by their name, they were first identified as cell adhesion molecules at the synapse which were sufficient to trigger synapse formation. They also contribute to myelination by mediating axon-glia cell contacts. More recently, their role in earlier stages of neural circuit formation was demonstrated, as they also guide axons both in the peripheral and in the central nervous system. Mutations in SynCAM genes were found in patients diagnosed with autism spectrum disorders. The diverse functions of SynCAMs during development suggest that neurodevelopmental disorders are not only due to defects in synaptic plasticity. Rather, early steps of neural circuit formation are likely to contribute.
Collapse
Affiliation(s)
- Jeannine A Frei
- Hussman Institute for Autism, 801 W Baltimore Street, Baltimore, MD 20201, United States
| | - Esther T Stoeckli
- Dept of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
10
|
Cell Adhesion Molecules and Ubiquitination-Functions and Significance. BIOLOGY 2015; 5:biology5010001. [PMID: 26703751 PMCID: PMC4810158 DOI: 10.3390/biology5010001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/02/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022]
Abstract
Cell adhesion molecules of the immunoglobulin (Ig) superfamily represent the biggest group of cell adhesion molecules. They have been analyzed since approximately 40 years ago and most of them have been shown to play a role in tumor progression and in the nervous system. All members of the Ig superfamily are intensively posttranslationally modified. However, many aspects of their cellular functions are not yet known. Since a few years ago it is known that some of the Ig superfamily members are modified by ubiquitin. Ubiquitination has classically been described as a proteasomal degradation signal but during the last years it became obvious that it can regulate many other processes including internalization of cell surface molecules and lysosomal sorting. The purpose of this review is to summarize the current knowledge about the ubiquitination of cell adhesion molecules of the Ig superfamily and to discuss its potential physiological roles in tumorigenesis and in the nervous system.
Collapse
|
11
|
Qi Y, Li Y, Cui SC, Zhao JJ, Liu XY, Ji CX, Sun FY, Xu P, Chen XH. Splicing factor NSSR1 reduces neuronal injury after mouse transient global cerebral ischemia. Glia 2015; 63:826-45. [PMID: 25627895 DOI: 10.1002/glia.22787] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 12/08/2014] [Accepted: 12/18/2014] [Indexed: 11/06/2022]
Abstract
This study focuses on the function of NSSR1, a splicing factor, in neuronal injury in the ischemic mouse brain using the transient global cerebral ischemic mouse model and the cultured cells treated with oxygen-glucose deprivation (OGD). The results showed that the cerebral ischemia triggers the expression of NSSR1 in hippocampal astrocytes, predominantly the dephosphorylated NSSR1 proteins, and the Exon3 inclusive NCAM-L1 variant and the Exon4 inclusive CREB variant. While in the hippocampus of astrocyte-specific NSSR1 conditional knockdown (cKD) mice, where cerebral ischemia no longer triggers NSSR1 expression in astrocytes, the expression of Exon3 inclusive NCAM-L1 variant and Exon4 inclusive CREB variant were no longer triggered as well. In addition, the injury of hippocampal neurons was more severe in astrocyte-specific NSSR1 cKD mice compared with in wild-type mice after brain ischemia. Of note, the culture media harvested from the astrocytes with overexpression of NSSR1 or the Exon3 inclusive NCAM-L1 variant, or Exon4 inclusive CREB variant were all able to reduce the neuronal injury induced by OGD. The results provide the evidence demonstrating that: (1) Splicing factor NSSR1 is a new factor involved in reducing ischemic injury. (2) Ischemia induces NSSR1 expression in astrocytes, not in neurons. (3) NSSR1-mediated pathway in astrocytes is required for reducing ischemic neuronal injury. (4) NCAM-L1 and CREB are probably mediators in NSSR1-mediated pathway. In conclusion, our results suggest for the first time that NSSR1 may provide a novel mechanism for reducing neuronal injury after ischemia, probably through regulation on alternative splicing of NCAM-L1 and CREB in astrocytes.
Collapse
Affiliation(s)
- Yao Qi
- State Key Laboratory of Medical Neurobiology and Laboratory of Genomic Physiology, Institutes of Brain Science, Department of Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Frei JA, Andermatt I, Gesemann M, Stoeckli ET. The SynCAM synaptic cell adhesion molecules are involved in sensory axon pathfinding by regulating axon-axon contacts. J Cell Sci 2014; 127:5288-302. [PMID: 25335893 DOI: 10.1242/jcs.157032] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Synaptic cell adhesion molecules (SynCAMs) are crucial for synapse formation and plasticity. However, we have previously demonstrated that SynCAMs are also required during earlier stages of neural circuit formation because SynCAM1 and SynCAM2 (also known as CADM1 and CADM2, respectively) are important for the guidance of post-crossing commissural axons. In contrast to the exclusively homophilic cis-interactions reported by previous studies, our previous in vivo results suggested the existence of heterophilic cis-interactions between SynCAM1 and SynCAM2. Indeed, as we show here, the presence of homophilic and heterophilic cis-interactions modulates the interaction of SynCAMs with trans-binding partners, as observed previously for other immunoglobulin superfamily cell adhesion molecules. These in vitro findings are in agreement with results from in vivo studies, which demonstrate a role for SynCAMs in the formation of sensory neural circuits in the chicken embryo. In the absence of SynCAMs, selective axon-axon interactions are perturbed resulting in aberrant pathfinding of sensory axons.
Collapse
Affiliation(s)
- Jeannine A Frei
- Institute of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Irwin Andermatt
- Institute of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Matthias Gesemann
- Institute of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Esther T Stoeckli
- Institute of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
13
|
Axonal transport plays a crucial role in mediating the axon-protective effects of NmNAT. Neurobiol Dis 2014; 68:78-90. [PMID: 24787896 DOI: 10.1016/j.nbd.2014.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/06/2014] [Accepted: 04/21/2014] [Indexed: 12/29/2022] Open
Abstract
Deficits in axonal transport are thought to contribute to the pathology of many neurodegenerative diseases. Expressing the slow Wallerian degeneration protein (Wld(S)) or related nicotinamide mononucleotide adenyltransferases (NmNATs) protects axons against damage from a broad range of insults, but the ability of these proteins to protect against inhibition of axonal transport has received little attention. We set out to determine whether these proteins can protect the axons of cultured hippocampal neurons from damage due to hydrogen peroxide or oxygen-glucose deprivation (OGD) and, in particular, whether they can reduce the damage that these agents cause to the axonal transport machinery. Exposure to these insults inhibited the axonal transport of both mitochondria and of the vesicles that carry axonal membrane proteins; this inhibition occurred hours before the first signs of axonal degeneration. Expressing a cytoplasmically targeted version of NmNAT1 (cytNmNAT1) protected the axons against both insults. It also reduced the inhibition of transport when cells were exposed to hydrogen peroxide and enhanced the recovery of transport following both insults. The protective effects of cytNmNAT1 depend on mitochondrial transport. When mitochondrial transport was inhibited, cytNmNAT1 was unable to protect axons against either insult. The protective effects of mitochondrially targeted NmNAT also were blocked by inhibiting mitochondrial transport. These results establish that NmNAT robustly protects the axonal transport system following exposure to OGD and reactive oxygen species and may offer similar protection in other disease models. Understanding how NmNAT protects the axonal transport system may lead to new strategies for neuroprotection in neurodegenerative diseases.
Collapse
|
14
|
Stoeckli ET, Kilinc D, Kunz B, Kunz S, Lee GU, Martines E, Rader C, Suter D. Analysis of cell-cell contact mediated by Ig superfamily cell adhesion molecules. CURRENT PROTOCOLS IN CELL BIOLOGY 2013; 61:9.5.1-9.5.85. [PMID: 24510806 DOI: 10.1002/0471143030.cb0905s61] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cell-cell adhesion is a fundamental requirement for all multicellular organisms. The calcium-independent cell adhesion molecules of the immunoglobulin superfamily (IgSF-CAMs) represent a major subgroup. They consist of immunoglobulin folds alone or in combination with other protein modules, often fibronectin type-III folds. More than 100 IgSF-CAMs have been identified in vertebrates and invertebrates. Most of the IgSF-CAMs are cell surface molecules that are membrane-anchored either by a single transmembrane segment or by a glycosylphosphatidylinositol (GPI) anchor. Some of the IgSF-CAMs also occur in soluble form, e.g., in the cerebrospinal fluid or in the vitreous fluid of the eye, due to naturally occurring cleavage of the GPI anchor or the membrane-proximal peptide segment. Some IgSF-CAMs, such as NCAM, occur in various forms that are generated by alternative splicing. This unit contains a series of protocols that have been used to study the function of IgSF-CAMs in vitro and in vivo.
