1
|
Liu Z, Bian X, Luo L, Björklund ÅK, Li L, Zhang L, Chen Y, Guo L, Gao J, Cao C, Wang J, He W, Xiao Y, Zhu L, Annusver K, Gopee NH, Basurto-Lozada D, Horsfall D, Bennett CL, Kasper M, Haniffa M, Sommar P, Li D, Landén NX. Spatiotemporal single-cell roadmap of human skin wound healing. Cell Stem Cell 2024:S1934-5909(24)00412-0. [PMID: 39729995 DOI: 10.1016/j.stem.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/24/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024]
Abstract
Wound healing is vital for human health, yet the details of cellular dynamics and coordination in human wound repair remain largely unexplored. To address this, we conducted single-cell multi-omics analyses on human skin wound tissues through inflammation, proliferation, and remodeling phases of wound repair from the same individuals, monitoring the cellular and molecular dynamics of human skin wound healing at an unprecedented spatiotemporal resolution. This singular roadmap reveals the cellular architecture of the wound margin and identifies FOSL1 as a critical driver of re-epithelialization. It shows that pro-inflammatory macrophages and fibroblasts sequentially support keratinocyte migration like a relay race across different healing stages. Comparison with single-cell data from venous and diabetic foot ulcers uncovers a link between failed keratinocyte migration and impaired inflammatory response in chronic wounds. Additionally, comparing human and mouse acute wound transcriptomes underscores the indispensable value of this roadmap in bridging basic research with clinical innovations.
Collapse
Affiliation(s)
- Zhuang Liu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Xiaowei Bian
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Lihua Luo
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Åsa K Björklund
- Department of Life Science, National Bioinformatics Infrastructure Sweden, Göteborg, Sweden; Science for Life Laboratory, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Li Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Letian Zhang
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Yongjian Chen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Lei Guo
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Juan Gao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Chunyan Cao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Jiating Wang
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Wenjun He
- The first affiliated hospital of Soochow University, Department of Plastic and Burn Surgery. NO.188, Shizi Street, Suzhou, Jiangsu, China
| | - Yunting Xiao
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Liping Zhu
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China
| | - Karl Annusver
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | - Daniela Basurto-Lozada
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - David Horsfall
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Clare L Bennett
- Department of Haematology, University College London (UCL) Cancer Institute, London WC1E 6DD, UK
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Muzlifah Haniffa
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Pehr Sommar
- Department of Plastic and Reconstructive Surgery, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Dongqing Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, 210042 Nanjing, China.
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, 17176 Stockholm, Sweden.
| |
Collapse
|
2
|
Hur YH. Epidermal stem cells: Interplay with the skin microenvironment during wound healing. Mol Cells 2024; 47:100138. [PMID: 39442652 PMCID: PMC11625153 DOI: 10.1016/j.mocell.2024.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/18/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
Skin undergoes everyday turnover while often challenged by injuries. The wound healing process in the skin is a dynamic sequence of events that involves various cell types and signaling pathways. Epidermal stem cells (EpdSCs), the tissue-resident stem cells in the skin tissue, are at the center of this complicated process due to their special ability to self-renew and differentiate. During this process, EpdSCs interact actively with the tissue microenvironment, which is essential for proper re-epithelialization and skin barrier restoration. This review describes the intricate interplays between EpdSCs and various components of their surroundings, including extracellular matrix/fibroblasts, vasculature/endothelial cells, and immune cells, as well as their roles in tissue repair.
Collapse
Affiliation(s)
- Yun Ha Hur
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| |
Collapse
|
3
|
Moses RL, Woods EL, Dally J, Johns JP, Knäuper V, Boyle GM, Gordon V, Reddell P, Steadman R, Moseley R. Epoxytiglianes induce keratinocyte wound healing responses via classical protein kinase C activation to promote skin re-epithelialization. Biochem Pharmacol 2024; 230:116607. [PMID: 39489221 DOI: 10.1016/j.bcp.2024.116607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/12/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Epoxytiglianes are a novel class of diterpene esters. The prototype epoxytigliane, EBC-46 (tigilanol tiglate), is a potent anti-cancer agent in clinical development for local treatment of a range of human and animal tumors. EBC-46 also consistently promotes wound re-epithelialization at the treatment sites, mediated via activation of classical protein kinase C (PKC) isoforms. We have previously shown that epoxytiglianes stimulate proliferative and wound repopulation responses in immortalized human skin keratinocytes (HaCaTs) in vitro, abrogated by pan-PKC inhibitor, bisindolylmaleimide-1. In this study, we further investigate the specific PKC isoforms responsible for inducing such wound healing responses, following HaCaT treatment with 1.51 nM-15.1 µM EBC-46 or analogue, EBC-211. Classical PKC inhibition by GӦ6976 (1 μM), significantly attenuated epoxytigliane induced, HaCaT proliferation and wound repopulation at all epoxytigliane concentrations. PKC-βI/-βII isoform inhibition by enzastaurin (1 μM), significantly inhibited HaCaT proliferation and wound repopulation responses induced by both epoxytiglianes, especially at 1.51-151 nM. PKC-α inhibitor, Ro 31-8220 mesylate (10 nM), exerted lesser inhibitory effects on HaCaT responses. Epoxytigliane changes in key keratin (KRT17) and cell cycle (cyclin B1, CDKN1A) protein levels were partly attenuated by GӦ6976 and enzastaurin. GӦ6976 also inhibited increases in matrix metalloproteinase (MMP-1, MMP-7, MMP-10) activities. Phospho-PKC (p-PKC) studies confirmed that epoxytiglianes transiently activated classical PKC isoforms (p-PKCα, p-PKC-βI/-βII, p-PKCγ) in a dose- and time-dependent manner. By identifying how epoxytiglianes stimulate classical PKCs to facilitate keratinocyte healing responses and re-epithelialization, these findings support further epoxytigliane development as topical therapeutics for clinical situations involving impaired re-epithelialization, such as non-healing wounds in skin.
Collapse
Affiliation(s)
- Rachael L Moses
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, UK; Melbourne Dental School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Victoria, Australia
| | - Emma L Woods
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Jordanna Dally
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Jenny P Johns
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Vera Knäuper
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Glen M Boyle
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Paul Reddell
- QBiotics Group, Yungaburra, Queensland, Australia
| | - Robert Steadman
- Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Ryan Moseley
- Disease Mechanisms Group, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, UK.
| |
Collapse
|
4
|
Yin W, Chen Y, Wang W, Guo M, Tong L, Zhang M, Wang Z, Yuan H. Macrophage-mediated heart repair and remodeling: A promising therapeutic target for post-myocardial infarction heart failure. J Cell Physiol 2024; 239:e31372. [PMID: 39014935 DOI: 10.1002/jcp.31372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
Heart failure (HF) remains prevalent in patients who survived myocardial infarction (MI). Despite the accessibility of the primary percutaneous coronary intervention and medications that alleviate ventricular remodeling with functional improvement, there is an urgent need for clinicians and basic scientists to further reveal the mechanisms behind post-MI HF as well as investigate earlier and more efficient treatment after MI. Growing numbers of studies have highlighted the crucial role of macrophages in cardiac repair and remodeling following MI, and timely intervention targeting the immune response via macrophages may represent a promising therapeutic avenue. Recently, technology such as single-cell sequencing has provided us with an updated and in-depth understanding of the role of macrophages in MI. Meanwhile, the development of biomaterials has made it possible for macrophage-targeted therapy. Thus, an overall and thorough understanding of the role of macrophages in post-MI HF and the current development status of macrophage-based therapy will assist in the further study and development of macrophage-targeted treatment for post-infarction cardiac remodeling. This review synthesizes the spatiotemporal dynamics, function, mechanism and signaling of macrophages in the process of HF after MI, as well as discusses the emerging bio-materials and possible therapeutic agents targeting macrophages for post-MI HF.
Collapse
Affiliation(s)
- Wenchao Yin
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yong Chen
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wenjun Wang
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mengqi Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lingjun Tong
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mingxiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhaoyang Wang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
5
|
Xing L, Chen B, Qin Y, Li X, Zhou S, Yuan K, Zhao R, Qin D. The role of neuropeptides in cutaneous wound healing: a focus on mechanisms and neuropeptide-derived treatments. Front Bioeng Biotechnol 2024; 12:1494865. [PMID: 39539691 PMCID: PMC11557334 DOI: 10.3389/fbioe.2024.1494865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
An extensive network of cutaneous nerves, neuropeptides, and specific receptors richly innervates the skin and influences a variety of physiological and pathological processes. The sensory and autonomic nerve fibers secrete a variety of neuropeptides that are essential to the different phases of wound healing. In addition to initiating a neurogenic inflammatory response in the early stages of healing, neuropeptides also control wound healing by influencing immune cells, repair cells, and the growth factor network. However, the precise mechanism by which they accomplish these roles in the context of cutaneous wound healing is still unknown. Investigating the mechanisms of action of neuropeptides in wound healing and potential therapeutic applications is therefore urgently necessary. The present review discusses the process of wound healing, types of neuropeptides, potential mechanisms underlying the role of neuropeptides in cutaneous wound healing, as well as some neuropeptide-derived treatment strategies, such as hydrogels, new dressings, electro stimulation, and skin-derived precursors. Future in-depth mechanistic studies of neuropeptides in cutaneous wound healing may provide opportunities to develop therapeutic technologies that harness the roles of neuropeptides in the wound healing process.
Collapse
Affiliation(s)
- Liwei Xing
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Bing Chen
- School of Medicine, Kunming University, Kunming, China
| | - Yuliang Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Xinyao Li
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Sitong Zhou
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Kai Yuan
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Rong Zhao
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
6
|
Latif A, Fisher LE, Dundas AA, Cuzzucoli Crucitti V, Imir Z, Lawler K, Pappalardo F, Muir BW, Wildman R, Irvine DJ, Alexander MR, Ghaemmaghami AM. Microparticles Decorated with Cell-Instructive Surface Chemistries Actively Promote Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2208364. [PMID: 36440539 DOI: 10.1002/adma.202208364] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Wound healing is a complex biological process involving close crosstalk between various cell types. Dysregulation in any of these processes, such as in diabetic wounds, results in chronic nonhealing wounds. Fibroblasts are a critical cell type involved in the formation of granulation tissue, essential for effective wound healing. 315 different polymer surfaces are screened to identify candidates which actively drive fibroblasts toward either pro- or antiproliferative functional phenotypes. Fibroblast-instructive chemistries are identified, which are synthesized into surfactants to fabricate easy to administer microparticles for direct application to diabetic wounds. The pro-proliferative microfluidic derived particles are able to successfully promote neovascularization, granulation tissue formation, and wound closure after a single application to the wound bed. These active novel bio-instructive microparticles show great potential as a route to reducing the burden of chronic wounds.
Collapse
Affiliation(s)
- Arsalan Latif
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Leanne E Fisher
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Adam A Dundas
- Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | - Zeynep Imir
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Karen Lawler
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | - Benjamin W Muir
- Commonwealth Scientific & Industrial Research Organization, Canberra ACT 2601, Australia
| | - Ricky Wildman
- Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Derek J Irvine
- Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | | |
Collapse
|
7
|
Tong D, Gobert S, Reuzeau A, Farges JC, Leveque M, Bolon M, Costantini A, Pasdeloup M, Lafont J, Ducret M, Bekhouche M. Dental pulp mesenchymal stem cells-response to fibrin hydrogel reveals ITGA2 and MMPs expression. Heliyon 2024; 10:e32891. [PMID: 39027533 PMCID: PMC11255596 DOI: 10.1016/j.heliyon.2024.e32891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Regenerative endodontic procedures (REP) aim at reestablishing tooth vitality by replacing the irreversibly damaged dental pulp removed by the dental practitioner with a new functional one. The current treatment of advanced caries relies on the replacement of the inflamed or necrosed dental pulp with an inert filling material. This leads to a functional but non-vital tooth, which lacks the ability to sense dental tissue damage, and to protect from further bacterial attack. Therapeutic strategies inspired by tissue engineering called REP propose to regenerate a fully functional dental pulp directly in the canal space. Promising results were obtained using dental pulp mesenchymal stem cells (DP-MSCs) in combination with bio-inspired artificial and temporary 3D hydrogels made of extracellular matrix molecules such as collagen and fibrin biomacromolecules. However, the uncontrolled mechanisms of DP regeneration from DP-MSCs in 3D biomacromolecules fail to regenerate a fully functional DP and can induce fibrotic scarring or mineralized tissue formation to a non-negligible extent. The lack of knowledge regarding the early molecular mechanisms initiated by DP-MSCs seeded in ECM-made hydrogels is a scientific lock for REP. In this study, we investigated the early DP-MSC-response in a 3D fibrin hydrogel. DP-MSCs isolated from human third molars were cultured for 24 h in the fibrin hydrogel. The differential transcript levels of extracellular and cell surface genes were screened with 84-gene PCR array. Out of the 84 genes screened, 9 were found to be overexpressed, including those coding for the integrin alpha 2 subunit, the collagenase MMP1 and stromelysins MMP3, MMP10 and MMP12. Over-expression of ITGA2 was confirmed by RT-qPCR. The expression of alpha 2 integrin subunit protein was assessed over time by immunoblot and immunofluorescence staining. The increase in the transcript level of MMP1, MMP3, MM10 and MMP12 was confirmed by RT-qPCR. The overexpression of MMP1 and 3 at the protein level was assessed by immunoblot. MMP3 expression by DP-MSCs was observed by immunofluorescence staining. This work demonstrates overexpression of ITGA2 and of MMP1, 3, 10 and 12 by DP-MSCs cultured in a fibrin hydrogel. The main preliminary extracellular and cell surface response of the DP-MSCs to fibrin hydrogel seems to rely on a ITGA2/MMP3 axis. Further investigations are needed to precisely decipher the role of this axis in dental pulp tissue building. Nevertheless, this work identifies extracellular and cell surface molecules that could be potential checkpoints to be targeted to guide proper dental pulp tissue regeneration.
