1
|
Yang J, Shi P, Li Y, Zuo Y, Nie Y, Xu T, Peng D, An Z, Huang T, Zhang J, Zhang W, Xu Y, Tang Z, Li A, Xu J. Regulatory mechanisms orchestrating cellular diversity of Cd36+ olfactory sensory neurons revealed by scRNA-seq and scATAC-seq analysis. Cell Rep 2024; 43:114671. [PMID: 39215999 DOI: 10.1016/j.celrep.2024.114671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/12/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Recent discoveries have revealed remarkable complexity within olfactory sensory neurons (OSNs), including the existence of two OSN populations based on the expression of Cd36. However, the regulatory mechanisms governing this cellular diversity in the same cell type remain elusive. Here, we show the preferential expression of 79 olfactory receptors in Cd36+ OSNs and the anterior projection characteristics of Cd36+ OSNs, indicating the non-randomness of Cd36 expression. The integrated analysis of single-cell RNA sequencing (scRNA-seq) and scATAC-seq reveals that the differences in Cd36+/- OSNs occur at the immature OSN stage, with Mef2a and Hdac9 being important regulators of developmental divergence. We hypothesize that the absence of Hdac9 may affect the activation of Mef2a, leading to the up-regulation of Mef2a target genes, including teashirt zinc finger family member 1 (Tshz1), in the Cd36+ OSN lineage. We validate that Tshz1 directly promotes Cd36 expression through enhancer bindings. Our study unravels the intricate regulatory landscape and principles governing cellular diversity in the olfactory system.
Collapse
Affiliation(s)
- Jiawen Yang
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Peiyu Shi
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yiheng Li
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yachao Zuo
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yage Nie
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Tao Xu
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Dongjie Peng
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ziyang An
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tingting Huang
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jingyi Zhang
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Weixing Zhang
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yicong Xu
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhongjie Tang
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Anan Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Jin Xu
- State Key Laboratory of Biocontrol, Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
2
|
Adams JC. Thrombospondins: Conserved mediators and modulators of metazoan extracellular matrix. Int J Exp Pathol 2024. [PMID: 39267379 DOI: 10.1111/iep.12517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 09/17/2024] Open
Abstract
This review provides a personal overview of significant scientific developments in the thrombospondin field during the course of my career. Thrombospondins are multidomain, multimeric, calcium-binding extracellular glycoproteins with context-specific roles in tissue organisation. They act at cell surfaces and within ECM to regulate cell phenotype and signalling, differentiation and assembly of collagenous ECM, along with tissue-specific roles in cartilage, angiogenesis and synaptic function. More recently, intracellular, homeostatic roles have also been identified. Resolution of structures for the major domains of mammalian thrombospondins has facilitated major advances in understanding thrombospondin biology from molecule to tissue; for example, in illuminating molecular consequences of disease-causing coding mutations in human pseudoachrondroplasia. Although principally studied in vertebrates, thrombospondins are amongst the most ancient of animal ECM proteins, with many invertebrates encoding a single thrombospondin and the thrombospondin gene family of vertebrates originating through gene duplications. Moreover, thrombospondins form one branch of a thrombospondin superfamily that debuted at the origin of metazoans. The super-family includes additional sub-groups, present only in invertebrates, that differ in N-terminal domain organisation, share the distinctive TSP C-terminal region domain architecture and, to the limited extent studied to date, apparently contribute to tissue development and organisation. Finally, major lines of translational research are discussed, related to fibrosis; TSP1, TSP2 and inhibition of angiogenesis; and the alleviation of chronic cartilage tissue pathologies in pseudoachrondroplasia.
Collapse
|
3
|
Buras ED, Woo MS, Kaul Verma R, Kondisetti SH, Davis CS, Claflin DR, Converso-Baran K, Michele DE, Brooks SV, Chun TH. Thrombospondin-1 promotes fibro-adipogenic stromal expansion and contractile dysfunction of the diaphragm in obesity. JCI Insight 2024; 9:e175047. [PMID: 38954467 PMCID: PMC11343600 DOI: 10.1172/jci.insight.175047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
Pulmonary disorders affect 40%-80% of individuals with obesity. Respiratory muscle dysfunction is linked to these conditions; however, its pathophysiology remains largely undefined. Mice subjected to diet-induced obesity (DIO) develop diaphragm muscle weakness. Increased intradiaphragmatic adiposity and extracellular matrix (ECM) content correlate with reductions in contractile force. Thrombospondin-1 (THBS1) is an obesity-associated matricellular protein linked with muscular damage in genetic myopathies. THBS1 induces proliferation of fibro-adipogenic progenitors (FAPs) - mesenchymal cells that differentiate into adipocytes and fibroblasts. We hypothesized that THBS1 drives FAP-mediated diaphragm remodeling and contractile dysfunction in DIO. We tested this by comparing the effects of dietary challenge on diaphragms of wild-type (WT) and Thbs1-knockout (Thbs1-/-) mice. Bulk and single-cell transcriptomics demonstrated DIO-induced stromal expansion in WT diaphragms. Diaphragm FAPs displayed upregulation of ECM and TGF-β-related expression signatures and augmentation of a Thy1-expressing subpopulation previously linked to type 2 diabetes. Despite similar weight gain, Thbs1-/- mice were protected from these transcriptomic changes and from obesity-induced increases in diaphragm adiposity and ECM deposition. Unlike WT controls, Thbs1-/- diaphragms maintained normal contractile force and motion after DIO challenge. THBS1 is therefore a necessary mediator of diaphragm stromal remodeling and contractile dysfunction in overnutrition and a potential therapeutic target in obesity-associated respiratory dysfunction.
Collapse
Affiliation(s)
- Eric D. Buras
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine
| | - Moon-Sook Woo
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine
| | - Romil Kaul Verma
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine
| | | | | | - Dennis R. Claflin
- Department of Biomedical Engineering
- Department of Surgery, Section of Plastic Surgery
| | | | | | | | - Tae-Hwa Chun
- Division of Metabolism, Endocrinology and Diabetes (MEND), Department of Internal Medicine
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Wang C, Su NW, Hsu K, Kao CW, Chang MC, Chang YF, Lim KH, Chiang YH, Chang YC, Sung MT, Wu HH, Chen CG. The implication of serum HLA-G in angiogenesis of multiple myeloma. Mol Med 2024; 30:86. [PMID: 38877399 PMCID: PMC11177474 DOI: 10.1186/s10020-024-00860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Despite the advances of therapies, multiple myeloma (MM) remains an incurable hematological cancer that most patients experience relapse. Tumor angiogenesis is strongly correlated with cancer relapse. Human leukocyte antigen G (HLA-G) has been known as a molecule to suppress angiogenesis. We aimed to investigate whether soluble HLA-G (sHLA-G) was involved in the relapse of MM. METHODS We first investigated the dynamics of serum sHLA-G, vascular endothelial growth factor (VEGF) and interleukin 6 (IL-6) in 57 successfully treated MM patients undergoing remission and relapse. The interactions among these angiogenesis-related targets (sHLA-G, VEGF and IL-6) were examined in vitro. Their expression at different oxygen concentrations was investigated using a xenograft animal model by intra-bone marrow and skin grafts with myeloma cells. RESULTS We found that HLA-G protein degradation augmented angiogenesis. Soluble HLA-G directly inhibited vasculature formation in vitro. Mechanistically, HLA-G expression was regulated by hypoxia-inducible factor-1α (HIF-1α) in MM cells under hypoxia. We thus developed two mouse models of myeloma xenografts in intra-bone marrow (BM) and underneath the skin, and found a strong correlation between HLA-G and HIF-1α expressions in hypoxic BM, but not in oxygenated tissues. Yet when stimulated with IL-6, both HLA-G and HIF-1α could be targeted to ubiquitin-mediated degradation via PARKIN. CONCLUSION These results highlight the importance of sHLA-G in angiogenesis at different phases of multiple myeloma. The experimental evidence that sHLA-G as an angiogenesis suppressor in MM may be useful for future development of novel therapies to prevent relapse.
Collapse
Affiliation(s)
- Chi Wang
- Department of Laboratory Medicine, MacKay Memorial Hospital, New Taipei, 25160, Taiwan
| | - Nai-Wen Su
- Department of Hematology, MacKay Memorial Hospital, Taipei, 10449, Taiwan
- Nursing, and Management, MacKay Junior College of Medicine, New Taipei, 25245, Taiwan
| | - Kate Hsu
- Nursing, and Management, MacKay Junior College of Medicine, New Taipei, 25245, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, 25245, Taiwan
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, 25160, Taiwan
| | - Chen-Wei Kao
- Department of Hematology, GCRC Laboratory, Mackay Memorial Hospital, New Taipei City, 25160, Taiwan
| | - Ming-Chih Chang
- Department of Hematology, MacKay Memorial Hospital, Taipei, 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, 25245, Taiwan
| | - Yi-Fang Chang
- Department of Hematology, MacKay Memorial Hospital, Taipei, 10449, Taiwan
- Department of Hematology, GCRC Laboratory, Mackay Memorial Hospital, New Taipei City, 25160, Taiwan
| | - Ken-Hong Lim
- Department of Hematology, MacKay Memorial Hospital, Taipei, 10449, Taiwan
- Department of Hematology, GCRC Laboratory, Mackay Memorial Hospital, New Taipei City, 25160, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, 25245, Taiwan
| | - Yi-Hao Chiang
- Department of Hematology, MacKay Memorial Hospital, Taipei, 10449, Taiwan
- Department of Hematology, GCRC Laboratory, Mackay Memorial Hospital, New Taipei City, 25160, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, 25245, Taiwan
| | - Yu-Cheng Chang
- Department of Hematology, MacKay Memorial Hospital, Taipei, 10449, Taiwan
- Department of Hematology, GCRC Laboratory, Mackay Memorial Hospital, New Taipei City, 25160, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, 25245, Taiwan
| | - Meng-Ta Sung
- Department of Hematology, MacKay Memorial Hospital, Taipei, 10449, Taiwan
| | - Hsueh-Hsia Wu
- Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, 110, Taiwan
| | - Caleb G Chen
- Department of Hematology, MacKay Memorial Hospital, Taipei, 10449, Taiwan.
- Nursing, and Management, MacKay Junior College of Medicine, New Taipei, 25245, Taiwan.
- Department of Hematology, GCRC Laboratory, Mackay Memorial Hospital, New Taipei City, 25160, Taiwan.
- Institute of Molecular Medicine, National Tsing-Hua University, Hsin-Chu, Taiwan.
| |
Collapse
|
5
|
Chen JJ, Vincent MY, Shepard D, Peereboom D, Mahalingam D, Battiste J, Patel MR, Juric D, Wen PY, Bullock A, Selfridge JE, Pant S, Liu J, Li W, Fyfe S, Wang S, Zota V, Mahoney J, Watnick RS, Cieslewicz M, Watnick J. Phase 1 dose expansion and biomarker study assessing first-in-class tumor microenvironment modulator VT1021 in patients with advanced solid tumors. COMMUNICATIONS MEDICINE 2024; 4:95. [PMID: 38773224 PMCID: PMC11109328 DOI: 10.1038/s43856-024-00520-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/03/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Preclinical studies have demonstrated that VT1021, a first-in-class therapeutic agent, inhibits tumor growth via stimulation of thrombospondin-1 (TSP-1) and reprograms the tumor microenvironment. We recently reported data from the dose escalation part of a phase I study of VT1021 in solid tumors. Here, we report findings from the dose expansion phase of the same study. METHODS We analyzed the safety and tolerability, clinical response, and biomarker profile of VT1021 in the expansion portion of the phase I study (NCT03364400). Safety/tolerability is determined by adverse events related to the treatment. Clinical response is determined by RECIST v1.1 and iRECIST. Biomarkers are measured by multiplexed ion beam imaging and enzyme-linked immunoassay (ELISA). RESULTS First, we report the safety and tolerability data as the primary outcome of this study. Adverse events (AE) suspected to be related to the study treatment (RTEAEs) are mostly grade 1-2. There are no grade 4 or 5 adverse events. VT1021 is safe and well tolerated in patients with solid tumors in this study. We report clinical responses as a secondary efficacy outcome. VT1021 demonstrates promising single-agent clinical activity in recurrent GBM (rGBM) in this study. Among 22 patients with rGBM, the overall disease control rate (DCR) is 45% (95% confidence interval, 0.24-0.67). Finally, we report the exploratory outcomes of this study. We show the clinical confirmation of TSP-1 induction and TME remodeling by VT1021. Our biomarker analysis identifies several plasmatic cytokines as potential biomarkers for future clinical studies. CONCLUSIONS VT1021 is safe and well-tolerated in patients with solid tumors in a phase I expansion study. VT1021 has advanced to a phase II/III clinical study in glioblastoma (NCT03970447).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Manish R Patel
- Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, FL, USA
| | - Dejan Juric
- Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | - Shubham Pant
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joyce Liu
- Dana Farber Cancer Institute, Boston, MA, USA
| | - Wendy Li
- Vigeo Therapeutics, Cambridge, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Ren M, Yao S, Chen T, Luo H, Tao X, Jiang H, Yang X, Zhang H, Yu S, Wang Y, Lu A, Zhang G. Connective Tissue Growth Factor: Regulation, Diseases, and Drug Discovery. Int J Mol Sci 2024; 25:4692. [PMID: 38731911 PMCID: PMC11083620 DOI: 10.3390/ijms25094692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
In drug discovery, selecting targeted molecules is crucial as the target could directly affect drug efficacy and the treatment outcomes. As a member of the CCN family, CTGF (also known as CCN2) is an essential regulator in the progression of various diseases, including fibrosis, cancer, neurological disorders, and eye diseases. Understanding the regulatory mechanisms of CTGF in different diseases may contribute to the discovery of novel drug candidates. Summarizing the CTGF-targeting and -inhibitory drugs is also beneficial for the analysis of the efficacy, applications, and limitations of these drugs in different disease models. Therefore, we reviewed the CTGF structure, the regulatory mechanisms in various diseases, and drug development in order to provide more references for future drug discovery.
