1
|
Foltman M, Sanchez-Diaz A. Central Role of the Actomyosin Ring in Coordinating Cytokinesis Steps in Budding Yeast. J Fungi (Basel) 2024; 10:662. [PMID: 39330421 PMCID: PMC11433125 DOI: 10.3390/jof10090662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Abstract
Eukaryotic cells must accurately transfer their genetic material and cellular components to their daughter cells. Initially, cells duplicate their chromosomes and subsequently segregate them toward the poles. The actomyosin ring, a crucial molecular machinery normally located in the middle of the cells and underneath the plasma membrane, then physically divides the cytoplasm and all components into two daughter cells, each ready to start a new cell cycle. This process, known as cytokinesis, is conserved throughout evolution. Defects in cytokinesis can lead to the generation of genetically unstable tetraploid cells, potentially initiating uncontrolled proliferation and cancer. This review focuses on the molecular mechanisms by which budding yeast cells build the actomyosin ring and the preceding steps involved in forming a scaffolding structure that supports the challenging structural changes throughout cytokinesis. Additionally, we describe how cells coordinate actomyosin ring contraction, plasma membrane ingression, and extracellular matrix deposition to successfully complete cytokinesis. Furthermore, the review discusses the regulatory roles of Cyclin-Dependent Kinase (Cdk1) and the Mitotic Exit Network (MEN) in ensuring the precise timing and execution of cytokinesis. Understanding these processes in yeast provides insights into the fundamental aspects of cell division and its implications for human health.
Collapse
Affiliation(s)
- Magdalena Foltman
- Mechanisms and Regulation of Cell Division Research Unit, Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria-CSIC, 39011 Santander, Spain;
- Molecular Biology Department, Faculty of Medicine, University of Cantabria, 39005 Santander, Spain
| | - Alberto Sanchez-Diaz
- Mechanisms and Regulation of Cell Division Research Unit, Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), University of Cantabria-CSIC, 39011 Santander, Spain;
- Molecular Biology Department, Faculty of Medicine, University of Cantabria, 39005 Santander, Spain
| |
Collapse
|
2
|
Lee W, Stone DL, Hoffmann P, Rosenzweig S, Tsai WL, Gadina M, Romeo T, Lee CCR, Randazzo D, Pimpale Chavan P, Manthiram K, Canna S, Park YH, Ombrello AK, Aksentijevich I, Kastner DL, Chae JJ. Interrupting an IFN-γ-dependent feedback loop in the syndrome of pyogenic arthritis with pyoderma gangrenosum and acne. Ann Rheum Dis 2024; 83:787-798. [PMID: 38408849 PMCID: PMC11103328 DOI: 10.1136/ard-2023-225085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/03/2024] [Indexed: 02/28/2024]
Abstract
OBJECTIVES To study the molecular pathogenesis of PAPA (pyogenic arthritis, pyoderma gangrenosum and acne) syndrome, a debilitating hereditary autoinflammatory disease caused by dominant mutation in PSTPIP1. METHODS Gene knock-out and knock-in mice were generated to develop an animal model. THP1 and retrovirally transduced U937 human myeloid leukaemia cell lines, peripheral blood mononuclear cells, small interfering RNA (siRNA) knock-down, site-directed mutagenesis, cytokine immunoassays, coimmunoprecipitation and immunoblotting were used to study inflammasome activation. Cytokine levels in the skin were evaluated by immunohistochemistry. Responsiveness to Janus kinase (JAK) inhibitors was evaluated ex vivo with peripheral blood mononuclear cells and in vivo in five treatment-refractory PAPA patients. RESULTS The knock-in mouse model of PAPA did not recapitulate the human disease. In a human myeloid cell line model, PAPA-associated PSTPIP1 mutations activated the pyrin inflammasome, but not the NLRP3, NLRC4 or AIM2 inflammasomes. Pyrin inflammasome activation was independent of the canonical pathway of pyrin serine dephosphorylation and was blocked by the p.W232A PSTPIP1 mutation, which disrupts pyrin-PSTPIP1 interaction. IFN-γ priming of monocytes from PAPA patients led to IL-18 release in a pyrin-dependent manner. IFN-γ was abundant in the inflamed dermis of PAPA patients, but not patients with idiopathic pyoderma gangrenosum. Ex vivo JAK inhibitor treatment attenuated IFN-γ-mediated pyrin induction and IL-18 release. In 5/5 PAPA patients, the addition of JAK inhibitor therapy to IL-1 inhibition was associated with clinical improvement. CONCLUSION PAPA-associated PSTPIP1 mutations trigger a pyrin-IL-18-IFN-γ positive feedback loop that drives PAPA disease activity and is a target for JAK inhibition.
Collapse
Affiliation(s)
- Wonyong Lee
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Deborah L Stone
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Patrycja Hoffmann
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Sofia Rosenzweig
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Wanxia Li Tsai
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Massimo Gadina
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Tina Romeo
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Chyi-Chia Richard Lee
- Translational Autoinflammatory Diseases Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Davide Randazzo
- Office of Science and Technology, Light Imaging Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Pallavi Pimpale Chavan
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Kalpana Manthiram
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Scott Canna
- Division of Rheumatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Yong Hwan Park
- Department of Microbiology, Ajou University School of Medicine, Suwon, Gyeonggi-do, Korea (the Republic of)
| | - Amanda K Ombrello
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Daniel L Kastner
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Jae Jin Chae
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Varela Salgado M, Adriaans IE, Touati SA, Ibanes S, Lai-Kee-Him J, Ancelin A, Cipelletti L, Picas L, Piatti S. Phosphorylation of the F-BAR protein Hof1 drives septin ring splitting in budding yeast. Nat Commun 2024; 15:3383. [PMID: 38649354 PMCID: PMC11035697 DOI: 10.1038/s41467-024-47709-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
A double septin ring accompanies cytokinesis in yeasts and mammalian cells. In budding yeast, reorganisation of the septin collar at the bud neck into a dynamic double ring is essential for actomyosin ring constriction and cytokinesis. Septin reorganisation requires the Mitotic Exit Network (MEN), a kinase cascade essential for cytokinesis. However, the effectors of MEN in this process are unknown. Here we identify the F-BAR protein Hof1 as a critical target of MEN in septin remodelling. Phospho-mimicking HOF1 mutant alleles overcome the inability of MEN mutants to undergo septin reorganisation by decreasing Hof1 binding to septins and facilitating its translocation to the actomyosin ring. Hof1-mediated septin rearrangement requires its F-BAR domain, suggesting that it may involve a local membrane remodelling that leads to septin reorganisation. In vitro Hof1 can induce the formation of intertwined septin bundles, while a phosphomimetic Hof1 protein has impaired septin-bundling activity. Altogether, our data indicate that Hof1 modulates septin architecture in distinct ways depending on its phosphorylation status.
Collapse
Affiliation(s)
- Maritzaida Varela Salgado
- CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), University of Montpellier, CNRS UMR 5237, 34293, Montpellier, France
| | - Ingrid E Adriaans
- CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), University of Montpellier, CNRS UMR 5237, 34293, Montpellier, France
| | - Sandra A Touati
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013, Paris, France
| | - Sandy Ibanes
- CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), University of Montpellier, CNRS UMR 5237, 34293, Montpellier, France
| | - Joséphine Lai-Kee-Him
- CBS (Centre de Biologie Structurale), University of Montpellier, CNRS UMR 5048, INSERM U 1054, 34090, Montpellier, France
| | - Aurélie Ancelin
- CBS (Centre de Biologie Structurale), University of Montpellier, CNRS UMR 5048, INSERM U 1054, 34090, Montpellier, France
| | - Luca Cipelletti
- L2C (Laboratoire Charles Coulomb), University of Montpellier, CNRS 34095, Montpellier, France
- IUF (Institut Universitaire de France, 75231, Paris, France
| | - Laura Picas
- IRIM (Institut de Recherche en Infectiologie de Montpellier), University of Montpellier, CNRS UMR 9004, 34293, Montpellier, France
| | - Simonetta Piatti
- CRBM (Centre de Recherche en Biologie cellulaire de Montpellier), University of Montpellier, CNRS UMR 5237, 34293, Montpellier, France.
| |
Collapse
|
4
|
Özkılınç Önen M, Onat UI, Uğurlu S, Timuçin AC, Öz Arslan D, Everest E, Özdoğan H, Tahir Turanlı E. Detection of a rare variant in PSTPIP1 through three generations in a family with an initial diagnosis of FMF/MKD-overlapping phenotype. Rheumatology (Oxford) 2023; 62:3188-3196. [PMID: 36692132 DOI: 10.1093/rheumatology/kead044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/21/2022] [Accepted: 01/14/2023] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE The presence of FMF cases without MEFV (MEFV innate immunity regulator, pyrin) pathogenic variants led us to search for other genes' involvement in the disease development. Here, we describe the presence of genetic heterogeneity in a three-generation family with an FMF/mevalonate kinase deficiency (MKD)-overlapping phenotype without MEFV/MVK (mevalonate kinase) pathogenic variants. METHOD Targeted sequencing revealed a rare, fully penetrant variant in PSTPIP1 (p.Arg228Cys, rs781341816). Computational stability analyses of PSTPIP1 protein were performed. PSTPIP1-pyrin protein interaction was examined by immunoprecipitation and immunoblotting in peripheral blood mononuclear cells (PBMCs) of patients and healthy controls. PBMCs were cultured, and inflammation was induced by LPS+ATP treatment, followed by protein level measurements of caspase-1, IL1ß, pyrin and PSTPIP1 in cell lysates and mature caspase-1 and mature IL1ß in supernatants. RESULTS The conserved, rare (GnomAD, 0.000028) PSTPIP1 p.Arg228Cys variant, previously reported in ClinVar as a variant with uncertain significance, showed complete penetrance in the family presenting an autosomal dominant pattern. Computational analyses showed a potentially destabilizing effect of the variant on PSTPIP1 protein. Accordingly, PSTPIP1-pyrin interaction was increased in patients harboring the variant, which resulted in elevated levels of mature caspase-1 and IL1ß in the inflammation-induced patient samples. CONCLUSIONS Unlike previously described cases with pyogenic arthritis, pyoderma gangrenosum, and acne (PAPA)-associated PSTPIP1 variants, our patients with the p.Arg228Cys variant presented with an FMF/MKD-overlapping phenotype. As additional data on the genetic heterogeneity in the variable clinical spectrum of autoinflammatory syndromes, we suggest that the p.Arg228Cys variant in PSTPIP1 is related to inflammation responses through strong PSTPIP1-pyrin interaction and pyrin inflammasome activation.