Collapse
Affiliation(s)
- Esther T Stoeckli
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Devrim Kilinc
- School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin, Ireland
| | - Beat Kunz
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Stefan Kunz
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Gil U Lee
- School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin, Ireland
| | - Elena Martines
- Nanomedicine Centre, School of Chemistry and Chemical Biology, University College Dublin, Dublin, Ireland
| | - Christoph Rader
- Department of Cancer Biology, Scripps Florida, Jupiter, Florida
| | - Daniel Suter
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| |
Collapse
|
15
|
Molecular events in the cell types of the olfactory epithelium during adult neurogenesis. Mol Brain 2013; 6:49. [PMID: 24267470 PMCID: PMC3907027 DOI: 10.1186/1756-6606-6-49] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 11/15/2013] [Indexed: 11/15/2022] Open
Abstract
Background Adult neurogenesis, fundamental for cellular homeostasis in the mammalian olfactory epithelium, requires major shifts in gene expression to produce mature olfactory sensory neurons (OSNs) from multipotent progenitor cells. To understand these dynamic events requires identifying not only the genes involved but also the cell types that express each gene. Only then can the interrelationships of the encoded proteins reveal the sequences of molecular events that control the plasticity of the adult olfactory epithelium. Results Of 4,057 differentially abundant mRNAs at 5 days after lesion-induced OSN replacement in adult mice, 2,334 were decreased mRNAs expressed by mature OSNs. Of the 1,723 increased mRNAs, many were expressed by cell types other than OSNs and encoded proteins involved in cell proliferation and transcriptional regulation, consistent with increased basal cell proliferation. Others encoded fatty acid metabolism and lysosomal proteins expressed by infiltrating macrophages that help scavenge debris from the apoptosis of mature OSNs. The mRNAs of immature OSNs behaved dichotomously, increasing if they supported early events in OSN differentiation (axon initiation, vesicular trafficking, cytoskeletal organization and focal adhesions) but decreasing if they supported homeostatic processes that carry over into mature OSNs (energy production, axon maintenance and protein catabolism). The complexity of shifts in gene expression responsible for converting basal cells into neurons was evident in the increased abundance of 203 transcriptional regulators expressed by basal cells and immature OSNs. Conclusions Many of the molecular changes evoked during adult neurogenesis can now be ascribed to specific cellular events in the OSN cell lineage, thereby defining new stages in the development of these neurons. Most notably, the patterns of gene expression in immature OSNs changed in a characteristic fashion as these neurons differentiated. Initial patterns were consistent with the transition into a neuronal morphology (neuritogenesis) and later patterns with neuronal homeostasis. Overall, gene expression patterns during adult olfactory neurogenesis showed substantial similarity to those of embryonic brain.
Collapse
|
16
|
Wang Y, Loers G, Pan HC, Gouveia R, Zhao WJ, Shen YQ, Kleene R, Costa J, Schachner M. Antibody fragments directed against different portions of the human neural cell adhesion molecule L1 act as inhibitors or activators of L1 function. PLoS One 2012; 7:e52404. [PMID: 23272240 PMCID: PMC3525558 DOI: 10.1371/journal.pone.0052404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/16/2012] [Indexed: 02/05/2023] Open
Abstract
The neural cell adhesion molecule L1 plays important roles in neuronal migration and survival, neuritogenesis and synaptogenesis. L1 has also been found in tumors of different origins, with levels of L1 expression correlating positively with the metastatic potential of tumors. To select antibodies targeting the varied functions of L1, we screened the Tomlinson library of recombinant human antibody fragments to identify antibodies binding to recombinant human L1 protein comprising the entire extracellular domain of human L1. We obtained four L1 binding single-chain variable fragment antibodies (scFvs), named I4, I6, I13, and I27 and showed by enzyme-linked immunosorbent assay (ELISA) that scFvs I4 and I6 have high affinity to the immunoglobulin-like (Ig) domains 1-4 of L1, while scFvs I13 and I27 bind strongly to the fibronectin type III homologous (Fn) domains 1-3 of L1. Application of scFvs I4 and I6 to human SK-N-SH neuroblastoma cells reduced proliferation and transmigration of these cells. Treatment of SK-N-SH cells with scFvs I13 and I27 enhanced cell proliferation and migration, neurite outgrowth, and protected against the toxic effects of H(2)O(2) by increasing the ratio of Bcl-2/Bax. In addition, scFvs I4 and I6 inhibited and scFvs I13 and I27 promoted phosphorylation of src and Erk. Our findings indicate that scFvs reacting with the immunoglobulin-like domains 1-4 inhibit L1 functions, whereas scFvs interacting with the fibronectin type III domains 1-3 trigger L1 functions of cultured neuroblastoma cells.
Collapse
Affiliation(s)
- Yan Wang
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany
| | - Hong-Chao Pan
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Ricardo Gouveia
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Wei-Jiang Zhao
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Yan-Qin Shen
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany
| | - Julia Costa
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| |
Collapse
|
17
|
TAG1 regulates the endocytic trafficking and signaling of the semaphorin3A receptor complex. J Neurosci 2012; 32:10370-82. [PMID: 22836270 DOI: 10.1523/jneurosci.5874-11.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endocytic trafficking of membrane proteins is essential for neuronal structure and function. We show that Transient Axonal Glycoprotein 1 (TAG1 or CNTN2), a contactin-related adhesion molecule, plays a central role in the differential trafficking of components of the semaphorin3A (Sema3A) receptor complex into distinct endosomal compartments in murine spinal sensory neuron growth cones. The semaphorin3A receptor is composed of Neuropilin1 (NRP1), PlexinA4, and L1, with NRP1 being the ligand-binding component. TAG1 interacts with NRP1, causing a change in its association with L1 in the Sema3A response such that L1 is lost from the complex following Sema3A binding. Initially, however, L1 and NRP1 endocytose together and only become separated intracellularly, with NRP1 becoming associated with endosomes enriched in lipid rafts and colocalizing with TAG1 and PlexinA4. When TAG1 is missing, NRP1 and L1 fail to separate and NRP1 does not become raft associated; colocalization with PlexinA4 is reduced and Plexin signaling is not initiated. These observations identify a novel role for TAG1 in modulating the intracellular sorting of signaling receptor complexes.
Collapse
|
18
|
Sato M, Yoshimura S, Hirai R, Goto A, Kunii M, Atik N, Sato T, Sato K, Harada R, Shimada J, Hatabu T, Yorifuji H, Harada A. The role of VAMP7/TI-VAMP in cell polarity and lysosomal exocytosis in vivo. Traffic 2011; 12:1383-93. [PMID: 21740490 DOI: 10.1111/j.1600-0854.2011.01247.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
VAMP7 or tetanus neurotoxin-insensitive vesicle- associated membrane protein (TI-VAMP) has been proposed to regulate apical transport in polarized epithelial cells, axonal transport in neurons and lysosomal exocytosis. To investigate the function of VAMP7 in vivo, we generated VAMP7 knockout mice. Here, we show that VAMP7 knockout mice are indistinguishable from control mice and display a similar localization of apical proteins in the kidney and small intestine and a similar localization of axonal proteins in the nervous system. Neurite outgrowth of cultured mutant hippocampal neurons was reduced in mutant neurons. However, lysosomal exocytosis was not affected in mutant fibroblasts. Our results show that VAMP7 is required in neurons to extend axons to the full extent. However, VAMP7 does not seem to be required for epithelial cell polarity and lysosomal exocytosis.