Collapse
Affiliation(s)
- Meishen Ren
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shanshan Yao
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Tienan Chen
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hang Luo
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaohui Tao
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hewen Jiang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xin Yang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Huarui Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Sifan Yu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yin Wang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
7
|
Yang J, Xiao L, Zhang L, Luo G, Ma Y, Wang X, Zhang Y. Platelets: A Potential Factor that Offers Strategies for Promoting Bone Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 38482796 DOI: 10.1089/ten.teb.2024.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bone defects represent a prevalent category of clinical injuries, causing significant pain and escalating health care burdens. Effectively addressing bone defects is thus of paramount importance. Platelets, formed from megakaryocyte lysis, have emerged as pivotal players in bone tissue repair, inflammatory responses, and angiogenesis. Their intracellular storage of various growth factors, cytokines, and membrane protein receptors contributes to these crucial functions. This article provides a comprehensive overview of platelets' roles in hematoma structure, inflammatory responses, and angiogenesis throughout the process of fracture healing. Beyond their application in conjunction with artificial bone substitute materials for treating bone defects, we propose the potential future use of anticoagulants such as heparin in combination with these materials to regulate platelet number and function, thereby promoting bone healing. Ultimately, we contemplate whether manipulating platelet function to modulate bone healing could offer innovative ideas and directions for the clinical treatment of bone defects.
Collapse
Affiliation(s)
- Jingjing Yang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Key Laboratory of Maternal and Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi Medical University, Zunyi, China
- Guizhou Provincial Key Laboratory of Medicinal Biotechnology in Colleges and Universities, Zunyi Medical University, Zunyi, China
| | - Lan Xiao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- School of Medicine and Dentistry, Griffith University, Queensland, Australia
| | - Lijia Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
- Key Laboratory of Maternal and Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi Medical University, Zunyi, China
| | - Guochen Luo
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Provincial Key Laboratory of Medicinal Biotechnology in Colleges and Universities, Zunyi Medical University, Zunyi, China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
- Key Laboratory of Maternal and Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi Medical University, Zunyi, China
| |
Collapse
|
8
|
Abstract
CD36 (also known as platelet glycoprotein IV) is expressed by a variety of different cell entities, where it possesses functions as a signaling receptor, but additionally acts as a transporter for long-chain fatty acids. This dual function of CD36 has been investigated for its relevance in immune and nonimmune cells. Although CD36 was first identified on platelets, the understanding of the role of CD36 in platelet biology remained scarce for decades. In the past few years, several discoveries have shed a new light on the CD36 signaling activity in platelets. Notably, CD36 has been recognized as a sensor for oxidized low-density lipoproteins in the circulation that mitigates the threshold for platelet activation under conditions of dyslipidemia. Thus, platelet CD36 transduces atherogenic lipid stress into an increased risk for thrombosis, myocardial infarction, and stroke. The underlying pathways that are affected by CD36 are the inhibition of cyclic nucleotide signaling pathways and simultaneously the induction of activatory signaling events. Furthermore, thrombospondin-1 secreted by activated platelets binds to CD36 and furthers paracrine platelet activation. CD36 also serves as a binding hub for different coagulation factors and, thus, contributes to the plasmatic coagulation cascade. This review provides a comprehensive overview of the recent findings on platelet CD36 and presents CD36 as a relevant target for the prevention of thrombotic events for dyslipidemic individuals with an elevated risk for thrombosis.
Collapse
Affiliation(s)
- Gerd Bendas
- Department of Pharmacy, University of Bonn, Bonn, Germany
| | - Martin Schlesinger
- Department of Pharmacy, University of Bonn, Bonn, Germany
- Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| |
Collapse
|
9
|
Genaro K, Luo ZD. Pathophysiological roles of thrombospondin-4 in disease development. Semin Cell Dev Biol 2024; 155:66-73. [PMID: 37391348 PMCID: PMC10753034 DOI: 10.1016/j.semcdb.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Thrombospondin-4 (TSP-4) belongs to the extracellular matrix glycoprotein family of thrombospondins (TSPs). The multidomain, pentameric structure of TSP-4 allows its interactions with numerous extracellular matrix components, proteins and signaling molecules that enable its modulation to various physiological and pathological processes. Characterization of TSP-4 expression under development and pathogenesis of disorders has yielded important insights into mechanisms underlying the unique role of TSP-4 in mediating various processes including cell-cell, cell-extracellular matrix interactions, cell migration, proliferation, tissue remodeling, angiogenesis, and synaptogenesis. Maladaptation of these processes in response to pathological insults and stress can accelerate the development of disorders including skeletal dysplasia, osteoporosis, degenerative joint disease, cardiovascular diseases, tumor progression/metastasis and neurological disorders. Overall, the diverse functions of TSP-4 suggest that it may be a potential marker or therapeutic target for prognosis, diagnosis, and treatment of various pathological conditions upon further investigations. This review article highlights recent findings on the role of TSP-4 in both physiological and pathological conditions with a focus on what sets it apart from other TSPs.
Collapse
Affiliation(s)
- Karina Genaro
- Department of Anesthesiology & Perioperative Care, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Z David Luo
- Department of Anesthesiology & Perioperative Care, School of Medicine, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
10
|
Liu B, Yang H, Song YS, Sorenson CM, Sheibani N. Thrombospondin-1 in vascular development, vascular function, and vascular disease. Semin Cell Dev Biol 2024; 155:32-44. [PMID: 37507331 PMCID: PMC10811293 DOI: 10.1016/j.semcdb.2023.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Angiogenesis is vital to developmental, regenerative and repair processes. It is normally regulated by a balanced production of pro- and anti-angiogenic factors. Alterations in this balance under pathological conditions are generally mediated through up-regulation of pro-angiogenic and/or downregulation of anti-angiogenic factors, leading to growth of new and abnormal blood vessels. The pathological manifestation of many diseases including cancer, ocular and vascular diseases are dependent on the growth of these new and abnormal blood vessels. Thrompospondin-1 (TSP1) was the first endogenous angiogenesis inhibitor identified and its anti-angiogenic and anti-inflammatory activities have been the subject of many studies. Studies examining the role TSP1 plays in pathogenesis of various ocular diseases and vascular dysfunctions are limited. Here we will discuss the recent studies focused on delineating the role TSP1 plays in ocular vascular development and homeostasis, and pathophysiology of various ocular and vascular diseases with a significant clinical relevance to human health.
Collapse
Affiliation(s)
- Bo Liu
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| | - Huan Yang
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Yong-Seok Song
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Christine M Sorenson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Nader Sheibani
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
11
|
Yang X, Zhao H, Li R, Chen Y, Xu Z, Shang Z. Stromal thrombospondin 1 suppresses angiogenesis in oral submucous fibrosis. Int J Oral Sci 2024; 16:17. [PMID: 38403794 PMCID: PMC10894862 DOI: 10.1038/s41368-024-00286-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/14/2023] [Accepted: 01/21/2024] [Indexed: 02/27/2024] Open
Abstract
A decline in mucosal vascularity is a histological hallmark of oral submucous fibrosis (OSF), a premalignant disease that is largely induced by betel quid chewing. However, the lack of available models has challenged studies of angiogenesis in OSF. Here, we found that the expression of thrombospondin 1 (THBS1), an endogenous angiostatic protein, was elevated in the stroma of tissues with OSF. Using a fibroblast-attached organoid (FAO) model, the overexpression of THBS1 in OSF was stably recapitulated in vitro. In the FAO model, treatment with arecoline, a major pathogenic component in areca nuts, enhanced the secretion of transforming growth factor (TGF)-β1 by epithelial cells, which then promoted the expression of THBS1 in fibroblasts. Furthermore, human umbilical vein endothelial cells (HUVECs) were incorporated into the FAO to mimic the vascularized component. Overexpression of THBS1 in fibroblasts drastically suppressed the sprouting ability of endothelial cells in vascularized FAOs (vFAOs). Consistently, treatment with arecoline reduced the expression of CD31 in vFAOs, and this effect was attenuated when the endothelial cells were preincubated with neutralizing antibody of CD36, a receptor of THBS1. Finally, in an arecoline-induced rat OSF model, THBS1 inhibition alleviated collagen deposition and the decline in vascularity in vivo. Overall, we exploited an assembled organoid model to study OSF pathogenesis and provide a rationale for targeting THBS1.
Collapse
Affiliation(s)
- Xiao Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hui Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Rui Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi Xu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
12
|
Konaklieva MI, Plotkin BJ. Targeting host-specific metabolic pathways-opportunities and challenges for anti-infective therapy. Front Mol Biosci 2024; 11:1338567. [PMID: 38455763 PMCID: PMC10918472 DOI: 10.3389/fmolb.2024.1338567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024] Open
Abstract
Microorganisms can takeover critical metabolic pathways in host cells to fuel their replication. This interaction provides an opportunity to target host metabolic pathways, in addition to the pathogen-specific ones, in the development of antimicrobials. Host-directed therapy (HDT) is an emerging strategy of anti-infective therapy, which targets host cell metabolism utilized by facultative and obligate intracellular pathogens for entry, replication, egress or persistence of infected host cells. This review provides an overview of the host lipid metabolism and links it to the challenges in the development of HDTs for viral and bacterial infections, where pathogens are using important for the host lipid enzymes, or producing their own analogous of lecithin-cholesterol acyltransferase (LCAT) and lipoprotein lipase (LPL) thus interfering with the human host's lipid metabolism.
Collapse
Affiliation(s)
| | - Balbina J. Plotkin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, United States
| |
Collapse
|
13
|
Thalwieser Z, Fonódi M, Király N, Csortos C, Boratkó A. PP2A Affects Angiogenesis via Its Interaction with a Novel Phosphorylation Site of TSP1. Int J Mol Sci 2024; 25:1844. [PMID: 38339122 PMCID: PMC10855381 DOI: 10.3390/ijms25031844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Alterations in angiogenic properties play a pivotal role in the manifestation and onset of various pathologies, including vascular diseases and cancer. Thrombospondin-1 (TSP1) protein is one of the master regulators of angiogenesis. This study unveils a novel aspect of TSP1 regulation through reversible phosphorylation. The silencing of the B55α regulatory subunit of protein phosphatase 2A (PP2A) in endothelial cells led to a significant decrease in TSP1 expression. Direct interaction between TSP1 and PP2A-B55α was confirmed via various methods. Truncated TSP1 constructs were employed to identify the phosphorylation site and the responsible kinase, ultimately pinpointing PKC as the enzyme phosphorylating TSP1 on Ser93. The biological effects of B55α-TSP1 interaction were also analyzed. B55α silencing not only counteracted the increase in TSP1 expression during wound closure but also prolonged wound closure time. Although B55α silenced cells initiated tube-like structures earlier than control cells, their spheroid formation was disrupted, leading to disintegration. Cells transfected with phosphomimic TSP1 S93D exhibited smaller spheroids and reduced effectiveness in tube formation, revealing insights into the effects of TSP1 phosphorylation on angiogenic properties. In this paper, we introduce a new regulatory mechanism of angiogenesis by reversible phosphorylation on TSP1 S93 by PKC and PP2A B55α.