Collapse
Affiliation(s)
- Merve Özkılınç Önen
- Molecular Biology-Genetics and Biotechnology Program, Graduate School of Science, Engineering and Technology, Istanbul Technical University, Istanbul, Turkey
| | - Umut I Onat
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acıbadem University, Istanbul, Turkey
| | - Serdal Uğurlu
- Division of Rheumatology, Department of Internal Medicine, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Ahmet C Timuçin
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acıbadem University, Istanbul, Turkey
| | - Devrim Öz Arslan
- Biophysics, Department of Basic Sciences, School of Medicine, Acıbadem University, Istanbul, Turkey
| | - Elif Everest
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul, Turkey
| | - Huri Özdoğan
- Division of Rheumatology, Department of Internal Medicine, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Eda Tahir Turanlı
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acıbadem University, Istanbul, Turkey
- Molecular and Translational Biomedicine Program, Graduate School of Natural and Applied Sciences, Acıbadem University, Istanbul, Turkey
| |
Collapse
|
5
|
Moshtohry M, Bellingham-Johnstun K, Elting MW, Laplante C. Laser ablation reveals the impact of Cdc15p on the stiffness of the contractile. Mol Biol Cell 2022; 33:br9. [PMID: 35274981 PMCID: PMC9265155 DOI: 10.1091/mbc.e21-10-0515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The mechanics that govern the constriction of the contractile ring remain poorly understood yet are critical to understanding the forces that drive cytokinesis. We used laser ablation in fission yeast cells to unravel these mechanics focusing on the role of Cdc15p as a putative anchoring protein. Our work shows that the severed constricting contractile ring recoils to a finite point leaving a gap that can heal if less than ∼1 µm. Severed contractile rings in Cdc15p-depleted cells exhibit an exaggerated recoil, which suggests that the recoil is limited by the anchoring of the ring to the plasma membrane. Based on a physical model of the severed contractile ring, we propose that Cdc15p impacts the stiffness of the contractile ring more than the viscous drag.
Collapse
Affiliation(s)
- Mohamed Moshtohry
- Department of Physics, North Carolina State University, Raleigh, NC 27607
| | | | - Mary Williard Elting
- Department of Physics, North Carolina State University, Raleigh, NC 27607.,Cluster for Quantitative and Computational Developmental Biology, North Carolina State University, Raleigh, NC 27607
| | - Caroline Laplante
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607.,Cluster for Quantitative and Computational Developmental Biology, North Carolina State University, Raleigh, NC 27607
| |
Collapse
|
6
|
Manso JA, Marcos T, Ruiz-Martín V, Casas J, Alcón P, Sánchez Crespo M, Bayón Y, de Pereda JM, Alonso A. PSTPIP1-LYP phosphatase interaction: structural basis and implications for autoinflammatory disorders. Cell Mol Life Sci 2022; 79:131. [PMID: 35152348 PMCID: PMC8840930 DOI: 10.1007/s00018-022-04173-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/14/2022] [Accepted: 01/27/2022] [Indexed: 11/25/2022]
Abstract
AbstractMutations in the adaptor protein PSTPIP1 cause a spectrum of autoinflammatory diseases, including PAPA and PAMI; however, the mechanism underlying these diseases remains unknown. Most of these mutations lie in PSTPIP1 F-BAR domain, which binds to LYP, a protein tyrosine phosphatase associated with arthritis and lupus. To shed light on the mechanism by which these mutations generate autoinflammatory disorders, we solved the structure of the F-BAR domain of PSTPIP1 alone and bound to the C-terminal homology segment of LYP, revealing a novel mechanism of recognition of Pro-rich motifs by proteins in which a single LYP molecule binds to the PSTPIP1 F-BAR dimer. The residues R228, D246, E250, and E257 of PSTPIP1 that are mutated in immunological diseases directly interact with LYP. These findings link the disruption of the PSTPIP1/LYP interaction to these diseases, and support a critical role for LYP phosphatase in their pathogenesis.
Collapse
Affiliation(s)
- José A Manso
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-Universidad de Salamanca, Campus Unamuno, 37007, Salamanca, Spain
| | - Tamara Marcos
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, c/ Sanz y Forés 3, 47003, Valladolid, Spain
| | - Virginia Ruiz-Martín
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, c/ Sanz y Forés 3, 47003, Valladolid, Spain
| | - Javier Casas
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, c/ Sanz y Forés 3, 47003, Valladolid, Spain
| | - Pablo Alcón
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-Universidad de Salamanca, Campus Unamuno, 37007, Salamanca, Spain
| | - Mariano Sánchez Crespo
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, c/ Sanz y Forés 3, 47003, Valladolid, Spain
| | - Yolanda Bayón
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, c/ Sanz y Forés 3, 47003, Valladolid, Spain
| | - José M de Pereda
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-Universidad de Salamanca, Campus Unamuno, 37007, Salamanca, Spain
| | - Andrés Alonso
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, c/ Sanz y Forés 3, 47003, Valladolid, Spain.
| |
Collapse
|
7
|
Xu JJ, Li HD, Du XS, Li JJ, Meng XM, Huang C, Li J. Role of the F-BAR Family Member PSTPIP2 in Autoinflammatory Diseases. Front Immunol 2021; 12:585412. [PMID: 34262554 PMCID: PMC8273435 DOI: 10.3389/fimmu.2021.585412] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Proline-serine-threonine-phosphatase-interacting protein 2 (PSTPIP2) belongs to the Fes/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain family. It exhibits lipid-binding, membrane deformation, and F-actin binding activity, suggesting broader roles at the membrane–cytoskeleton interface. PSTPIP2 is known to participate in macrophage activation, neutrophil migration, cytokine production, and osteoclast differentiation. In recent years, it has been observed to play important roles in innate immune diseases and autoinflammatory diseases (AIDs). Current research indicates that the protein tyrosine phosphatase PTP-PEST, Src homology domain-containing inositol 5’-phosphatase 1 (SHIP1), and C‐terminal Src kinase (CSK) can bind to PSTPIP2 and inhibit the development of AIDs. However, the mechanisms underlying the function of PSTPIP2 have not been fully elucidated. This article reviews the research progress and mechanisms of PSTPIP2 in AIDs. PSTPIP2 also provides a new therapeutic target for the treatment of AIDs.
Collapse
Affiliation(s)
- Jie-Jie Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hai-Di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Sa Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Juan-Juan Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
The state of F-BAR domains as membrane-bound oligomeric platforms. Trends Cell Biol 2021; 31:644-655. [PMID: 33888395 DOI: 10.1016/j.tcb.2021.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022]
Abstract
Fes/Cip4 homology Bin/amphiphysin/Rvs (F-BAR) domains, like all BAR domains, are dimeric units that oligomerize and bind membranes. F-BAR domains are generally coupled to additional domains that function in protein binding or have enzymatic activity. Because of their crescent shape and ability to oligomerize, F-BAR domains have been traditionally viewed as membrane-deformation modules. However, multiple independent studies have provided no evidence that certain F-BAR domains are able to tubulate membrane. Instead, a growing body of literature featuring structural, biochemical, biophysical, and microscopy-based studies supports the idea that the F-BAR domain family can be unified only by their ability to form oligomeric assemblies on membranes to provide platforms for molecular assembly.
Collapse
|
9
|
Tizaoui K, Terrazzino S, Cargnin S, Lee KH, Gauckler P, Li H, Shin JI, Kronbichler A. The role of PTPN22 in the pathogenesis of autoimmune diseases: A comprehensive review. Semin Arthritis Rheum 2021; 51:513-522. [PMID: 33866147 DOI: 10.1016/j.semarthrit.2021.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/16/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
The incidence of autoimmune diseases is increasing worldwide, thus stimulating studies on their etiopathogenesis, derived from a complex interaction between genetic and environmental factors. Genetic association studies have shown the PTPN22 gene as a shared genetic risk factor with implications in multiple autoimmune disorders. By encoding a protein tyrosine phosphatase expressed by the majority of cells belonging to the innate and adaptive immune systems, the PTPN22 gene may have a fundamental role in the development of immune dysfunction. PTPN22 polymorphisms are associated with rheumatoid arthritis, type 1 diabetes, systemic lupus erythematosus, and many other autoimmune conditions. In this review, we discuss the progress in our understanding of how PTPN22 impacts autoimmunity in both humans and animal models. In addition, we highlight the pathogenic significance of the PTPN22 gene, with particular emphasis on its role in T and B cells, and its function in innate immune cells, such as monocytes, dendritic and natural killer cells. We focus particularly on the complexity of PTPN22 interplay with biological processes of the immune system. Findings highlight the importance of studying the function of disease-associated PTPN22 variants in different cell types and open new avenues of investigation with the potential to drive further insights into mechanisms of PTPN22. These new insights will reveal important clues to the molecular mechanisms of prevalent autoimmune diseases and propose new potential therapeutic targets.
Collapse
Affiliation(s)
- Kalthoum Tizaoui
- Department of Basic Sciences, Division of Histology and Immunology, Faculty of Medicine Tunis, Tunis El Manar University, Tunis 1068, Tunisia
| | - Salvatore Terrazzino
- Department of Pharmaceutical Sciences and Interdepartmental Research Center of Pharmacogenetics and Pharmacogenomics (CRIFF), University of Piemonte Orientale, Novara, Italy
| | - Sarah Cargnin
- Department of Pharmaceutical Sciences and Interdepartmental Research Center of Pharmacogenetics and Pharmacogenomics (CRIFF), University of Piemonte Orientale, Novara, Italy
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Philipp Gauckler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | - Han Li
- University of Florida College of Medicine, Gainesville, FL 32610, United States
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Del Borrello G, Guardo D, Micalizzi C, Ceccherini I, Miano M, Gattorno M, Dufour C. Hemolysis and Neurologic Impairment in PAMI Syndrome: Novel Characteristics of an Elusive Disease. Pediatrics 2021; 147:peds.2020-0784. [PMID: 33597285 DOI: 10.1542/peds.2020-0784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/13/2020] [Indexed: 11/24/2022] Open
Abstract
PSTPIP1-associated myeloid-related proteinemia inflammatory (PAMI) syndrome is a rare early-onset autoinflammatory disease associated with various hematologic findings, including chronic neutropenia and pancytopenia. We report a unique case of PAMI syndrome in a toddler with transfusion-dependent hemolytic anemia, hepatosplenomegaly, failure to thrive, developmental delay, and multiple malformations. Because of acute inflammatory-driven decompensation, anakinra was started with dramatic improvement of both the hematologic and neurologic involvement. A customized next-generation sequencing panel later identified a de novo pathogenic variant in the PSTPIP1 gene, confirming the diagnosis. Our case illustrates the broad spectrum of phenotypes associated with PAMI syndrome, which should be considered in any case of unexplained cytopenias associated with autoinflammatory stigmata. It is also one of the few reports of neurologic involvement in PSTPIP1-associated inflammatory diseases. Increased awareness of this rare disease and early performance of genetic testing can correctly diagnose PAMI syndrome and prevent disease complications.