Collapse
Affiliation(s)
- David Tong
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Stéphanie Gobert
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Alicia Reuzeau
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Jean-Christophe Farges
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
- Odontology Faculty of Lyon, University Lyon 1, France
- Hospices Civils de Lyon, France
| | - Marianne Leveque
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Marie Bolon
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Arthur Costantini
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
- Hospices Civils de Lyon, France
| | - Marielle Pasdeloup
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Jérôme Lafont
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| | - Maxime Ducret
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
- Odontology Faculty of Lyon, University Lyon 1, France
| | - Mourad Bekhouche
- LBTI - Tissue Biology and Therapeutic Engineering Laboratory, UMR5305, CNRS/Université, Claude Bernard Lyon 1, France
| |
Collapse
|
8
|
Jansson M, Lindberg J, Rask G, Svensson J, Billing O, Nazemroaya A, Berglund A, Wärnberg F, Sund M. Stromal Type I Collagen in Breast Cancer: Correlation to Prognostic Biomarkers and Prediction of Chemotherapy Response. Clin Breast Cancer 2024; 24:e360-e369.e4. [PMID: 38485557 DOI: 10.1016/j.clbc.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/17/2023] [Accepted: 02/19/2024] [Indexed: 06/23/2024]
Abstract
INTRODUCTION Fibrillar collagens accumulate in the breast cancer stroma and appear as poorly defined spiculated masses in mammography imaging. The prognostic value of tissue type I collagen remains elusive in treatment-naïve and chemotherapy-treated breast cancer patients. Here, type I collagen mRNA and protein expression were analysed in 2 large independent breast cancer cohorts. Levels were related to clinicopathological parameters, prognostic biomarkers, and outcome. METHOD COL1A1 mRNA expression was analysed in 2509 patients with breast cancer obtained from the cBioPortal database. Type I collagen protein expression was studied by immunohistochemistry in 1395 women diagnosed with early invasive breast cancer. RESULTS Low COL1A1 mRNA and protein levels correlated with poor prognosis features, such as hormone receptor negativity, high histological grade, triple-negative subtype, node positivity, and tumour size. In unadjusted analysis, high stromal type I collagen protein expression was associated with improved overall survival (OS) (HR = 0.78, 95% CI = 0.61-0.99, p = .043) and trended towards improved breast cancer-specific survival (BCSS) (HR = 0.65, 95% CI = 0.42-1.01, P = 0.053), although these findings were lost after adjustment for other clinical variables. In unadjusted analysis, high expression of type I collagen was associated with better OS (HR = 0.70, 95% CI = 0.55-0.90, P = .006) and BCSS (HR = 0.55, 95% CI = 0.34-0.88, P = .014) among patients not receiving chemotherapy. Strikingly, the opposite was observed among patients receiving chemotherapy. There, high expression of type I collagen was instead associated with worse OS (HR = 1.83, 95% CI = 0.65-5.14, P = .25) and BCSS (HR = 1.72, 95% CI = 0.54-5.50, P = .357). CONCLUSION Low stromal type I collagen mRNA and protein expression are associated with unfavourable tumour characteristics in breast cancer. Stromal type I collagen might predict chemotherapy response.
Collapse
Affiliation(s)
- Malin Jansson
- Department of Surgery and Perioperative Sciences/Surgery, Umeå University, Umeå, Sweden.
| | - Jessica Lindberg
- Department of Surgery and Perioperative Sciences/Surgery, Umeå University, Umeå, Sweden
| | - Gunilla Rask
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | - Johan Svensson
- Department of Surgery and Perioperative Sciences/Surgery, Umeå University, Umeå, Sweden; Department of Statistics, Umeå School of Business, Economics and Statistics, Umeå University, Umeå, Sweden
| | - Ola Billing
- Department of Surgery and Perioperative Sciences/Surgery, Umeå University, Umeå, Sweden
| | | | - Anette Berglund
- Department of Surgery and Perioperative Sciences/Surgery, Umeå University, Umeå, Sweden
| | - Fredrik Wärnberg
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Malin Sund
- Department of Surgery and Perioperative Sciences/Surgery, Umeå University, Umeå, Sweden; Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
9
|
Piszker W, Simunovic M. The fusion of physics and biology in early mammalian embryogenesis. Curr Top Dev Biol 2024; 160:31-64. [PMID: 38937030 DOI: 10.1016/bs.ctdb.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Biomechanics in embryogenesis is a dynamic field intertwining the physical forces and biological processes that shape the first days of a mammalian embryo. From the first cell fate bifurcation during blastulation to the complex symmetry breaking and tissue remodeling in gastrulation, mechanical cues appear critical in cell fate decisions and tissue patterning. Recent strides in mouse and human embryo culture, stem cell modeling of mammalian embryos, and biomaterial design have shed light on the role of cellular forces, cell polarization, and the extracellular matrix in influencing cell differentiation and morphogenesis. This chapter highlights the essential functions of biophysical mechanisms in blastocyst formation, embryo implantation, and early gastrulation where the interplay between the cytoskeleton and extracellular matrix stiffness orchestrates the intricacies of embryogenesis and placenta specification. The advancement of in vitro models like blastoids, gastruloids, and other types of embryoids, has begun to faithfully recapitulate human development stages, offering new avenues for exploring the biophysical underpinnings of early development. The integration of synthetic biology and advanced biomaterials is enhancing the precision with which we can mimic and study these processes. Looking ahead, we emphasize the potential of CRISPR-mediated genomic perturbations coupled with live imaging to uncover new mechanosensitive pathways and the application of engineered biomaterials to fine-tune the mechanical conditions conducive to embryonic development. This synthesis not only bridges the gap between experimental models and in vivo conditions to advancing fundamental developmental biology of mammalian embryogenesis, but also sets the stage for leveraging biomechanical insights to inform regenerative medicine.
Collapse
Affiliation(s)
- Walter Piszker
- Department of Chemical Engineering, Fu Foundation School of Engineering and Applied Sciences, Columbia University, New York, NY, United States; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, United States
| | - Mijo Simunovic
- Department of Chemical Engineering, Fu Foundation School of Engineering and Applied Sciences, Columbia University, New York, NY, United States; Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, United States; Department of Genetics and Development, Columbia Irving Medical Center, New York, NY, United States.
| |
Collapse
|
10
|
Brzezinski M, Martin L, Simpson K, Lu K, Gan N, Huang C, Garcia K, Liu Z, Xu W. Photodegradation enhances the toxic effect of anthracene on skin. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134386. [PMID: 38663297 DOI: 10.1016/j.jhazmat.2024.134386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/12/2024]
Abstract
Anthracene, a polycyclic aromatic hydrocarbon (PAH), is a widespread environmental pollutant that poses potential risks to human health. Exposure to anthracene can result in various adverse health effects, including skin-related disorders. Photo exposure sufficiently removes the anthracene from the environment but also generates more degradation products which can be more toxic. The goal of this study was to assess the change in anthracene dermotoxicity caused by photodegradation and understand the mechanism of this change. In the present study, over 99.99% of anthracene was degraded within 24 h of sunlight exposure, while producing many intermediate products including 9,10-anthraquinone and phthalic acid. The anthracene products with different durations of photo exposure were applied to 2D and 3D human keratinocyte cultures. Although the non-degraded anthracene significantly delayed the cell migration, the cell viability and differentiation decreased dramatically in the presence of the photodegraded anthracene. Anthracene photodegradation products also altered the expression patterns of a number of inflammation-related genes in comparison to the control cells. Among these genes, il1a, il1b, il8, cxcl2, s100a9, and mmp1 were upregulated whereas the tlr4 and mmp3 were downregulated by the photodegraded anthracene. Topical deliveries of the photodegraded and non-degraded anthracene to the dorsal skin of hairless mice showed more toxic effects by the photodegraded anthracene. The 4-hour photodegradation products of anthracene thickened the epidermal layer, increased the dermal cellularity, and induced the upregulation of inflammatory markers, il1a, il1b, s100a9, and mmp1. In addition, it also prevented the production of a gap junction protein, Connexin-43. All the evidence suggested that photodegradation enhanced the toxicities of anthracene to the skin. The 4-hour photodegradation products of anthracene led to clinical signs similar to acute inflammatory skin diseases, such as atopic and contact dermatitis, eczema, and psoriasis. Therefore, the potential risk of skin irritation by anthracene should be also considered when an individual is exposed to PAHs, especially in environments with strong sunlight.
Collapse
Affiliation(s)
- Molly Brzezinski
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Leisha Martin
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Kayla Simpson
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Kaijun Lu
- University of Texas at Austin Marine Science Institute 750 Channel View Drive Port Aransas, TX 78373, USA
| | - Nin Gan
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Chi Huang
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Kaitlin Garcia
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA
| | - Zhanfei Liu
- University of Texas at Austin Marine Science Institute 750 Channel View Drive Port Aransas, TX 78373, USA
| | - Wei Xu
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, Corpus Christi, TX, USA.
| |
Collapse
|
11
|
Puzhankara L, Rajagopal A, Kedlaya MN, Karmakar S, Nayak N, Shanmugasundaram S. Cell Junctions in Periodontal Health and Disease: An Insight. Eur J Dent 2024; 18:448-457. [PMID: 38049123 PMCID: PMC11132765 DOI: 10.1055/s-0043-1775726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023] Open
Abstract
Cells are the building blocks of all living organisms. The presence of cell junctions such as tight junctions, gap junctions, and anchoring junctions between cells play a role in cell-to-cell communication in periodontal health and disease. A literature search was done in Scopus, PubMed, and Web of Science to gather information about the effect of cell junctions on periodontal health and disease. The presence of tight junction in the oral cavity helps in cell-to-cell adhesiveness and assists in the barrier function. The gap junctions help in controlling growth and development and in the cell signaling process. The presence of desmosomes and hemidesmosomes as anchoring junctions aid in mechanical strength and tissue integrity. Periodontitis is a biofilm-induced disease leading to the destruction of the supporting structures of the tooth. The structures of the periodontium possess multiple cell junctions that play a significant role in periodontal health and disease as well as periodontal tissue healing. This review article provides an insight into the role of cell junctions in periodontal disease and health, and offers concepts for development of therapeutic strategies through manipulation of cell junctions.
Collapse
Affiliation(s)
- Lakshmi Puzhankara
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anjale Rajagopal
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Madhurya N. Kedlaya
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shaswata Karmakar
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Namratha Nayak
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shashikiran Shanmugasundaram
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
12
|
Lim PLK, Balakrishnan Y, Goh G, Tham KC, Ng YZ, Lunny DP, Leavesley DI, Bonnard C. Automated Electrical Stimulation Therapy Accelerates Re-Epithelialization in a Three-Dimensional In Vitro Human Skin Wound Model. Adv Wound Care (New Rochelle) 2024; 13:217-234. [PMID: 38062745 DOI: 10.1089/wound.2023.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024] Open
Affiliation(s)
- Priscilla L K Lim
- Model Development, A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Yamini Balakrishnan
- Model Development, A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Gracia Goh
- Model Development, A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Khek-Chian Tham
- Model Development, A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Yi Zhen Ng
- Tissue Technologies, Skin Research Institute of Singapore (SRIS), A*STAR, Singapore, Republic of Singapore
| | - Declan P Lunny
- Model Development, A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Asian Skin Biobank, Skin Research Institute of Singapore (SRIS), A*STAR, Singapore, Republic of Singapore
| | - David I Leavesley
- Tissue Technologies, Skin Research Institute of Singapore (SRIS), A*STAR, Singapore, Republic of Singapore
| | - Carine Bonnard
- Model Development, A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Asian Skin Biobank, Skin Research Institute of Singapore (SRIS), A*STAR, Singapore, Republic of Singapore
| |
Collapse
|
13
|
Goudarzi Afshar S, Tamri P, Nourian A, Moahmoudi A. Catechin Hydrate Improves Hypertrophic Scar in Rabbit Ear Model via Reduction of Collagen Synthesis. Rep Biochem Mol Biol 2024; 13:13-22. [PMID: 39582828 PMCID: PMC11580136 DOI: 10.61186/rbmb.13.1.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/03/2024] [Indexed: 11/26/2024]
Abstract
Background Hypertrophic scar (HS) is a cutaneous condition results from abnormal wound healing following deep tissue injury. To date, there is no optimal treatment for this skin disorder. Catechins possess anti-inflammatory, antioxidant and anti-fibrotic properties. In this study we investigated the effects of catechin hydrate (CH) in rabbit ear model of HS. Methods A rabbit ear model of hypertrophic scar was set up. Ten New Zealand white rabbit were divided into 5 equal groups: non-treatment group, vehicle control, treated with intralesional injection of dimethyl sulfoxide (DMSO), and test groups, received intralesional injection of CH/DMSO solution at concentration of 0.25, 1.25 and, 2.5 mg/ml, respectively. The treatments were initiated 35 days after wounding once a week for 4 weeks. The scar elevation index (SEI) and the epidermal thickness index (ETI) were measured using Hematoxylin and Eosin (H & E) staining and the amount of collagen deposition were determined after Masson' trichrome staining. In addition, the enzyme-linked immunosorbent assay (ELISA) method was used to determine the levels of type І and ІІІ collagen and matrix metalloproteinase 1 (MMP1) in scar tissues. Results CH improved abnormal scarring at concentrations of 1.25 and 2.5 mg/ml and significantly (P<0.001) reduced the SEI and ETI. The levels of collagen type І and type ІІІ, and total collagen deposition were significantly (P<0.05) decreased in scar tissues of CH treated groups and no significant effect on MMP1 levels. Conclusions Our findings demonstrated that CH has the potential for the treatment of HSs.