Collapse
Affiliation(s)
| | | | | | | | - Anita Boratkó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (Z.T.); (M.F.); (C.C.)
| |
Collapse
|
14
|
Boss AL, Chamley LW, Brooks AES, James JL. Human placental vascular and perivascular cell heterogeneity differs between first trimester and term, and in pregnancies affected by foetal growth restriction. Mol Hum Reprod 2023; 29:gaad041. [PMID: 38059603 PMCID: PMC10746841 DOI: 10.1093/molehr/gaad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/12/2023] [Indexed: 12/08/2023] Open
Abstract
Growth-restricted placentae have a reduced vascular network, impairing exchange of nutrients and oxygen. However, little is known about the differentiation events and cell types that underpin normal/abnormal placental vascular formation and function. Here, we used 23-colour flow cytometry to characterize placental vascular/perivascular populations between first trimester and term, and in foetal growth restriction (FGR). First-trimester endothelial cells had an immature phenotype (CD144+/lowCD36-CD146low), while term endothelial cells expressed mature endothelial markers (CD36+CD146+). At term, a distinct population of CD31low endothelial cells co-expressed mesenchymal markers (CD90, CD26), indicating a capacity for endothelial to mesenchymal transition (EndMT). In FGR, compared with normal pregnancies, endothelial cells constituted 3-fold fewer villous core cells (P < 0.05), contributing to an increased perivascular: endothelial cell ratio (2.6-fold, P < 0.05). This suggests that abnormal EndMT may play a role in FGR. First-trimester endothelial cells underwent EndMT in culture, losing endothelial (CD31, CD34, CD144) and gaining mesenchymal (CD90, CD26) marker expression. Together this highlights how differences in villous core cell heterogeneity and phenotype may contribute to FGR pathophysiology across gestation.
Collapse
Affiliation(s)
- Anna L Boss
- Department of Obstetrics and Gynecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Anna E S Brooks
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Joanna L James
- Department of Obstetrics and Gynecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Caruso JA, Wang X, Murrow LM, Rodriguez CI, Chen-Tanyolac C, Vu L, Chen YY, Gascard P, Gartner ZJ, Kerlikowske K, Tlsty TD. Loss of PPARγ activity characterizes early protumorigenic stromal reprogramming and dictates the therapeutic window of opportunity. Proc Natl Acad Sci U S A 2023; 120:e2303774120. [PMID: 37816052 PMCID: PMC10589683 DOI: 10.1073/pnas.2303774120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/31/2023] [Indexed: 10/12/2023] Open
Abstract
Although robustly expressed in the disease-free (DF) breast stroma, CD36 is consistently absent from the stroma surrounding invasive breast cancers (IBCs). In this study, we primarily observed CD36 expression in adipocytes and intralobular capillaries within the DF breast. Larger vessels concentrated in interlobular regions lacked CD36 and were instead marked by the expression of CD31. When evaluated in perilesional capillaries surrounding ductal carcinoma in situ, a nonobligate IBC precursor, CD36 loss was more commonly observed in lesions associated with subsequent IBC. Peroxisome proliferator-activated receptor γ (PPARγ) governs the expression of CD36 and genes involved in differentiation, metabolism, angiogenesis, and inflammation. Coincident with CD36 loss, we observed a dramatic suppression of PPARγ and its target genes in capillary endothelial cells (ECs) and pericytes, which typically surround and support the stability of the capillary endothelium. Factors present in conditioned media from malignant cells repressed PPARγ and its target genes not only in cultured ECs and pericytes but also in adipocytes, which require PPARγ for proper differentiation. In addition, we identified a role for PPARγ in opposing the transition of pericytes toward a tumor-supportive myofibroblast phenotype. In mouse xenograft models, early intervention with rosiglitazone, a PPARγ agonist, demonstrated significant antitumor effects; however, following the development of a palpable tumor, the antitumor effects of rosiglitazone were negated by the repression of PPARγ in the mouse stroma. In summary, PPARγ activity in healthy tissues places several stromal cell types in an antitumorigenic state, directly inhibiting EC proliferation, maintaining adipocyte differentiation, and suppressing the transition of pericytes into tumor-supportive myofibroblasts.
Collapse
Affiliation(s)
- Joseph A Caruso
- Department of Pathology, University of California, San Francisco, CA 94143
| | - Xianhong Wang
- Department of Pathology, University of California, San Francisco, CA 94143
| | - Lyndsay M Murrow
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
| | | | | | - Lisa Vu
- Department of Medicine and Epidemiology and Biostatistics, University of California, San Francisco, CA 94143
| | - Yunn-Yi Chen
- Department of Pathology, University of California, San Francisco, CA 94143
| | - Philippe Gascard
- Department of Pathology, University of California, San Francisco, CA 94143
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
| | - Karla Kerlikowske
- Department of Medicine and Epidemiology and Biostatistics, University of California, San Francisco, CA 94143
| | - Thea D Tlsty
- Department of Pathology, University of California, San Francisco, CA 94143
| |
Collapse
|
16
|
Choi W, Nensel AK, Droho S, Fattah MA, Mokashi-Punekar S, Swygart DI, Burton ST, Schwartz GW, Lavine JA, Gianneschi NC. Thrombospondin-1 proteomimetic polymers exhibit anti-angiogenic activity in a neovascular age-related macular degeneration mouse model. SCIENCE ADVANCES 2023; 9:eadi8534. [PMID: 37831763 PMCID: PMC10575579 DOI: 10.1126/sciadv.adi8534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023]
Abstract
Neovascular age-related macular degeneration (nAMD) is the leading cause of blindness in the developed world. Current therapy includes monthly intraocular injections of anti-VEGF antibodies, which are ineffective in up to one third of patients. Thrombospondin-1 (TSP1) inhibits angiogenesis via CD36 binding, and its down-regulated expression is negatively associated with the onset of nAMD. Here, we describe TSP1 mimetic protein-like polymers (TSP1 PLPs). TSP1 PLPs bind CD36 with high affinity, resist degradation, show prolonged intraocular half-lives (13.1 hours), have no toxicity at relevant concentrations in vivo (40 μM), and are more efficacious in ex vivo choroidal sprouting assays compared to the peptide sequence and Eylea (aflibercept), the current standard of care anti-VEGF treatment. Furthermore, PLPs exhibit superior in vivo efficacy in a mouse model for nAMD compared to control PLPs consisting of scrambled peptide sequences, using fluorescein angiography and immunofluorescence. Since TSP-1 inhibits angiogenesis by VEGF-dependent and independent mechanisms, TSP1 PLPs are a potential therapeutic for patients with anti-VEGF treatment-resistant nAMD.
Collapse
Affiliation(s)
- Wonmin Choi
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
| | - Ashley K. Nensel
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
| | - Steven Droho
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mara A. Fattah
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
| | - Soumitra Mokashi-Punekar
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
| | - David I. Swygart
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neuroscience, Weinberg School of Arts and Sciences, Northwestern University, Chicago, IL, USA
| | - Spencer T. Burton
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
| | - Greg W. Schwartz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neuroscience, Weinberg School of Arts and Sciences, Northwestern University, Chicago, IL, USA
| | - Jeremy A. Lavine
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nathan C. Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Biomedical Engineering, Pharmacology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, USA
| |
Collapse
|
17
|
Monaco CF, Davis JS. Mechanisms of angioregression of the corpus luteum. Front Physiol 2023; 14:1254943. [PMID: 37841308 PMCID: PMC10568036 DOI: 10.3389/fphys.2023.1254943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
The corpus luteum is a transient ovarian endocrine gland that produces the progesterone necessary for the establishment and maintenance of pregnancy. The formation and function of this gland involves angiogenesis, establishing the tissue with a robust blood flow and vast microvasculature required to support production of progesterone. Every steroidogenic cell within the corpus luteum is in direct contact with a capillary, and disruption of angiogenesis impairs luteal development and function. At the end of a reproductive cycle, the corpus luteum ceases progesterone production and undergoes rapid structural regression into a nonfunctional corpus albicans in a process initiated and exacerbated by the luteolysin prostaglandin F2α (PGF2α). Structural regression is accompanied by complete regression of the luteal microvasculature in which endothelial cells die and are sloughed off into capillaries and lymphatic vessels. During luteal regression, changes in nitric oxide transiently increase blood flow, followed by a reduction in blood flow and progesterone secretion. Early luteal regression is marked by an increased production of cytokines and chemokines and influx of immune cells. Microvascular endothelial cells are sensitive to released factors during luteolysis, including thrombospondin, endothelin, and cytokines like tumor necrosis factor alpha (TNF) and transforming growth factor β 1 (TGFB1). Although PGF2α is known to be a vasoconstrictor, endothelial cells do not express receptors for PGF2α, therefore it is believed that the angioregression occurring during luteolysis is mediated by factors downstream of PGF2α signaling. Yet, the exact mechanisms responsible for angioregression in the corpus luteum remain unknown. This review describes the current knowledge on angioregression of the corpus luteum and the roles of vasoactive factors released during luteolysis on luteal vasculature and endothelial cells of the microvasculature.
Collapse
Affiliation(s)
- Corrine F. Monaco
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, United States
| | - John S. Davis
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, United States
- US Department of Veterans Affairs Nebraska-Western Iowa Healthcare System, Omaha, NE, United States
| |
Collapse
|
18
|
Omatsu M, Nakanishi Y, Iwane K, Aoyama N, Duran A, Muta Y, Martinez-Ordoñez A, Han Q, Agatsuma N, Mizukoshi K, Kawai M, Yamakawa G, Namikawa M, Hamada K, Fukunaga Y, Utsumi T, Sono M, Masuda T, Hata A, Araki O, Nagao M, Yoshikawa T, Ogawa S, Hiramatsu Y, Tsuda M, Maruno T, Kogame T, Kasashima H, Kakiuchi N, Nakagawa MM, Kawada K, Yashiro M, Maeda K, Saito Y, Matozaki T, Fukuda A, Kabashima K, Obama K, Ogawa S, Sheibani N, Diaz-Meco MT, Moscat J, Seno H. THBS1-producing tumor-infiltrating monocyte-like cells contribute to immunosuppression and metastasis in colorectal cancer. Nat Commun 2023; 14:5534. [PMID: 37749092 PMCID: PMC10520015 DOI: 10.1038/s41467-023-41095-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
Mesenchymal activation, characterized by dense stromal infiltration of immune and mesenchymal cells, fuels the aggressiveness of colorectal cancers (CRC), driving progression and metastasis. Targetable molecules in the tumor microenvironment (TME) need to be identified to improve the outcome in CRC patients with this aggressive phenotype. This study reports a positive link between high thrombospondin-1 (THBS1) expression and mesenchymal characteristics, immunosuppression, and unfavorable CRC prognosis. Bone marrow-derived monocyte-like cells recruited by CXCL12 are the primary source of THBS1, which contributes to the development of metastasis by inducing cytotoxic T-cell exhaustion and impairing vascularization. Furthermore, in orthotopically generated CRC models in male mice, THBS1 loss in the TME renders tumors partially sensitive to immune checkpoint inhibitors and anti-cancer drugs. Our study establishes THBS1 as a potential biomarker for identifying mesenchymal CRC and as a critical suppressor of antitumor immunity that contributes to the progression of this malignancy with a poor prognosis.