Collapse
Affiliation(s)
| | - Daniela Guardo
- Pediatric Hematology/Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico, Istituto G. Gaslini, Genova, Italy
| | - Concetta Micalizzi
- Pediatric Hematology/Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico, Istituto G. Gaslini, Genova, Italy
| | | | - Maurizio Miano
- Pediatric Hematology/Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico, Istituto G. Gaslini, Genova, Italy
| | | | - Carlo Dufour
- Pediatric Hematology/Oncology Department, Istituto di Ricovero e Cura a Carattere Scientifico, Istituto G. Gaslini, Genova, Italy
| |
Collapse
|
11
|
Boursier G, Piram M, Rittore C, Sarrabay G, Touitou I. Phenotypic Associations of PSTPIP1 Sequence Variants in PSTPIP1-Associated Autoinflammatory Diseases. J Invest Dermatol 2020; 141:1141-1147. [PMID: 33218716 DOI: 10.1016/j.jid.2020.08.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 11/29/2022]
Abstract
Pathogenic variants in the PSTPIP1 gene cause pyogenic sterile arthritis, pyoderma gangrenosum, and acne (PAPA) syndrome. They were also identified in a broad spectrum of phenotypes. As their interpretation is sometimes challenging, we discuss the genotype-phenotype association in PSTPIP1-associated autoinflammatory diseases (PAIDs) in light of a recent consensus classification of variant pathogenicity. Only 7 of 39 (18%) of the PSTPIP1 variants found in all reported cases and our national reference center (161 patients [114 probands]) were pathogenic. They were clearly associated with PAPA and PSTPIP1-associated myeloid-related proteinemia inflammatory syndrome (PAMI), reflecting a variable clinical expression of PAIDs.
Collapse
Affiliation(s)
- Guilaine Boursier
- Department of Medical Genetics, Rare Diseases and Personalized Medicine, Rare and Auto Inflammatory Diseases Unit, CEREMAIA, CHU Montpellier, University of Montpellier, Montpellier, France.
| | - Maryam Piram
- CEREMAIA, Pediatric Rheumatology Department, CHU de Bicêtre, University Paris Saclay, Le Kremlin-Bicêtre, France; Department of Pediatrics, Division of Dermatology, CHU Sainte Justine Research Center, CHU Sainte Justine, University of Montréal, Montréal, Québec, Canada
| | - Cécile Rittore
- Department of Medical Genetics, Rare Diseases and Personalized Medicine, Rare and Auto Inflammatory Diseases Unit, CEREMAIA, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Guillaume Sarrabay
- Department of Medical Genetics, Rare Diseases and Personalized Medicine, Rare and Auto Inflammatory Diseases Unit, CEREMAIA, CHU Montpellier, University of Montpellier, Montpellier, France; Cellules souches, plasticité cellulaire, médecine régénératrice et immunothérapies, INSERM, University of Montpellier, Montpellier, France
| | - Isabelle Touitou
- Department of Medical Genetics, Rare Diseases and Personalized Medicine, Rare and Auto Inflammatory Diseases Unit, CEREMAIA, CHU Montpellier, University of Montpellier, Montpellier, France; Cellules souches, plasticité cellulaire, médecine régénératrice et immunothérapies, INSERM, University of Montpellier, Montpellier, France
| |
Collapse
|
12
|
Yeast as a Model to Understand Actin-Mediated Cellular Functions in Mammals-Illustrated with Four Actin Cytoskeleton Proteins. Cells 2020; 9:cells9030672. [PMID: 32164332 PMCID: PMC7140605 DOI: 10.3390/cells9030672] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/31/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae has an actin cytoskeleton that comprises a set of protein components analogous to those found in the actin cytoskeletons of higher eukaryotes. Furthermore, the actin cytoskeletons of S. cerevisiae and of higher eukaryotes have some similar physiological roles. The genetic tractability of budding yeast and the availability of a stable haploid cell type facilitates the application of molecular genetic approaches to assign functions to the various actin cytoskeleton components. This has provided information that is in general complementary to that provided by studies of the equivalent proteins of higher eukaryotes and hence has enabled a more complete view of the role of these proteins. Several human functional homologues of yeast actin effectors are implicated in diseases. A better understanding of the molecular mechanisms underpinning the functions of these proteins is critical to develop improved therapeutic strategies. In this article we chose as examples four evolutionarily conserved proteins that associate with the actin cytoskeleton: (1) yeast Hof1p/mammalian PSTPIP1, (2) yeast Rvs167p/mammalian BIN1, (3) yeast eEF1A/eEF1A1 and eEF1A2 and (4) yeast Yih1p/mammalian IMPACT. We compare the knowledge on the functions of these actin cytoskeleton-associated proteins that has arisen from studies of their homologues in yeast with information that has been obtained from in vivo studies using live animals or in vitro studies using cultured animal cell lines.
Collapse
|
13
|
Baquero Forero A, Cvrčková F. SH3Ps-Evolution and Diversity of a Family of Proteins Engaged in Plant Cytokinesis. Int J Mol Sci 2019; 20:ijms20225623. [PMID: 31717902 PMCID: PMC6888108 DOI: 10.3390/ijms20225623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 01/02/2023] Open
Abstract
SH3P2 (At4g34660), an Arabidopsis thaliana SH3 and Bin/amphiphysin/Rvs (BAR) domain-containing protein, was reported to have a specific role in cell plate assembly, unlike its paralogs SH3P1 (At1g31440) and SH3P3 (At4g18060). SH3P family members were also predicted to interact with formins—evolutionarily conserved actin nucleators that participate in microtubule organization and in membrane–cytoskeleton interactions. To trace the origin of functional specialization of plant SH3Ps, we performed phylogenetic analysis of SH3P sequences from selected plant lineages. SH3Ps are present in charophytes, liverworts, mosses, lycophytes, gymnosperms, and angiosperms, but not in volvocal algae, suggesting association of these proteins with phragmoplast-, but not phycoplast-based cell division. Separation of three SH3P clades, represented by SH3P1, SH3P2, and SH3P3 of A. thaliana, appears to be a seed plant synapomorphy. In the yeast two hybrid system, Arabidopsis SH3P3, but not SH3P2, binds the FH1 and FH2 domains of the formin FH5 (At5g54650), known to participate in cytokinesis, while an opposite binding specificity was found for the dynamin homolog DRP1A (At5g42080), confirming earlier findings. This suggests that the cytokinetic role of SH3P2 is not due to its interaction with FH5. Possible determinants of interaction specificity of SH3P2 and SH3P3 were identified bioinformatically.
Collapse
|
14
|
Weidemann SA, Sauer C, Luebke AM, Möller-Koop C, Steurer S, Hube-Magg C, Büscheck F, Höflmayer D, Tsourlakis MC, Clauditz TS, Simon R, Sauter G, Göbel C, Lebok P, Dum D, Fraune C, Kind S, Minner S, Izbicki J, Schlomm T, Huland H, Heinzer H, Burandt E, Haese A, Graefen M, Heumann A. High-level expression of protein tyrosine phosphatase non-receptor 12 is a strong and independent predictor of poor prognosis in prostate cancer. BMC Cancer 2019; 19:944. [PMID: 31606028 PMCID: PMC6790047 DOI: 10.1186/s12885-019-6182-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/20/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Protein tyrosine phosphatase non-receptor 12 (PTPN12) is ubiquitously tyrosine phosphatase with tumor suppressive properties. METHODS PTPN12 expression was analyzed by immunohistochemistry on a tissue microarray with 13,660 clinical prostate cancer specimens. RESULTS PTPN12 staining was typically absent or weak in normal prostatic epithelium but seen in the majority of cancers, where staining was considered weak in 26.5%, moderate in 39.9%, and strong in 4.7%. High PTPN12 staining was associated with high pT category, high classical and quantitative Gleason grade, lymph node metastasis, positive surgical margin, high Ki67 labeling index and early prostate specific antigen recurrence (p < 0.0001 each). PTPN12 staining was seen in 86.4% of TMPRSS2:ERG fusion positive but in only 58.4% of ERG negative cancers. Subset analyses discovered that all associations with unfavorable phenotype and prognosis were markedly stronger in ERG positive than in ERG negative cancers but still retained in the latter group. Multivariate analyses revealed an independent prognostic impact of high PTPN12 expression in all cancers and in the ERG negative subgroup and to a lesser extent also in ERG positive cancers. Comparison with 12 previously analyzed chromosomal deletions revealed that high PTPN12 expression was significantly associated with 10 of 12 deletions in ERG negative and with 7 of 12 deletions in ERG positive cancers (p < 0.05 each) indicating that PTPN12 overexpression parallels increased genomic instability in prostate cancer. CONCLUSIONS These data identify PTPN12 as an independent prognostic marker in prostate cancer. PTPN12 analysis, either alone or in combination with other biomarkers might be of clinical utility in assessing prostate cancer aggressiveness.
Collapse
Affiliation(s)
- Sören A Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Charlotte Sauer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Christina Möller-Koop
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Maria Christina Tsourlakis
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Till S Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Cosima Göbel
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Simon Kind
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Jakob Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Thorsten Schlomm
- Department of Urology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Hartwig Huland
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg, Eppendorf, Germany
| | - Hans Heinzer
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg, Eppendorf, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Alexander Haese
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg, Eppendorf, Germany
| | - Markus Graefen
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg, Eppendorf, Germany
| | - Asmus Heumann
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
15
|
Lee C, Rhee I. Important roles of protein tyrosine phosphatase PTPN12 in tumor progression. Pharmacol Res 2019; 144:73-78. [DOI: 10.1016/j.phrs.2019.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 03/26/2019] [Accepted: 04/04/2019] [Indexed: 12/27/2022]
|
16
|
Mustelin T, Bottini N, Stanford SM. The Contribution of PTPN22 to Rheumatic Disease. Arthritis Rheumatol 2019; 71:486-495. [PMID: 30507064 PMCID: PMC6438733 DOI: 10.1002/art.40790] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022]
Abstract
One of the unresolved questions in modern medicine is why certain individuals develop a disorder such as rheumatoid arthritis (RA) or lupus, while others do not. Contemporary science indicates that genetics is partly responsible for disease development, while environmental and stochastic factors also play a role. Among the many genes that increase the risk of autoimmune conditions, the risk allele encoding the W620 variant of protein tyrosine phosphatase N22 (PTPN22) is shared between multiple rheumatic diseases, suggesting that it plays a fundamental role in the development of immune dysfunction. Herein, we discuss how the presence of the PTPN22 risk allele may shape the signs and symptoms of these diseases. Besides the emerging clarity regarding how PTPN22 tunes T and B cell antigen receptor signaling, we discuss recent discoveries of important functions of PTPN22 in myeloid cell lineages. Taken together, these new insights reveal important clues to the molecular mechanisms of prevalent diseases like RA and lupus and may open new avenues for the development of personalized therapies that spare the normal function of the immune system.