Collapse
Affiliation(s)
- Mahito Sato
- Department of Cellular and Molecular Biology, Laboratory for Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gu C, Gu Y. Clustering and activity tuning of Kv1 channels in myelinated hippocampal axons. J Biol Chem 2011; 286:25835-47. [PMID: 21602278 DOI: 10.1074/jbc.m111.219113] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Precise localization of axonal ion channels is crucial for proper electrical and chemical functions of axons. In myelinated axons, Kv1 (Shaker) voltage-gated potassium (Kv) channels are clustered in the juxtaparanodal regions flanking the node of Ranvier. The clustering can be disrupted by deletion of various proteins in mice, including contactin-associated protein-like 2 (Caspr2) and transient axonal glycoprotein-1 (TAG-1), a glycosylphosphatidylinositol-anchored cell adhesion molecule. However, the mechanism and function of Kv1 juxtaparanodal clustering remain unclear. Here, using a new myelin coculture of hippocampal neurons and oligodendrocytes, we report that tyrosine phosphorylation plays a critical role in TAG-1-mediated clustering of axonal Kv1.2 channels. In the coculture, myelin specifically ensheathed axons but not dendrites of hippocampal neurons and clustered endogenous axonal Kv1.2 into internodes. The trans-homophilic interaction of TAG-1 was sufficient to position Kv1.2 clusters on axonal membranes in a neuron/HEK293 coculture. Mutating a tyrosine residue (Tyr⁴⁵⁸) in the Kv1.2 C terminus or blocking tyrosine phosphorylation disrupted myelin- and TAG-1-mediated clustering of axonal Kv1.2. Furthermore, Kv1.2 voltage dependence and activation threshold were reduced by TAG-1 coexpression. This effect was eliminated by the Tyr⁴⁵⁸ mutation or by cholesterol depletion. Taken together, our studies suggest that myelin regulates both trafficking and activity of Kv1 channels along hippocampal axons through TAG-1.
Collapse
Affiliation(s)
- Chen Gu
- Department of Neuroscience and Center for Molecular Neurobiology, Ohio State University, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
20
|
ZUKO AMILA, BOUYAIN SAMUEL, VAN DER ZWAAG BERT, BURBACH JPETERH. Contactins: structural aspects in relation to developmental functions in brain disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2011; 84:143-80. [PMID: 21846565 PMCID: PMC9921585 DOI: 10.1016/b978-0-12-386483-3.00001-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The contactins are members of a protein subfamily of neural immunoglobulin (Ig) domain-containing cell adhesion molecules. Their architecture is based on six N-terminal Ig domains, four fibronectin type III domains, and a C-terminal glycophosphatidylinositol (GPI)-anchor to the extracellular part of the cell membrane. Genetics of neuropsychiatric disorders, particularly autism spectrum disorders, have pinpointed contactin-4, -5, and -6 (CNTN4, -5, and -6) as potential disease genes in neurodevelopmental disorders and suggested that they participate in pathways important for appropriate brain development. These contactins have distinct but overlapping patterns of brain expression, and null-mutation causes subtle morphological and functional defects in the brain. The molecular basis of their neurodevelopmental functions is likely conferred by heterophilic protein interactions. Cntn4, -5, and -6 interact with protein tyrosine phosphatase receptor gamma (Ptptg) using a shared binding site that spans their second and third Ig repeats. Interactions with amyloid precursor protein (APP), Notch, and other IgCAMs have also been indicated. The present data indicate that Cntn4, -5, and -6 proteins may be part of heteromeric receptor complexes as well as serve as ligands themselves.
Collapse
Affiliation(s)
- AMILA ZUKO
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - SAMUEL BOUYAIN
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - BERT VAN DER ZWAAG
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J. PETER H. BURBACH
- Department of Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
21
|
Labasque M, Faivre-Sarrailh C. GPI-anchored proteins at the node of Ranvier. FEBS Lett 2009; 584:1787-92. [PMID: 19703450 DOI: 10.1016/j.febslet.2009.08.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 01/06/2023]
Abstract
Contactin and TAG-1 are glycan phosphatidyl inositol (GPI)-anchored cell adhesion molecules that play a crucial role in the organization of axonal subdomains at the node of Ranvier of myelinating fibers. Contactin and TAG-1 mediate axo-glial selective interactions in association with Caspr-family molecules at paranodes and juxtaparanodes, respectively. How membrane proteins can be confined in these neighbouring domains along the axon has been the subject of intense investigations. This review will specifically examine the properties conferred by the lipid microenvironment to regulate trafficking and selective association of these axo-glial complexes. Increasing evidences from genetic and neuropathological models point to a role of lipid rafts in the formation or stabilization of the paranodal junctions.
Collapse
Affiliation(s)
- Marilyne Labasque
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, UMR 6231 CNRS, Université de la Méditerranée, Marseille, France
| | | |
Collapse
|
22
|
Lewis(x) and alpha2,3-sialyl glycans and their receptors TAG-1, Contactin, and L1 mediate CD24-dependent neurite outgrowth. J Neurosci 2009; 29:6677-90. [PMID: 19458237 DOI: 10.1523/jneurosci.4361-08.2009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although carbohydrates have been implicated in cell interactions in the nervous system, the molecular bases of their functions have remained largely obscure. Here, we show that promotion or inhibition of neurite outgrowth of cerebellar or dorsal root ganglion neurons, respectively, induced by the mucin-type adhesion molecule CD24 depends on alpha2,3-linked sialic acid and Lewis(x) present on glia-specific CD24 glycoforms. Alpha2,3-sialyl residues of CD24 bind to a structural motif in the first fibronectin type III domain of the adhesion molecule L1. Following the observation that the adhesion molecules TAG-1 and Contactin show sequence homologies with fucose-specific lectins, we obtained evidence that TAG-1 and Contactin mediate Lewis(x)-dependent CD24-induced effects on neurite outgrowth. Thus, L1, TAG-1, and Contactin function as lectin-like neuronal receptors. Their cis interactions with neighboring adhesion molecules, e.g., Caspr1 and Caspr2, and with their triggered signal transduction pathways elicit cell type-specific promotion or inhibition of neurite outgrowth induced by glial CD24 in a glycan-dependent trans interaction.
Collapse
|
23
|
Sakurai T, Gil OD, Whittard JD, Gazdoiu M, Joseph T, Wu J, Waksman A, Benson DL, Salton SR, Felsenfeld DP. Interactions between the L1 cell adhesion molecule and ezrin support traction-force generation and can be regulated by tyrosine phosphorylation. J Neurosci Res 2009; 86:2602-14. [PMID: 18478542 DOI: 10.1002/jnr.21705] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An Ig superfamily cell-adhesion molecule, L1, forms an adhesion complex at the cell membrane containing both signaling molecules and cytoskeletal proteins. This complex mediates the transduction of extracellular signals and generates actin-mediated traction forces, both of which support axon outgrowth. The L1 cytoplasmic region binds ezrin, an adapter protein that interacts with the actin cytoskeleton. In this study, we analyzed L1-ezrin interactions in detail, assessed their role in generating traction forces by L1, and identified potential regulatory mechanisms controlling ezrin-L1 interactions. The FERM domain of ezrin binds to the juxtamembrane region of L1, demonstrated by yeast two-hybrid interaction traps and protein binding analyses in vitro. A lysine-to-leucine substitution in this domain of L1 (K1147L) shows reduced binding to the ezrin FERM domain. Additionally, in ND7 cells, the K1147L mutation inhibits retrograde movement of L1 on the cell surface that has been linked to the generation of the traction forces necessary for axon growth. A membrane-permeable peptide consisting of the juxtamembrane region of L1 that can disrupt endogenous L1-ezrin interactions inhibits neurite extension of cerebellar cells on L1 substrates. Moreover, the L1-ezrin interactions can be modulated by tyrosine phosphorylation of the L1 cytoplasmic region, namely, Y1151, possibly through Src-family kinases. Replacement of this tyrosine together with Y1176 with either aspartate or phenylalanine changes ezrin binding and alters colocalization with ezrin in ND7 cells. Collectively, these data suggest that L1-ezrin interactions mediated by the L1 juxtamembrane region are involved in traction-force generation and can be regulated by the phosphorylation of L1.
Collapse
Affiliation(s)
- Takeshi Sakurai
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Makhina T, Loers G, Schulze C, Ueberle B, Schachner M, Kleene R. Extracellular GAPDH binds to L1 and enhances neurite outgrowth. Mol Cell Neurosci 2009; 41:206-18. [PMID: 19285135 DOI: 10.1016/j.mcn.2009.02.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 12/08/2008] [Accepted: 02/26/2009] [Indexed: 10/21/2022] Open
Abstract
We have identified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a binding partner for the cell adhesion molecule L1. GAPDH binds to sites within the extracellular domain of L1, namely the immunoglobulin-like domains I-VI and the fibronectin type III homologous repeats 4-5. Extracellular GAPDH was detected at the cell surface of neuronal cells by surface biotinylation and immunocytochemistry. Addition of GAPDH antibodies to cultured cerebellar neurons inhibited L1-dependent neurite outgrowth in the presence of ATP, while the application of exogenous GAPDH promoted L1-dependent neurite outgrowth. Pre-treatment of substrate-coated L1-Fc with ATP and GAPDH, which phosphorylates L1, subsequently led to an enhanced neurite outgrowth. Furthermore, aggregation of L1-Fc carrying beads was enhanced in the presence of both GAPDH and ATP. L1-dependent neurite outgrowth and aggregation of L1 were diminished in the presence of alkaline phosphatase or a protein kinase inhibitor. Our results show that GAPDH-dependent phosphorylation of L1 is a novel mechanism in regulating L1-mediated neurite outgrowth.