Collapse
Affiliation(s)
- Mayuki Omatsu
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Kosuke Iwane
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoki Aoyama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Angeles Duran
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, USA
| | - Yu Muta
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, USA
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Anxo Martinez-Ordoñez
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, USA
| | - Qixiu Han
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, USA
| | - Nobukazu Agatsuma
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenta Mizukoshi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Munenori Kawai
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Go Yamakawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mio Namikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kensuke Hamada
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuichi Fukunaga
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Cancer Research Unit, Sumitomo Pharma Co., Ltd, Osaka, Japan
| | - Takahiro Utsumi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Makoto Sono
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomonori Masuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akitaka Hata
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Osamu Araki
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Munemasa Nagao
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takaaki Yoshikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoshi Ogawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yukiko Hiramatsu
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Motoyuki Tsuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshiaki Kogame
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroaki Kasashima
- Department of Gastroenterological Surgery, Osaka Metropolitan University, Osaka, Japan
| | - Nobuyuki Kakiuchi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
| | | | - Kenji Kawada
- Department of Gastrointestinal Surgery, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Masakazu Yashiro
- Department of Gastroenterological Surgery, Osaka Metropolitan University, Osaka, Japan
| | - Kiyoshi Maeda
- Department of Gastroenterological Surgery, Osaka Metropolitan University, Osaka, Japan
| | - Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Biosignal Regulation, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akihisa Fukuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazutaka Obama
- Department of Gastrointestinal Surgery, Kyoto University, Graduate School of Medicine, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-, Madison, Wisconsin, USA
| | - Maria T Diaz-Meco
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, USA
| | - Jorge Moscat
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, USA
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
19
|
Buras ED, Woo MS, Verma RK, Kondisetti SH, Davis CS, Claflin DR, Baran KC, Michele DE, Brooks SV, Chun TH. Thrombospondin-1 promotes fibro-adipogenic stromal expansion and contractile dysfunction of the diaphragm in obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553733. [PMID: 37645822 PMCID: PMC10462153 DOI: 10.1101/2023.08.17.553733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Pulmonary disorders impact 40-80% of individuals with obesity. Respiratory muscle dysfunction is linked to these conditions; however, its pathophysiology remains largely undefined. Mice subjected to diet-induced obesity (DIO) develop diaphragmatic weakness. Increased intra-diaphragmatic adiposity and extracellular matrix (ECM) content correlate with reductions in contractile force. Thrombospondin-1 (THBS1) is an obesity-associated matricellular protein linked with muscular damage in genetic myopathies. THBS1 induces proliferation of fibro-adipogenic progenitors (FAPs)-mesenchymal cells that differentiate into adipocytes and fibroblasts. We hypothesized that THBS1 drives FAP-mediated diaphragm remodeling and contractile dysfunction in DIO. We tested this by comparing effects of dietary challenge on diaphragms of wild-type (WT) and Thbs1 knockout ( Thbs1 -/- ) mice. Bulk and single-cell transcriptomics demonstrated DIO-induced stromal expansion in WT diaphragms. Diaphragm FAPs displayed upregulation of ECM and TGFβ-related expression signatures, and augmentation of a Thy1 -expressing sub-population previously linked to type 2 diabetes. Despite similar weight gain, Thbs1 -/- mice were protected from these transcriptomic changes, and from obesity-induced increases in diaphragm adiposity and ECM deposition. Unlike WT controls, Thbs1 -/- diaphragms maintained normal contractile force and motion after DIO challenge. These findings establish THBS1 as a necessary mediator of diaphragm stromal remodeling and contractile dysfunction in overnutrition, and potential therapeutic target in obesity-associated respiratory dysfunction.
Collapse
|
20
|
Obasanmi G, Zeglinski MR, Hardie E, Wilhelm AC, Turner CT, Hiroyasu S, Boivin WA, Tian Y, Zhao H, To E, Cui JZ, Xi J, Yoo HS, Uppal M, Granville DJ, Matsubara JA. Granzyme B Contributes to Choroidal Neovascularization and Age-Related Macular Degeneration Through Proteolysis of Thrombospondin-1. J Transl Med 2023; 103:100123. [PMID: 36849037 DOI: 10.1016/j.labinv.2023.100123] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/27/2023] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible central vision loss in the elderly. The pathology of neovascular age-related macular degeneration (nAMD), also known as wet AMD, is associated with an abnormal blood vessel growth in the eye and involves an imbalance of proangiogenic and antiangiogenic factors. Thrombospondin (TSP)-1 and TSP-2 are endogenous matricellular proteins that inhibit angiogenesis. TSP-1 is significantly diminished in eyes with AMD, although the mechanisms involved in its reduction are unknown. Granzyme B (GzmB) is a serine protease with an increased extracellular activity in the outer retina and choroid of human eyes with nAMD-related choroidal neovascularization (CNV). This study investigated whether TSP-1 and TSP-2 are GzmB substrates using in silico and cell-free cleavage assays and explored the relationship between GzmB and TSP-1 in human eyes with nAMD-related CNV and the effect of GzmB on TSP-1 in retinal pigment epithelial culture and an explant choroid sprouting assay (CSA). In this study, TSP-1 and TSP-2 were identified as GzmB substrates. Cell-free cleavage assays substantiated the GzmB proteolysis of TSP-1 and TSP-2 by showing dose-dependent and time-dependent cleavage products. TSP-1 and TSP-2 proteolysis were hindered by the inhibition of GzmB. In the retinal pigment epithelium and choroid of human eyes with CNV, we observed a significant inverse correlation between TSP-1 and GzmB, as indicated by lower TSP-1 and higher GzmB immunoreactivity. In CSA, the vascular sprouting area increased significantly with GzmB treatment and reduced significantly with TSP-1 treatment. Western blot showed significantly reduced expression of TSP-1 in GzmB-treated retinal pigment epithelial cell culture and CSA supernatant compared with that in controls. Together, our findings suggest that the proteolysis of antiangiogenic factors such as TSP-1 by extracellular GzmB might represent a mechanism through which GzmB may contribute to nAMD-related CNV. Future studies are needed to investigate whether pharmacologic inhibition of extracellular GzmB can mitigate nAMD-related CNV by preserving intact TSP-1.
Collapse
Affiliation(s)
- Gideon Obasanmi
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew R Zeglinski
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ella Hardie
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anna-Catharina Wilhelm
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher T Turner
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sho Hiroyasu
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wendy A Boivin
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuan Tian
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hongyan Zhao
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eleanor To
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jing Z Cui
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeanne Xi
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hyung-Suk Yoo
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Manjosh Uppal
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joanne A Matsubara
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
21
|
Hayashi KG, Sakumoto R. Differential expression of pro- and anti-angiogenic factors in the endometrium between repeat breeder and normally fertile cows. Anim Reprod Sci 2023; 254:107265. [PMID: 37270879 DOI: 10.1016/j.anireprosci.2023.107265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023]
Abstract
In cattle, the establishment of appropriate endometrial vasculature during the estrous cycle is required for preparing a receptive endometrium. This study aimed to investigate 1) mRNA expression of potent pro- and anti-angiogenic factors, 2) protein localization of the anti-angiogenic factor thrombospondin (TSP), and 3) vascularity in the endometrium of repeat breeder (RB) and normally fertile (non-RB) cows. Caruncular and intercaruncular endometrium was collected from RB and non-RB cows during the luteal phase of the estrous cycle. RB cows had greater mRNA expression levels of TSP ligands (TSP1 and TSP2) and receptors (CD36 and CD47) than non-RB cows. Although the mRNA expression levels of most angiogenic factors did not change by repeat breeding, RB cows had greater mRNA expression of fibroblast growth factor receptor 1 (FGFR1), angiopoietin 1 (ANGPT1), and ANGPT2 and a less mRNA expression of vascular endothelial growth factor B (VEGFB) than non-RB cows. By immunohistochemistry, TSP1, TSP2, CD36, and CD47 were detected in the luminal epithelium, glandular epithelium, stromal cells, and blood vessels of the endometrium. Two indexes of vascularity, the number of blood vessels and the percentage of area stained positive for the von Willebrand factor, were lower in the endometrium of RB than in that of non-RB cows. These results demonstrate that RB cows have a greater expression of both ligands and receptors for the anti-angiogenic factor TSP and a reduced vascular distribution in the endometrium compared with non-RB cows, suggesting suppressed endometrial angiogenesis.
Collapse
Affiliation(s)
- Ken-Go Hayashi
- Division of Advanced Feeding Technology Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba 305-0901, Japan.
| | - Ryosuke Sakumoto
- Division of Advanced Feeding Technology Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba 305-0901, Japan.
| |
Collapse
|
22
|
Monsen VT, Attramadal H. Structural insights into regulation of CCN protein activities and functions. J Cell Commun Signal 2023:10.1007/s12079-023-00768-5. [PMID: 37245184 DOI: 10.1007/s12079-023-00768-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/07/2023] [Indexed: 05/29/2023] Open
Abstract
CCN proteins play important functions during development, in repair mechanisms following tissue injury, as well as in pathophysiologic mechanisms of metastasis of cancer. CCNs are secreted proteins that have a multimodular structure and are categorized as matricellular proteins. Although the prevailing view is that CCN proteins regulate biologic processes by interacting with a wide array of other proteins in the microenvironment of the extracellular matrix, the molecular mechanisms of action of CCN proteins are still poorly understood. Not dissuading the current view, however, the recent appreciation that these proteins are signaling proteins in their own right and may even be considered preproproteins controlled by endopeptidases to release a C-terminal bioactive peptide has opened new avenues of research. Also, the recent resolution of the crystal structure of two of the domains of CCN3 have provided new knowledge with implications for the entire CCN family. These resolved structures in combination with structural predictions based upon the AlphaFold artificial intelligence tool provide means to shed new light on CCN functions in context of the notable literature in the field. CCN proteins have emerged as important therapeutic targets in several disease conditions, and clinical trials are currently ongoing. Thus, a review that critically discusses structure - function relationship of CCN proteins, in particular as it relates to interactions with other proteins in the extracellular milieu and on the cell surface, as well as to cell signaling activities of these proteins, is very timely. Suggested mechanism for activation and inhibition of signaling by the CCN protein family (graphics generated with BioRender.com ).
Collapse
Affiliation(s)
- Vivi Talstad Monsen
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Håvard Attramadal
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
23
|
Silhavy J, Mlejnek P, Šimáková M, Marková I, Malínská H, Hüttl M, Kazdová L, Kazantsev D, Mancini M, Novotný J, Pravenec M. CD36 regulates substrates utilisation in brown adipose tissue of spontaneously hypertensive rats: In vitro study. PLoS One 2023; 18:e0283276. [PMID: 37053180 PMCID: PMC10101526 DOI: 10.1371/journal.pone.0283276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/06/2023] [Indexed: 04/14/2023] Open
Abstract
Thermogenesis in brown adipose tissue (BAT) uses intracellular triglycerides, circulating free fatty acids and glucose as the main substrates. The objective of the current study was to analyse the role of CD36 fatty acid translocase in regulation of glucose and fatty acid utilisation in BAT. BAT isolated from spontaneously hypertensive rat (SHR) with mutant Cd36 gene and SHR-Cd36 transgenic rats with wild type variant was incubated in media containing labeled glucose and palmitate to measure substrate incorporation and oxidation. SHR-Cd36 versus SHR rats showed significantly increased glucose incorporation into intracellular lipids associated with reduced glycogen synthase kinase 3β (GSK-3β) protein expression and phosphorylation and increased oxidation of exogenous palmitate. It can be concluded that CD36 enhances glucose transport for lipogenesis in BAT by suppressing GSK-3β and promotes direct palmitate oxidation.
Collapse
Affiliation(s)
- Jan Silhavy
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Mlejnek
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslava Šimáková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Irena Marková
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Hana Malínská
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martina Hüttl
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ludmila Kazdová
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Dmitry Kazantsev
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
- 1st Faculty of Medicine, Institute of Pathological Physiology, Charles University, Prague, Czech Republic
| | - Massimiliano Mancini
- Division of Morphologic and Molecular Pathology, S. Andrea Hospital, Sapienza, University of Rome, Rome, Italy
| | - Jiří Novotný
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
24
|
Carminati L, Carlessi E, Longhi E, Taraboletti G. Controlled extracellular proteolysis of thrombospondins. Matrix Biol 2023; 119:82-100. [PMID: 37003348 DOI: 10.1016/j.matbio.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Limited proteolysis of thrombospondins is a powerful mechanism to ensure dynamic tuning of their activities in the extracellular space. Thrombospondins are multifunctional matricellular proteins composed of multiple domains, each with a specific pattern of interactions with cell receptors, matrix components and soluble factors (growth factors, cytokines and proteases), thus with different effects on cell behavior and responses to changes in the microenvironment. Therefore, the proteolytic degradation of thrombospondins has multiple functional consequences, reflecting the local release of active fragments and isolated domains, exposure or disruption of active sequences, altered protein location, and changes in the composition and function of TSP-based pericellular interaction networks. In this review current data from the literature and databases is employed to provide an overview of cleavage of mammalian thrombospondins by different proteases. The roles of the fragments generated in specific pathological settings, with particular focus on cancer and the tumor microenvironment, are discussed.