Collapse
Affiliation(s)
- Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, 750 Republican Street, Room E507, Seattle, WA 99108, phone (206) 616-6130,
| | - Nunzio Bottini
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, MC0656, La Jolla, CA 92093-0656, phone (858) 246-2398 (N.B.) and (858) 246-2397 (S.M.S.), (N.B.) and (S.M.S.)
| | - Stephanie M. Stanford
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, MC0656, La Jolla, CA 92093-0656, phone (858) 246-2398 (N.B.) and (858) 246-2397 (S.M.S.), (N.B.) and (S.M.S.)
| |
Collapse
|
17
|
Common J, Barker J, Steensel M. What does acne genetics teach us about disease pathogenesis? Br J Dermatol 2019; 181:665-676. [DOI: 10.1111/bjd.17721] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2019] [Indexed: 12/18/2022]
Affiliation(s)
- J.E.A. Common
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR) Singapore
| | - J.N. Barker
- St John's Institute of Dermatology Faculty of Life Sciences and Medicine King's College London London U.K
| | - M.A.M. Steensel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR) Singapore
- Lee Kong Chian School of Medicine Nanyang Technological University Clinical Sciences Building Novena Singapore
| |
Collapse
|
18
|
Mistry P, Carmona-Rivera C, Ombrello AK, Hoffmann P, Seto N, Jones A, Stone DL, Naz F, Carlucci P, Dell’Orso S, Gutierrez-Cruz G, Sun HW, Kastner DL, Aksentijevich I, Kaplan MJ. Dysregulated neutrophil responses and neutrophil extracellular trap formation and degradation in PAPA syndrome. Ann Rheum Dis 2018; 77:1825-1833. [PMID: 30131320 PMCID: PMC6728908 DOI: 10.1136/annrheumdis-2018-213746] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/17/2018] [Accepted: 08/01/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Pyogenic arthritis, pyoderma gangrenosum and acne (PAPA) syndrome is characterised by flares of sterile arthritis with neutrophil infiltrate and the overproduction of interleukin (IL)-1β. The purpose of this study was to elucidate the potential role of neutrophil subsets and neutrophil extracellular traps (NET) in the pathogenesis of PAPA. METHODS Neutrophils and low-density granulocytes (LDG) were quantified by flow cytometry. Circulating NETs were measured by ELISA and PAPA serum was tested for the ability to degrade NETs. The capacity of NETs from PAPA neutrophils to activate macrophages was assessed. Skin biopsies were analysed for NETs and neutrophil gene signatures. RESULTS Circulating LDGs are elevated in PAPA subjects. PAPA neutrophils and LDGs display enhanced NET formation compared with control neutrophils. PAPA sera exhibit impaired NET degradation and this is corrected with exogenous DNase1. Recombinant human IL-1β induces NET formation in PAPA neutrophils but not healthy control neutrophils. NET formation in healthy control neutrophils is induced by PAPA serum and this effect is inhibited by the IL-1 receptor antagonist, anakinra. NETs from PAPA neutrophils and LDGs stimulate IL-6 release in healthy control macrophages. NETs are detected in skin biopsies of patients with PAPA syndrome in association with increased tissue IL-1β, IL-8 and IL-17. Furthermore, LDG gene signatures are detected in PAPA skin. CONCLUSIONS PAPA syndrome is characterised by an imbalance of NET formation and degradation that may enhance the half-life of these structures in vivo, promoting inflammation. Anakinra ameliorates NET formation in PAPA and this finding supports a role for IL-1 signalling in exacerbated neutrophil responses in this disease. The study also highlights other inflammatory pathways potentially pathogenic in PAPA, including IL-17 and IL-6, and these results may help guide new therapeutic approaches in this severe and often treatment-refractory condition.
Collapse
Affiliation(s)
- Pragnesh Mistry
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Amanda K. Ombrello
- Inflammatory Disease Section, National Human Genome Research Institute, NIH, Bethesda, Maryland, 20892, USA
| | - Patrycja Hoffmann
- Inflammatory Disease Section, National Human Genome Research Institute, NIH, Bethesda, Maryland, 20892, USA
| | - Nickie Seto
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Anne Jones
- Inflammatory Disease Section, National Human Genome Research Institute, NIH, Bethesda, Maryland, 20892, USA
| | - Deborah L Stone
- Inflammatory Disease Section, National Human Genome Research Institute, NIH, Bethesda, Maryland, 20892, USA
| | - Faiza Naz
- Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, NIH, Bethesda, Maryland, 20892, USA
| | - Philip Carlucci
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Stefania Dell’Orso
- Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, NIH, Bethesda, Maryland, 20892, USA
| | - Gustavo Gutierrez-Cruz
- Laboratory of Muscle Stem Cells and Gene Regulation, NIAMS, NIH, Bethesda, Maryland, 20892, USA
| | - Hong-Wei Sun
- Biodata Mining and Discovery Section, NIAMS, NIH, Bethesda, Maryland, 20892, USA
| | - Daniel L. Kastner
- Inflammatory Disease Section, National Human Genome Research Institute, NIH, Bethesda, Maryland, 20892, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, NIH, Bethesda, Maryland, 20892, USA
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| |
Collapse
|
19
|
Hewitt KJ, Katsumura KR, Matson DR, Devadas P, Tanimura N, Hebert AS, Coon JJ, Kim JS, Dewey CN, Keles S, Hao S, Paulson RF, Bresnick EH. GATA Factor-Regulated Samd14 Enhancer Confers Red Blood Cell Regeneration and Survival in Severe Anemia. Dev Cell 2017; 42:213-225.e4. [PMID: 28787589 DOI: 10.1016/j.devcel.2017.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/05/2017] [Accepted: 07/11/2017] [Indexed: 12/31/2022]
Abstract
An enhancer with amalgamated E-box and GATA motifs (+9.5) controls expression of the regulator of hematopoiesis GATA-2. While similar GATA-2-occupied elements are common in the genome, occupancy does not predict function, and GATA-2-dependent genetic networks are incompletely defined. A "+9.5-like" element resides in an intron of Samd14 (Samd14-Enh) encoding a sterile alpha motif (SAM) domain protein. Deletion of Samd14-Enh in mice strongly decreased Samd14 expression in bone marrow and spleen. Although steady-state hematopoiesis was normal, Samd14-Enh-/- mice died in response to severe anemia. Samd14-Enh stimulated stem cell factor/c-Kit signaling, which promotes erythrocyte regeneration. Anemia activated Samd14-Enh by inducing enhancer components and enhancer chromatin accessibility. Thus, a GATA-2/anemia-regulated enhancer controls expression of an SAM domain protein that confers survival in anemia. We propose that Samd14-Enh and an ensemble of anemia-responsive enhancers are essential for erythrocyte regeneration in stress erythropoiesis, a vital process in pathologies, including β-thalassemia, myelodysplastic syndrome, and viral infection.
Collapse
Affiliation(s)
- Kyle J Hewitt
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Koichi R Katsumura
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Daniel R Matson
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Prithvia Devadas
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Nobuyuki Tanimura
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Joshua J Coon
- Department of Chemistry, UW-Madison, Madison, WI, USA; Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science and Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, South Korea
| | - Colin N Dewey
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Sunduz Keles
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Siyang Hao
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Robert F Paulson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Emery H Bresnick
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
20
|
Salzer U, Kostan J, Djinović-Carugo K. Deciphering the BAR code of membrane modulators. Cell Mol Life Sci 2017; 74:2413-2438. [PMID: 28243699 PMCID: PMC5487894 DOI: 10.1007/s00018-017-2478-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 01/06/2023]
Abstract
The BAR domain is the eponymous domain of the “BAR-domain protein superfamily”, a large and diverse set of mostly multi-domain proteins that play eminent roles at the membrane cytoskeleton interface. BAR domain homodimers are the functional units that peripherally associate with lipid membranes and are involved in membrane sculpting activities. Differences in their intrinsic curvatures and lipid-binding properties account for a large variety in membrane modulating properties. Membrane activities of BAR domains are further modified and regulated by intramolecular or inter-subunit domains, by intermolecular protein interactions, and by posttranslational modifications. Rather than providing detailed cell biological information on single members of this superfamily, this review focuses on biochemical, biophysical, and structural aspects and on recent findings that paradigmatically promote our understanding of processes driven and modulated by BAR domains.
Collapse
Affiliation(s)
- Ulrich Salzer
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030, Vienna, Austria
| | - Julius Kostan
- Max F. Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Kristina Djinović-Carugo
- Max F. Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria.
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 119, 1000, Ljubljana, Slovenia.
| |
Collapse
|
21
|
Li H, Yang F, Liu C, Xiao P, Xu Y, Liang Z, Liu C, Wang H, Wang W, Zheng W, Zhang W, Ma X, He D, Song X, Cui F, Xu Z, Yi F, Sun JP, Yu X. Crystal Structure and Substrate Specificity of PTPN12. Cell Rep 2016; 15:1345-58. [DOI: 10.1016/j.celrep.2016.04.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/27/2016] [Accepted: 03/29/2016] [Indexed: 01/21/2023] Open
|
22
|
Omenetti A, Carta S, Caorsi R, Finetti M, Marotto D, Lattanzi B, Jorini M, Delfino L, Penco F, Picco P, Buoncompagni A, Martini A, Rubartelli A, Gattorno M. Disease activity accounts for long-term efficacy of IL-1 blockers in pyogenic sterile arthritis pyoderma gangrenosum and severe acne syndrome. Rheumatology (Oxford) 2016; 55:1325-35. [PMID: 26989109 DOI: 10.1093/rheumatology/kew031] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To provide a rationale for anti-IL-1 treatment in pyogenic sterile arthritis, pyoderma gangrenosum and acne (PAPA) by defining whether IL-1β secretion is enhanced; requires NLRP3; and correlates with proline-serine-threonine phosphatase-interacting protein 1 mutations, disease activity and/or the clinical picture in PAPA. METHODS Monocytes were isolated from 13 patients and 35 healthy donors and studied at baseline and following activation. Secretion pattern of IL-1β, IL-1α, IL-1Ra, IL-6, IL-18 and TNF-α was assessed in supernatants by ELISA. The NLRP3 requirement for IL-1β secretion was investigated by silencing technique in PAPA and healthy donor monocytes. Long-term follow-up (mean 26 months, range 4-38) was performed in five patients enrolled in an anti-IL-1 regimen. RESULTS IL-1β secretion in PAPA is increased, requires NLRP3 and correlates with disease activity. Patients with a history of osteoarticular flares release more IL-1β, IL-6 and TNF-α compared with those with predominant cutaneous recurrences. Monocytes from patients in anti-IL-1 treatment dramatically reduced IL-1β secretion after ex vivo activation, and long-term follow-up demonstrated decreased frequency of flares and normalization of acute phase reactants in all the patients. A straightforward correlation between genotype and IL-1β signalling was not observed suggesting that factors other than mutation itself may play a role in regulating IL-1β secretion and response to treatment in PAPA. CONCLUSION PAPA patients with active lesions display increased NLRP3-mediated IL-1β secretion, and long-term efficacy of IL-1 blockade was demonstrated. Even if other mechanisms related to the complex proline-serine-threonine phosphatase-interacting protein 1 protein networking might play additional roles, this study further supports the potential of IL-1 blockade as an effective therapeutic strategy in PAPA syndrome.