Collapse
Affiliation(s)
- Sina Goudarzi Afshar
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Pari Tamri
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Alireza Nourian
- Department of Laboratory Sciences, Faculty of Para-Veterinary Sciences, Bu-Ali Sina University, Hamadan, Iran.
| | - Ayoub Moahmoudi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
14
|
Kumar V, Kumar N, Gangwar AK, Singh R. Comparative evaluation of two different xenogenic acellular matrices on full-thickness skin wound healing. J Wound Care 2024; 33:lxxiv-lxxx. [PMID: 38457271 DOI: 10.12968/jowc.2024.33.sup3a.lxxiv] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
OBJECTIVE The purpose of the study was to compare the healing potential of bubaline small intestinal matrix (bSIM) and fish swim bladder matrix (FSBM) on full-thickness skin wounds in rabbits. METHOD Four full-thickness skin wounds (each 20×20mm) were created on the dorsum of 18 rabbits that were divided into three groups based on treatment: untreated sham control (I), implanted with double layers of bSIM (II) and implanted with double layers of FSBM (III). Macroscopic, immunologic and histologic observations were made to evaluate wound healing. RESULTS Gross healing progression in the bSIM and FSBM groups showed significantly (p<0.05) less wound contraction compared with the sham group. The IgG concentration in rabbit sera was significantly (p<0.05) lower in the FSBM group compared with the bSIM group by enzyme-linked immunosorbent assay. The stimulation index of peripheral blood lymphocytes was significantly (p<0.05) lower in the FSBM group compared with the bSIM group by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Implantation of FSBM resulted in improved re-epithelialisation, neovascularisation and fibroplasia. CONCLUSION The FSBM is a more effective dermal substitute when compared with the bSIM for full-thickness skin wound repair in rabbit.
Collapse
Affiliation(s)
- Vineet Kumar
- Department of Veterinary Surgery and Radiology, College of Veterinary and Animal Sciences, Bihar Animal Sciences University, Kishanganj-855107, Bihar, India
| | - Naveen Kumar
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Anil K Gangwar
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, Acharya Narendra Deva University of Agriculture and Technology, Ayodhya, Uttar Pradesh, India
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| |
Collapse
|
15
|
Dresler SR, Pinto BI, Salanga MC, Propper CR, Berry SR, Kellar RS. Arsenic Impairs Wound Healing Processes in Dermal Fibroblasts and Mice. Int J Mol Sci 2024; 25:2161. [PMID: 38396835 PMCID: PMC10888720 DOI: 10.3390/ijms25042161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Inorganic arsenic (NaAsO2) is a naturally occurring metalloid found in water resources globally and in the United States at concentrations exceeding the U.S. Environmental Protection Agency Maximum Contamination Level of 10 ppb. While exposure to arsenic has been linked to cancer, cardiovascular disease, and skin lesions, the impact of arsenic exposure on wound healing is not fully understood. Cultured dermal fibroblasts exposed to NaAsO2 displayed reduced migration (scratch closure), proliferation, and viability with a lowest observable effect level (LOEL) of 10 µM NaAsO2 following 24 h exposure. An enrichment of Matrix Metalloproteinase 1 (MMP1) transcripts was observed at a LOEL of 1 µM NaAsO2 and 24 h exposure. In vivo, C57BL/6 mice were exposed to 10 µM NaAsO2 in their drinking water for eight weeks, then subjected to two full thickness dorsal wounds. Wounds were evaluated for closure after 6 days. Female mice displayed a significant reduction in wound closure and higher erythema levels, while males showed no effects. Gene expression analysis from skin excised from the wound site revealed significant enrichment in Arsenic 3-Methyltransferase (As3mt) and Estrogen Receptor 2 (Esr2) mRNA in the skin of female mice. These results indicate that arsenic at environmentally relevant concentrations may negatively impact wound healing processes in a sex-specific manner.
Collapse
Affiliation(s)
- Sara R. Dresler
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
| | - Bronson I. Pinto
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
| | - Matthew C. Salanga
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
| | - Catherine R. Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
| | - Savannah R. Berry
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
| | - Robert S. Kellar
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
- Center for Materials Interfaces in Research & Applications, ¡MIRA!, Flagstaff, AZ 86011, USA
| |
Collapse
|
16
|
Sellappan LK, Manoharan S. Fabrication of bioinspired keratin/sodium alginate based biopolymeric mat loaded with herbal drug and green synthesized zinc oxide nanoparticles as a dual drug antimicrobial wound dressing. Int J Biol Macromol 2024; 259:129162. [PMID: 38181910 DOI: 10.1016/j.ijbiomac.2023.129162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
Dual drug antibacterial wound dressings with biological materials possess crucial wound healing characteristics including biocompatibility, non-toxicity, degradability, mechanical strength and antibacterial properties. The study focusses on fabricating keratin (K)‑sodium alginate (A) based wound dressings by loading green synthesized zinc oxide nanoparticles (ZnO NPs) using C. roseus (leaf extract) and M. recutita (Chamomile flower part) herbal drug (CH) as a bioactive dual antibacterial wound dressing for the first time. The optimized ZnO NPs and CH exhibits strong physiochemical and electrostatic interactions (FT-IR, XRD and SEM) on the fabricated K-A-CH-ZnO biopolymeric mats. Moreover, the tiny porous network of the biopolymeric mat enhances thermal stability, hydrophilicity, mechanical strength and explores the water vapor transmission (2538.07 g/m2/day) and oxygen permeability (7.38 ± 0.31 g/m2) to maintain moist environment and cell-material interactions. During enzymatic degradation studies, ZnO NPs and CH of biopolymeric mat not only retains structural integrity but also increases the characteristic of swelling with sustained drug release (57 %) in 144 h which accelerates wound healing process. Also, K-A-CH-ZnO mat exhibited excellent antibacterial effects against B. subtilis and E. coli. Furthermore, NIH 3T3 fibroblast cell behavior using MTT assay and in vivo evaluations of biopolymeric mat depicted enhanced biocompatibility with increased collagen deposition at the wound site as a prominent dual drug medicated antimicrobial wound dressing.
Collapse
Affiliation(s)
- Logesh Kumar Sellappan
- Department of Biomedical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, India.
| | - Swathy Manoharan
- Department of Biomedical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, India.
| |
Collapse
|
17
|
González-Acedo A, Illescas-Montes R, de Luna-Bertos E, Ruiz C, Ramos-Torrecillas J, García-Martínez O, Melguizo-Rodríguez L. Extra Virgin Olive Oil Phenolic Compounds Modulate the Gene Expression of Biomarkers Involved in Fibroblast Proliferation and Differentiation. Genes (Basel) 2024; 15:173. [PMID: 38397163 PMCID: PMC10887570 DOI: 10.3390/genes15020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Extra virgin olive oil phenolic compounds have been identified as possible biostimulant agents against different pathological processes, including alterations in healing processes. However, there is little evidence on the molecular mechanisms involved in this process. The aim was to analyse the effect of hydroxytyrosol, tyrosol, and oleocanthal on fibroblast gene expression. PCR was used to determine the expression of different differentiation markers, extracellular matrix elements, and growth factors in cultured human fibroblasts CCD-1064Sk treated with different doses of hydroxytyrosol (10-5 M and 10-6 M), tyrosol (10-5 M and 10-6 M), and oleocanthal (10-6 M and 10-7 M). After 24 h of hydroxytyrosol treatment, increased expression of connective tissue growth factor, fibroblast growth factor (FGF), platelet-derived growth factor, vascular endothelial growth factor, transforming growth factor β1 (TGF-β1), and their receptors was observed. Tyrosol and olecanthal modulated the expression of FGF and TGFβR1. All phytochemicals tested modified the expression of differentiation markers and extracellular matrix elements, increasing gene expression of actin, fibronectin, decorin, collagen I, and III. Phenolic compounds present in extra virgin olive could have a beneficial effect on tissue regeneration by modulating fibroblast physiology.
Collapse
Affiliation(s)
- Anabel González-Acedo
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, C/Santander, 1, 52005 Melilla, Spain;
| | - Rebeca Illescas-Montes
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
| | - Elvira de Luna-Bertos
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
| | - Concepción Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
- Institute of Neuroscience, Centro de Investigación Biomédica (CIBM), University of Granada, Parque de Tecnológico de la Salud (PTS), Avda. del Conocimiento S/N, Armilla, 18016 Granada, Spain
| | - Javier Ramos-Torrecillas
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
| | - Olga García-Martínez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
| | - Lucía Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
| |
Collapse
|
18
|
Yang B, Alimperti S, Gonzalez MV, Dentchev T, Kim M, Suh J, Titchenell PM, Ko KI, Seykora J, Benakanakere M, Graves DT. Reepithelialization of Diabetic Skin and Mucosal Wounds Is Rescued by Treatment With Epigenetic Inhibitors. Diabetes 2024; 73:120-134. [PMID: 37874683 PMCID: PMC10784658 DOI: 10.2337/db23-0258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/08/2023] [Indexed: 10/26/2023]
Abstract
Wound healing is a complex, highly regulated process and is substantially disrupted by diabetes. We show here that human wound healing induces specific epigenetic changes that are exacerbated by diabetes in an animal model. We identified epigenetic changes and gene expression alterations that significantly reduce reepithelialization of skin and mucosal wounds in an in vivo model of diabetes, which were dramatically rescued in vivo by blocking these changes. We demonstrate that high glucose altered FOXO1-matrix metallopeptidase 9 (MMP9) promoter interactions through increased demethylation and reduced methylation of DNA at FOXO1 binding sites and also by promoting permissive histone-3 methylation. Mechanistically, high glucose promotes interaction between FOXO1 and RNA polymerase-II (Pol-II) to produce high expression of MMP9 that limits keratinocyte migration. The negative impact of diabetes on reepithelialization in vivo was blocked by specific DNA demethylase inhibitors in vivo and by blocking permissive histone-3 methylation, which rescues FOXO1-impaired keratinocyte migration. These studies point to novel treatment strategies for delayed wound healing in individuals with diabetes. They also indicate that FOXO1 activity can be altered by diabetes through epigenetic changes that may explain other diabetic complications linked to changes in diabetes-altered FOXO1-DNA interactions. ARTICLE HIGHLIGHTS FOXO1 expression in keratinocytes is needed for normal wound healing. In contrast, FOXO1 expression interferes with the closure of diabetic wounds. Using matrix metallopeptidase 9 as a model system, we found that high glucose significantly increased FOXO1-matrix metallopeptidase 9 interactions via increased DNA demethylation, reduced DNA methylation, and increased permissive histone-3 methylation in vitro. Inhibitors of DNA demethylation and permissive histone-3 methylation improved the migration of keratinocytes exposed to high glucose in vitro and the closure of diabetic skin and mucosal wounds in vivo. Inhibition of epigenetic enzymes that alter FOXO1-induced gene expression dramatically improves diabetic healing and may apply to other conditions where FOXO1 has a detrimental role in diabetic complications.