Collapse
Affiliation(s)
- Laura Carminati
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Elena Carlessi
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Elisa Longhi
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Giulia Taraboletti
- Laboratory of Tumor Microenvironment, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy.
| |
Collapse
|
25
|
Chen L, Fang W, Chen W, Wei Y, Ding J, Li J, Lin J, Wu Q. Deciphering the molecular mechanism of the THBS1 gene in the TNF signaling axis in glioma stem cells. Cell Signal 2023; 106:110656. [PMID: 36935087 DOI: 10.1016/j.cellsig.2023.110656] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Glioma stem cells (GSCs) are thought to be responsible for the initiation and progression of glioblastoma (GBM). GBM presents highly invasive growth with a very high recurrence rate, so it has become a clinical problem to be solved urgently. RNAseq demonstrates that thrombospondin 1 (THBS1) acts not only in the angiogenic core of glioma but also with a high degree of invasiveness and infiltration. Nevertheless, defects in the signaling pathway research lead to a poor prognosis in glioma patients. To investigate the relevant molecular mechanism and signal pathway of glioma stem cell behavior mediated by THBS1, U251 astroglioma cells and GSCs were taken as model cells for in vitro experiments. The biological effects of THBS1 on glioma proliferation, migration, and adhesion were evaluated using Cell Counting Kit-8(CCK8) assays, EdU incorporation assays, migration assays, Transwell assays, Western blotting, and RNAseq. We found that the knockout of the THBS1 gene by CRISPR/Cas9 promoted proliferation and migration in U251 cells and GSCs, as well as influencing cell cycle progression by regulating the TNF/MAPK/NF-κB and TGF-β/Smad signaling pathways. Moreover, U251 cells and GSCs showed different responses to THBS1 knockout, suggesting specific and potential targets for GSCs in signaling pathways mediated by THBS1.
Collapse
Affiliation(s)
- Liqun Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Wei Fang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Weizhi Chen
- Department of Trauma Center & Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yiliu Wei
- Department of Trauma Center & Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jinwang Ding
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Jiafeng Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Jun Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China.
| | - Qiaoyi Wu
- Department of Trauma Center & Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Trauma Center and Emergency Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
26
|
Zanini F, Che X, Knutsen C, Liu M, Suresh NE, Domingo-Gonzalez R, Dou SH, Zhang D, Pryhuber GS, Jones RC, Quake SR, Cornfield DN, Alvira CM. Developmental diversity and unique sensitivity to injury of lung endothelial subtypes during postnatal growth. iScience 2023; 26:106097. [PMID: 36879800 PMCID: PMC9984561 DOI: 10.1016/j.isci.2023.106097] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/20/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
At birth, the lung is still immature, heightening susceptibility to injury but enhancing regenerative capacity. Angiogenesis drives postnatal lung development. Therefore, we profiled the transcriptional ontogeny and sensitivity to injury of pulmonary endothelial cells (EC) during early postnatal life. Although subtype speciation was evident at birth, immature lung EC exhibited transcriptomes distinct from mature counterparts, which progressed dynamically over time. Gradual, temporal changes in aerocyte capillary EC (CAP2) contrasted with more marked alterations in general capillary EC (CAP1) phenotype, including distinct CAP1 present only in the early alveolar lung expressing Peg3, a paternally imprinted transcription factor. Hyperoxia, an injury that impairs angiogenesis induced both common and unique endothelial gene signatures, dysregulated capillary EC crosstalk, and suppressed CAP1 proliferation while stimulating venous EC proliferation. These data highlight the diversity, transcriptomic evolution, and pleiotropic responses to injury of immature lung EC, possessing broad implications for lung development and injury across the lifespan.
Collapse
Affiliation(s)
- Fabio Zanini
- Prince of Wales Clinical School, Lowy Cancer Research Centre, University of New South Wales, Sydney, Kensington, NSW 2052, Australia
| | - Xibing Che
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Carsten Knutsen
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Min Liu
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nina E. Suresh
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Racquel Domingo-Gonzalez
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Steve H. Dou
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daoqin Zhang
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gloria S. Pryhuber
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Robert C. Jones
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Stephen R. Quake
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - David N. Cornfield
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cristina M. Alvira
- Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Critical Care Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
27
|
Ma Z, Wang M, Xu X, Zhang Y, Zhong J, Chen M, Su P, Zhao L. Thrombospondin-1 plasma levels associated with in-hospital major adverse cardiovascular events in patients with acute coronary syndrome. Int J Cardiol 2023; 375:98-103. [PMID: 36640963 DOI: 10.1016/j.ijcard.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/25/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
BACKGROUND Thrombospondin-1, a large matricellular glycoprotein, exerts multifaced biological effects on the cardiovascular system and is correlated with cardiovascular diseases. Its plasma levels and correlation with in-hospital prognosis are yet unclear in the acute coronary syndrome population. The present study aimed to evaluate the correlation between thrombospondin-1 plasma levels and in-hospital adverse events in patients with acute coronary syndrome. METHODS This is a cross-sectional study. A total of 341 inpatients with acute coronary syndrome were recruited in Beijing Chaoyang Hosipital from May 2021 to November 2021. The thrombospondin-1 plasma levels were measured, and the in-hospital major adverse cardiovascular events, including all-cause death, recurrent ischemia, arrhythmias, and heart failure, were recorded. This correlation was assessed by logistic regression analysis. RESULTS The thrombospondin-1 plasma levels were higher in patients with non-ST-elevation myocardial infarction and ST-elevation myocardial infarction compared to those in unstable angina (P < 0.001), while the differences between the two different types of myocardial infarction were not statistically different. Thrombospondin-1 plasma levels were correlated with GRACE score, leukocytes, neutrophils, platelets, troponin I, creatine kinase-MB, D-dimer, C-reactive protein, erythrocyte sedimentation rate, and log10 brain natriuretic peptide. Furthermore, thrombospondin-1 plasma levels were associated with the in-hospital major adverse cardiovascular events in patients with acute coronary syndrome (P = 0.001). CONCLUSIONS Thrombospondin-1 plasma levels were higher in patients with myocardial infarction than those in unstable angina. The high thrombospondin-1 plasma levels were associated with in-hospital major adverse cardiovascular events.
Collapse
Affiliation(s)
- Zheng Ma
- Department of Cardiology, Beijing Tongren Hospital, Capital Medical University, NO.1 Dongjiao Minxiang, Dongcheng District, Beijing 100730, China
| | - Meiping Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, NO.10 Xitoutiao, Youanmen, Fengtai District, Beijing 100054, China
| | - Xiaorong Xu
- Heart Center, Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, NO.8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing 100020, China
| | - Yeping Zhang
- Heart Center, Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, NO.8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing 100020, China
| | - Jiuchang Zhong
- Heart Center, Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, NO.8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing 100020, China
| | - Mulei Chen
- Heart Center, Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, NO.8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing 100020, China
| | - Pixiong Su
- Heart Center, Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, NO.8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing 100020, China.
| | - Lei Zhao
- Heart Center, Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, NO.8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing 100020, China.
| |
Collapse
|
28
|
Raths F, Karimzadeh M, Ing N, Martinez A, Yang Y, Qu Y, Lee TY, Mulligan B, Devkota S, Tilley WT, Hickey TE, Wang B, Giuliano AE, Bose S, Goodarzi H, Ray EC, Cui X, Knott SR. The molecular consequences of androgen activity in the human breast. CELL GENOMICS 2023; 3:100272. [PMID: 36950379 PMCID: PMC10025454 DOI: 10.1016/j.xgen.2023.100272] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/20/2022] [Accepted: 01/30/2023] [Indexed: 03/24/2023]
Abstract
Estrogen and progesterone have been extensively studied in the mammary gland, but the molecular effects of androgen remain largely unexplored. Transgender men are recorded as female at birth but identify as male and may undergo gender-affirming androgen therapy to align their physical characteristics and gender identity. Here we perform single-cell-resolution transcriptome, chromatin, and spatial profiling of breast tissues from transgender men following androgen therapy. We find canonical androgen receptor gene targets are upregulated in cells expressing the androgen receptor and that paracrine signaling likely drives sex-relevant androgenic effects in other cell types. We also observe involution of the epithelium and a spatial reconfiguration of immune, fibroblast, and vascular cells, and identify a gene regulatory network associated with androgen-induced fat loss. This work elucidates the molecular consequences of androgen activity in the human breast at single-cell resolution.
Collapse
Affiliation(s)
- Florian Raths
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mehran Karimzadeh
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Vector Institute, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Nathan Ing
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrew Martinez
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yoona Yang
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ying Qu
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tian-Yu Lee
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Brianna Mulligan
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Suzanne Devkota
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Wayne T. Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
- Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
| | - Theresa E. Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Bo Wang
- Vector Institute, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | | | - Shikha Bose
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Edward C. Ray
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Transgender Surgery and Health Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Xiaojiang Cui
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Simon R.V. Knott
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
29
|
Yang R, Liu Q, Zhang M. The Past and Present Lives of the Intraocular Transmembrane Protein CD36. Cells 2022; 12:cells12010171. [PMID: 36611964 PMCID: PMC9818597 DOI: 10.3390/cells12010171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Cluster of differentiation 36 (CD36) belongs to the B2 receptors of the scavenger receptor class B family, which is comprised of single-chain secondary transmembrane glycoproteins. It is present in a variety of cell types, including monocytes, macrophages, microvascular endothelial cells, adipocytes, hepatocytes, platelets, skeletal muscle cells, kidney cells, cardiomyocytes, taste bud cells, and a variety of other cell types. CD36 can be localized on the cell surface, mitochondria, endoplasmic reticulum, and endosomes, playing a role in lipid accumulation, oxidative stress injury, apoptosis, and inflammatory signaling. Recent studies have found that CD36 is expressed in a variety of ocular cells, including retinal pigment epithelium (RPE), retinal microvascular endothelial cells, retinal ganglion cells (RGC), Müller cells, and photoreceptor cells, playing an important role in eye diseases, such as age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma. Therefore, a comprehensive understanding of CD36 function and downstream signaling pathways is of great significance for the prevention and treatment of eye diseases. This article reviews the molecular characteristics, distribution, and function of scavenger receptor CD36 and its role in ophthalmology in order to deepen the understanding of CD36 in eye diseases and provide new ideas for treatment strategies.
Collapse
Affiliation(s)
- Rucui Yang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
- Department of Ophthalmology, Shantou University Medical College, Shantou University, Shantou 515041, China
| | - Qingping Liu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
| | - Mingzhi Zhang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
| |
Collapse
|
30
|
PRSS2 remodels the tumor microenvironment via repression of Tsp1 to stimulate tumor growth and progression. Nat Commun 2022; 13:7959. [PMID: 36575174 PMCID: PMC9794699 DOI: 10.1038/s41467-022-35649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
The progression of cancer from localized to metastatic disease is the primary cause of morbidity and mortality. The interplay between the tumor and its microenvironment is the key driver in this process of tumor progression. In order for tumors to progress and metastasize they must reprogram the cells that make up the microenvironment to promote tumor growth and suppress endogenous defense systems, such as the immune and inflammatory response. We have previously demonstrated that stimulation of Tsp-1 in the tumor microenvironment (TME) potently inhibits tumor growth and progression. Here, we identify a novel tumor-mediated mechanism that represses the expression of Tsp-1 in the TME via secretion of the serine protease PRSS2. We demonstrate that PRSS2 represses Tsp-1, not via its enzymatic activity, but by binding to low-density lipoprotein receptor-related protein 1 (LRP1). These findings describe a hitherto undescribed activity for PRSS2 through binding to LRP1 and represent a potential therapeutic strategy to treat cancer by blocking the PRSS2-mediated repression of Tsp-1. Based on the ability of PRSS2 to reprogram the tumor microenvironment, this discovery could lead to the development of therapeutic agents that are indication agnostic.
Collapse
|
31
|
Isthmin-A Multifaceted Protein Family. Cells 2022; 12:cells12010017. [PMID: 36611811 PMCID: PMC9818725 DOI: 10.3390/cells12010017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Isthmin (ISM) is a secreted protein family with two members, namely ISM1 and ISM2, both containing a TSR1 domain followed by an AMOP domain. Its broad expression pattern suggests diverse functions in developmental and physiological processes. Over the past few years, multiple studies have focused on the functional analysis of the ISM protein family in several events, including angiogenesis, metabolism, organ homeostasis, immunity, craniofacial development, and cancer. Even though ISM was identified two decades ago, we are still short of understanding the roles of the ISM protein family in embryonic development and other pathological processes. To address the role of ISM, functional studies have begun but unresolved issues remain. To elucidate the regulatory mechanism of ISM, it is crucial to determine its interactions with other ligands and receptors that lead to the activation of downstream signalling pathways. This review provides a perspective on the gene organization and evolution of the ISM family, their links with developmental and physiological functions, and key questions for the future.