Collapse
Affiliation(s)
- Tatjana Makhina
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Shimoda Y, Watanabe K. Contactins: emerging key roles in the development and function of the nervous system. Cell Adh Migr 2009; 3:64-70. [PMID: 19262165 DOI: 10.4161/cam.3.1.7764] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Contactins are a subgroup of molecules belonging to the immunoglobulin superfamily that are expressed exclusively in the nervous system. The subgroup consists of six members: contactin, TAG-1, BIG-1, BIG-2, NB-2 and NB-3. Since their identification in the late 1980s, contactin and TAG-1 have been studied extensively. Axonal expression and the neurite extension activity of contactin and TAG-1 attracted researchers to study the function of these molecules in axon guidance during development. After the exciting discovery of the molecular function of contactin and TAG-1 in myelination earlier this decade, these two molecules have come to be known as the principal molecules in the function and maintenance of myelinated neurons. In contrast, the function of the other four members of this subgroup remained unknown until recently. Here, we will give an overview of contactin function, including recent progress on BIG-2, NB-2 and NB-3.
Collapse
Affiliation(s)
- Yasushi Shimoda
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | | |
Collapse
|
26
|
Bizzoca A, Corsi P, Gennarini G. The mouse F3/contactin glycoprotein: structural features, functional properties and developmental significance of its regulated expression. Cell Adh Migr 2009; 3:53-63. [PMID: 19372728 PMCID: PMC2675150 DOI: 10.4161/cam.3.1.7462] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2008] [Accepted: 11/19/2008] [Indexed: 12/18/2022] Open
Abstract
F3/Contactin is an immunoglobulin superfamily component expressed in the nervous tissue of several species. Here we focus on the structural and functional properties of its mouse relative, on the mechanisms driving its regulated expression and on its developmental role. F3/Contactin is differentially expressed in distinct populations of central and peripheral neurons and in some non-neuronal cells. Accordingly, the regulatory region of the underlying gene includes promoter elements undergoing differential activation, associated with an intricate splicing profile, indicating that transcriptional and posttranscriptional mechanisms contribute to its expression. Transgenic models allowed to follow F3/Contactin promoter activation in vivo and to modify F3/Contactin gene expression under a heterologous promoter, which resulted in morphological and functional phenotypes. Besides axonal growth and pathfinding, these concerned earlier events, including precursor proliferation and commitment. This wide role in neural ontogenesis is consistent with the recognized interaction of F3/Contactin with developmental control genes belonging to the Notch pathway.
Collapse
Affiliation(s)
- Antonella Bizzoca
- Department of Pharmacology and Human Physiology, Medical School, University of Bari, Bari, Italy
| | | | | |
Collapse
|
27
|
Hoffman EJ, Mintz CD, Wang S, McNickle DG, Salton SRJ, Benson DL. Effects of ethanol on axon outgrowth and branching in developing rat cortical neurons. Neuroscience 2008; 157:556-65. [PMID: 18926887 DOI: 10.1016/j.neuroscience.2008.08.071] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 08/29/2008] [Accepted: 08/29/2008] [Indexed: 11/26/2022]
Abstract
Humans exposed prenatally to ethanol can exhibit brain abnormalities and cognitive impairment similar to those seen in patients expressing mutant forms of the L1 cell adhesion molecule (L1CAM). The resemblance suggests that L1CAM may be a target for ethanol, and consistent with this idea, ethanol can inhibit L1CAM adhesion in cell lines and L1CAM-mediated outgrowth and signaling in cerebellar granule neurons. However, it is not known whether ethanol inhibits L1CAM function in other neuron types known to require L1CAM for appropriate development. Here we asked whether ethanol alters L1CAM function in neurons of the rat cerebral cortex. We find that ethanol does not alter axonal polarization, L1CAM-dependent axon outgrowth or branching, or L1CAM recycling in axonal growth cones. Thus, ethanol inhibition of L1CAM is highly dependent on neuronal context.
Collapse
Affiliation(s)
- E J Hoffman
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
28
|
Law CO, Kirby RJ, Aghamohammadzadeh S, Furley AJW. The neural adhesion molecule TAG-1 modulates responses of sensory axons to diffusible guidance signals. Development 2008; 135:2361-71. [DOI: 10.1242/dev.009019] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
When the axons of primary sensory neurons project into the embryonic mammalian spinal cord, they bifurcate and extend rostrocaudally before sending collaterals to specific laminae according to neuronal subclass. The specificity of this innervation has been suggested to be the result both of differential sensitivity to chemorepellants expressed in the ventral spinal cord and of the function of Ig-like neural cell adhesion molecules in the dorsal horn. The relationship between these mechanisms has not been addressed. Focussing on the pathfinding of TrkA+ NGF-dependent axons, we demonstrate for the first time that their axons project prematurely into the dorsal horn of both L1 and TAG-1 knockout mice. We show that axons lacking TAG-1, similar to those lacking L1, are insensitive to wild-type ventral spinal cord(VSC)-derived chemorepellants, indicating that adhesion molecule function is required in the axons, and that this loss of response is explained in part by loss of response to Sema3A. We present evidence that TAG-1 affects sensitivity to Sema3A by binding to L1 and modulating the endocytosis of the L1/neuropilin 1 Sema3A receptor complex. However, TAG-1 appears to affect sensitivity to other VSC-derived chemorepellants via an L1-independent mechanism. We suggest that this dependence of chemorepellant sensitivity on the functions of combinations of adhesion molecules is important to ensure that axons project via specific pathways before extending to their final targets.
Collapse
Affiliation(s)
- Chris O. Law
- Department of Biomedical Science, University of Sheffield, Western Bank,Sheffield S10 2TN, UK
| | - Rebecca J. Kirby
- Department of Biomedical Science, University of Sheffield, Western Bank,Sheffield S10 2TN, UK
| | | | - Andrew J. W. Furley
- Department of Biomedical Science, University of Sheffield, Western Bank,Sheffield S10 2TN, UK
| |
Collapse
|
29
|
Osterfield M, Egelund R, Young LM, Flanagan JG. Interaction of amyloid precursor protein with contactins and NgCAM in the retinotectal system. Development 2008; 135:1189-99. [PMID: 18272596 DOI: 10.1242/dev.007401] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The amyloid precursor protein (APP) plays a central role in Alzheimer's disease, but its actions in normal development are not well understood. Here, a tagged APP ectodomain was used to identify extracellular binding partners in developing chick brain. Prominent binding sites were seen in the olfactory bulb and on retinal axons growing into the optic tectum. Co-precipitation from these tissues and tandem mass spectrometry led to the identification of two associated proteins: contactin 4 and NgCAM. In vitro binding studies revealed direct interactions among multiple members of the APP and contactin protein families. Levels of the APP processing fragment, CTFalpha, were modulated by both contactin 4 and NgCAM. In the developing retinotectal system, APP, contactin 4 and NgCAM are expressed in the retina and tectum in suitable locations to interact. Functional assays revealed regulatory effects of both APP and contactin 4 on NgCAM-dependent growth of cultured retinal axons, demonstrating specific functional interactions among these proteins. These studies identify novel binding and functional interactions among proteins of the APP, contactin and L1CAM families, with general implications for mechanisms of APP action in neural development and disease.
Collapse
Affiliation(s)
- Miriam Osterfield
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
30
|
Seabold GK, Wang PY, Chang K, Wang CY, Wang YX, Petralia RS, Wenthold RJ. The SALM family of adhesion-like molecules forms heteromeric and homomeric complexes. J Biol Chem 2008; 283:8395-405. [PMID: 18227064 DOI: 10.1074/jbc.m709456200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Synaptic adhesion-like molecules (SALMs) are a newly discovered family of adhesion molecules that play roles in synapse formation and neurite outgrowth. The SALM family is comprised of five homologous molecules that are expressed largely in the central nervous system. SALMs 1-3 contain PDZ-binding domains, whereas SALMs 4 and 5 do not. We are interested in characterizing the interactions of the SALMs both among the individual members and with other binding partners. In the present study, we focused on the interactions formed by the five SALM members in rat brain and heterologous cells. In brain, we found that SALMs 1-3 strongly co-immunoprecipitated with each other, whereas SALMs 4 and 5 did not, suggesting that SALMs 4 and 5 mainly form homomeric complexes. In heterologous cells transfected with SALMs, co-immunoprecipitation studies showed that all five SALMs form heteromeric and homomeric complexes. We also determined if SALMs could form trans-cellular associations between transfected heterologous cells. Both SALMs 4 and 5 formed homophilic, but not heterophilic associations, whereas no trans associations were formed by the other SALMs. The ability of SALM4 to form trans interactions is due to its extracellular N terminus because chimeras of SALM4 N terminus and SALM2 C terminus can form trans interactions, whereas chimeras of SALM2 N terminus and SALM4 C terminus cannot. Co-culture experiments using HeLa cells and rat hippocampal neurons expressing the SALMs showed that SALM4 is recruited to points of contact between the cells. In neurons, these points of contact were seen in both axons and dendrites.