Collapse
Affiliation(s)
- Bo Yang
- Department of Implant Dentistry, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stella Alimperti
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Michael V. Gonzalez
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA
- Center for Cytokine Storm Treatment & Laboratory, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Tzvete Dentchev
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Minjung Kim
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Justin Suh
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Paul M. Titchenell
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kang I. Ko
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - John Seykora
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Manju Benakanakere
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| | - Dana T. Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
19
|
Begum F, Manandhar S, Kumar G, Keni R, Sankhe R, Gurram PC, Beegum F, Teja MS, Nandakumar K, Shenoy RR. Dehydrozingerone promotes healing of diabetic foot ulcers: a molecular insight. J Cell Commun Signal 2023; 17:673-688. [PMID: 36280629 PMCID: PMC10409929 DOI: 10.1007/s12079-022-00703-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION One of the most common problems of diabetes are diabetic foot ulcers (DFUs). According to National Institute for Health, initial management of DFUs can decrease the complication of limb amputations and can improve the patient's quality of life. DFU treatment can be optimized with the help of multidisciplinary approach. Based on many studies, control of glucose levels in blood, antioxidant activity, reduction in cytokine levels, re-epithelialization, collagen formation, migration of fibroblasts are major phases involved in managing DFU. Dehydrozingerone (DHZ), has been known for its anti-inflammatory, antioxidant and wound healing properties. METHODOLOGY Three months high-fat diet and low dose of streptozotocin-induced type-II diabetic foot ulcer model was used to evaluate the effectiveness of dehydrozingerone. DHZ was given orally to rats for 15 days post wounding. TNF-α, IL-1β and antioxidant parameters like lipid peroxidation, glutathione reductase were estimated. Immunoblotting was done to investigate the effect of DHZ on the expression of ERK, JNK, HSP-27, P38, SIRT-1, NFκB, SMA, VEGF and MMP-9 in skin tissue. Histopathology was performed for analyzing DHZ effect on migration of fibroblasts, formation of epithelium, granulation tissue formation, angiogenesis and collagen formation. RESULTS DHZ decreased the levels of malondialdehyde, TNF-α, IL-1β and increased glutathione levels in wound tissue. Western blotting results suggested that DHZ activated ERK1/2/JNK/p38 signaling, increased expression of HSP-27, SIRT-1, VEGF, SMA thus facilitating the migration and proliferation of fibroblasts, angiogenesis and decreased inflammation. Masson Trichrome & histopathology showed an increase in collagen, epithelial and granulation tissue formation. CONCLUSION DHZ significantly accelerates the healing of diabetic foot ulcers in high fat diet fed plus low dose streptozotocin induced type-II diabetic Wistar rats.
Collapse
Affiliation(s)
- Farmiza Begum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Suman Manandhar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gautam Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Raghuvir Keni
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Runali Sankhe
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Fathima Beegum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Meka Sai Teja
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Rekha R Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
20
|
González-Acedo A, Ramos-Torrecillas J, Illescas-Montes R, Costela-Ruiz VJ, Ruiz C, Melguizo-Rodríguez L, García-Martínez O. The Benefits of Olive Oil for Skin Health: Study on the Effect of Hydroxytyrosol, Tyrosol, and Oleocanthal on Human Fibroblasts. Nutrients 2023; 15:2077. [PMID: 37432217 DOI: 10.3390/nu15092077] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 07/12/2023] Open
Abstract
Fibroblasts contribute to maintaining tissue integrity and homeostasis and are a key cell population in wound healing. This cell population can be stimulated by some bioactive compounds such as extra virgin olive oil (EVOO) polyphenols. The aim of this study was to determine the effects of hydroxytyrosol (htyr), tyrosol (tyr), and oleocanthal (ole) phenolic compounds present in EVOO on the proliferation, migration, cell cycle, and antigenic profile of cultured human fibroblasts. CCD-1064Sk human fibroblast cells were treated for 24 h with each polyphenol at doses ranging 10-5 to 10-9 M. Cell proliferation was evaluated using the MTT spectrophotometric technique, migration capacity by culture insert assay, and cell cycle and antigenic profile with flow cytometry. Cell proliferation was significantly increased by treatment with all compounds. The highest increases followed treatments with htyr or tyr at doses of 10-5 or 10-6 M and with ole at 10-6 and 10-7 M, and these compounds and doses were used for assays of antigenic profile, cell cycle, and migration. During the first few hours after treatment, increased fibronectin and α-actin expressions and greater cell migration were observed, with no cell cycle changes. In conclusion, these in vitro results suggest that phenolic compounds in EVOO might contribute to wound healing through action on fibroblasts related to tissue regeneration.
Collapse
Affiliation(s)
- Anabel González-Acedo
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, C/Santander, 1, 52005 Melilla, Spain
| | - Javier Ramos-Torrecillas
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4a Planta, 18012 Granada, Spain
| | - Rebeca Illescas-Montes
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4a Planta, 18012 Granada, Spain
| | - Víctor J Costela-Ruiz
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4a Planta, 18012 Granada, Spain
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, C/Cortadura del Valle, s.n., 51001 Ceuta, Spain
| | - Concepción Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4a Planta, 18012 Granada, Spain
- Institute of Neuroscience, Centro de Investigación Biomédica (CIBM), University of Granada, Parque de Tecnológico de la Salud (PTS) Avda. del Conocimiento S/N, Armilla, 18016 Granada, Spain
| | - Lucía Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4a Planta, 18012 Granada, Spain
| | - Olga García-Martínez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4a Planta, 18012 Granada, Spain
| |
Collapse
|
21
|
Li L, Ma Y, He G, Ma S, Wang Y, Sun Y. Pilose antler extract restores type I and III collagen to accelerate wound healing. Biomed Pharmacother 2023; 161:114510. [PMID: 36931024 DOI: 10.1016/j.biopha.2023.114510] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/22/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Granulation tissue has supporting and filling functions in wound healing. The collagen produced by fibroblast acts as a cell scaffold in the granulation tissue to facilitate the formation of new blood vessels and epithelial coverage. Previously, we extracted protein components from the pilose antler that was involved in the biological process of collagen fibril organization. They were also found to contain abundant extracellular matrix(ECM) components. Therefore, in this experiment, we used a rat model of full-thickness skin excision and fibroblasts to perform an experiment for determination of the effects of pilose antler protein extract (PAE) on collagen content and fiber synthesis during wound healing. Additionally, we further analyzed its pharmacological effects on wound healing and the possible regulatory mechanisms. We found that PAE accelerated synthesis of type I and III collagen, promoted the formation of type III collagen fibers, and reduced collagen degradation by recruiting fibroblasts. Furthermore, the extract upregulated the expression of TGF β R1 and Smad2, and initiated the entry of Smad2/Smad3 into the nucleus. After adding SB431542 to inhibit TGF-β type I receptor activity, PAE's ability to promote Smad2/Smad3 nuclear localization was weakened. These data indicate that local PAE therapy can promote the proliferation of fibroblasts, dynamically regulate the expression of TGF-β, and increase the amount of collagen and the synthesis of type III collagen fibers by promoting smad2 activity in the proliferation period, thus accelerating the regenerative healing of wounds.
Collapse
Affiliation(s)
- Lishuang Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuman Ma
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Gaiying He
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuhua Ma
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yanan Sun
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
22
|
He L, Kang Q, Chan KI, Zhang Y, Zhong Z, Tan W. The immunomodulatory role of matrix metalloproteinases in colitis-associated cancer. Front Immunol 2023; 13:1093990. [PMID: 36776395 PMCID: PMC9910179 DOI: 10.3389/fimmu.2022.1093990] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 01/22/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are an important class of enzymes in the body that function through the extracellular matrix (ECM). They are involved in diverse pathophysiological processes, such as tumor invasion and metastasis, cardiovascular diseases, arthritis, periodontal disease, osteogenesis imperfecta, and diseases of the central nervous system. MMPs participate in the occurrence and development of numerous cancers and are closely related to immunity. In the present study, we review the immunomodulatory role of MMPs in colitis-associated cancer (CAC) and discuss relevant clinical applications. We analyze more than 300 pharmacological studies retrieved from PubMed and the Web of Science, related to MMPs, cancer, colitis, CAC, and immunomodulation. Key MMPs that interfere with pathological processes in CAC such as MMP-2, MMP-3, MMP-7, MMP-9, MMP-10, MMP-12, and MMP-13, as well as their corresponding mechanisms are elaborated. MMPs are involved in cell proliferation, cell differentiation, angiogenesis, ECM remodeling, and the inflammatory response in CAC. They also affect the immune system by modulating differentiation and immune activity of immune cells, recruitment of macrophages, and recruitment of neutrophils. Herein we describe the immunomodulatory role of MMPs in CAC to facilitate treatment of this special type of colon cancer, which is preceded by detectable inflammatory bowel disease in clinical populations.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China,*Correspondence: Zhangfeng Zhong, ; Wen Tan,
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China,*Correspondence: Zhangfeng Zhong, ; Wen Tan,
| |
Collapse
|
23
|
Gardikiotis I, Cojocaru FD, Mihai CT, Balan V, Dodi G. Borrowing the Features of Biopolymers for Emerging Wound Healing Dressings: A Review. Int J Mol Sci 2022; 23:ijms23158778. [PMID: 35955912 PMCID: PMC9369430 DOI: 10.3390/ijms23158778] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
Wound dressing design is a dynamic and rapidly growing field of the medical wound-care market worldwide. Advances in technology have resulted in the development of a wide range of wound dressings that treat different types of wounds by targeting the four phases of healing. The ideal wound dressing should perform rapid healing; preserve the body’s water content; be oxygen permeable, non-adherent on the wound and hypoallergenic; and provide a barrier against external contaminants—at a reasonable cost and with minimal inconvenience to the patient. Therefore, choosing the best dressing should be based on what the wound needs and what the dressing does to achieve complete regeneration and restoration of the skin’s structure and function. Biopolymers, such as alginate (ALG), chitosan (Cs), collagen (Col), hyaluronic acid (HA) and silk fibroin (SF), are extensively used in wound management due to their biocompatibility, biodegradability and similarity to macromolecules recognized by the human body. However, most of the formulations based on biopolymers still show various issues; thus, strategies to combine them with molecular biology approaches represent the future of wound healing. Therefore, this article provides an overview of biopolymers’ roles in wound physiology as a perspective on the development of a new generation of enhanced, naturally inspired, smart wound dressings based on blood products, stem cells and growth factors.
Collapse
Affiliation(s)
- Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| | - Florina-Daniela Cojocaru
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
- Biomedical Sciences Department, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
- Correspondence: (F.-D.C.); (G.D.)
| | - Cosmin-Teodor Mihai
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| | - Vera Balan
- Biomedical Sciences Department, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| | - Gianina Dodi
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
- Correspondence: (F.-D.C.); (G.D.)
| |
Collapse
|
24
|
Kandhwal M, Behl T, Singh S, Sharma N, Arora S, Bhatia S, Al-Harrasi A, Sachdeva M, Bungau S. Role of matrix metalloproteinase in wound healing. Am J Transl Res 2022; 14:4391-4405. [PMID: 35958464 PMCID: PMC9360851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Matrix metalloproteinases (MMPs) are a group of endopeptidases that play a vital role in the restoration of damaged skin. Through mediating various cellular events such as angiogenesis and vasodilation, MMPs are very crucial for the mechanism of wound healing. These enzymes are endopeptidases that are reliant on zinc which are concealed through the extracellular matrix (ECM). MMPs have different targets in different phases of wound healing through which they are capable of promoting timely healing in the body. This review discusses all the possible role of MMPs and their inhibitors that are involved during every step of the wound healing process. This review highlights the latest advances in the respective field about the regulation and mediation of MMPs in human skin and how these studies can be applied to other branches of medical sciences as well. Published papers were searched via MEDLINE, PubMed and MDPI from the available peer reviewed journals. Research done in the past suggests that active MMPs are involved in the healing progression of the wounds or they have a positive effect towards healing of wounds. Present studies in the relative field will further enhance the knowledge about enzymes working along with their inhibitors. These studies will help in a way to resolve some of the parameters that are necessary for modulating them either positively or negatively.
Collapse
Affiliation(s)
- Mimansa Kandhwal
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara UniversityPunjab 140401, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of NizwaNizwa 342001, Oman
- School of Health Science, University of Petroleum and Energy StudiesDehradun 248007, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of NizwaNizwa 342001, Oman
| | - Monika Sachdeva
- Fatima College of Health SciencesAl Ain 50, United Arab Emirates
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of OradeaOradea 410028, Romania
| |
Collapse
|
25
|
Extracellular Vesicles in Facial Aesthetics: A Review. Int J Mol Sci 2022; 23:ijms23126742. [PMID: 35743181 PMCID: PMC9223821 DOI: 10.3390/ijms23126742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022] Open
Abstract
Facial aesthetics involve the application of non-invasive or minimally invasive techniques to improve facial appearance. Currently, extracellular vesicles (EVs) are attracting much interest as nanocarriers in facial aesthetics due to their lipid bilayer membrane, nanosized dimensions, biological origin, intercellular communication ability, and capability to modulate the molecular activities of recipient cells that play important roles in skin rejuvenation. Therefore, EVs have been suggested to have therapeutic potential in improving skin conditions, and these highlighted the potential to develop EV-based cosmetic products. This review summarizes EVs’ latest research, reporting applications in facial aesthetics, including scar removal, facial rejuvenation, anti-aging, and anti-pigmentation. This review also discussed the advanced delivery strategy of EVs, the therapeutic potential of plant EVs, and clinical studies using EVs to improve skin conditions. In summary, EV therapy reduces scarring, rejuvenates aging skin, and reduces pigmentation. These observations warrant the development of EV-based cosmetic products. However, more efforts are needed to establish a large-scale EV production platform that can consistently produce functional EVs and understand EVs’ underlying mechanism of action to improve their efficacy.