Collapse
|
32
|
Zolfaghari S, Kaasbøll OJ, Monsen VT, Sredic B, Hagelin EMV, Attramadal H. The carboxyl-terminal TSP1-homology domain is the biologically active effector peptide of matricellular protein CCN5 that counteracts profibrotic CCN2. J Biol Chem 2022; 299:102803. [PMID: 36529291 PMCID: PMC9860493 DOI: 10.1016/j.jbc.2022.102803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Cellular Communication Network (CCN) proteins have multimodular structures important for their roles in cellular responses associated with organ development and tissue homeostasis. CCN2 has previously been reported to be secreted as a preproprotein that requires proteolytic activation to release its bioactive carboxyl-terminal fragment. Here, our goal was to resolve whether CCN5, a divergent member of the CCN family with converse functions relative to CCN2, releases the TSP1 homology domain as its bioactive signaling entity. The recombinant CCN5 or CCN3 TSP1 homology domains were produced in ExpiCHO-S or DG44 CHO cells as secretory fusion proteins appended to the carboxyl-terminal end of His-Halo-Sumo or amino-terminal end of human albumin and purified from the cell culture medium. We tested these fusion proteins in various phosphokinase signaling pathways or cell physiologic assays. Fusion proteins with the CCN5 TSP1 domain inhibited key signaling pathways previously reported to be stimulated by CCN2, irrespective of fusion partner. The fusion proteins also efficiently inhibited CCN1/2-stimulated cell migration and gap closure following scratch wound of fibroblasts. Fusion protein with the CCN3 TSP1 domain inhibited these functions with similar efficacy and potency as that of the CCN5 TSP1 domain. The CCN5 TSP1 domain also recapitulated a positive regulatory function previously assigned to full-length CCN5, that is, induction of estrogen receptor-α mRNA expression in triple negative MDA-MB-231 mammary adenocarcinoma cells and inhibited epithelial-to-mesenchymal transition and CCN2-induced mammosphere formation of MCF-7 adenocarcinoma cells. In conclusion, the CCN5 TSP1 domain is the bioactive entity that confers the biologic functions of unprocessed CCN5.
Collapse
Affiliation(s)
- Sima Zolfaghari
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Vivi T. Monsen
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Bojana Sredic
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway
| | | | - Håvard Attramadal
- Institute for Surgical Research, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway,For correspondence: Håvard Attramadal
| |
Collapse
|
33
|
Huttunen R, Sainio A, Hjelt A, Haapanen-Saaristo AM, Määttä J, Rummukainen P, Paatero I, Järveläinen H. Distinctive effects of SGLT2 inhibitors on angiogenesis in zebrafish embryos. Biomed Pharmacother 2022; 156:113882. [DOI: 10.1016/j.biopha.2022.113882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022] Open
|
34
|
Vellasamy DM, Lee SJ, Goh KW, Goh BH, Tang YQ, Ming LC, Yap WH. Targeting Immune Senescence in Atherosclerosis. Int J Mol Sci 2022; 23:13059. [PMID: 36361845 PMCID: PMC9658319 DOI: 10.3390/ijms232113059] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 10/29/2023] Open
Abstract
Atherosclerosis is one of the main underlying causes of cardiovascular diseases (CVD). It is associated with chronic inflammation and intimal thickening as well as the involvement of multiple cell types including immune cells. The engagement of innate or adaptive immune response has either athero-protective or atherogenic properties in exacerbating or alleviating atherosclerosis. In atherosclerosis, the mechanism of action of immune cells, particularly monocytes, macrophages, dendritic cells, and B- and T-lymphocytes have been discussed. Immuno-senescence is associated with aging, viral infections, genetic predispositions, and hyperlipidemia, which contribute to atherosclerosis. Immune senescent cells secrete SASP that delays or accelerates atherosclerosis plaque growth and associated pathologies such as aneurysms and coronary artery disease. Senescent cells undergo cell cycle arrest, morphological changes, and phenotypic changes in terms of their abundances and secretome profile including cytokines, chemokines, matrix metalloproteases (MMPs) and Toll-like receptors (TLRs) expressions. The senescence markers are used in therapeutics and currently, senolytics represent one of the emerging treatments where specific targets and clearance of senescent cells are being considered as therapy targets for the prevention or treatment of atherosclerosis.
Collapse
Affiliation(s)
- Danusha Michelle Vellasamy
- School of Biosciences, Faculty of Medical and Health Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Sin-Jye Lee
- School of Biosciences, Faculty of Medical and Health Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yin-Quan Tang
- School of Biosciences, Faculty of Medical and Health Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology, Faculty of Medical and Health Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Wei Hsum Yap
- School of Biosciences, Faculty of Medical and Health Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology, Faculty of Medical and Health Sciences, Taylor’s University, Subang Jaya 47500, Malaysia
| |
Collapse
|
35
|
CD36 and Its Role in Regulating the Tumor Microenvironment. Curr Oncol 2022; 29:8133-8145. [PMID: 36354702 PMCID: PMC9688853 DOI: 10.3390/curroncol29110642] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 01/14/2023] Open
Abstract
CD36 is a transmembrane glycoprotein that binds to a wide range of ligands, including fatty acids (FAs), cholesterol, thrombospondin-1 (TSP-1) and thrombospondin-2 (TSP-2), and plays an important role in lipid metabolism, immune response, and angiogenesis. Recent studies have highlighted the role of CD36 in mediating lipid uptake by tumor-associated immune cells and in promoting tumor cell progression. In cancer-associated fibroblasts (CAFs), CD36 regulates lipid uptake and matrix protein production to promote tumor proliferation. In addition, CD36 can promote tumor cell adhesion to the extracellular matrix (ECM) and induce epithelial mesenchymal transition (EMT). In terms of tumor angiogenesis, CD36 binding to TSP-1 and TSP-2 can both inhibit tumor angiogenesis and promote tumor migration and invasion. CD36 can promote tumor angiogenesis through vascular mimicry (VM). Overall, we found that CD36 exhibits diverse functions in tumors. Here, we summarize the recent research findings highlighting the novel roles of CD36 in the context of tumors.
Collapse
|
36
|
Tabary M, Gheware A, Peñaloza HF, Lee JS. The matricellular protein thrombospondin-1 in lung inflammation and injury. Am J Physiol Cell Physiol 2022; 323:C857-C865. [PMID: 35912991 PMCID: PMC9467471 DOI: 10.1152/ajpcell.00182.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022]
Abstract
Matricellular proteins comprise a diverse group of molecular entities secreted into the extracellular space. They interact with the extracellular matrix (ECM), integrins, and other cell-surface receptors, and can alter matrix strength, cell attachment to the matrix, and cell-cell adhesion. A founding member of this group is thrombospondin-1 (TSP-1), a high molecular-mass homotrimeric glycoprotein. Given the importance of the matrix and ECM remodeling in the lung following injury, TSP-1 has been implicated in a number of lung pathologies. This review examines the role of TSP-1 as a damage controller in the context of lung inflammation, injury resolution, and repair in noninfectious and infectious models. This review also discusses the potential role of TSP-1 in human diseases as it relates to lung inflammation and injury.
Collapse
Affiliation(s)
- Mohammadreza Tabary
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Atish Gheware
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hernán F Peñaloza
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Janet S Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
37
|
Feng QL, Gu JJ, Chen JY, Zheng WY, Pan HH, Xu XY, Deng CC, Yang B. TSP1 promotes fibroblast proliferation and extracellular matrix deposition via the IL6/JAK2/STAT3 signalling pathway in keloids. Exp Dermatol 2022; 31:1533-1542. [PMID: 35661430 DOI: 10.1111/exd.14623] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/06/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022]
Abstract
Keloids are benign fibroproliferative diseases with abnormally proliferated bulges beyond the edge of the skin lesions, and they are characterized by uncontrolled fibroblast proliferation and excessive extracellular matrix deposition in the dermis. However, the definite mechanisms that increase fibroblast proliferation and collagen deposition in keloids remain unclear. Thrombospondin 1 (TSP1) has been suggested to play an important role in wound healing and fibrotic disorders, but its role in keloids is unknown. In this study, we aimed to clarify the specific role of TSP1 in keloids and explore the potential mechanism. Our results demonstrated that TSP1 was highly expressed in keloid lesions compared to normal skin. Knockdown of TSP1 in keloid fibroblasts decreased cell proliferation and collagen I deposition. Exogenous TSP1 treatment increased cell proliferation and collagen I deposition in normal fibroblasts. We further investigated the underlying mechanism and found that TSP1 promoted fibroblast proliferation and extracellular matrix deposition by upregulating the IL6/JAK2/STAT3 pathway. Moreover, we verified that TSP1 expression was positively correlated with IL6/STAT3 signalling activity in keloids. Taken together, our findings indicate that TSP1 promotes keloid development via the IL6/JAK2/STAT3 signalling pathway and blocking TSP1 may represent a potential strategy for keloid therapy.
Collapse
Affiliation(s)
- Qing-Lan Feng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jing-Jing Gu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jun-Yi Chen
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Wen-Yue Zheng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Hui-Hui Pan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China.,Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Xue-Yan Xu
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Cheng-Cheng Deng
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
38
|
Johansson M, Tangruksa B, Heydarkhan-Hagvall S, Jeppsson A, Sartipy P, Synnergren J. Data Mining Identifies CCN2 and THBS1 as Biomarker Candidates for Cardiac Hypertrophy. Life (Basel) 2022; 12:life12050726. [PMID: 35629393 PMCID: PMC9147176 DOI: 10.3390/life12050726] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 12/02/2022] Open
Abstract
Cardiac hypertrophy is a condition that may contribute to the development of heart failure. In this study, we compare the gene-expression patterns of our in vitro stem-cell-based cardiac hypertrophy model with the gene expression of biopsies collected from hypertrophic human hearts. Twenty-five differentially expressed genes (DEGs) from both groups were identified and the expression of selected corresponding secreted proteins were validated using ELISA and Western blot. Several biomarkers, including CCN2, THBS1, NPPA, and NPPB, were identified, which showed significant overexpressions in the hypertrophic samples in both the cardiac biopsies and in the endothelin-1-treated cells, both at gene and protein levels. The protein-interaction network analysis revealed CCN2 as a central node among the 25 overlapping DEGs, suggesting that this gene might play an important role in the development of cardiac hypertrophy. GO-enrichment analysis of the 25 DEGs revealed many biological processes associated with cardiac function and the development of cardiac hypertrophy. In conclusion, we identified important similarities between ET-1-stimulated human-stem-cell-derived cardiomyocytes and human hypertrophic cardiac tissue. Novel putative cardiac hypertrophy biomarkers were identified and validated on the protein level, lending support for further investigations to assess their potential for future clinical applications.
Collapse
Affiliation(s)
- Markus Johansson
- Systems Biology Research Center, School of Bioscience, University of Skövde, SE-541 28 Skövde, Sweden; (S.H.-H.); (P.S.); (J.S.)
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden;
- Correspondence: (M.J.); (B.T.)
| | - Benyapa Tangruksa
- Systems Biology Research Center, School of Bioscience, University of Skövde, SE-541 28 Skövde, Sweden; (S.H.-H.); (P.S.); (J.S.)
- Correspondence: (M.J.); (B.T.)
| | - Sepideh Heydarkhan-Hagvall
- Systems Biology Research Center, School of Bioscience, University of Skövde, SE-541 28 Skövde, Sweden; (S.H.-H.); (P.S.); (J.S.)
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, SE-413 83 Gothenburg, Sweden
| | - Anders Jeppsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, SE-413 45 Gothenburg, Sweden;
- Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, SE-413 45 Gothenburg, Sweden
| | - Peter Sartipy
- Systems Biology Research Center, School of Bioscience, University of Skövde, SE-541 28 Skövde, Sweden; (S.H.-H.); (P.S.); (J.S.)
| | - Jane Synnergren
- Systems Biology Research Center, School of Bioscience, University of Skövde, SE-541 28 Skövde, Sweden; (S.H.-H.); (P.S.); (J.S.)
| |
Collapse
|
39
|
Pan Y, Deng L, Wang H, He K, Xia Q. Histidine-rich glycoprotein (HRGP): Pleiotropic and paradoxical effects on macrophage, tumor microenvironment, angiogenesis, and other physiological and pathological processes. Genes Dis 2022; 9:381-392. [PMID: 35224154 PMCID: PMC8843877 DOI: 10.1016/j.gendis.2020.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/15/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Histidine-rich glycoprotein (HRGP) is a relatively less known glycoprotein, but it is abundant in plasma with a multidomain structure, which allows it to interact with many ligands and regulate various biological processes. HRGP ligands includes heme, Zn2+, thrombospondin, plasmin/plasminogen, heparin/heparan sulfate, fibrinogen, tropomyosin, IgG, FcγR, C1q. In many conditions, the histidine-rich region of HRGP strengthens ligand binding following interaction with Zn2+ or exposure to low pH, such as sites of tissue injury or tumor growth. The multidomain structure and diverse ligand binding attributes of HRGP indicates that it can act as an extracellular adaptor protein, connecting with different ligands, especially on cell surfaces. Also, HRGP can selectively target IgG, which blocks the production of soluble immune complexes. The most common cell surface ligand of HRGP is heparan sulfate proteoglycan, and the interaction is also potentiated by elevated Zn2+ concentration and low pH. Recent reports have shown that HRGP can modulate macrophage polarization and possibly regulate other physiological processes such as angiogenesis, anti-tumor immune response, fibrinolysis and coagulation, soluble immune complex clearance and phagocytosis of apoptotic/necrosis cells. In addition, it has also been reported that HRGP has antibacterial and anti-HIV infection effects and may be used as a novel clinical biomarker accordingly. This review outlines the molecular, structural and biological properties of HRGP as well as presenting an update on the function of HRGP in various physiological processes.