Collapse
Affiliation(s)
- Gail K Seabold
- Laboratory of Neurochemistry, NIDCD, NIH, Bethesda, MD 20892-8027, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Thelen K, Wolfram T, Maier B, Jährling S, Tinazli A, Piehler J, Spatz JP, Pollerberg GE. Cell adhesion molecule DM-GRASP presented as nanopatterns to neurons regulates attachment and neurite growth. SOFT MATTER 2007; 3:1486-1491. [PMID: 32900102 DOI: 10.1039/b707250c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Adhesion and neurite formation of neurons and neuroblastoma cells critically depends on the lateral spacing of the cell adhesion molecule DM-GRASP offered as nanostructured substrate.
Collapse
Affiliation(s)
- Karsten Thelen
- University of Heidelberg, Department of Developmental Neurobiology, Institute of Zoology, Im Neuenheimer Feld 232, 69120 Heidelberg, Germany
| | - Tobias Wolfram
- Max-Planck-Institute for Metals Research, Dept. New Materials and Biosystems, & University of Heidelberg, Dept. of Biophysical Chemistry, Heisenbergstrasse 3, 70569 Stuttgart, Germany and Institute for Molecular Biophysics, The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Bettina Maier
- University of Heidelberg, Department of Developmental Neurobiology, Institute of Zoology, Im Neuenheimer Feld 232, 69120 Heidelberg, Germany
| | - Steffen Jährling
- University of Heidelberg, Department of Developmental Neurobiology, Institute of Zoology, Im Neuenheimer Feld 232, 69120 Heidelberg, Germany
| | - Ahmed Tinazli
- Institute of Biochemistry, Biocenter N210, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Jacob Piehler
- Institute of Biochemistry, Biocenter N210, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Joachim P Spatz
- Max-Planck-Institute for Metals Research, Dept. New Materials and Biosystems, & University of Heidelberg, Dept. of Biophysical Chemistry, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - G Elisabeth Pollerberg
- University of Heidelberg, Department of Developmental Neurobiology, Institute of Zoology, Im Neuenheimer Feld 232, 69120 Heidelberg, Germany
| |
Collapse
|
32
|
Mörtl M, Sonderegger P, Diederichs K, Welte W. The crystal structure of the ligand-binding module of human TAG-1 suggests a new mode of homophilic interaction. Protein Sci 2007; 16:2174-83. [PMID: 17766378 PMCID: PMC2204121 DOI: 10.1110/ps.072802707] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Human TAG-1 is a neural cell adhesion molecule that is crucial for the development of the nervous system during embryogenesis. It consists of six immunoglobulin-like and four fibronectin III-like domains and is anchored to the membrane by glycosylphosphatidylinositol. Herein we present the crystal structure of the four N-terminal immunoglobulin-like domains of TAG-1 (TAG-1(Ig1-4)), known to be important in heterophilic and homophilic macromolecular interactions. The contacts of neighboring molecules within the crystal were investigated. A comparison with the structure of the chicken ortholog resulted in an alternative mode for the molecular mechanism of homophilic TAG-1 interaction. This mode of TAG-1 homophilic interaction is based on dimer formation rather than formation of a molecular zipper as proposed for the chicken ortholog.
Collapse
Affiliation(s)
- Mario Mörtl
- University of Konstanz, Department of Biology, Konstanz, Germany
| | | | | | | |
Collapse
|
33
|
Yamanaka H, Obata K, Kobayashi K, Dai Y, Fukuoka T, Noguchi K. Alteration of the cell adhesion molecule L1 expression in a specific subset of primary afferent neurons contributes to neuropathic pain. Eur J Neurosci 2007; 25:1097-111. [PMID: 17331206 PMCID: PMC1891330 DOI: 10.1111/j.1460-9568.2007.05344.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The cell adhesion molecule L1 (L1-CAM) plays important functional roles in the developing and adult nervous systems. Here we show that peripheral nerve injury induced dynamic post-transcriptional alteration of L1-CAM in the rat dorsal root ganglia (DRGs) and spinal cord. Sciatic nerve transection (SCNT) changed the expression of L1-CAM protein but not L1-CAM mRNA. In DRGs, SCNT induced accumulation of the L1-CAM into the surface of somata, which resulted in the formation of immunoreactive ring structures in a number of unmyelinated C-fiber neurons. These neurons with L1-CAM-immunoreactive ring structures were heavily colocalized with phosphorylated p38 MAPK. Western blot analysis revealed the increase of full-length L1-CAM and decrease of fragments of L1-CAM after SCNT in DRGs. Following SCNT, L1-CAM-immunoreactive profiles in the dorsal horn showed an increase mainly in pre-synaptic areas of laminae I–II with a delayed onset and colocalized with growth-associated protein 43. In contrast to DRGs, SCNT increased the proteolytic 80-kDa fragment of L1-CAM and decreased full-length L1-CAM in the spinal cord. The intrathecal injection of L1-CAM antibody for the extracellular domain of L1-CAM inhibited activation of p38 MAPK and emergence of ring structures of L1-CAM immunoreactivity in injured DRG neurons. Moreover, inhibition of extracellular L1-CAM binding by intrathecal administration of antibody suppressed the mechanical allodynia and thermal hyperalgesia induced by partial SCNT. Collectively, these data suggest that the modification of L1-CAM in nociceptive pathways might be an important pathomechanism of neuropathic pain.
Collapse
Affiliation(s)
- Hiroki Yamanaka
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Schultheis M, Diestel S, Schmitz B. The role of cytoplasmic serine residues of the cell adhesion molecule L1 in neurite outgrowth, endocytosis, and cell migration. Cell Mol Neurobiol 2007; 27:11-31. [PMID: 17151951 DOI: 10.1007/s10571-006-9113-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 07/14/2006] [Indexed: 10/23/2022]
Abstract
1. The cell adhesion molecule L1 has been implicated in adhesion and migration of cells, in axon growth, guidance, and fasciculation, in myelination and synaptic plasticity. The cytoplasmic domain of neuronal L1 is highly conserved between species and has been shown to be phosphorylated at serine and tyrosine residues. 2. To investigate the significance of L1 serine phosphorylation, mutants of L1 were generated in which ser-1152, ser-1181, ser-1204, and ser-1248 were exchanged for leucine and rat B35 neuroblastoma cells were stably transfected with the L1-cDNA constructs. 3. Neurite outgrowth on poly-L-lysine (PLL) as substrate was determined either with or without differentiation into a neuronal phenotype with dbcAMP. In addition, antibody-induced endocytosis and cell migration were examined. 4. Our observations indicate that phosphorylation of single serine residues of the cytoplasmic domain of L1 contributes to neurite outgrowth through different mechanisms. Neurite growth is increased when ser-1152 or ser-1181 is replaced by a non-phosphorylatable leucine and decreased when ser-1204 or ser-1248 is mutated to leucine. Furthermore, mutation of ser-1181 to leucine results in strongly enhanced antibody-induced endocytosis of L1 and also in enhanced cell migration.