Collapse
Affiliation(s)
- Alessia Omenetti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infant Sciences (DINOGMI), University of Genoa
| | - Sonia Carta
- Cell Biology Unit, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro
| | - Roberta Caorsi
- Pediatrics II Unit and Laboratory of Immunology of Pediatric Rheumatology, G. Gaslini IRCCS, Genoa, Italy
| | - Martina Finetti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infant Sciences (DINOGMI), University of Genoa
| | | | - Bianca Lattanzi
- UO Pediatric Division, AOU Ospedali Riuniti 'Salesi Children's Hospital', Ancona, Italy
| | - Mauro Jorini
- UO Pediatric Division, AOU Ospedali Riuniti 'Salesi Children's Hospital', Ancona, Italy
| | - Laura Delfino
- Cell Biology Unit, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro
| | - Federica Penco
- Pediatrics II Unit and Laboratory of Immunology of Pediatric Rheumatology, G. Gaslini IRCCS, Genoa, Italy
| | - Paolo Picco
- Pediatrics II Unit and Laboratory of Immunology of Pediatric Rheumatology, G. Gaslini IRCCS, Genoa, Italy
| | - Antonella Buoncompagni
- Pediatrics II Unit and Laboratory of Immunology of Pediatric Rheumatology, G. Gaslini IRCCS, Genoa, Italy
| | - Alberto Martini
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal-Infant Sciences (DINOGMI), University of Genoa, Pediatrics II Unit and Laboratory of Immunology of Pediatric Rheumatology, G. Gaslini IRCCS, Genoa, Italy
| | - Anna Rubartelli
- Cell Biology Unit, IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro,
| | - Marco Gattorno
- Pediatrics II Unit and Laboratory of Immunology of Pediatric Rheumatology, G. Gaslini IRCCS, Genoa, Italy
| |
Collapse
|
23
|
Hendriks WJAJ, Böhmer FD. Non-transmembrane PTPs in Cancer. PROTEIN TYROSINE PHOSPHATASES IN CANCER 2016:47-113. [DOI: 10.1007/978-1-4939-3649-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
24
|
Drobek A, Kralova J, Skopcova T, Kucova M, Novák P, Angelisová P, Otahal P, Alberich-Jorda M, Brdicka T. PSTPIP2, a Protein Associated with Autoinflammatory Disease, Interacts with Inhibitory Enzymes SHIP1 and Csk. THE JOURNAL OF IMMUNOLOGY 2015; 195:3416-26. [PMID: 26304991 DOI: 10.4049/jimmunol.1401494] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/28/2015] [Indexed: 11/19/2022]
Abstract
Mutations in the adaptor protein PSTPIP2 are the cause of the autoinflammatory disease chronic multifocal osteomyelitis in mice. This disease closely resembles the human disorder chronic recurrent multifocal osteomyelitis, characterized by sterile inflammation of the bones and often associated with inflammation in other organs, such as the skin. The most critical process in the disease's development is the enhanced production of IL-1β. This excessive IL-1β is likely produced by neutrophils. In addition, the increased activity of macrophages, osteoclasts, and megakaryocytes has also been described. However, the molecular mechanism of how PSTPIP2 deficiency results in this phenotype is poorly understood. Part of the PSTPIP2 inhibitory function is mediated by protein tyrosine phosphatases from the proline-, glutamic acid-, serine- and threonine-rich (PEST) family, which are known to interact with the central part of this protein, but other regions of PSTPIP2 not required for PEST-family phosphatase binding were also shown to be indispensable for PSTPIP2 function. In this article, we show that PSTPIP2 binds the inhibitory enzymes Csk and SHIP1. The interaction with SHIP1 is of particular importance because it binds to the critical tyrosine residues at the C terminus of PSTPIP2, which is known to be crucial for its PEST-phosphatase-independent inhibitory effects in different cellular systems. We demonstrate that in neutrophils this region is important for the PSTPIP2-mediated suppression of IL-1β processing and that SHIP1 inhibition results in the enhancement of this processing. We also describe deregulated neutrophil response to multiple activators, including silica, Ab aggregates, and LPS, which is suggestive of a rather generalized hypersensitivity of these cells to various external stimulants.
Collapse
Affiliation(s)
- Ales Drobek
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| | - Jarmila Kralova
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| | - Tereza Skopcova
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| | - Marketa Kucova
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| | - Petr Novák
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| | - Pavla Angelisová
- Laboratory of Molecular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic; and
| | - Pavel Otahal
- Laboratory of Molecular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic; and
| | - Meritxell Alberich-Jorda
- Laboratory of Hemato-oncology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic
| | - Tomas Brdicka
- Laboratory of Leukocyte Signaling, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic;
| |
Collapse
|
25
|
Liu S, Xiong X, Zhao X, Yang X, Wang H. F-BAR family proteins, emerging regulators for cell membrane dynamic changes-from structure to human diseases. J Hematol Oncol 2015; 8:47. [PMID: 25956236 PMCID: PMC4437251 DOI: 10.1186/s13045-015-0144-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/27/2015] [Indexed: 02/08/2023] Open
Abstract
Eukaryotic cell membrane dynamics change in curvature during physiological and pathological processes. In the past ten years, a novel protein family, Fes/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain proteins, has been identified to be the most important coordinators in membrane curvature regulation. The F-BAR domain family is a member of the Bin/Amphiphysin/Rvs (BAR) domain superfamily that is associated with dynamic changes in cell membrane. However, the molecular basis in membrane structure regulation and the biological functions of F-BAR protein are unclear. The pathophysiological role of F-BAR protein is unknown. This review summarizes the current understanding of structure and function in the BAR domain superfamily, classifies F-BAR family proteins into nine subfamilies based on domain structure, and characterizes F-BAR protein structure, domain interaction, and functional relevance. In general, F-BAR protein binds to cell membrane via F-BAR domain association with membrane phospholipids and initiates membrane curvature and scission via Src homology-3 (SH3) domain interaction with its partner proteins. This process causes membrane dynamic changes and leads to seven important cellular biological functions, which include endocytosis, phagocytosis, filopodium, lamellipodium, cytokinesis, adhesion, and podosome formation, via distinct signaling pathways determined by specific domain-binding partners. These cellular functions play important roles in many physiological and pathophysiological processes. We further summarize F-BAR protein expression and mutation changes observed in various diseases and developmental disorders. Considering the structure feature and functional implication of F-BAR proteins, we anticipate that F-BAR proteins modulate physiological and pathophysiological processes via transferring extracellular materials, regulating cell trafficking and mobility, presenting antigens, mediating extracellular matrix degradation, and transmitting signaling for cell proliferation.
Collapse
Affiliation(s)
- Suxuan Liu
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China. .,Center for Metabolic Disease Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Xinyu Xiong
- Center for Metabolic Disease Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Xianxian Zhao
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA. .,Center for Cardiovascular Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA. .,Center for Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Hong Wang
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China. .,Center for Metabolic Disease Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA. .,Center for Cardiovascular Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA. .,Center for Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
26
|
Effects of protein tyrosine phosphatase-PEST are reversed by Akt in T cells. Cell Signal 2014; 26:2721-9. [PMID: 25152368 DOI: 10.1016/j.cellsig.2014.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/17/2014] [Indexed: 11/21/2022]
Abstract
T cell activation is regulated by a balance between phosphorylation and dephosphorylation that is under the control of kinases and phosphatases. Here, we examined the role of a non-receptor-type protein tyrosine phosphatase, PTP-PEST, using retrovirus-mediated gene transduction into murine T cells. Based on observations of vector markers (GFP or Thy1.1), exogenous PTP-PEST-positive CD4(+) T cells appeared within 2 days after gene transduction; the percentage of PTP-PEST-positive cells tended to decrease during a resting period in the presence of IL-2 over the next 2 days. These vector markers also showed much lower expression intensities, compared with control cells, suggesting a correlation between the percent reduction and the low marker expression intensity. A catalytically inactive PTP-PEST mutant also showed the same tendency, and stepwise deletion mutants gradually lost their ability to induce the above phenomenon. On the other hand, these PTP-PEST-transduced cells did not have an apoptotic phenotype. No difference in the total cell numbers was found in the wells of a culture plate containing VEC- and PTP-PEST-transduced T cells. Moreover, serine/threonine kinase Akt, but not the anti-apoptotic molecules Bcl-2 and Bcl-XL, reversed the phenotype induced by PTP-PEST. We discuss the novel mechanism by which Akt interferes with PTP-PEST.
Collapse
|
27
|
Marcos T, Ruiz-Martín V, de la Puerta ML, Trinidad AG, Rodríguez MDC, de la Fuente MA, Sánchez Crespo M, Alonso A, Bayón Y. Proline-serine-threonine phosphatase interacting protein 1 inhibition of T-cell receptor signaling depends on its SH3 domain. FEBS J 2014; 281:3844-54. [PMID: 25040622 DOI: 10.1111/febs.12912] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/19/2014] [Accepted: 07/04/2014] [Indexed: 01/06/2023]
Abstract
Proline-serine-threonine phosphatase interacting protein 1 (PSTPIP1) is an adaptor protein associated with the cytoskeleton that is mainly expressed in hematopoietic cells. Mutations in PSTPIP1 cause the rare autoinflammatory disease called pyogenic arthritis, pyoderma gangrenosum, and acne. We carried out this study to further our knowledge on PSTPIP1 function in T cells, particularly in relation to the phosphatase lymphoid phosphatase (LYP), which is involved in several autoimmune diseases. LYP-PSTPIP1 binding occurs through the C-terminal homology domain of LYP and the F-BAR domain of PSTPIP1. PSTPIP1 inhibits T-cell activation upon T-cell receptor (TCR) and CD28 engagement, regardless of CD2 costimulation. This function of PSTPIP1 depends on the presence of an intact SH3 domain rather than on the F-BAR domain, indicating that ligands of the F-BAR domain, such as the PEST phosphatases LYP and PTP-PEST, are not critical for its negative regulatory role in TCR signaling. Additionally, PSTPIP1 mutations that cause the pyogenic arthritis, pyoderma gangrenosum and acne syndrome do not affect PSTPIP1 function in T-cell activation through the TCR.