Collapse
|
40
|
Stegelmeier AA, Santry LA, Guilleman MM, Matuszewska K, Minott JA, Yates JGE, Stevens BAY, Thomas SP, Vanderkamp S, Hanada K, Pei Y, Rghei AD, van Vloten JP, Pereira M, Thompson B, Major PP, Petrik JJ, Bridle BW, Wootton SK. AAV-Vectored Expression of the Vascular Normalizing Agents 3TSR and Fc3TSR, and the Anti-Angiogenic Bevacizumab Extends Survival in a Murine Model of End-Stage Epithelial Ovarian Carcinoma. Biomedicines 2022; 10:biomedicines10020362. [PMID: 35203573 PMCID: PMC8962366 DOI: 10.3390/biomedicines10020362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Epithelial ovarian cancer is the deadliest gynecological malignancy. The lack of effective treatments highlights the need for novel therapeutic interventions. The aim of this study was to investigate whether sustained adeno-associated virus (AAV) vector-mediated expression of vascular normalizing agents 3TSR and Fc3TSR and the antiangiogenic monoclonal antibody, Bevacizumab, with or without oncolytic virus treatment would improve survival in an orthotopic syngeneic mouse model of epithelial ovarian carcinoma. AAV vectors were administered 40 days post-tumor implantation and combined with oncolytic avian orthoavulavirus-1 (AOaV-1) 20 days later, at the peak of AAV-transgene expression, to ascertain whether survival could be extended. Flow cytometry conducted on blood samples, taken at an acute time point post-AOaV-1 administration (36 h), revealed a significant increase in activated NK cells in the blood of all mice that received AOaV-1. T cell analysis revealed a significant increase in CD8+ tumor specific T cells in the blood of AAV-Bevacizumab+AOaV-1 treated mice compared to control mice 10 days post AOaV-1 administration. Immunohistochemical staining of primary tumors harvested from a subset of mice euthanized 90 days post tumor implantation, when mice typically have large primary tumors, secondary peritoneal lesions, and extensive ascites fluid production, revealed that AAV-3TSR, AAV-Fc3TSR+AOaV-1, or AAV-Bevacizumab+AOaV-1 treated mice had significantly more tumor-infiltrating CD8+ T cells than PBS controls. Despite AAV-mediated transgene expression waning faster in tumor-bearing mice than in non-tumor bearing mice, all three of the AAV therapies significantly extended survival compared to control mice; with AAV-Bevacizumab performing the best in this model. However, combining AAV therapies with a single dose of AOaV-1 did not lead to significant extensions in survival compared to AAV therapies on their own, suggesting that additional doses of AOaV-1 may be required to improve efficacy in this model. These results suggest that vectorizing anti-angiogenic and vascular normalizing agents is a viable therapeutic option that warrants further investigation, including optimizing combination therapies.
Collapse
Affiliation(s)
- Ashley A. Stegelmeier
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Lisa A. Santry
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Matthew M. Guilleman
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Kathy Matuszewska
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (K.M.); (M.P.); (J.J.P.)
| | - Jessica A. Minott
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Jacob G. E. Yates
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Brenna A. Y. Stevens
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Sylvia P. Thomas
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Sierra Vanderkamp
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Kiersten Hanada
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Amira D. Rghei
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Jacob P. van Vloten
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Madison Pereira
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (K.M.); (M.P.); (J.J.P.)
| | | | - Pierre P. Major
- Juravinski Cancer Centre, 699 Concession Street, Hamilton, ON L8V 5C2, Canada;
| | - James J. Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (K.M.); (M.P.); (J.J.P.)
| | - Byram W. Bridle
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
| | - Sarah K. Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.A.S.); (L.A.S.); (M.M.G.); (J.A.M.); (J.G.E.Y.); (B.A.Y.S.); (S.P.T.); (S.V.); (K.H.); (Y.P.); (A.D.R.); (J.P.v.V.); (B.W.B.)
- Correspondence: ; Tel.: +1-519-824-4210 (ext. 54729)
| |
Collapse
|
41
|
Tanase C, Enciu AM, Codrici E, Popescu ID, Dudau M, Dobri AM, Pop S, Mihai S, Gheorghișan-Gălățeanu AA, Hinescu ME. Fatty Acids, CD36, Thrombospondin-1, and CD47 in Glioblastoma: Together and/or Separately? Int J Mol Sci 2022; 23:ijms23020604. [PMID: 35054787 PMCID: PMC8776193 DOI: 10.3390/ijms23020604] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive tumors of the central nervous system, characterized by a wide range of inter- and intratumor heterogeneity. Accumulation of fatty acids (FA) metabolites was associated with a low survival rate in high-grade glioma patients. The diversity of brain lipids, especially polyunsaturated fatty acids (PUFAs), is greater than in all other organs and several classes of proteins, such as FA transport proteins (FATPs), and FA translocases are considered principal candidates for PUFAs transport through BBB and delivery of PUFAs to brain cells. Among these, the CD36 FA translocase promotes long-chain FA uptake as well as oxidated lipoproteins. Moreover, CD36 binds and recognizes thrombospondin-1 (TSP-1), an extracellular matrix protein that was shown to play a multifaceted role in cancer as part of the tumor microenvironment. Effects on tumor cells are mediated by TSP-1 through the interaction with CD36 as well as CD47, a member of the immunoglobulin superfamily. TSP-1/CD47 interactions have an important role in the modulation of glioma cell invasion and angiogenesis in GBM. Separately, FA, the two membrane receptors CD36, CD47, and their joint ligand TSP-1 all play a part in GBM pathogenesis. The last research has put in light their interconnection/interrelationship in order to exert a cumulative effect in the modulation of the GBM molecular network.
Collapse
Affiliation(s)
- Cristiana Tanase
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.M.E.); (E.C.); (I.D.P.); (M.D.); (A.M.D.); (S.P.); (S.M.); (M.E.H.)
- Department of Cell Biology and Clinical Biochemistry, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
- Correspondence: ; Tel.: +40-74-020-4717
| | - Ana Maria Enciu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.M.E.); (E.C.); (I.D.P.); (M.D.); (A.M.D.); (S.P.); (S.M.); (M.E.H.)
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Elena Codrici
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.M.E.); (E.C.); (I.D.P.); (M.D.); (A.M.D.); (S.P.); (S.M.); (M.E.H.)
| | - Ionela Daniela Popescu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.M.E.); (E.C.); (I.D.P.); (M.D.); (A.M.D.); (S.P.); (S.M.); (M.E.H.)
| | - Maria Dudau
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.M.E.); (E.C.); (I.D.P.); (M.D.); (A.M.D.); (S.P.); (S.M.); (M.E.H.)
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Ana Maria Dobri
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.M.E.); (E.C.); (I.D.P.); (M.D.); (A.M.D.); (S.P.); (S.M.); (M.E.H.)
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Neurology, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Sevinci Pop
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.M.E.); (E.C.); (I.D.P.); (M.D.); (A.M.D.); (S.P.); (S.M.); (M.E.H.)
| | - Simona Mihai
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.M.E.); (E.C.); (I.D.P.); (M.D.); (A.M.D.); (S.P.); (S.M.); (M.E.H.)
| | - Ancuța-Augustina Gheorghișan-Gălățeanu
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- ‘C.I. Parhon’ National Institute of Endocrinology, 001863 Bucharest, Romania
| | - Mihail Eugen Hinescu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (A.M.E.); (E.C.); (I.D.P.); (M.D.); (A.M.D.); (S.P.); (S.M.); (M.E.H.)
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|
42
|
Cabrera JTO, Makino A. Efferocytosis of vascular cells in cardiovascular disease. Pharmacol Ther 2022; 229:107919. [PMID: 34171333 PMCID: PMC8695637 DOI: 10.1016/j.pharmthera.2021.107919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/21/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022]
Abstract
Cell death and the clearance of apoptotic cells are tightly regulated by various signaling molecules in order to maintain physiological tissue function and homeostasis. The phagocytic removal of apoptotic cells is known as the process of efferocytosis, and abnormal efferocytosis is linked to various health complications and diseases, such as cardiovascular disease, inflammatory diseases, and autoimmune diseases. During efferocytosis, phagocytic cells and/or apoptotic cells release signals, such as "find me" and "eat me" signals, to stimulate the phagocytic engulfment of apoptotic cells. Primary phagocytic cells are macrophages and dendritic cells; however, more recently, other neighboring cell types have also been shown to exhibit phagocytic character, including endothelial cells and fibroblasts, although they are comparatively slower in clearing dead cells. In this review, we focus on macrophage efferocytosis of vascular cells, such as endothelial cells, smooth muscle cells, fibroblasts, and pericytes, and its relation to the progression and development of cardiovascular disease. We also highlight the role of efferocytosis-related molecules and their contribution to the maintenance of vascular homeostasis.
Collapse
Affiliation(s)
- Jody Tori O Cabrera
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
43
|
Forbes T, Pauza AG, Adams JC. In the balance: how do thrombospondins contribute to the cellular pathophysiology of cardiovascular disease? Am J Physiol Cell Physiol 2021; 321:C826-C845. [PMID: 34495764 DOI: 10.1152/ajpcell.00251.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thrombospondins (TSPs) are multidomain, secreted proteins that associate with cell surfaces and extracellular matrix. In mammals, there is a large body of data on functional roles of various TSP family members in cardiovascular disease (CVD), including stroke, cardiac remodeling and fibrosis, atherosclerosis, and aortic aneurysms. Coding single nucleotide polymorphisms (SNPs) of TSP1 or TSP4 are also associated with increased risk of several forms of CVD. Whereas interactions and functional effects of TSPs on a variety of cell types have been studied extensively, the molecular and cellular basis for the differential effects of the SNPs remains under investigation. Here, we provide an integrative review on TSPs, their roles in CVD and cardiovascular cell physiology, and known properties and mechanisms of TSP SNPs relevant to CVD. In considering recent expansions to knowledge of the fundamental cellular roles and mechanisms of TSPs, as well as the effects of wild-type and variant TSPs on cells of the cardiovascular system, we aim to highlight knowledge gaps and areas for future research or of translational potential.
Collapse
Affiliation(s)
- Tessa Forbes
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Audrys G Pauza
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
44
|
EPAC2 acts as a negative regulator in Matrigel-driven tubulogenesis of human microvascular endothelial cells. Sci Rep 2021; 11:19453. [PMID: 34593918 PMCID: PMC8484440 DOI: 10.1038/s41598-021-98906-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/16/2021] [Indexed: 11/08/2022] Open
Abstract
Angiogenesis is physiologically essential for embryogenesis and development and reinitiated in adult animals during tissue growth and repair. Forming new vessels from the walls of existing vessels occurs as a multistep process coordinated by sprouting, branching, and a new lumenized network formation. However, little is known regarding the molecular mechanisms that form new tubular structures, especially molecules regulating the proper network density of newly formed capillaries. This study conducted microarray analyses in human primary microvascular endothelial cells (HMVECs) plated on Matrigel. The RAPGEF4 gene that encodes exchange proteins directly activated by cAMP 2 (EPAC2) proteins was increased in Matrigel-driven tubulogenesis. Tube formation was suppressed by the overexpression of EPAC2 and enhanced by EPAC2 knockdown in endothelial cells. Endothelial cell morphology was changed to round cell morphology by EPAC2 overexpression, while EPAC2 knockdown showed an elongated cell shape with filopodia-like protrusions. Furthermore, increased EPAC2 inhibited endothelial cell migration, and ablation of EPAC2 inversely enhanced cell mobility. These results suggest that EPAC2 affects the morphology and migration of microvascular endothelial cells and is involved in the termination and proper network formation of vascular tubes.