Collapse
Affiliation(s)
- M Schultheis
- Department of Biochemistry, Institute of Animal Sciences, University of Bonn, Katzenburgweg 9a, 53115, Bonn, Germany
| | | | | |
Collapse
|
35
|
Chaudhry N, de Silva U, Smith GM. Cell adhesion molecule L1 modulates nerve-growth-factor-induced CGRP-IR fiber sprouting. Exp Neurol 2006; 202:238-49. [PMID: 16860320 DOI: 10.1016/j.expneurol.2006.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 05/16/2006] [Accepted: 06/02/2006] [Indexed: 10/24/2022]
Abstract
Overexpression of nerve growth factor (NGF) using adenoviruses (Adts) after spinal cord injury induces extensive regeneration and sprouting of calcitonin-gene-related peptide immunoreactive (CGRP-IR) fibers, whereas overexpression of cell adhesion molecules (CAMs) has no effect on the normal distribution of these fibers. Interestingly, co-expression of cell adhesion molecule L1 and NGF significantly decreases (p<0.0001) CGRP-IR fiber sprouting within the spinal cord, when compared to NGF alone. Co-expression of cell adhesion molecules NCAM or N-cadherin had no effect on NGF-induced CGRP-IR fiber sprouting. These data demonstrate that reduced sprouting is specific to L1 co-expression and not other cell adhesion molecules. In vitro studies carried out to address potential mechanisms show that neurite outgrowth over astrocytes overexpressing L1 in the presence of NGF is comparable to controls, indicating that other factors present in vivo might be involved in the L1-mediated reduction in sprouting. One potential factor is semaphorin 3A (sema3A), which mediates growth cone collapse of CGRP-positive axons. Recent studies have shown that L1 is important in sema3A receptor signaling for cortical neurons. In our study, co-expression of sema3A indeed reduces neurite outgrowth from DRG neurons by about 40% on L1-expressing astrocytes. Based on these results, we hypothesize that overexpression of L1 potentiates sema3A signaling resulting in reduced sprouting.
Collapse
Affiliation(s)
- Nagarathnamma Chaudhry
- Department of Physiology, University of Kentucky, 800 Rose Street, Lexington, KY 40536-0298, USA
| | | | | |
Collapse
|
36
|
Williams SE, Grumet M, Colman DR, Henkemeyer M, Mason CA, Sakurai T. A role for Nr-CAM in the patterning of binocular visual pathways. Neuron 2006; 50:535-47. [PMID: 16701205 DOI: 10.1016/j.neuron.2006.03.037] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 02/23/2006] [Accepted: 03/28/2006] [Indexed: 01/06/2023]
Abstract
Retinal ganglion cell (RGC) axons diverge within the optic chiasm to project to opposite sides of the brain. In mouse, contralateral RGCs are distributed throughout the retina, whereas ipsilateral RGCs are restricted to the ventrotemporal crescent (VTC). While repulsive guidance mechanisms play a major role in the formation of the ipsilateral projection, little is known about the contribution of growth-promoting interactions to the formation of binocular visual projections. Here, we show that the cell adhesion molecule Nr-CAM is expressed by RGCs that project contralaterally and is critical for the guidance of late-born RGCs within the VTC. Blocking Nr-CAM function causes an increase in the size of the ipsilateral projection and reduces neurite outgrowth on chiasm cells in an age- and region-specific manner. Finally, we demonstrate that EphB1/ephrin-B2-mediated repulsion and Nr-CAM-mediated attraction comprise distinct molecular programs that each contributes to the proper formation of binocular visual pathways.
Collapse
Affiliation(s)
- Scott E Williams
- Center for Neurobiology and Behavior and Department of Pathology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
37
|
Tang N, He M, O’Riordan MA, Farkas C, Buck K, Lemmon V, Bearer CF. Ethanol inhibits L1 cell adhesion molecule activation of mitogen-activated protein kinases. J Neurochem 2006; 96:1480-90. [PMID: 16478533 PMCID: PMC4362514 DOI: 10.1111/j.1471-4159.2006.03649.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inhibition of the functions of L1 cell adhesion molecule (L1) by ethanol has been implicated in the pathogenesis of the neurodevelopmental aspects of the fetal alcohol syndrome (FAS). Ethanol at pharmacological concentrations has been shown to inhibit L1-mediated neurite outgrowth of rat post-natal day 6 cerebellar granule cells (CGN). Extracellular signal-related kinases (ERK) 1/2 activation occurs following L1 clustering. Reduction in phosphoERK1/2 by inhibition of mitogen-activated protein kinase kinase (MEK) reduces neurite outgrowth of cerebellar neurons. Here, we examine the effects of ethanol on L1 activation of ERK1/2, and whether this activation occurs via activation of fibroblast growth factor receptor 1 (FGFR1). Ethanol at 25 mm markedly inhibited ERK1/2 activation by both clustering L1 with cross-linked monoclonal antibodies, or by L1-Fc chimeric proteins. Clustering L1 with subsequent ERK1/2 activation did not result in tyrosine phosphorylation of the FGFR1. In addition, inhibition of FGFR1 tyrosine kinase blocked basic fibroblast growth factor (bFGF) activation of ERK1/2, but did not affect activation of ERK1/2 by clustered L1. We conclude that ethanol disrupts the signaling pathway between L1 clustering and ERK1/2 activation, and that this occurs independently of the FGFR1 pathway in cerebellar granule cells.
Collapse
Affiliation(s)
- Ningfeng Tang
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Min He
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mary Ann O’Riordan
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chloe Farkas
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kevin Buck
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Vance Lemmon
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, Florida, USA
| | - Cynthia F. Bearer
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
38
|
Cheng L, Itoh K, Lemmon V. L1-mediated branching is regulated by two ezrin-radixin-moesin (ERM)-binding sites, the RSLE region and a novel juxtamembrane ERM-binding region. J Neurosci 2005; 25:395-403. [PMID: 15647482 PMCID: PMC2860578 DOI: 10.1523/jneurosci.4097-04.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We investigated how the neural cell adhesion molecule L1 mediates neurite outgrowth through L1-L1 homophilic interactions. Wild-type L1 and L1 with mutations in the cytoplasmic domain (CD) were introduced into L1 knock-out neurons, and transfected neurons were grown on an L1 substrate. Neurite length and branching were compared between wild-type L1 and L1CD mutations. Surprisingly, the L1CD is not required for L1-mediated neurite outgrowth but plays a critical role in neurite branching, through both the juxtamembrane region and the RSLE region. We demonstrate that both regions serve as ezrin-moesin-radixin-binding sites. A truncation mutant that deletes 110 of 114 amino acids of the L1CD still supports neurite outgrowth on an L1 substrate, suggesting that a coreceptor binds to L1 in cis and mediates neurite outgrowth and that L1-ankyrin interactions are not essential for neurite initiation or outgrowth. These data are consistent with a model in which L1 can influence L1-mediated neurite outgrowth and branching through both the L1CD and a coreceptor.
Collapse
Affiliation(s)
- Ling Cheng
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
39
|
Zhang Q, Wang J, Fan S, Wang L, Cao L, Tang K, Peng C, Li Z, Li W, Gan K, Liu Z, Li X, Shen S, Li G. Expression and functional characterization ofLRRC4, a novel brain-specific member of the LRR superfamily. FEBS Lett 2005; 579:3674-82. [PMID: 15967442 DOI: 10.1016/j.febslet.2005.05.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 04/20/2005] [Accepted: 05/09/2005] [Indexed: 01/08/2023]
Abstract
LRRC4, a novel member of LRR superfamily thought to be involved in development and tumorigenesis of the nervous tissue, has the potential to suppress tumorigenesis and cell proliferation of U251MG cells. This study aimed at revealing the correlation between expression of LRRC4 and the maintenance of normal function and tumorigenesis suppression within the central nervous system. We systematically analyzed the expression and tissue distributions of the gene in tissues. Results showed that LRRC4 expression was limited to normal adult brain, both in human and in mouse, and exhibited a development-regulated pattern, but was down-regulated in brain tumor tissues and U251MG cell line. Furthermore, dynamic alterations in gene expression associated with cell cycle progression were investigated by using Tet-on system. Results showed that LRRC4 induced a cell cycle delay at the late G1 phase, probably through the alteration of the expression of different cell cycle regulating proteins responsible for mediating G1-S progression, such as p21(Waf1/Cip1) and p27(Kip1), Cdk2 and PCNA, p-ERK1/2. These findings suggest that LRRC4 may play an important role in maintaining normal function and suppressing tumorigenesis in the central nervous system.