Collapse
|
26
|
Burian EA, Sabah L, Kirketerp-Møller K, Gundersen G, Ågren MS. Effect of Stabilized Hypochlorous Acid on Re-epithelialization and Bacterial Bioburden in Acute Wounds: A Randomized Controlled Trial in Healthy Volunteers. Acta Derm Venereol 2022; 102:adv00727. [PMID: 35578822 PMCID: PMC9558337 DOI: 10.2340/actadv.v102.1624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of this randomized controlled trial was to evaluate the wound-healing effect and antimicrobial properties of a novel stabilized hypochlorous acid solution on acute wounds, using a suction blister wound model. One suction blister was raised and de-roofed on each forearm in 20 healthy volunteers. Stabilized hypochlorous acid/control (sterile 0.9% NaCl) solutions were assigned to either wound by randomization. Wounds were irrigated and treated on days 0, 2 and 4. Re-epithelialization was assessed blindly by digital planimetry, and bacterial growth was assessed as the number of colony-forming units cultured from surface swabs. Hypochlorous acid solution increased the degree of re-epithelialization on day 4 by 14% compared with the control solution (95% confidence interval (CI) 6.8–20%, p = 0.00051) and was not inferior (p < 0.0001) to the control solution on day 10 (0.3%, 95% CI –1.3–1.9%). Median bacterial counts were lower with stabilized hypochlorous acid compared with control and were further reduced after irrigation and treatment of both groups on day 4, but remained lower in the stabilized hypochlorous acid group compared with the control group. This study demonstrates immediate and durable antimicrobial action and a beneficial effect on acute wound healing after irrigation and treatment with a stabilized hypochlorous acid formulation.
Collapse
Affiliation(s)
| | | | | | | | - Magnus S Ågren
- Department of Dermatology and Copenhagen Wound Healing Center, Bispebjerg Hospital, University of Copenhagen, Nielsine Nielsens Vej 11, DK-2400 Copenhagen, Denmark.
| |
Collapse
|
27
|
Muire PJ, Thompson MA, Christy RJ, Natesan S. Advances in Immunomodulation and Immune Engineering Approaches to Improve Healing of Extremity Wounds. Int J Mol Sci 2022; 23:4074. [PMID: 35456892 PMCID: PMC9032453 DOI: 10.3390/ijms23084074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 12/04/2022] Open
Abstract
Delayed healing of traumatic wounds often stems from a dysregulated immune response initiated or exacerbated by existing comorbidities, multiple tissue injury or wound contamination. Over decades, approaches towards alleviating wound inflammation have been centered on interventions capable of a collective dampening of various inflammatory factors and/or cells. However, a progressive understanding of immune physiology has rendered deeper knowledge on the dynamic interplay of secreted factors and effector cells following an acute injury. There is a wide body of literature, both in vitro and in vivo, abstracted on the immunomodulatory approaches to control inflammation. Recently, targeted modulation of the immune response via biotechnological approaches and biomaterials has gained attention as a means to restore the pro-healing phenotype and promote tissue regeneration. In order to fully realize the potential of these approaches in traumatic wounds, a critical and nuanced understanding of the relationships between immune dysregulation and healing outcomes is needed. This review provides an insight on paradigm shift towards interventional approaches to control exacerbated immune response following a traumatic injury from an agonistic to a targeted path. We address such a need by (1) providing a targeted discussion of the wound healing processes to assist in the identification of novel therapeutic targets and (2) highlighting emerging technologies and interventions that utilize an immunoengineering-based approach. In addition, we have underscored the importance of immune engineering as an emerging tool to provide precision medicine as an option to modulate acute immune response following a traumatic injury. Finally, an overview is provided on how an intervention can follow through a successful clinical application and regulatory pathway following laboratory and animal model evaluation.
Collapse
Affiliation(s)
- Preeti J. Muire
- Combat Wound Care Research Department, US Army Institute of Surgical Research, JBSA Ft Sam Houston, San Antonio, TX 78234, USA; (M.A.T.); (R.J.C.)
| | | | | | - Shanmugasundaram Natesan
- Combat Wound Care Research Department, US Army Institute of Surgical Research, JBSA Ft Sam Houston, San Antonio, TX 78234, USA; (M.A.T.); (R.J.C.)
| |
Collapse
|
28
|
Gros-Désormeaux F, Caffin F, Igert A, Guatto N, Piérard C. Is CEES a good analog of sulfur mustard? Macroscopic aspect, histology, and molecular biology comparisons between sulfur mustard and CEES-induced skin lesions. Toxicol Lett 2022; 361:21-28. [PMID: 35341927 DOI: 10.1016/j.toxlet.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/22/2022] [Accepted: 03/22/2022] [Indexed: 11/19/2022]
Abstract
Sulfur mustard (SM) is a chemical blistering warfare agent affecting multiple organs. SM is an ongoing chemical threat in addition to the accidental risk associated with World War I buried shells. As no specific treatments are available, only symptomatic therapies can be used. To test new medical countermeasures in standard laboratories, analogs such as 2-chloroethyl ethylsulfide (CEES) are currently used, although only a few studies compare its clinical effects with SM. In the present paper, skin lesions induced by SM and CEES are compared in terms of their macroscopic aspects, histology, and molecular biology to evaluate the pertinence of CEES as a SM analog. For this purpose, an in vivo model of CEES vapor exposure, similar to that of SM, is described in this paper. RESULTS: showed similar skin lesions with CEES and SM but with slight differences in the apparition delay and intensity of the lesions. Indeed, SM induced earlier, deeper, and stronger lesions. However, the same healing status was observed at the end of the study period (14 days). In conclusion, CEES appears a relevant analog of SM, leading to similar skin lesions. The CEES vapor exposure model therefore seems suitable for testing new medical countermeasures.
Collapse
Affiliation(s)
- Fanny Gros-Désormeaux
- Département de Toxicologie et Risques Chimiques - Unité Vésicants, Institut de Recherche Biomédicale des Armées (IRBA), 1 place du Général Valérie André, 91220 Brétigny sur Orge, France.
| | - Fanny Caffin
- Département de Toxicologie et Risques Chimiques - Unité Vésicants, Institut de Recherche Biomédicale des Armées (IRBA), 1 place du Général Valérie André, 91220 Brétigny sur Orge, France
| | - Alexandre Igert
- Département de Toxicologie et Risques Chimiques - Unité Vésicants, Institut de Recherche Biomédicale des Armées (IRBA), 1 place du Général Valérie André, 91220 Brétigny sur Orge, France
| | - Nathalie Guatto
- Département des Plateformes et Recherches Technologiques - Unité Imagerie, Institut de Recherche Biomédicale des Armées (IRBA), 1 place du Général Valérie André, 91220 Brétigny sur Orge, France
| | - Christophe Piérard
- Département de Toxicologie et Risques Chimiques - Unité Vésicants, Institut de Recherche Biomédicale des Armées (IRBA), 1 place du Général Valérie André, 91220 Brétigny sur Orge, France
| |
Collapse
|
29
|
Schleusser S, Schulz L, Song J, Deichmann H, Griesmann AC, Stang FH, Mailaender P, Kraemer R, Kleemann M, Kisch T. A Single Application of Cold Atmospheric Plasma (CAP) Improves Blood Flow Parameters in Chronic Wounds. Microcirculation 2022; 29:e12754. [PMID: 35218286 DOI: 10.1111/micc.12754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/09/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To find out if application of cold atmospheric plasma (CAP) affects microcirculation in chronic wounds. METHODS We treated 20 patients with chronic wounds on the lower extremity with CAP. Blood flow parameters of wounds were assessed with combined Laser-Doppler-Flowmetry and spectrophotometry in tissue depth of 2 and 6-8 millimeters. Parameters were assessed under standardized conditions before and over the course of 30 minutes after application of CAP. RESULTS Deep capillary blood flow increased significantly by up to 24.33% (percentage change) after treatment with CAP and remained significantly elevated until the end of measuring period at 30 minutes. Superficial oxygen tissue saturation was significantly elevated by 14.05% for the first 5 minutes after treatment. Postcapillary venous filling pressure was significantly elevated by 10.23% 19 minutes after CAP and stayed significantly elevated starting from minute 24 until the end of measuring. CONCLUSION CAP increases microcirculation parameters in chronic wounds significantly. Since CAP is known for its benefits in wound healing the effects observed may explain the improved healing of chronic wounds after its use. Whether CAP application can increase blood flow in chronic wounds for longer periods of time or boosts blood flow when applied more than once should be subject to further research.
Collapse
Affiliation(s)
- Sophie Schleusser
- Department of Plastic Surgery, Hand Surgery and Burn Care Unit, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Lysann Schulz
- Department of Interdisciplinary Intensive Care, University Hospital Leipzig, Germany
| | - Jungin Song
- Department of Plastic Surgery, Helios University Hospital Wuppertal, Germany
| | - Henriette Deichmann
- Department of Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | | | - Felix H Stang
- Department of Plastic Surgery, Hand Surgery and Burn Care Unit, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Peter Mailaender
- Department of Plastic Surgery, Hand Surgery and Burn Care Unit, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Robert Kraemer
- Department of Plastic-, Reconstructive and Aesthetic Surgery, Klinikum Westfalen, Germany
| | | | - Tobias Kisch
- Department of Plastic Surgery, Hand Surgery and Burn Care Unit, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| |
Collapse
|
30
|
OMICS Approaches Evaluating Keloid and Hypertrophic Scars. Int J Inflam 2022; 2022:1490492. [PMID: 36483731 PMCID: PMC9722497 DOI: 10.1155/2022/1490492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/01/2022] [Indexed: 11/18/2022] Open
Abstract
Abnormal scar formation during wound healing can result in keloid and hypertrophic scars, which is a major global health challenge. Such abnormal scars can cause significant physiological pain and psychological distress and become a financial burden. Due to the biological complexity of scar formation, the pathogenesis of such scars and how to prevent them from forming remains elusive. In this review paper, we delve into the world of "omics" approaches to study abnormal scars and provide examples of genomics, transcriptomics, proteomics, epigenomics, and metabolomics. The benefits of "omics" approaches are that they allow for high-throughput studies and the analysis of 100s to 1000s of genes and proteins with the accumulation of large quantities of data. Currently in the field, there is a lack of "omics" review articles describing pathological scars. In this review, we summarize genome-wide linkage analysis, genome-wide association studies, and microarray data to name a few omics technologies. Such data can provide novel insights into different molecular pathways and identify novel factors which may not be captured through small-scale laboratory techniques.
Collapse
|
31
|
Laulund AS, Schwartz FA, Christophersen L, Høiby N, Svendsen JSM, Stensen W, Thomsen K, Cavanagh JP, Moser C. Lactoferricin inspired peptide AMC-109 augments the effect of ciprofloxacin against Pseudomonas aeruginosa biofilm in chronic murine wounds. J Glob Antimicrob Resist 2021; 29:185-193. [PMID: 34954415 DOI: 10.1016/j.jgar.2021.12.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/17/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES The pathophysiology of chronic wounds is characterized by prolonged inflammation, low mitogenic-activity, high protease-/low inhibitor-activity, microbiota changes and biofilm formation, in combination with the etiology of the original insult. One strategy to promote healing is to terminate the parasitism-like-relationship between the biofilm-growing-pathogen and the host response. The antimicrobial peptide AMC-109 is a potential treatment with low resistance-potential and broad-spectrum coverage with rapid bactericidal effect. Our purpose was to investigate if adjunctive AMC-109 could augment the ciprofloxacin effect in a chronic Pseudomonas aeruginosa wound model. METHODS Third-degree-burns were inflicted on 33BALB/c mice. P.Aeruginosa embedded in seaweed alginate was injected under the eschar to mimic a biofilm. Mice were randomized to receive AMC-109, combined AMC-109 and ciprofloxacin, ciprofloxacin or placebo for 5 days followed by sample collection. RESULTS Lower bacterial load was seen in the double treated group when compared to both monotherapy groups (AMC-109, p=0.008 and ciprofloxacin, p=0.03). To evaluate the innate host response, quantification of cytokines and growth factors were performed. The pro-inflammatory response was dampened in the double-treated mice, compared to the mono-ciprofloxacin-treated group (p=0.0009). A lower mobilization of neutrophils from the bone marrow was indicated by reduced granulocyte-colony-stimulating factor in all treatment groups compared to the placebo group. Improved tissue-remodeling was indicated by the highest level of tissue inhibitor of metalloproteases and low metalloprotease level in the double-treated group. CONCLUSIONS AMC-109 revealed adjunctive anti-pseudomonas abilities augmenting the antimicrobial effect of ciprofloxacin in this wound model. The study indicates a potential role for AMC-109 in treating chronic wounds with complicating biofilm infections.