Collapse
|
45
|
Xiang F, Wang Y, Cao C, Li Q, Deng H, Zheng J, Liu X, Tan X. The Role of Kallikrein 7 in Tumorigenesis. Curr Med Chem 2021; 29:2617-2631. [PMID: 34525904 DOI: 10.2174/0929867328666210915104537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/21/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022]
Abstract
Kallikrein 7 (KLK7) is a secreted serine protease with chymotrypsic protease activity. Abnormally high expression of KLK7 is closely related to the occurrence and development of various types of cancer. Therefore, KLK7 has been identified as a potential target for cancer drug development design in recent years. KLK7 mediates various biological and pathological processes in tumorigenesis, including cell proliferation, migration, invasion, angiogenesis, and cell metabolism, by hydrolyzing a series of substrates such as membrane proteins, extracellular matrix proteins, and cytokines. This review mainly introduces the downstream cell signaling pathways involved in the activation of KLK7 and its substrate-related proteins. This review will not only help us to better understand the mechanisms of KLK7 in regulating biological and pathological processes of cancer cells, but also lay a solid foundation for the design of inhibitors targeting KLK7.
Collapse
Affiliation(s)
- Fengyi Xiang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang, 443003. China
| | - Yueqing Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang, 443003. China
| | - Chunyu Cao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang, 443003. China
| | - Qingyun Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang, 443003. China
| | - Hao Deng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang, 443003. China
| | - Jun Zheng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang, 443003. China.,The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003, P.R. China
| | - Xiaowen Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang, 443003. China
| | - Xiao Tan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College, China Three Gorges University, Yichang, 443003. China
| |
Collapse
|
46
|
Structure, Activity and Function of the Protein Arginine Methyltransferase 6. Life (Basel) 2021; 11:life11090951. [PMID: 34575100 PMCID: PMC8470942 DOI: 10.3390/life11090951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/25/2022] Open
Abstract
Members of the protein arginine methyltransferase (PRMT) family methylate the arginine residue(s) of several proteins and regulate a broad spectrum of cellular functions. Protein arginine methyltransferase 6 (PRMT6) is a type I PRMT that asymmetrically dimethylates the arginine residues of numerous substrate proteins. PRMT6 introduces asymmetric dimethylation modification in the histone 3 at arginine 2 (H3R2me2a) and facilitates epigenetic regulation of global gene expression. In addition to histones, PRMT6 methylates a wide range of cellular proteins and regulates their functions. Here, we discuss (i) the biochemical aspects of enzyme kinetics, (ii) the structural features of PRMT6 and (iii) the diverse functional outcomes of PRMT6 mediated arginine methylation. Finally, we highlight how dysregulation of PRMT6 is implicated in various types of cancers and response to viral infections.
Collapse
|
47
|
Tan CMJ, Lewandowski AJ, Williamson W, Huckstep OJ, Yu GZ, Fischer R, Simon JN, Alsharqi M, Mohamed A, Leeson P, Bertagnolli M. Proteomic Signature of Dysfunctional Circulating Endothelial Colony-Forming Cells of Young Adults. J Am Heart Assoc 2021; 10:e021119. [PMID: 34275329 PMCID: PMC8475699 DOI: 10.1161/jaha.121.021119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Background A subpopulation of endothelial progenitor cells called endothelial colony-forming cells (ECFCs) may offer a platform for cellular assessment in clinical studies because of their remarkable angiogenic and expansion potentials in vitro. Despite endothelial cell function being influenced by cardiovascular risk factors, no studies have yet provided a comprehensive proteomic profile to distinguish functional (ie, more angiogenic and expansive cells) versus dysfunctional circulating ECFCs of young adults. The aim of this study was to provide a detailed proteomic comparison between functional and dysfunctional ECFCs. Methods and Results Peripheral blood ECFCs were isolated from 11 subjects (45% men, aged 27±5 years) using Ficoll density gradient centrifugation. ECFCs expressed endothelial and progenitor surface markers and displayed cobblestone-patterned morphology with clonal and angiogenic capacities in vitro. ECFCs were deemed dysfunctional if <1 closed tube formed during the in vitro tube formation assay and proliferation rate was <20%. Hierarchical functional clustering revealed distinct ECFC proteomic signatures between functional and dysfunctional ECFCs with changes in cellular mechanisms involved in exocytosis, vesicle transport, extracellular matrix organization, cell metabolism, and apoptosis. Targeted antiangiogenic proteins in dysfunctional ECFCs included SPARC (secreted protein acidic and rich in cysteine), CD36 (cluster of differentiation 36), LUM (lumican), and PTX3 (pentraxin-related protein PYX3). Conclusions Circulating ECFCs with impaired angiogenesis and expansion capacities have a distinct proteomic profile and significant phenotype changes compared with highly angiogenic endothelial cells. Impaired angiogenesis in dysfunctional ECFCs may underlie the link between endothelial dysfunction and cardiovascular disease risks in young adults.
Collapse
Affiliation(s)
- Cheryl M. J. Tan
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
| | - Adam J. Lewandowski
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
| | - Wilby Williamson
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
| | - Odaro J. Huckstep
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Department of BiologyUnited States Air Force AcademyColorado SpringsCOUSA
| | - Grace Z. Yu
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Roman Fischer
- Target Discovery Institute (TDI) Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Jillian N. Simon
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUnited Kingdom
| | - Maryam Alsharqi
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Department of Cardiac TechnologyImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
| | - Afifah Mohamed
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Department of Diagnostic Imaging & Applied Health Sciences, Faculty of Health SciencesUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
| | - Paul Leeson
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
| | - Mariane Bertagnolli
- Oxford Cardiovascular Clinical Research Facility, Radcliffe Department of Medicine, Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
- Montreal Hospital Sacré‐Cœur Research CentreCentre Intégré Universitaire de Santé et de Services Sociaux du Nord‐de‐l'Île‐de‐MontréalMontréalQCCanada
- School of Physical and Occupational Therapy, Faculty of MedicineMcGill UniversityMontréalQCCanada
| |
Collapse
|
48
|
Habuddha V, Suwannasing C, Buddawong A, Seenprachawong K, Duangchan T, Sombutkayasith C, Supokawej A, Weerachatyanukul W, Asuvapongpatana S. Characterization of Thrombospondin Type 1 Repeat in Haliotis diversicolor and Its Possible Role in Osteoinduction. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:641-652. [PMID: 34471969 DOI: 10.1007/s10126-021-10054-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Thrombospondin repeats (TSR) are important peptide domains present in the sequences of many extracellular and transmembrane proteins with which a variety of ligands interact. In this study, we characterized HdTSR domains in the ADAMTS3 protein of Thai abalone, Haliotis diversicolor, based on the transcriptomic analysis of its mantle tissues. PCR amplification and localization studies demonstrated the existence of HdTSR transcript and protein in H. diversicolor tissues, particularly in both the inner and outer mantle epithelial folds. We, therefore, generated a short recombinant protein, termed HdTSR1/2, based on the existence of the WxxWxxW or WxxxxW motif (which binds to TGF-β, a known signaling in bone formation/repair) in HdTSR1 and HdTSR2 sequences and used it to test the osteoinduction function in the pre-osteoblastic cell line, MC3T3-E1. This recombinant protein demonstrated the ability to induce the differentiation of MC3T3-E1 cells by the concentration- and time-dependent upregulation of many known osteogenic markers, including RUNX2, COL1A1, OCN, and OPN. We also demonstrated the upregulation of the SMAD2 gene after cell treatment with HdTSR1/2 proteinindicating its possible interaction through TGF-β, which thus activates its downstream signaling cascade and triggers the biomineralization process in the differentiated osteoblastic cells. Together, HdTSR domains existed in an extracellular ADAMTS3 protein in the mantle epithelium of H. diversicolor and played a role in osteoinduction as similar to the other nacreous proteins, opening up its possibility to be developed as an inducing agent of bone repair.
Collapse
Affiliation(s)
- Valainipha Habuddha
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
- School of Allied Health Science, Walailak University, Nakhon Si Thammarat, Thailand
| | - Chanyatip Suwannasing
- Department of Radiological Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Aticha Buddawong
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
- Chulabhorn International College of Medicine, Thammasat University, Khlong Nueng Pathumthani 12121, Rangsit Campus, Thailand
| | - Kanokwan Seenprachawong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University (Salaya Campus), Salaya, Nakhonpathom, Thailand
| | - Thitinat Duangchan
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University (Salaya Campus), Salaya, Nakhonpathom, Thailand
| | | | - Aungkura Supokawej
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University (Salaya Campus), Salaya, Nakhonpathom, Thailand
| | | | | |
Collapse
|
49
|
CD36 promotes vasculogenic mimicry in melanoma by mediating adhesion to the extracellular matrix. BMC Cancer 2021; 21:765. [PMID: 34215227 PMCID: PMC8254274 DOI: 10.1186/s12885-021-08482-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background The formation of blood vessels within solid tumors directly contributes to cancer growth and metastasis. Until recently, tumor vasculature was thought to occur exclusively via endothelial cell (EC) lined structures (i.e. angiogenesis), but a second source of tumor vasculature arises from the cancer cells themselves, a process known as vasculogenic mimicry (VM). While it is generally understood that the function of VM vessels is the same as that of EC-lined vessels (i.e. to supply oxygen and nutrients to the proliferating cancer cells), the molecular mechanisms underpinning VM are yet to be fully elucidated. Methods Human VM-competent melanoma cell lines were examined for their VM potential using the in vitro angiogenesis assays (Matrigel), together with inhibition studies using small interfering RNA and blocking monoclonal antibodies. Invasion assays and adhesion assays were used to examine cancer cell function. Results Herein we demonstrate that CD36, a cell surface glycoprotein known to promote angiogenesis by ECs, also supports VM formation by human melanoma cancer cells. In silico analysis of CD36 expression within the melanoma cohort of The Cancer Genome Atlas suggests that melanoma patients with high expression of CD36 have a poorer clinical outcome. Using in vitro ‘angiogenesis’ assays and CD36-knockdown approaches, we reveal that CD36 supports VM formation by human melanoma cells as well as adhesion to, and invasion through, a cancer derived extracellular matrix substrate. Interestingly, thrombospondin-1 (TSP-1), a ligand for CD36 on ECs that inhibits angiogenesis, has no effect on VM formation. Further investigation revealed a role for laminin, but not collagen or fibronectin, as ligands for CD36 expressing melanoma cells. Conclusions Taken together, this study suggests that CD36 is a novel regulator of VM by melanoma cancer cells that is facilitated, at least in part, via integrin-α3 and laminin. Unlike angiogenesis, VM is not perturbed by the presence of TSP-1, thus providing new information on differences between these two processes of tumor vascularization which may be exploited to combat cancer progression.
Collapse
|
50
|
Kaur S, Bronson SM, Pal-Nath D, Miller TW, Soto-Pantoja DR, Roberts DD. Functions of Thrombospondin-1 in the Tumor Microenvironment. Int J Mol Sci 2021; 22:4570. [PMID: 33925464 PMCID: PMC8123789 DOI: 10.3390/ijms22094570] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/15/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
The identification of thrombospondin-1 as an angiogenesis inhibitor in 1990 prompted interest in its role in cancer biology and potential as a therapeutic target. Decreased thrombospondin-1 mRNA and protein expression are associated with progression in several cancers, while expression by nonmalignant cells in the tumor microenvironment and circulating levels in cancer patients can be elevated. THBS1 is not a tumor suppressor gene, but the regulation of its expression in malignant cells by oncogenes and tumor suppressor genes mediates some of their effects on carcinogenesis, tumor progression, and metastasis. In addition to regulating angiogenesis and perfusion of the tumor vasculature, thrombospondin-1 limits antitumor immunity by CD47-dependent regulation of innate and adaptive immune cells. Conversely, thrombospondin-1 is a component of particles released by immune cells that mediate tumor cell killing. Thrombospondin-1 differentially regulates the sensitivity of malignant and nonmalignant cells to genotoxic stress caused by radiotherapy and chemotherapy. The diverse activities of thrombospondin-1 to regulate autophagy, senescence, stem cell maintenance, extracellular vesicle function, and metabolic responses to ischemic and genotoxic stress are mediated by several cell surface receptors and by regulating the functions of several secreted proteins. This review highlights progress in understanding thrombospondin-1 functions in cancer and the challenges that remain in harnessing its therapeutic potential.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.K.); (D.P.-N.)
| | - Steven M. Bronson
- Department of Internal Medicine, Section of Molecular Medicine, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
| | - Dipasmita Pal-Nath
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.K.); (D.P.-N.)
| | - Thomas W. Miller
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, 13273 Marseille, France
| | - David R. Soto-Pantoja
- Department of Surgery and Department of Cancer Biology, Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA; (S.K.); (D.P.-N.)
| |
Collapse
|