Collapse
Affiliation(s)
- Qiuhong Zhang
- Cancer Research Institute, Central South University, Changsha 410078, Hunan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Soares S, Traka M, von Boxberg Y, Bouquet C, Karagogeos D, Nothias F. Neuronal and glial expression of the adhesion molecule TAG-1 is regulated after peripheral nerve lesion or central neurodegeneration of adult nervous system. Eur J Neurosci 2005; 21:1169-80. [PMID: 15813926 DOI: 10.1111/j.1460-9568.2005.03961.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Expression of the cell adhesion molecule TAG-1 is down-regulated in adult brain, with the exception of certain areas exhibiting structural plasticity. Here, we present evidence that TAG-1 expression persists also in adult rat spinal cord and dorsal root ganglia (DRG), and can be up-regulated after injury. On Western blots of adult tissue, TAG-1 is detected as a 135-kDa band, with an additional specific 90-kDa band, not present in developing tissue. TAG-1 expression is found both in DRG neurons and in Schwann cells, particularly those associated with the peripherally projecting DRG processes. Quantitative in situ hybridization revealed that TAG-1 expression is significantly higher in small neurons that give rise to unmyelinated fibers, than in large DRG neurons. The regulation of TAG-1 was then examined in two different lesion paradigms. After a sciatic nerve lesion, TAG-1 expression is not up-regulated in DRG neurons, but decreases with time. At the lesion site, reactive Schwann cells up-regulate TAG-1, as demonstrated by both immunohistochemistry and in situ hybridization. In a second paradigm, we injected kainic acid into the spinal cord that kills neurons but spares glia and axons. TAG-1 is up-regulated in the spinal neuron-depleted area as well as in the corresponding dorsal and ventral roots, associated with both target-deprived afferent fibers and with the non-neuronal cells that invade the lesion site. These results demonstrate a local up-regulation of TAG-1 in the adult that is induced in response to injury, suggesting its involvement in axonal re-modelling, neuron-glia interactions, and glial cell migration.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Blotting, Western/methods
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/metabolism
- Cells, Cultured
- Contactin 2
- DNA-Binding Proteins/metabolism
- Early Growth Response Protein 2
- Female
- Ganglia, Spinal/cytology
- Ganglia, Spinal/growth & development
- Ganglia, Spinal/metabolism
- Gene Expression Regulation, Developmental/physiology
- Immunohistochemistry/methods
- In Situ Hybridization/methods
- Indoles/metabolism
- Kainic Acid
- Microtubule-Associated Proteins/metabolism
- Nerve Degeneration/chemically induced
- Nerve Degeneration/metabolism
- Nerve Degeneration/pathology
- Neuroglia/metabolism
- Neurons/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- S100 Proteins/metabolism
- Schwann Cells
- Sciatic Neuropathy/metabolism
- Spinal Cord/cytology
- Spinal Cord/growth & development
- Spinal Cord/metabolism
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Sylvia Soares
- Laboratoire de Neurobiologie des Signaux Intercellulaires, UMR7101, CNRS-UPMC, Case 02, Bat. A, 3étage, 7 Quai Saint Bernard, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
41
|
Hashimoto K, Kataoka N, Nakamura E, Asahara H, Ogasawara Y, Tsujioka K, Kajiya F. Direct observation and quantitative analysis of spatiotemporal dynamics of individual living monocytes during transendothelial migration. Atherosclerosis 2005; 177:19-27. [PMID: 15488861 DOI: 10.1016/j.atherosclerosis.2004.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 03/30/2004] [Accepted: 06/30/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To visualize and quantitatively analyze spatiotemporal dynamics of individual living monocytes during transendothelial migration (TEM). METHODS AND RESULTS We developed an in vitro new experimental system using confocal laser scanning microscope with following two improvements: (1) ultra thin collagen gel layer (30-50 microm thick) constructed under human umbilical vein endothelial cell layer for three-dimensional observation with high magnification; (2) appropriate fluorescent labeling of living monocytes and endothelial cells to keep highest cell activity. Individual monocytes behaved quite diversely. Approximately 70% of adhered monocytes directionally crawled to intercellular junction, and started invasion. Time from adhesion to start of invasion was 8.6 +/- 5.4 min (mean +/- S.D., n=61 monocytes). Approximately 80% of such invading monocytes completed TEM, but remaining 20% of once invading monocytes hesitated transmigration, and returned onto the endothelial surface. Time from start to finish of invasion was 6.3 +/- 3.2 min (mean +/- S.D., n=53 monocytes). CONCLUSIONS Using our collagen gel-based newly-developed system, we visualized and quantitatively analyzed detailed spatiotemporal, three-dimensional dynamics of individual living monocytes during TEM. We revealed that monocytes encountered at least two hurdles, at starting invasion, and leaving endothelium, to achieve complete TEM. Approximately 56% (80% of 70% of adhered monocytes) passed both hurdles.
Collapse
Affiliation(s)
- Ken Hashimoto
- Department of Physiology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan.
| | | | | | | | | | | | | |
Collapse
|
42
|
Cheng L, Lemmon V. Pathological missense mutations of neural cell adhesion molecule L1 affect neurite outgrowth and branching on an L1 substrate. Mol Cell Neurosci 2005; 27:522-30. [PMID: 15555929 DOI: 10.1016/j.mcn.2004.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 08/10/2004] [Accepted: 08/11/2004] [Indexed: 11/22/2022] Open
Abstract
A number of pathological missense mutations of L1CAM have been shown to disrupt L1-L1 homophilic binding and/or affect surface expression. To investigate whether these mutations disrupt L1-mediated neurite outgrowth, cerebellar neurons from L1 knockout mice are transfected with WT human L1 or L1 mutant constructs, and grown on an L1 substrate. Various parameters of neurite growth are quantified. Most L1 mutations do not affect neurite length significantly but several mutations cause a significant decrease in branching. Comparison of these data with data on L1 expression levels and homophilic binding strength show that changes in neurite growth cannot be simply explained by reductions in either of these parameters. Our results suggest that a coreceptor is involved in L1-mediated neurite outgrowth. Some pathological mutations have little effect on L1 mediated neurite growth, so it is unlikely that a failure of L1-mediated neurite outgrowth is the principle cause of brain defects in patients with L1 mutations.
Collapse
Affiliation(s)
- Ling Cheng
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
43
|
Pruss T, Niere M, Kranz EU, Volkmer H. Homophilic interactions of chick neurofascin in trans are important for neurite induction. Eur J Neurosci 2004; 20:3184-8. [PMID: 15579173 DOI: 10.1111/j.1460-9568.2004.03773.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neurofascin is a member of the immunoglobulin superfamily involved in axon extension and fasciculation. Here we apply adenoviral short hairpin RNA (shRNA) expression in primary neurons, PC12-NIH/3T3 co-cultures in combination with Luminex assays, to demonstrate homophilic interactions of neurofascin for neurite outgrowth. An adenoviral vector was constructed for the expression of shRNA in primary tectal cells that inhibits gene expression similar to short interfering RNA. We demonstrate that after shRNA-mediated knockdown neuronal neurofascin expression is important for neurite outgrowth on a neurofascin substrate. Neurite outgrowth assays reveal that neurite formation of PC12 cells is increased when neurofascin is overexpressed on both outgrowing PC12 cells and substrate NIH/3T3 cells, suggesting that neurofascin expression is also sufficient for neurite induction. Luminex technology for the analysis of protein-protein interactions showed homophilic binding of neurofascin to itself.
Collapse
Affiliation(s)
- Thomas Pruss
- Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen, Department of Molecular Biology, Markwiesenstrasse 55, D-72770 Reutlingen, Germany
| | | | | | | |
Collapse
|
44
|
Litwack ED, Babey R, Buser R, Gesemann M, O'Leary DDM. Identification and characterization of two novel brain-derived immunoglobulin superfamily members with a unique structural organization. Mol Cell Neurosci 2004; 25:263-74. [PMID: 15019943 DOI: 10.1016/j.mcn.2003.10.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2003] [Revised: 10/02/2003] [Accepted: 10/21/2003] [Indexed: 11/28/2022] Open
Abstract
We recently used a differential display PCR screen to identify secreted and transmembrane proteins that are highly expressed in the developing rat basilar pons, a prominent ventral hindbrain nucleus used as a model for studies of neuronal migration, axon outgrowth, and axon-target recognition. Here we describe cloning and characterization of one of these molecules, now called MDGA1, and a closely related homologue, MDGA2. Analyses of the full-length coding region of MDGA1 and MDGA2 indicate that they encode proteins that comprise a novel subgroup of the Ig superfamily and have a unique structural organization consisting of six immunoglobulin (Ig)-like domains followed by a single MAM domain. Biochemical characterization demonstrates that MDGA1 and MDGA2 proteins are highly glycosylated, and that MDGA1 is tethered to the cell membrane by a GPI anchor. The MDGAs are differentially expressed by subpopulations of neurons in both the central and peripheral nervous systems, including neurons of the basilar pons, inferior olive, cerebellum, cerebral cortex, olfactory bulb, spinal cord, and dorsal root and trigeminal ganglia. Little or no MDGA expression is detected outside of the nervous system of developing rats. The similarity of MDGAs to other Ig-containing molecules and their temporal-spatial patterns of expression within restricted neuronal populations, for example migrating pontine neurons and D1 spinal interneurons, suggest a role for these novel proteins in regulating neuronal migration, as well as other aspects of neural development, including axon guidance.