Collapse
Affiliation(s)
- Tamara Marcos
- Instituto de Biología y Genética Molecular (IBGM), CSIC-Universidad de Valladolid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Takeda T, Robinson IM, Savoian MM, Griffiths JR, Whetton AD, McMahon HT, Glover DM. Drosophila F-BAR protein Syndapin contributes to coupling the plasma membrane and contractile ring in cytokinesis. Open Biol 2013; 3:130081. [PMID: 23926047 PMCID: PMC3758542 DOI: 10.1098/rsob.130081] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cytokinesis is a highly ordered cellular process driven by interactions between central spindle microtubules and the actomyosin contractile ring linked to the dynamic remodelling of the plasma membrane. The mechanisms responsible for reorganizing the plasma membrane at the cell equator and its coupling to the contractile ring in cytokinesis are poorly understood. We report here that Syndapin, a protein containing an F-BAR domain required for membrane curvature, contributes to the remodelling of the plasma membrane around the contractile ring for cytokinesis. Syndapin colocalizes with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the cleavage furrow, where it directly interacts with a contractile ring component, Anillin. Accordingly, Anillin is mislocalized during cytokinesis in Syndapin mutants. Elevated or diminished expression of Syndapin leads to cytokinesis defects with abnormal cortical dynamics. The minimal segment of Syndapin, which is able to localize to the cleavage furrow and induce cytokinesis defects, is the F-BAR domain and its immediate C-terminal sequences. Phosphorylation of this region prevents this functional interaction, resulting in reduced ability of Syndapin to bind to and deform membranes. Thus, the dephosphorylated form of Syndapin mediates both remodelling of the plasma membrane and its proper coupling to the cytokinetic machinery.
Collapse
Affiliation(s)
- Tetsuya Takeda
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK.
| | | | | | | | | | | | | |
Collapse
|
29
|
Ayoub E, Hall A, Scott AM, Chagnon MJ, Miquel G, Hallé M, Noda M, Bikfalvi A, Tremblay ML. Regulation of the Src kinase-associated phosphoprotein 55 homologue by the protein tyrosine phosphatase PTP-PEST in the control of cell motility. J Biol Chem 2013; 288:25739-25748. [PMID: 23897807 DOI: 10.1074/jbc.m113.501007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PTP-PEST is a cytosolic ubiquitous protein tyrosine phosphatase (PTP) that contains, in addition to its catalytic domain, several protein-protein interaction domains that allow it to interface with several signaling pathways. Among others, PTP-PEST is a key regulator of cellular motility and cytoskeleton dynamics. The complexity of the PTP-PEST interactome underscores the necessity to identify its interacting partners and physiological substrates in order to further understand its role in focal adhesion complex turnover and actin organization. Using a modified yeast substrate trapping two-hybrid system, we identified a cytosolic adaptor protein named Src kinase-associated phosphoprotein 55 homologue (SKAP-Hom) as a novel substrate of PTP-PEST. To confirm PTP-PEST interaction with SKAP-Hom, in vitro pull down assays were performed demonstrating that the PTP catalytic domain and Proline-rich 1 (P1) domain are respectively binding to the SKAP-Hom Y260 and Y297 residues and its SH3 domain. Subsequently, we generated and rescued SKAP-Hom-deficient mouse embryonic fibroblasts (MEFs) with WT SKAP-Hom, SKAP-Hom tyrosine mutants (Y260F, Y260F/Y297F), or SKAP-Hom SH3 domain mutant (W335K). Given the role of PTP-PEST, wound-healing and trans-well migration assays were performed using the generated lines. Indeed, SKAP-Hom-deficient MEFs showed a defect in migration compared with WT-rescued MEFs. Interestingly, the SH3 domain mutant-rescued MEFs showed an enhanced cell migration corresponding potentially with higher tyrosine phosphorylation levels of SKAP-Hom. These findings suggest a novel role of SKAP-Hom and its phosphorylation in the regulation of cellular motility. Moreover, these results open new avenues by which PTP-PEST regulates cellular migration, a hallmark of metastasis.
Collapse
Affiliation(s)
- Emily Ayoub
- From the Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Anita Hall
- From the Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Adam M Scott
- From the Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Mélanie J Chagnon
- From the Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Géraldine Miquel
- INSERM U1029 and; Université Bordeaux, Avenue des Facultés, 33 405 Talence, France
| | - Maxime Hallé
- From the Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Masaharu Noda
- the Division of Molecular Neurobiology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan, and
| | - Andreas Bikfalvi
- INSERM U1029 and; Université Bordeaux, Avenue des Facultés, 33 405 Talence, France
| | - Michel L Tremblay
- From the Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada,.
| |
Collapse
|
30
|
Oh Y, Schreiter J, Nishihama R, Wloka C, Bi E. Targeting and functional mechanisms of the cytokinesis-related F-BAR protein Hof1 during the cell cycle. Mol Biol Cell 2013; 24:1305-20. [PMID: 23468521 PMCID: PMC3639043 DOI: 10.1091/mbc.e12-11-0804] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hof1 targets to the division site by interacting with septins and myosin II sequentially during the cell cycle. It plays a role in cytokinesis by coupling actomyosin ring constriction to primary septum formation through interactions with Myo1 and Chs2. F-BAR proteins are membrane‑associated proteins believed to link the plasma membrane to the actin cytoskeleton in cellular processes such as cytokinesis and endocytosis. In the budding yeast Saccharomyces cerevisiae, the F‑BAR protein Hof1 localizes to the division site in a complex pattern during the cell cycle and plays an important role in cytokinesis. However, the mechanisms underlying its localization and function are poorly understood. Here we show that Hof1 contains three distinct targeting domains that contribute to cytokinesis differentially. The N‑terminal half of Hof1 localizes to the bud neck and the sites of polarized growth during the cell cycle. The neck localization is mediated mainly by an interaction between the second coiled‑coil region in the N‑terminus and the septin Cdc10, whereas the localization to the sites of polarized growth is mediated entirely by the F‑BAR domain. In contrast, the C‑terminal half of Hof1 interacts with Myo1, the sole myosin‑II heavy chain in budding yeast, and localizes to the bud neck in a Myo1‑dependent manner from the onset to the completion of cytokinesis. We also show that the SH3 domain in the C‑terminus plays an important role in maintaining the symmetry of Myo1 ring constriction during cytokinesis and that Hof1 interacts with Chs2, a chitin synthase that is required for primary septum formation. Together these data define a mechanism that accounts for the localization of Hof1 during the cell cycle and suggest that Hof1 may function in cytokinesis by coupling actomyosin ring constriction to primary septum formation through interactions with Myo1 and Chs2.
Collapse
Affiliation(s)
- Younghoon Oh
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW To review the single-gene defects that can mimic rheumatologic diseases. RECENT FINDINGS Monogenic disorders can cause a variety of diseases that may be seen by a rheumatologist. Many of these illnesses present with recurrent episodes of arthritis, rash, fever and inflammation, and serositis. Recent discoveries have defined inflammatory diseases due to mutations in the IL-1 and IL-36 receptor antagonists, as well as the immunoproteosome. Further study of well defined monogenic causes of inflammatory diseases, such as FMF, PAPA, TRAPS, and HIDS, has elucidated the pathophysiology of these diseases leading to targeted immunotherapy with anticytokine biological medications. SUMMARY A rheumatologist should be aware of the genetic causes of inflammatory disease mimics. This will not only help with the prognosis of these diseases, but also help to guide therapy to prevent long-term complications associated with these disorders.
Collapse
|
32
|
Zhang P, Liu X, Li Y, Zhu X, Zhan Z, Meng J, Li N, Cao X. Protein tyrosine phosphatase with proline-glutamine-serine-threonine-rich motifs negatively regulates TLR-triggered innate responses by selectively inhibiting IκB kinase β/NF-κB activation. THE JOURNAL OF IMMUNOLOGY 2013; 190:1685-94. [PMID: 23296707 DOI: 10.4049/jimmunol.1202384] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
TLRs are essential for sensing the invading pathogens and initiating protective immune responses. However, aberrant activation of TLR-triggered inflammatory innate responses leads to the inflammatory disorders and autoimmune diseases. The molecular mechanisms that fine-tune TLR responses remain to be fully elucidated. Protein tyrosine phosphatase with proline-glutamine-serine-threonine-rich motifs (PTP-PEST) has been shown to be important in cell adhesion, migration, and also T cell and B cell activation. However, the roles of PTP-PEST in TLR-triggered immune response remain unclear. In this study, we report that PTP-PEST expression was upregulated in macrophages by TLR ligands. PTP-PEST inhibited TNF-α, IL-6, and IFN-β production in macrophages triggered by TLR3, TLR4, and TLR9. Overexpression of catalytically inactive mutants of PTP-PEST abolished the inhibitory effects, indicating that PTP-PEST inhibits TLR response in a phosphatase-dependent manner. Accordingly, PTP-PEST knockdown increased TLR3, -4, and -9-triggered proinflammatory cytokine and type I IFN production. PTP-PEST selectively inhibited TLR-induced NF-κB activation, whereas it had no substantial effect on MAPK and IFN regulatory factor 3 activation. Moreover, PTP-PEST directly interacted with IκB kinase β (IKKβ) then inhibited IKKβ phosphorylation at Ser(177/181) and Tyr(188/199), and subsequently suppressed IKKβ activation and kinase activity as well as downstream NF-κB activation, resulting in suppression of the TLR-triggered innate immune response. Thus, PTP-PEST functions as a feedback-negative regulator of TLR-triggered innate immune responses by selectively impairing IKKβ/NF-κB activation.
Collapse
Affiliation(s)
- Peng Zhang
- National Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai 200433, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Tyrosine phosphatase inhibition induces an ASC-dependent pyroptosis. Biochem Biophys Res Commun 2012; 425:384-9. [PMID: 22842458 DOI: 10.1016/j.bbrc.2012.07.102] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 11/20/2022]
Abstract
Pyroptosis is a type of cell death in which danger associated molecular patterns (DAMPs) and pathogen associated molecular patterns (PAMPs) induce mononuclear phagocytes to activate caspase-1 and release mature IL-1β. Because the tyrosine kinase inhibitor AG126 can prevent DAMP/PAMP induced activation of caspase-1, we hypothesized that tipping the tyrosine kinase/phosphatase balance toward phosphorylation would promote caspase-1 activation and cell death. THP-1 derived macrophages were therefore treated with the potent specific tyrosine phosphatase inhibitor, sodium orthovanadate (OVN) and analyzed for caspase-1 activation and cell death. OVN induced generalized increase in phosphorylated proteins, IL-1β release and cell death in a time and dose dependent pattern. This OVN induced pyroptosis correlated with speck formations that contained the apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC). Culturing the cells in the presence of extracellular K(+) (known to inhibit ATP dependent pyroptosis), a caspase inhibitor (ZVAD) or down regulating the expression of ASC with stable expression of siASC prevented the OVN induced pyroptosis. These data demonstrate that pyroptotic death is linked to tyrosine phosphatase activity providing novel targets for future pharmacologic interventions.