Collapse
Affiliation(s)
- Anne Sofie Laulund
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Henrik Harpestrengs Vej 4A, 2100, Copenhagen, Denmark, phone +4593999557
| | | | - Lars Christophersen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet
| | - Niels Høiby
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet and Department of Immunology and Microbiology (ISIM), University of Copenhagen
| | - John Sigurd Mjøen Svendsen
- Amicoat AS, Sykehusvegen 26, 9019 Tromsø, Norway and the Department of Chemistry, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Wenche Stensen
- Department of Chemistry, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Kim Thomsen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet
| | - Jorunn Pauline Cavanagh
- Amicoat AS, Sykehusvegen 26, 9019 Tromsø, Norway and the Department of Clinical Medicine, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Claus Moser
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet
| |
Collapse
|
32
|
Kearney KJ, Ariëns RAS, Macrae FL. The Role of Fibrin(ogen) in Wound Healing and Infection Control. Semin Thromb Hemost 2021; 48:174-187. [PMID: 34428799 DOI: 10.1055/s-0041-1732467] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fibrinogen, one of the most abundant plasma proteins playing a key role in hemostasis, is an important modulator of wound healing and host defense against microbes. In the current review, we address the role of fibrin(ogen) throughout the process of wound healing and subsequent tissue repair. Initially fibrin(ogen) acts as a provisional matrix supporting incoming leukocytes and acting as reservoir for growth factors. It later goes on to support re-epithelialization, angiogenesis, and fibroplasia. Importantly, removal of fibrin(ogen) from the wound is essential for wound healing to progress. We also discuss how fibrin(ogen) functions through several mechanisms to protect the host against bacterial infection by providing a physical barrier, entrapment of bacteria in fibrin(ogen) networks, and by directing immune cell function. The central role of fibrin(ogen) in defense against bacterial infection has made it a target of bacterial proteins, evolved to interact with fibrin(ogen) to manipulate clot formation and degradation for the purpose of promoting microbial virulence and survival. Further understanding of the dual roles of fibrin(ogen) in wound healing and infection could provide novel means of therapy to improve recovery from surgical or chronic wounds and help to prevent infection from highly virulent bacterial strains, including those resistant to antibiotics.
Collapse
Affiliation(s)
- Katherine J Kearney
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| | - Robert A S Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Fraser L Macrae
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
33
|
Pulido T, Velarde MC, Alimirah F. The senescence-associated secretory phenotype: Fueling a wound that never heals. Mech Ageing Dev 2021; 199:111561. [PMID: 34411604 DOI: 10.1016/j.mad.2021.111561] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/29/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022]
Abstract
Wound healing is impaired with advanced age and certain chronic conditions, such as diabetes and obesity. Moreover, common cancer treatments, including chemotherapy and radiation, can cause unintended tissue damage and impair wound healing. Available wound care treatments are not always effective, as some wounds fail to heal or recur after treatment. Hence, a more thorough understanding of the pathophysiology of chronic, nonhealing wounds may offer new ideas for the development of effective wound care treatments. Cancers are sometimes referred to as wounds that never heal, sharing mechanisms similar to wound healing. We describe in this review how cellular senescence and the senescence-associated secretory phenotype (SASP) contribute to chronic wounds versus cancer.
Collapse
Affiliation(s)
- Tanya Pulido
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Michael C Velarde
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City, 1101, Philippines.
| | | |
Collapse
|
34
|
Collagen-Containing Fish Sidestream-Derived Protein Hydrolysates Support Skin Repair via Chemokine Induction. Mar Drugs 2021; 19:md19070396. [PMID: 34356821 PMCID: PMC8303758 DOI: 10.3390/md19070396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 01/03/2023] Open
Abstract
Restoring homeostasis following tissue damage requires a dynamic and tightly orchestrated sequence of molecular and cellular events that ensure repair and healing. It is well established that nutrition directly affects skin homeostasis, while malnutrition causes impaired tissue healing. In this study, we utilized fish sidestream-derived protein hydrolysates including fish collagen as dietary supplements, and investigated their effect on the skin repair process using a murine model of cutaneous wound healing. We explored potential differences in wound closure and histological morphology between diet groups, and analyzed the expression and production of factors that participate in different stages of the repair process. Dietary supplementation with fish sidestream-derived collagen alone (Collagen), or in combination with a protein hydrolysate derived from salmon heads (HSH), resulted in accelerated healing. Chemical analysis of the tested extracts revealed that Collagen had the highest protein content and that HSH contained the great amount of zinc, known to support immune responses. Indeed, tissues from mice fed with collagen-containing supplements exhibited an increase in the expression levels of chemokines, important for the recruitment of immune cells into the damaged wound region. Moreover, expression of a potent angiogenic factor, vascular endothelial growth factor-A (VEGF-A), was elevated followed by enhanced collagen deposition. Our findings suggest that a 5%-supplemented diet with marine collagen-enriched supplements promotes tissue repair in the model of cutaneous wound healing, proposing a novel health-promoting use of fish sidestreams.
Collapse
|
35
|
Howden JD, Michael M, Hight-Warburton W, Parsons M. α2β1 integrins spatially restrict Cdc42 activity to stabilise adherens junctions. BMC Biol 2021; 19:130. [PMID: 34158053 PMCID: PMC8220754 DOI: 10.1186/s12915-021-01054-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/25/2021] [Indexed: 11/10/2022] Open
Abstract
Background Keratinocytes form the main protective barrier in the skin to separate the underlying tissue from the external environment. In order to maintain this barrier, keratinocytes form robust junctions between neighbouring cells as well as with the underlying extracellular matrix. Cell–cell adhesions are mediated primarily through cadherin receptors, whereas the integrin family of transmembrane receptors is predominantly associated with assembly of matrix adhesions. Integrins have been shown to also localise to cell–cell adhesions, but their role at these sites remains unclear. Results Here we show that α2β1 integrins are enriched at mature keratinocyte cell–cell adhesions, where they play a crucial role in organising cytoskeletal networks to stabilize adherens junctions. Loss of α2β1 integrin has significant functional phenotypes associated with cell–cell adhesion destabilisation, including increased proliferation, reduced migration and impaired barrier function. Mechanistically, we show that α2β1 integrins suppress activity of Src and Shp2 at cell–cell adhesions leading to enhanced Cdc42–GDI interactions and stabilisation of junctions between neighbouring epithelial cells. Conclusion Our data reveals a new role for α2β1 integrins in controlling integrity of epithelial cell–cell adhesions. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01054-9.
Collapse
Affiliation(s)
- Jake D Howden
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London, SE1 1UL, UK
| | - Magdalene Michael
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London, SE1 1UL, UK
| | - Willow Hight-Warburton
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London, SE1 1UL, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London, SE1 1UL, UK.
| |
Collapse
|
36
|
Collagen denaturation in the infarcted myocardium involves temporally distinct effects of MT1-MMP-dependent proteolysis and mechanical tension. Matrix Biol 2021; 99:18-42. [PMID: 34048934 DOI: 10.1016/j.matbio.2021.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022]
Abstract
Tissue injury results in profound alterations in the collagen network, associated with unfolding of the collagen triple helix, proteolytic degradation and generation of fragments. In the infarcted myocardium, changes in the collagen network are critically involved in the pathogenesis of left ventricular rupture, adverse remodeling and chronic dysfunction. We hypothesized that myocardial infarction is associated with temporally and spatially restricted patterns of collagen denaturation that may reflect distinct molecular mechanisms of collagen unfolding. We used a mouse model of non-reperfused myocardial infarction, and in vitro assays in fibroblast-populated collagen lattices. In healing infarcts, labeling with collagen hybridizing peptide (CHP) revealed two distinct patterns of collagen denaturation. During the inflammatory and proliferative phases of infarct healing, collagen denaturation was pericellular, localized in close proximity to macrophages and myofibroblasts. qPCR array analysis of genes associated with matrix remodeling showed that Membrane Type 1-Matrix Metalloproteinase (MT1-MMP) is markedly upregulated in infarct macrophages and fibroblasts, suggesting its involvement in pericellular collagen denaturation. In vitro, MT1-MMP-mediated pericellular collagen denaturation is involved in cardiac fibroblast migration. The effects of MT1-MMP on collagen denaturation and fibroblast migration involve the catalytic site, and require hemopexin domain-mediated actions. In contrast, during the maturation phase of infarct healing, extensive collagen denaturation was noted in the hypocellular infarct, in the infarct border zone and in the mitral valve annulus, in the absence of MT1-MMP. In vitro, mechanical tension in attached collagen lattices was sufficient to induce peripheral collagen denaturation. Our study suggests that in healing infarcts, early pericellular collagen denaturation may be important for migration of macrophages and reparative myofibroblasts in the infarct. Extensive denaturation of collagen fibers is noted in mature scars, likely reflecting mechanical tension. Chronic collagen denaturation may increase susceptibility of the matrix to proteolysis, thus contributing to progressive cardiac dilation and post-infarction heart failure.
Collapse
|
37
|
Mechanosensitive Regulation of Fibrosis. Cells 2021; 10:cells10050994. [PMID: 33922651 PMCID: PMC8145148 DOI: 10.3390/cells10050994] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Cells in the human body experience and integrate a wide variety of environmental cues. A growing interest in tissue mechanics in the past four decades has shown that the mechanical properties of tissue drive key biological processes and facilitate disease development. However, tissue stiffness is not only a potent behavioral cue, but also a product of cellular signaling activity. This review explores both roles of tissue stiffness in the context of inflammation and fibrosis, and the important molecular players driving such processes. During inflammation, proinflammatory cytokines upregulate tissue stiffness by increasing hydrostatic pressure, ECM deposition, and ECM remodeling. As the ECM stiffens, cells involved in the immune response employ intricate molecular sensors to probe and alter their mechanical environment, thereby facilitating immune cell recruitment and potentiating the fibrotic phenotype. This powerful feedforward loop raises numerous possibilities for drug development and warrants further investigation into the mechanisms specific to different fibrotic diseases.
Collapse
|
38
|
Meagher PB, Lee XA, Lee J, Visram A, Friedberg MK, Connelly KA. Cardiac Fibrosis: Key Role of Integrins in Cardiac Homeostasis and Remodeling. Cells 2021; 10:cells10040770. [PMID: 33807373 PMCID: PMC8066890 DOI: 10.3390/cells10040770] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiac fibrosis is a common finding that is associated with the progression of heart failure (HF) and impacts all chambers of the heart. Despite intense research, the treatment of HF has primarily focused upon strategies to prevent cardiomyocyte remodeling, and there are no targeted antifibrotic strategies available to reverse cardiac fibrosis. Cardiac fibrosis is defined as an accumulation of extracellular matrix (ECM) proteins which stiffen the myocardium resulting in the deterioration cardiac function. This occurs in response to a wide range of mechanical and biochemical signals. Integrins are transmembrane cell adhesion receptors, that integrate signaling between cardiac fibroblasts and cardiomyocytes with the ECM by the communication of mechanical stress signals. Integrins play an important role in the development of pathological ECM deposition. This review will discuss the role of integrins in mechano-transduced cardiac fibrosis in response to disease throughout the myocardium. This review will also demonstrate the important role of integrins as both initiators of the fibrotic response, and modulators of fibrosis through their effect on cardiac fibroblast physiology across the various heart chambers.
Collapse
Affiliation(s)
- Patrick B. Meagher
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (P.B.M.); (X.A.L.); (J.L.); (A.V.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Xavier Alexander Lee
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (P.B.M.); (X.A.L.); (J.L.); (A.V.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Joseph Lee
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (P.B.M.); (X.A.L.); (J.L.); (A.V.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Aylin Visram
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (P.B.M.); (X.A.L.); (J.L.); (A.V.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Mark K. Friedberg
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Labatt Family Heart Center and Department of Paediatrics, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Kim A. Connelly
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (P.B.M.); (X.A.L.); (J.L.); (A.V.)