Collapse
Affiliation(s)
- E David Litwack
- Molecular Neurobiology Laboratory, The Salk Institute, San Diego, CA 92037, USA
| | | | | | | | | |
Collapse
|
45
|
Kamiguchi H. The mechanism of axon growth: what we have learned from the cell adhesion molecule L1. Mol Neurobiol 2004; 28:219-28. [PMID: 14709786 DOI: 10.1385/mn:28:3:219] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2003] [Accepted: 04/30/2003] [Indexed: 11/11/2022]
Abstract
Cell adhesion molecules (CAMs) are not just an inert glue that mediates static cell-cell and cell-extracellular matrix (ECM) adhesion; instead, their adhesivity is dynamically controlled to enable a cell to migrate through complex environmental situations. Furthermore, cell migration requires distinct levels of CAM adhesivity in various subcellular regions. Recent studies on L1, a CAM in the immunoglobulin superfamily, demonstrate that cell adhesion can be spatially regulated by the polarized internalization and recycling of CAMs. This article examines the molecular mechanism of axon growth, with a particular focus on the role of L1 trafficking in the polarized adhesion and migration of neuronal growth cones.
Collapse
Affiliation(s)
- Hiroyuki Kamiguchi
- Laboratory for Neuronal Growth Mechanisms, RIKEN Brain Science Institute (BSI), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
46
|
Abstract
Cell adhesion molecules of the immunoglobulin superfamily (IgSF CAMs) were discovered 25 years ago based on their role in cell-cell adhesion. Ever since, they have played a major role in developmental neuroscience research. The elucidation of IgSF CAM structure and function has been tightly linked to the establishment of new areas of research. Over the years, our view of the role of the IgSF CAMs has changed. First, they were thought to provide "specific glue" segregating subtypes of cells in the nervous system. Soon it became clear that IgSF CAMs can do much more. The focus shifted from simple adhesion to CAM-associated signaling that was shown to be involved in the promotion of axon growth and the regulation of cell migration. From there it was a small step to axon guidance, a field that has been given a lot of attention during the last decade. More recently, the involvement of IgSF CAMs in synapse formation and maturation has been discovered, although this last step in the formation of neural circuits was thought to be the domain of other families of cell adhesion molecules, such as the neuroligins, the neurexins, and the cadherins. Certainly, the most striking discovery in the context of IgSF CAMs has been the diversity of signaling mechanisms that are associated with them. The versatility of signals and their complexity make IgSF CAMs a perfect tool for brain development.
Collapse
Affiliation(s)
- E T Stoeckli
- Institute of Zoology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland,
| |
Collapse
|
47
|
Schumacher S, Stübe EM. Regulated binding of the fibrinogen-like domains of tenascin-R and tenascin-C to the neural EGF family member CALEB. J Neurochem 2003; 87:1213-23. [PMID: 14622101 DOI: 10.1046/j.1471-4159.2003.02112.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neural transmembrane protein CALEB was discovered in a screen for novel molecules implicated in neuronal differentiation processes and was found to bind to two proteins of the extracellular matrix, tenascin-C and tenascin-R. The expression of different isoforms of CALEB in axon- and synapse-rich areas in the nervous system is regulated during development. Here we show that an unusual acidic peptide segment of CALEB is sufficient to mediate the binding of CALEB to the fibrinogen-like globes of both tenascin family members as well as to native tenascin-C. We identify a small sequence element within the acidic peptide segment of CALEB as important for this binding. Interestingly, the interactions of CALEB and tenascin-C and -R seem to be regulated during development. We demonstrate that only CALEB-80, the expression of which is up-regulated in the chicken retina during synaptogenesis, but not CALEB-140, expressed later on in development, can bind to the fibrinogen-like domains of tenascin-R or tenascin-C and to native tenascin-C. While both CALEB-80 and CALEB-140 are expressed in the plexiform layers and the optic fiber layer of embryonic chicken retina, CALEB-140 labeling is more intense in the optic fiber layer in comparison to the inner plexiform layer.
Collapse
Affiliation(s)
- Stefan Schumacher
- Institut für Zellbiochemie und Klinische Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.
| | | |
Collapse
|
48
|
Hassel B, Schreff M, Stube EM, Blaich U, Schumacher S. CALEB/NGC interacts with the Golgi-associated protein PIST. J Biol Chem 2003; 278:40136-43. [PMID: 12885772 DOI: 10.1074/jbc.m305577200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CALEB/NGC is a neural member of the epidermal growth factor protein family expressed in axon and synapse-rich areas of the nervous system and shown to be important for neurite formation. It can bind to the extracellular matrix proteins tenascin-R and tenascin-C. Here we show that CALEB/NGC interacts with the Golgi-associated protein PIST. PIST was originally described as an interaction partner of the small GTPase TC10 and was then found to be Golgi-associated by binding to syntaxin-6 and to be important for the transport of frizzled proteins and the cystic fibrosis transmembrane conductance regulator to the plasma membrane. In addition, PIST was demonstrated to be involved in autophagy and linked to processes of neurodegeneration. CALEB/NGC interacts with PIST in the yeast two-hybrid system. This interaction can be confirmed by co-immunoprecipitations and co-localization studies. The juxtamembrane cytoplasmic peptide segment of CALEB/NGC, highly conserved during evolution, mediates the binding to PIST. CALEB/NGC co-localizes with PIST in the Golgi apparatus of transfected COS7 cells and in Golgi-derived vesicles after brefeldin A or nocodazole treatment. Co-localization studies in primary hippocampal cells and analysis of Purkinje cells of colchicine-treated rats, serving as an in vivo model system to block microtubule-dependent transport processes, support the view that PIST is an interaction partner of CALEB/NGC and implicate that this interaction may play a role in the intracellular transport of CALEB/NGC.
Collapse
Affiliation(s)
- Burkhard Hassel
- Institut für Zellbiochemie und Klinische Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | | | | | | | | |
Collapse
|
49
|
Abstract
We have investigated the trafficking of two endogenous axonal membrane proteins, VAMP2 and NgCAM, in order to elucidate the cellular events that underlie their polarization. We found that VAMP2 is delivered to the surface of both axons and dendrites, but preferentially endocytosed from the dendritic membrane. A mutation in the cytoplasmic domain of VAMP2 that inhibits endocytosis abolished its axonal polarization. In contrast, the targeting of NgCAM depends on sequences in its ectodomain, which mediate its sorting into carriers that preferentially deliver their cargo proteins to the axonal membrane. These observations show that neurons use two distinct mechanisms to polarize proteins to the axonal domain: selective retention in the case of VAMP2, selective delivery in the case of NgCAM.
Collapse
Affiliation(s)
- Bernard Sampo
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
50
|
Nakai Y, Kamiguchi H. Migration of nerve growth cones requires detergent-resistant membranes in a spatially defined and substrate-dependent manner. J Cell Biol 2002; 159:1097-108. [PMID: 12499360 PMCID: PMC2173975 DOI: 10.1083/jcb.200209077] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Motility of nerve growth cones (GCs) is regulated by region-specific activities of cell adhesion molecules (CAMs). CAM activities could be modified by their localization to detergent-resistant membranes (DRMs), specialized microdomains enriched in signaling molecules. This paper deals with a question of whether DRMs are involved in GC migration stimulated by three CAMs; L1, N-cadherin (Ncad), and beta1 integrin. We demonstrate that L1 and Ncad are present in DRMs, whereas beta1 integrin is exclusively detected in non-DRMs of neurons and that localization of L1 and Ncad to DRMs is developmentally regulated. GC migration mediated by L1 and Ncad but not by beta1 integrin is inhibited after DRM disruption by micro-scale chromophore-assisted laser inactivation (micro-CALI) of GM1 gangliosides or by pharmacological treatments that deplete cellular cholesterol or sphingolipids, essential components for DRMs. Characteristic morphology of GCs induced by L1 and Ncad is also affected by micro-CALI-mediated DRM disruption. Micro-CALI within the peripheral domain of GCs, or even within smaller areas such as the filopodia and the lamellipodia, is sufficient to impair their migration. However, micro-CALI within the central domain does not affect GC migration. These results demonstrate the region-specific involvement of DRMs in CAM-dependent GC behavior.
Collapse
Affiliation(s)
- Yoko Nakai
- Developmental Brain Science Group, RIKEN Brain Science Institute (BSI), Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|