Collapse
|
34
|
Extensive gene-specific translational reprogramming in a model of B cell differentiation and Abl-dependent transformation. PLoS One 2012; 7:e37108. [PMID: 22693568 PMCID: PMC3365017 DOI: 10.1371/journal.pone.0037108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/15/2012] [Indexed: 01/19/2023] Open
Abstract
To what extent might the regulation of translation contribute to differentiation programs, or to the molecular pathogenesis of cancer? Pre-B cells transformed with the viral oncogene v-Abl are suspended in an immortalized, cycling state that mimics leukemias with a BCR-ABL1 translocation, such as Chronic Myelogenous Leukemia (CML) and Acute Lymphoblastic Leukemia (ALL). Inhibition of the oncogenic Abl kinase with imatinib reverses transformation, allowing progression to the next stage of B cell development. We employed a genome-wide polysome profiling assay called Gradient Encoding to investigate the extent and potential contribution of translational regulation to transformation and differentiation in v-Abl-transformed pre-B cells. Over half of the significantly translationally regulated genes did not change significantly at the level of mRNA abundance, revealing biology that might have been missed by measuring changes in transcript abundance alone. We found extensive, gene-specific changes in translation affecting genes with known roles in B cell signaling and differentiation, cancerous transformation, and cytoskeletal reorganization potentially affecting adhesion. These results highlight a major role for gene-specific translational regulation in remodeling the gene expression program in differentiation and malignant transformation.
Collapse
|
35
|
Hergovich A, Hemmings BA. Hippo signalling in the G2/M cell cycle phase: lessons learned from the yeast MEN and SIN pathways. Semin Cell Dev Biol 2012; 23:794-802. [PMID: 22525225 DOI: 10.1016/j.semcdb.2012.04.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/03/2012] [Accepted: 04/04/2012] [Indexed: 01/11/2023]
Abstract
Over the past decade Hippo kinase signalling has been established as an essential tumour suppressor pathway controlling tissue growth in flies and mammals. All members of the Hippo core signalling cassette are conserved from yeast to humans, whereby the yeast analogues of Hippo, Mats and Lats are central components of the mitotic exit network and septation initiation network in budding and fission yeast, respectively. Here, we discuss how far core Hippo signalling components in Drosophila melanogaster and mammals have reported similar mitotic functions as already established for their highly conserved yeast counterparts.
Collapse
|
36
|
The BAR Domain Superfamily Proteins from Subcellular Structures to Human Diseases. MEMBRANES 2012; 2:91-117. [PMID: 24957964 PMCID: PMC4021885 DOI: 10.3390/membranes2010091] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/07/2012] [Accepted: 02/15/2012] [Indexed: 12/11/2022]
Abstract
Eukaryotic cells have complicated membrane systems. The outermost plasma membrane contains various substructures, such as invaginations and protrusions, which are involved in endocytosis and cell migration. Moreover, the intracellular membrane compartments, such as autophagosomes and endosomes, are essential for cellular viability. The Bin-Amphiphysin-Rvs167 (BAR) domain superfamily proteins are important players in membrane remodeling through their structurally determined membrane binding surfaces. A variety of BAR domain superfamily proteins exist, and each family member appears to be involved in the formation of certain subcellular structures or intracellular membrane compartments. Most of the BAR domain superfamily proteins contain SH3 domains, which bind to the membrane scission molecule, dynamin, as well as the actin regulatory WASP/WAVE proteins and several signal transduction molecules, providing possible links between the membrane and the cytoskeleton or other machineries. In this review, we summarize the current information about each BAR superfamily protein with an SH3 domain(s). The involvement of BAR domain superfamily proteins in various diseases is also discussed.
Collapse
|
37
|
Ronninger M, Guo Y, Shchetynsky K, Hill A, Khademi M, Olsson T, Reddy PS, Seddighzadeh M, Clark JD, Lin LL, O'Toole M, Padyukov L. The balance of expression of PTPN22 splice forms is significantly different in rheumatoid arthritis patients compared with controls. Genome Med 2012; 4:2. [PMID: 22264340 PMCID: PMC3334550 DOI: 10.1186/gm301] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 09/29/2011] [Accepted: 01/20/2012] [Indexed: 12/27/2022] Open
Abstract
Background The R620W variant in protein tyrosine phosphatase non-receptor 22 (PTPN22) is associated with rheumatoid arthritis (RA). The PTPN22 gene has alternatively spliced transcripts and at least two of the splice forms have been confirmed to encode different PTPN22 (LYP) proteins, but detailed information regarding expression of these is lacking, especially with regard to autoimmune diseases. Methods We have investigated the mRNA expression of known PTPN22 splice forms with TaqMan real-time PCR in relation to ZNF592 as an endogenous reference in peripheral blood cells from three independent cohorts with RA patients (n = 139) and controls (n = 111) of Caucasian origin. Polymorphisms in the PTPN22 locus (25 SNPs) and phenotypic data (gender, disease activity, ACPA and RF status) were used for analysis. Additionally, we addressed possible effects of methotrexate treatment on PTPN22 expression. Results We found consistent differences in the expression of the PTPN22 splice forms in unstimulated peripheral blood mononuclear cells between RA patients and normal controls. This difference was more pronounced when comparing the ratio of splice forms and was not affected by methotrexate treatment. Conclusions Our data show that RA patients and healthy controls have a shift in balance of expression of splice forms derived from the PTPN22 gene. This balance seems not to be caused by treatment and may be of importance during immune response due to great structural differences in the encoded PTPN22 proteins.
Collapse
Affiliation(s)
- Marcus Ronninger
- Department of Medicine, Rheumatology Unit, CMM L8:04, Karolinska Institutet & Karolinska Universitetssjukhuset, Stockholm, S-17176, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rao Y, Haucke V. Membrane shaping by the Bin/amphiphysin/Rvs (BAR) domain protein superfamily. Cell Mol Life Sci 2011; 68:3983-93. [PMID: 21769645 PMCID: PMC11114942 DOI: 10.1007/s00018-011-0768-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 06/27/2011] [Accepted: 06/30/2011] [Indexed: 01/27/2023]
Abstract
BAR domain superfamily proteins have emerged as central regulators of dynamic membrane remodeling, thereby playing important roles in a wide variety of cellular processes, such as organelle biogenesis, cell division, cell migration, secretion, and endocytosis. Here, we review the mechanistic and structural basis for the membrane curvature-sensing and deforming properties of BAR domain superfamily proteins. Moreover, we summarize the present state of knowledge with respect to their regulation by autoinhibitory mechanisms or posttranslational modifications, and their interactions with other proteins, in particular with GTPases, and with membrane lipids. We postulate that BAR superfamily proteins act as membrane-deforming scaffolds that spatiotemporally orchestrate membrane remodeling.
Collapse
Affiliation(s)
- Yijian Rao
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
- Present Address: Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Volker Haucke
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| |
Collapse
|
39
|
Hung FC, Chang Y, Lin-Chao S, Chao CCK. Gas7 mediates the differentiation of human bone marrow-derived mesenchymal stem cells into functional osteoblasts by enhancing Runx2-dependent gene expression. J Orthop Res 2011; 29:1528-35. [PMID: 21452305 DOI: 10.1002/jor.21425] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 03/10/2011] [Indexed: 02/04/2023]
Abstract
The differentiation of bone marrow mesenchymal stem cells (MSCs) into osteoblasts is a crucial step during bone formation. However, the mechanisms regulating the early stages of osteogenic differentiation are not fully understood. In the present study, we found that growth-arrest specific gene 7b (Gas7b) was up-regulated during dexamethasone-induced differentiation of human MSCs (hMSCs) into osteoblasts. Knockdown of Gas7 using short-hairpin RNA decreased the expression of the osteogenic transcription factor Runx2 and its target genes alkaline phosphatase, type I collagen, osteocalcin (OC), and osteopontin. In addition, knockdown of Gas7 decreased matrix mineralization of dexamethasone-treated hMSCs in vitro. In contrast, ectopic expression of Gas7 isoforms a and b promoted gene expression associated with osteoblast differentiation and matrix mineralization, and also induced the mineralization of hMSCs in vitro. Furthermore, a gene reporter assay designed to monitor OC expression in hMSCs revealed that Runx2-dependent transcriptional activity was enhanced by over-expression of human Gas7 isoforms a and b. These findings reveal that Gas7 regulates the differentiation of hMSCs into osteoblasts by enhancing Runx2-dependent gene expression.
Collapse
Affiliation(s)
- Feng-Chun Hung
- Department of Biochemistry and Molecular Biology, Chang Gung University, Gueishan, Taoyuan 333, Taiwan, Republic of China
| | | | | | | |
Collapse
|
40
|
Nesterovitch AB, Hoffman MD, Simon M, Petukhov PA, Tharp MD, Glant TT. Mutations in the PSTPIP1 gene and aberrant splicing variants in patients with pyoderma gangrenosum. Clin Exp Dermatol 2011; 36:889-95. [DOI: 10.1111/j.1365-2230.2011.04137.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Meitinger F, Boehm ME, Hofmann A, Hub B, Zentgraf H, Lehmann WD, Pereira G. Phosphorylation-dependent regulation of the F-BAR protein Hof1 during cytokinesis. Genes Dev 2011; 25:875-88. [PMID: 21498574 DOI: 10.1101/gad.622411] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spatial and timely coordination of cytokinesis is crucial for the maintenance of organelle inheritance and genome integrity. The mitotic exit network (MEN) pathway controls both the timely initiation of mitotic exit and cytokinesis in budding yeast. Here we identified the conserved F-BAR protein Hof1 as a substrate of the MEN kinase complex Dbf2-Mob1 during cytokinesis. We show that polo-like kinase Cdc5 first phosphorylates Hof1 to allow subsequent phosphorylation by Dbf2-Mob1. This releases Hof1 from the septin ring and facilitates Hof1 binding to the medial actomyosin ring (AMR), where Hof1 promotes AMR contraction and membrane ingression. Domain structure analysis established that the central, unstructured, region of Hof1, named the ring localization sequence (RLS), is sufficient to mediate Hof1's binding to the medial ring in a cell cycle-dependent manner. Genetic and functional data support a model in which Dbf2-Mob1 regulates Hof1 by inducing domain rearrangements, leading to the exposure of the Hof1 RLS domain during telophase.