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: ; Tel.: +141-686-45201
| |
Collapse
|
39
|
Kwak MJ, Park MY, Kim J, Lee H, Whang KY. Curative effects of sophorolipid on physical wounds: In vitro and in vivo studies. Vet Med Sci 2021; 7:1400-1408. [PMID: 33764629 PMCID: PMC8294367 DOI: 10.1002/vms3.481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 02/16/2021] [Accepted: 03/09/2021] [Indexed: 01/22/2023] Open
Abstract
Early‐weaning syndrome is harmful to animals because an effect on growth in the early‐stage of life generally determines the overall growth rate. Sophorolipid (SPL), a surface‐active glycolipid compound, has been shown to exhibit antimicrobial activity and stimulate cell proliferation. Thus, in vitro and in vivo studies were conducted to evaluate the potential of SPL on the gut turnover after the wound. The in vitro experiment with HT‐29 cells showed the increased proliferation with increasing gene levels of collagenase‐1 and matrilysin‐1. Next, the 16‐day in vivo experiment was conducted with thirty rats (14‐day‐old), and the allocation was performed according to their body weight (BW) into three treatments: control diet (CON), 48 ppm of oxytetracycline‐supplemented diet (OTC) and 10 ppm of SPL‐supplemented diet (SPL). Dietary SPL accelerates the growth of rats in overall periods, and intestinal permeability was lower in SPL at day 16. Villus:crypt ratio and the goblet cell count were also higher in SPL than in CON at day 8. Caecal Streptococcus spp. were significantly reduced with dietary SPL and OTC at day 8 and 16, and total short‐chain fatty acid, acetate and butyrate levels were increased in the SPL at day 8. In conclusion, these data demonstrated that SPL could improve gut remodelling potential and modulate the gut environments, resulted in acceleration of post‐weaning growth. Therefore, SPL could have a potential as a feed additive aimed at promoting repair system after wound in animal's gut.
Collapse
Affiliation(s)
- Min-Jin Kwak
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Min-Young Park
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jonggun Kim
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hanbae Lee
- Pathway Intermediates, Seoul, Republic of Korea
| | - Kwang-Youn Whang
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
40
|
Melguizo-Rodríguez L, Illescas-Montes R, Costela-Ruiz VJ, Ramos-Torrecillas J, de Luna-Bertos E, García-Martínez O, Ruiz C. Antimicrobial properties of olive oil phenolic compounds and their regenerative capacity towards fibroblast cells. J Tissue Viability 2021; 30:372-378. [PMID: 33810929 DOI: 10.1016/j.jtv.2021.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022]
Abstract
Some micronutrients of vegetable origin are considered potentially useful as wound-healing agents because they can increase fibroblast proliferation and differentiation. THE AIM OF THIS STUDY was to evaluate the regenerative effects of selected olive oil phenolic compounds on cultured human fibroblasts and explore their antimicrobial properties. MATERIAL AND METHODS The CCD-1064Sk fibroblast line was treated for 24 h with 10-6M luteolin, apigenin, ferulic, coumaric acid or caffeic acid, evaluating the effects on cell proliferation by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) spectrophotometric assay; the migratory capacity by the scratch assay and determining the expression of Fibroblast Growth Factor (FGF), Vascular Endothelial Growth Factor (VEGF), Transforming Growth Factor- β1 (TGFβ1), Platelet Derived Growth Factor (PDGF), and Collagen Type I (COL-I) genes by real-time polymerase chain reaction. The antimicrobial capacity of the polyphenols was evaluated by the disc diffusion method. RESULTS All compounds except for ferulic acid significantly stimulated the proliferative capacity of fibroblasts, increasing their migration and their expression of the aforementioned genes. With respect to their antimicrobial properties, treatment with the studied compounds inhibited the growth of Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Proteus spp., and Candida Albicans. CONCLUSIONS The phenolic compounds in olive oil have a biostimulatory effect on the regeneration capacity, differentiation, and migration of fibroblasts and exert major antibacterial activity. According to the present findings, these compounds may have a strong therapeutic effect on wound recovery.
Collapse
Affiliation(s)
- Lucia Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016, Granada, Spain; Institute of Biosanitary Research, Ibs.Granada, C/ Doctor Azpitarte 4, 4(a) Planta, 18012, Granada, Spain.
| | - Rebeca Illescas-Montes
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016, Granada, Spain; Institute of Biosanitary Research, Ibs.Granada, C/ Doctor Azpitarte 4, 4(a) Planta, 18012, Granada, Spain.
| | - Victor Javier Costela-Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016, Granada, Spain; Institute of Biosanitary Research, Ibs.Granada, C/ Doctor Azpitarte 4, 4(a) Planta, 18012, Granada, Spain.
| | - Javier Ramos-Torrecillas
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016, Granada, Spain; Institute of Biosanitary Research, Ibs.Granada, C/ Doctor Azpitarte 4, 4(a) Planta, 18012, Granada, Spain.
| | - Elvira de Luna-Bertos
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016, Granada, Spain; Institute of Biosanitary Research, Ibs.Granada, C/ Doctor Azpitarte 4, 4(a) Planta, 18012, Granada, Spain.
| | - Olga García-Martínez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016, Granada, Spain; Institute of Biosanitary Research, Ibs.Granada, C/ Doctor Azpitarte 4, 4(a) Planta, 18012, Granada, Spain.
| | - Concepción Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016, Granada, Spain; Institute of Biosanitary Research, Ibs.Granada, C/ Doctor Azpitarte 4, 4(a) Planta, 18012, Granada, Spain; Institute of Neuroscience, University of Granada, Centro de Investigación Biomédica (CIBM), Parque de Tecnológico de La Salud (PTS), Avda. Del Conocimiento S/N, 18016, Armilla, Granada, Spain.
| |
Collapse
|
41
|
Kittana N, Assali M, Zimmermann WH, Liaw N, Santos GL, Rehman A, Lutz S. Modulating the Biomechanical Properties of Engineered Connective Tissues by Chitosan-Coated Multiwall Carbon Nanotubes. Int J Nanomedicine 2021; 16:989-1000. [PMID: 33633447 PMCID: PMC7901244 DOI: 10.2147/ijn.s289107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/20/2021] [Indexed: 01/08/2023] Open
Abstract
Background Under certain conditions, the physiological repair of connective tissues might fail to restore the original structure and function. Optimized engineered connective tissues (ECTs) with biophysical properties adapted to the target tissue could be used as a substitution therapy. This study aimed to investigate the effect of ECT enforcement by a complex of multiwall carbon nanotubes with chitosan (C-MWCNT) to meet in vivo demands. Materials and Methods ECTs were constructed from human foreskin fibroblasts (HFF-1) in collagen type I and enriched with the three different percentages 0.025, 0.05 and 0.1% of C-MWCNT. Characterization of the physical properties was performed by biomechanical studies using unidirectional strain. Results Supplementation with 0.025% C-MWCNT moderately increased the tissue stiffness, reflected by Young’s modulus, compared to tissues without C-MWCNT. Supplementation of ECTs with 0.1% C-MWCNT reduced tissue contraction and increased the elasticity and the extensibility, reflected by the yield point and ultimate strain, respectively. Consequently, the ECTs with 0.1% C-MWCNT showed a higher resilience and toughness as control tissues. Fluorescence tissue imaging demonstrated the longitudinal alignment of all cells independent of the condition. Conclusion Supplementation with C-MWCNT can enhance the biophysical properties of ECTs, which could be advantageous for applications in connective tissue repair.
Collapse
Affiliation(s)
- Naim Kittana
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohyeddin Assali
- Department of Pharmacy, Faculty of Medicine & Health Sciences, An-Najah National University, Nablus, Palestine
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research) Partner Site Göttingen, Göttingen, Germany
| | - Norman Liaw
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research) Partner Site Göttingen, Göttingen, Germany
| | - Gabriela Leao Santos
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research) Partner Site Göttingen, Göttingen, Germany
| | - Abdul Rehman
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research) Partner Site Göttingen, Göttingen, Germany
| | - Susanne Lutz
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research) Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
42
|
Ågren MS, Chafranska L, Eriksen JO, Forman JL, Bjerrum MJ, Schjerling P, Larsen HF, Cottarelli E, Jorgensen LN, Gjerdrum LMR. Spatial expression of metallothionein, matrix metalloproteinase-1 and Ki-67 in human epidermal wounds treated with zinc and determined by quantitative immunohistochemistry: A randomised double-blind trial. Eur J Cell Biol 2020; 100:151147. [PMID: 33485703 DOI: 10.1016/j.ejcb.2020.151147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 01/13/2023] Open
Abstract
Reepithelialisation is fundamental to wound healing, but our current understanding largely relies on cellular and animal studies. The aim of the present randomised double-blind three-arm controlled trial was to correlate genuine epidermal wound healing with key proteins and topical zinc treatment in humans. Sixty wounds were produced using deroofed suction blisters in 30 healthy volunteers and randomised to topical zinc sulphate (n = 20), placebo (n = 20), or control (n = 20) treatment for 4 days. All wounds with perilesional skin were processed for automatic immunostaining of paraffin tissue sections with monoclonal antibodies against Ki-67, metallothionein (MT) and matrix metalloproteinase (MMP)-1. Protein expression was quantified by automated digital image analysis. Epidermal Ki-67 and MT labelling indices were increased in keratinocytes in the neoepidermis (∼1.1 mm) and at the wound edge (0.5 mm) compared to normal skin. Increased MMP-1 immunostaining was restricted to the neoepidermis. MT was robustly upregulated in the upper dermis of the wounds. Zinc treatment enhanced MMP-1 expression beneath the neoepidermis via paracrine mechanisms and MT under the neoepidermis and in the nonepithelialised wound bed via direct actions of zinc as indicated by the induction of MT2A mRNA but not MMP-1 mRNA in cultured normal human dermal fibroblasts by zinc sulphate. The present human study demonstrates that quantitative immunohistochemistry can identify proteins involved in reepithelialisation and actions of external compounds. Increased dermal MT expression may contribute to the anti-inflammatory activities of zinc and increased MMP-1 levels to promote keratinocyte migration.
Collapse
Affiliation(s)
- Magnus S Ågren
- Department of Dermatology and Copenhagen Wound Healing Center, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Digestive Disease Center, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Lana Chafranska
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Jens Ole Eriksen
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Julie Lyng Forman
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Morten J Bjerrum
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen and Department of Biomedical Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Heidi F Larsen
- Digestive Disease Center, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Elena Cottarelli
- Digestive Disease Center, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Pharmaceutical Science, University of Pavia, Pavia, Italy
| | - Lars N Jorgensen
- Digestive Disease Center, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lise Mette Rahbek Gjerdrum
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| |
Collapse
|
43
|
Dhavalikar P, Robinson A, Lan Z, Jenkins D, Chwatko M, Salhadar K, Jose A, Kar R, Shoga E, Kannapiran A, Cosgriff-Hernandez E. Review of Integrin-Targeting Biomaterials in Tissue Engineering. Adv Healthc Mater 2020; 9:e2000795. [PMID: 32940020 PMCID: PMC7960574 DOI: 10.1002/adhm.202000795] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/27/2020] [Indexed: 12/12/2022]
Abstract
The ability to direct cell behavior has been central to the success of numerous therapeutics to regenerate tissue or facilitate device integration. Biomaterial scientists are challenged to understand and modulate the interactions of biomaterials with biological systems in order to achieve effective tissue repair. One key area of research investigates the use of extracellular matrix-derived ligands to target specific integrin interactions and induce cellular responses, such as increased cell migration, proliferation, and differentiation of mesenchymal stem cells. These integrin-targeting proteins and peptides have been implemented in a variety of different polymeric scaffolds and devices to enhance tissue regeneration and integration. This review first presents an overview of integrin-mediated cellular processes that have been identified in angiogenesis, wound healing, and bone regeneration. Then, research utilizing biomaterials are highlighted with integrin-targeting motifs as a means to direct these cellular processes to enhance tissue regeneration. In addition to providing improved materials for tissue repair and device integration, these innovative biomaterials provide new tools to probe the complex processes of tissue remodeling in order to enhance the rational design of biomaterial scaffolds and guide tissue regeneration strategies.
Collapse
Affiliation(s)
- Prachi Dhavalikar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew Robinson
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ziyang Lan
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Dana Jenkins
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Malgorzata Chwatko
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Karim Salhadar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Anupriya Jose
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ronit Kar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Erik Shoga
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Aparajith Kannapiran
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | | |
Collapse
|
44
|
Lee JSJ, Kim SJ, Choi JS, Eom MR, Shin H, Kwon SK. Adipose-derived mesenchymal stem cell spheroid sheet accelerates regeneration of ulcerated oral mucosa by enhancing inherent therapeutic properties. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Kim D, Lo E, Kim D, Kang J. Regulatory T Cells Conditioned Media Stimulates Migration in HaCaT Keratinocytes: Involvement of Wound Healing. Clin Cosmet Investig Dermatol 2020; 13:443-453. [PMID: 32753927 PMCID: PMC7351635 DOI: 10.2147/ccid.s252778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/10/2020] [Indexed: 01/06/2023]
Abstract
Purpose Regulatory T (Treg) cells, a type of immune cell, play a very important role in the immune response as a subpopulation of T cells. In this study, we investigated the effects of Treg cells conditioned media (CM) on cell migration. Various cytokines and growth factors of Treg cells CM can effect on re-epithelialization stage during the wound healing. Methods Isolated CD4+CD25+ Treg cells from Peripheral Blood Mononuclear Cells (PBMCs) were cultured and CM obtained. HaCaT keratinocytes were treated with various concentration of Treg cells CM. Cell migration, proliferation and expression of proteins that are related to the Epithelial-Mesenchymal Transition (EMT) process, matrix metalloproteinase-1 (MMP-1) were analyzed. Results Above 90% CD4+CD25+ Treg cells were obtained from CD8+ depleted PBMCs and the CM have various cytokines and growth factors.One percent and 5% concentration of Treg cells CM increased HaCaT keratinocytes migration. The Treg cells CM stimulated EMT, which led to the down-regulation of E-cadherin in the HaCaT keratinocytes at the wound edge. The Treg cells CM increased MMP-1, which is involved in tissue remodeling. Conclusion Our results suggest that Treg cells CM which has various cytokines and growth factors promote wound healing by stimulating HaCaT keratinocytes migration.
Collapse
Affiliation(s)
- Dongsoo Kim
- Research & Development, IMMUNISBIO CO. Ltd., B2, International ST. Mary's Hospital MTP Mall, Seo-gu, Incheon, Korea
| | - Eunji Lo
- Research & Development, IMMUNISBIO CO. Ltd., B2, International ST. Mary's Hospital MTP Mall, Seo-gu, Incheon, Korea
| | - Dongju Kim
- Research & Development, IMMUNISBIO CO. Ltd., B2, International ST. Mary's Hospital MTP Mall, Seo-gu, Incheon, Korea
| | - Junghwa Kang
- Research & Development, IMMUNISBIO CO. Ltd., B2, International ST. Mary's Hospital MTP Mall, Seo-gu, Incheon, Korea
| |
Collapse
|
46
|
Moses RL, Boyle GM, Howard-Jones RA, Errington RJ, Johns JP, Gordon V, Reddell P, Steadman R, Moseley R. Novel epoxy-tiglianes stimulate skin keratinocyte wound healing responses and re-epithelialization via protein kinase C activation. Biochem Pharmacol 2020; 178:114048. [PMID: 32446889 DOI: 10.1016/j.bcp.2020.114048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
Epoxy-tiglianes are a novel class of diterpene esters. The prototype epoxy-tigliane, EBC-46 (tigilanol tiglate), possesses potent anti-cancer properties and is currently in clinical development as a local treatment for human and veterinary cutaneous tumors. EBC-46 rapidly destroys treated tumors and consistently promotes wound re-epithelialization at sites of tumor destruction. However, the mechanisms underlying these keratinocyte wound healing responses are not completely understood. Here, we investigated the effects of EBC-46 and an analogue (EBC-211) at 1.51 nM-151 µM concentrations, on wound healing responses in immortalized human skin keratinocytes (HaCaTs). Both EBC-46 and EBC-211 (1.51 nM-15.1 µM) accelerated G0/G1-S and S-G2/M cell cycle transitions and HaCaT proliferation. EBC-46 (1.51-151 nM) and EBC-211 (1.51 nM-15.1 µM) further induced significant HaCaT migration and scratch wound repopulation. Stimulated migration/wound repopulation responses were even induced by EBC-46 (1.51 nM) and EBC-211 (1.51-151 nM) with proliferation inhibitor, mitomycin C (1 μM), suggesting that epoxy-tiglianes can promote migration and wound repopulation independently of proliferation. Expression profiling analyses showed that epoxy-tiglianes modulated keratin, DNA synthesis/replication, cell cycle/proliferation, motility/migration, differentiation, matrix metalloproteinase (MMP) and cytokine/chemokine gene expression, to facilitate enhanced responses. Although epoxy-tiglianes down-regulated established cytokine and chemokine agonists of keratinocyte proliferation and migration, enhanced HaCaT responses were demonstrated to be mediated via protein kinase C (PKC) phosphorylation and significantly abrogated by pan-PKC inhibitor, bisindolylmaleimide-1 (BIM-1, 1 μM). By identifying how epoxy-tiglianes stimulate keratinocyte healing responses and re-epithelialization in treated skin, our findings support the further development of this class of small molecules as potential therapeutics for other clinical situations associated with impaired re-epithelialization, such as non-healing skin wounds.
Collapse
Affiliation(s)
- Rachael L Moses
- Regenerative Biology Group, School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, UK
| | - Glen M Boyle
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rachel A Howard-Jones
- Tenovus Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Rachel J Errington
- Tenovus Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Jenny P Johns
- Cancer Drug Mechanisms Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Paul Reddell
- QBiotics Group, Yungaburra, Queensland, Australia
| | - Robert Steadman
- Welsh Kidney Research Unit, Division of Infection and Immunity, Cardiff Institute of Tissue Engineering and Repair (CITER), School of Medicine, College of Biomedical and Life Sciences, Cardiff University, UK
| | - Ryan Moseley
- Regenerative Biology Group, School of Dentistry, Cardiff Institute of Tissue Engineering and Repair (CITER), College of Biomedical and Life Sciences, Cardiff University, UK.
| |
Collapse
|
47
|
Avola R, Granata G, Geraci C, Napoli E, Graziano ACE, Cardile V. Oregano (Origanum vulgare L.) essential oil provides anti-inflammatory activity and facilitates wound healing in a human keratinocytes cell model. Food Chem Toxicol 2020; 144:111586. [PMID: 32679285 DOI: 10.1016/j.fct.2020.111586] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/15/2020] [Accepted: 07/06/2020] [Indexed: 01/13/2023]
Abstract
Skin acts as a protective barrier between the body and the external environment. Skin wounds are a common inflammatory disorder for the solution of which plants and essential oils have been applied as a medical option for centuries. Origanum vulgare essential oil (OEO) is largely used in folk medicine, but its molecular mechanisms of action are not fully known. In this study, we evaluated the anti-inflammatory/antioxidant activity as well as wound healing capacity of a well-characterized OEO on human keratinocytes NCTC 2544 treated with interferon-gamma (IFN-γ) and histamine (H) or subjected to a scratch test. The expression of pro-inflammatory mediators such as reactive oxygen species (ROS), inter-cellular adhesion molecule (ICAM)-1, inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX)-2 were verified. The DNA damage was shown by the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OHdG) and activation of proliferating cell nuclear antigen (PCNA). Moreover, the abnormal modification of extracellular matrix components (ECM) was examined by determining matrix metalloproteinase (MMP)-1, and -12. Compared to untreated control, OEO showed efficacy in supporting and enhancing the cell motility. In IFN-γ and H treated cells, OEO displayed a significant reduction of ROS, ICAM-1, iNOS, COX-2, 8-OHdG, MMP-1, and MMP-12. OEO proved useful to treat inflammation and support cell motility during wound healing.
Collapse
Affiliation(s)
- Rosanna Avola
- Department of Biomedical and Biotechnological Sciences - Section of Physiology, University of Catania, Via Santa Sofia, 97, 95123, Catania, Italy; Institute of Biomolecular Chemistry, National Research Council (C.N.R.), Via Gaifami, 18, 95026, Catania, Italy
| | - Giuseppe Granata
- Institute of Biomolecular Chemistry, National Research Council (C.N.R.), Via Gaifami, 18, 95026, Catania, Italy
| | - Corrada Geraci
- Institute of Biomolecular Chemistry, National Research Council (C.N.R.), Via Gaifami, 18, 95026, Catania, Italy.
| | - Edoardo Napoli
- Institute of Biomolecular Chemistry, National Research Council (C.N.R.), Via Gaifami, 18, 95026, Catania, Italy
| | - Adriana Carol Eleonora Graziano
- Department of Biomedical and Biotechnological Sciences - Section of Physiology, University of Catania, Via Santa Sofia, 97, 95123, Catania, Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences - Section of Physiology, University of Catania, Via Santa Sofia, 97, 95123, Catania, Italy.
| |
Collapse
|
48
|
Lim JY, Ryu DB, Kim TW, Lee SE, Park G, Yoon HK, Min CK. CCL1 blockade alleviates human mesenchymal stem cell (hMSC)-induced pulmonary fibrosis in a murine sclerodermatous graft-versus-host disease (Scl-GVHD) model. Stem Cell Res Ther 2020; 11:254. [PMID: 32586381 PMCID: PMC7318460 DOI: 10.1186/s13287-020-01768-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/07/2020] [Accepted: 06/11/2020] [Indexed: 02/08/2023] Open
Abstract
Background Human chronic graft-versus-host disease (CGVHD) shares clinical characteristics with a murine sclerodermatous GVHD (Scl-GVHD, B10.D2 → BALB/c) model that is characterized by skin and lung fibrosis. In this study, bone marrow- or adipose tissue-derived human mesenchymal stem cells (hMSCs) were injected into the Scl-GVHD mice to address their therapeutic effect on CGVHD. Methods Lethally irradiated BALB/c mice were transplanted with B10.D2 T cell-depleted bone marrow with or without spleen cells to generate Scl-GVHD. hMSCs were intravenously treated on days 3, 5, and 7 post-transplantation, and the control antibody or CCL1 blocking antibody was subcutaneously injected according to the same schedule as the hMSCs. Fourteen days after transplantation, the recipient mice were sacrificed, and their skin and lungs were analyzed. Results After the early injection of hMSCs after transplantation, the clinical and pathological severity of Scl-GVHD in the skin was significantly attenuated, whereas the pathological score was exacerbated in the lungs. hMSCs had migrated into the lungs, but not into the skin. CD11b monocyte/macrophages and CD4 T cells were markedly decreased in skin tissues, whereas there was an early recruitment of CD11b cells, and subsequently increased infiltration of CD4 T cells, in the lungs. Importantly, hMSCs persistently upregulated the expression of CCL1 in the lungs, but not in the skin. Concurrent treatment of hMSCs with a CCL1-blocking antibody alleviated the severity of the lung histopathology score and fibrosis with the preservation of the cutaneous protective effect against CGVHD. Infiltration of CD3 T cells and CD68 macrophages and upregulation of chemokines were also decreased in lung tissues, along with the recruitment of eosinophils and tissue IgE expression. In the skin, chemokine expression was further reduced after CCL1 blockade. Conclusions These data demonstrate that despite a protective effect against Scl-GVHD in the skin, administration of hMSCs exacerbated lung fibrosis associated with eosinophilia and airway inflammation through persistent CCL1 upregulation. CCL1 blockade offers a potential treatment of pulmonary complications induced after treatment with hMSCs.
Collapse
Affiliation(s)
- Ji-Young Lim
- Hematology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpodae-ro, Seocho-gu, Seoul, 06591, South Korea
| | - Da-Bin Ryu
- Hematology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpodae-ro, Seocho-gu, Seoul, 06591, South Korea
| | - Tae Woo Kim
- Hematology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpodae-ro, Seocho-gu, Seoul, 06591, South Korea
| | - Sung-Eun Lee
- Hematology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpodae-ro, Seocho-gu, Seoul, 06591, South Korea
| | - Gyeongsin Park
- Department of Pathology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Hyoung Kyu Yoon
- Pulmonology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Chang-Ki Min
- Hematology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpodae-ro, Seocho-gu, Seoul, 06591, South Korea.
| |
Collapse
|
49
|
Abstract
Chronic wounds present a unique therapeutic challenge to heal. Chronic wounds are colonized with bacteria and the presence of a biofilm that further inhibits the normal wound healing processes, and are locked into a very damaging proinflammatory response. The treatment of chronic wounds requires a coordinated approach, including debridement of devitalized tissue, minimizing bacteria and biofilm, control of inflammation, and the use of specialized dressings to address the specific aspects of the particular nonhealing ulcer.
Collapse
|
50
|
Li S, Mohamedi AH, Senkowsky J, Nair A, Tang L. Imaging in Chronic Wound Diagnostics. Adv Wound Care (New Rochelle) 2020; 9:245-263. [PMID: 32226649 PMCID: PMC7099416 DOI: 10.1089/wound.2019.0967] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/14/2019] [Indexed: 01/18/2023] Open
Abstract
Significance: Chronic wounds affect millions of patients worldwide, placing a huge burden on health care resources. Although significant progress has been made in the development of wound treatments, very few advances have been made in wound diagnosis. Recent Advances: Standard imaging methods like computed tomography, single-photon emission computed tomography, magnetic resonance imaging, terahertz imaging, and ultrasound imaging have been widely employed in wound diagnostics. A number of noninvasive optical imaging modalities like optical coherence tomography, near-infrared spectroscopy, laser Doppler imaging, spatial frequency domain imaging, digital camera imaging, and thermal and fluorescence imaging have emerged over the years. Critical Issues: While standard diagnostic wound imaging modalities provide valuable information, they cannot account for dynamic changes in the wound environment. In addition, they lack the capability to predict the healing outcome. Thus, there remains a pressing need for more efficient methods that can not only indicate the current state of the wound but also help determine whether the wound is on track to heal normally. Future Directions: Many imaging probes have been fabricated and shown to provide real-time assessment of tissue microenvironment and inflammatory responses in vivo. These probes have been demonstrated to noninvasively detect various changes in the wound environment, which include tissue pH, reactive oxygen species, fibrin deposition, matrix metalloproteinase production, and macrophage accumulation. This review summarizes the creation of these probes and their potential implications in wound monitoring.
Collapse
Affiliation(s)
- Shuxin Li
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| | - Ali H. Mohamedi
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| | | | | | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas
| |
Collapse
|