Collapse
Affiliation(s)
- Franz Meitinger
- Molecular Biology of Centrosomes and Cilia Unit, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Laporte D, Coffman VC, Lee IJ, Wu JQ. Assembly and architecture of precursor nodes during fission yeast cytokinesis. ACTA ACUST UNITED AC 2011; 192:1005-21. [PMID: 21422229 PMCID: PMC3063137 DOI: 10.1083/jcb.201008171] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mapping of fission yeast precursor node interaction modules and assembly reveals important steps in contractile ring assembly. The contractile ring is essential for cytokinesis in most fungal and animal cells. In fission yeast, cytokinesis nodes are precursors of the contractile ring and mark the future cleavage site. However, their assembly and architecture have not been well described. We found that nodes are assembled stoichiometrically in a hierarchical order with two modules linked by the positional marker anillin Mid1. Mid1 first recruits Cdc4 and IQGAP Rng2 to form module I. Rng2 subsequently recruits the myosin-II subunits Myo2 and Rlc1. Mid1 then independently recruits the F-BAR protein Cdc15 to form module II. Mid1, Rng2, Cdc4, and Cdc15 are stable node components that accumulate close to the plasma membrane. Both modules recruit the formin Cdc12 to nucleate actin filaments. Myo2 heads point into the cell interior, where they efficiently capture actin filaments to condense nodes into the contractile ring. Collectively, our work characterizing the assembly and architecture of precursor nodes defines important steps and molecular players for contractile ring assembly.
Collapse
Affiliation(s)
- Damien Laporte
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
43
|
Burn GL, Svensson L, Sanchez-Blanco C, Saini M, Cope AP. Why is PTPN22 a good candidate susceptibility gene for autoimmune disease? FEBS Lett 2011; 585:3689-98. [PMID: 21515266 DOI: 10.1016/j.febslet.2011.04.032] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 04/13/2011] [Accepted: 04/13/2011] [Indexed: 10/18/2022]
Abstract
The PTPN22 locus is one of the strongest risk factors outside of the major histocompatability complex that associates with autoimmune diseases. PTPN22 encodes lymphoid protein tyrosine phosphatase (Lyp) which is expressed exclusively in immune cells. A single base change in the coding region of this gene resulting in an arginine to tryptophan amino acid substitution within a polyproline binding motif associates with type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosis, Hashimotos thyroiditis, Graves disease, Addison's disease, Myasthenia Gravis, vitiligo, systemic sclerosis juvenile idiopathic arthritis and psoriatic arthritis. Here, we review the current understanding of the PTPN22 locus from a genetic, geographical, biochemical and functional perspective.
Collapse
Affiliation(s)
- Garth L Burn
- Academic Department of Rheumatology, Division of Immunology, Infection and Inflammatory Disease, King's College School of Medicine, King's College London, UK.
| | | | | | | | | |
Collapse
|
44
|
Roetzer KM, Schwarzbraun T, Obenauf AC, Hauser E, Speicher MR. Further evidence for the pathogenicity of 15q24 microduplications distal to the minimal critical regions. Am J Med Genet A 2011; 152A:3173-8. [PMID: 21108404 DOI: 10.1002/ajmg.a.33750] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
DNA copy number alterations in 15q24 have repeatedly been reported in patients exhibiting mild to moderate developmental delay and dysmorphic features. To date, mainly microdeletions have been described, and comparison of overlapping regions allowed the definition of minimal critical regions (MCRs) for microdeletions as well as microduplications. These MCRs are associated with distinct phenotypes. Recently, a family with a new microduplication distal to these MCRs was reported. However, for this alteration the typical phenotypical consequences could not yet be determined. Here we present another family with a nearly identical microduplication exhibiting a broad clinical spectrum including developmental delay, autistic traits and dysmorphic features. Our data suggest that microduplications adjacent and distal to the known MCRs are variable in expressivity and are associated with distinct features. They might represent a novel and recurrent microduplication syndrome.
Collapse
|
45
|
Smith EJ, Allantaz F, Bennett L, Zhang D, Gao X, Wood G, Kastner DL, Punaro M, Aksentijevich I, Pascual V, Wise CA. Clinical, Molecular, and Genetic Characteristics of PAPA Syndrome: A Review. Curr Genomics 2010; 11:519-27. [PMID: 21532836 PMCID: PMC3048314 DOI: 10.2174/138920210793175921] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/18/2010] [Accepted: 09/01/2010] [Indexed: 12/16/2022] Open
Abstract
PAPA syndrome (Pyogenic Arthritis, Pyoderma gangrenosum, and Acne) is an autosomal dominant, hereditary auto-inflammatory disease arising from mutations in the PSTPIP1/CD2BP1 gene on chromosome 15q. These mutations produce a hyper-phosphorylated PSTPIP1 protein and alter its participation in activation of the "inflammasome" involved in interleukin-1 (IL-1β) production. Overproduction of IL-1β is a clear molecular feature of PAPA syndrome. Ongoing research is implicating other biochemical pathways that may be relevant to the distinct pyogenic inflammation of the skin and joints characteristic of this disease. This review summarizes the recent and rapidly accumulating knowledge on these molecular aspects of PAPA syndrome and related disorders.
Collapse
Affiliation(s)
- Elisabeth J Smith
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Scottish Rite Hospital for Children, Dallas, Texas 75219
- Garvan Institute of Medical Research, Sydney, NSW 2027, Australia
| | | | - Lynda Bennett
- Baylor Institute for Immunology Research, Dallas, Texas 75204
| | - Dongping Zhang
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Scottish Rite Hospital for Children, Dallas, Texas 75219
| | - Xiaochong Gao
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Scottish Rite Hospital for Children, Dallas, Texas 75219
| | - Geryl Wood
- Laboratory of Clinical Investigation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland 20892, USA
| | - Daniel L Kastner
- Laboratory of Clinical Investigation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland 20892, USA
| | - Marilynn Punaro
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Scottish Rite Hospital for Children, Dallas, Texas 75219
| | - Ivona Aksentijevich
- Laboratory of Clinical Investigation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland 20892, USA
| | | | - Carol A Wise
- Sarah M. and Charles E. Seay Center for Musculoskeletal Research, Scottish Rite Hospital for Children, Dallas, Texas 75219
| |
Collapse
|
46
|
Cocquet J, Ellis PJI, Yamauchi Y, Riel JM, Karacs TPS, Rattigan A, Ojarikre OA, Affara NA, Ward MA, Burgoyne PS. Deficiency in the multicopy Sycp3-like X-linked genes Slx and Slxl1 causes major defects in spermatid differentiation. Mol Biol Cell 2010; 21:3497-505. [PMID: 20739462 PMCID: PMC2954115 DOI: 10.1091/mbc.e10-07-0601] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/16/2010] [Accepted: 08/17/2010] [Indexed: 12/11/2022] Open
Abstract
The human and mouse sex chromosomes are enriched in multicopy genes required for postmeiotic differentiation of round spermatids into sperm. The gene Sly is present in multiple copies on the mouse Y chromosome and encodes a protein that is required for the epigenetic regulation of postmeiotic sex chromosome expression. The X chromosome carries two multicopy genes related to Sly: Slx and Slxl1. Here we investigate the role of Slx/Slxl1 using transgenically-delivered small interfering RNAs to disrupt their function. We show that Slx and Slxl1 are important for normal sperm differentiation and male fertility. Slx/Slxl1 deficiency leads to delay in spermatid elongation and sperm release. A high proportion of delayed spermatids are eliminated via apoptosis, with a consequent reduced sperm count. The remaining spermatozoa are abnormal with impaired motility and fertilizing abilities. Microarray analyses reveal that Slx/Slxl1 deficiency affects the metabolic processes occurring in the spermatid cytoplasm but does not lead to a global perturbation of sex chromosome expression; this is in contrast with the effect of Sly deficiency which leads to an up-regulation of X and Y chromosome genes. This difference may be due to the fact that SLX/SLXL1 are cytoplasmic while SLY is found in the nucleus and cytoplasm of spermatids.
Collapse
Affiliation(s)
- Julie Cocquet
- Division of Stem Cell Biology and Developmental Genetics, Medical Research Council National Institute for Medical Research, London, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Laporte D, Zhao R, Wu JQ. Mechanisms of contractile-ring assembly in fission yeast and beyond. Semin Cell Dev Biol 2010; 21:892-8. [PMID: 20708088 DOI: 10.1016/j.semcdb.2010.08.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/28/2010] [Accepted: 08/03/2010] [Indexed: 11/18/2022]
Abstract
Most eukaryotes including fungi, amoebas, and animal cells assemble an actin/myosin-based contractile ring during cytokinesis. The majority of proteins implied in ring formation, maturation, and constriction are evolutionarily conserved, suggesting that common mechanisms exist among these divergent eukaryotes. Here, we review the recent advances in positioning and assembly of the actomyosin ring in the fission yeast Schizosaccharomyces pombe, the budding yeast Saccharomyces cerevisiae, and animal cells. In particular, major findings have been made recently in understanding ring formation in genetically tractable S. pombe, revealing a dynamic and robust search, capture, pull, and release mechanism.
Collapse
Affiliation(s)
- Damien Laporte
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
48
|
Roberts-Galbraith RH, Ohi MD, Ballif BA, Chen JS, McLeod I, McDonald WH, Gygi SP, Yates JR, Gould KL. Dephosphorylation of F-BAR protein Cdc15 modulates its conformation and stimulates its scaffolding activity at the cell division site. Mol Cell 2010; 39:86-99. [PMID: 20603077 DOI: 10.1016/j.molcel.2010.06.012] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 03/22/2010] [Accepted: 04/16/2010] [Indexed: 01/11/2023]
Abstract
Cytokinesis in Schizosaccharomyces pombe requires the function of Cdc15, the founding member of the pombe cdc15 homology (PCH) family of proteins. As an early, abundant contractile ring component with multiple binding partners, Cdc15 plays a key role in organizing the ring. We demonstrate that Cdc15 phosphorylation at many sites generates a closed conformation, inhibits Cdc15 assembly at the division site in interphase, and precludes interaction of Cdc15 with its binding partners. Cdc15 dephosphorylation induces an open conformation, oligomerization, and scaffolding activity during mitosis. Cdc15 mutants with reduced phosphorylation precociously appear at the division site in filament-like structures and display increased association with protein partners and the membrane. Our results indicate that Cdc15 phosphoregulation impels both assembly and disassembly of the contractile apparatus and suggest a regulatory strategy that PCH family and BAR superfamily members might broadly employ to achieve temporal specificity in their roles as linkers between membrane and cytoskeleton.
Collapse
Affiliation(s)
- Rachel H Roberts-Galbraith
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Glotzer M. Controlling cytokinesis through promiscuous phosphorylation outside BARs. Mol Cell 2010; 39:3-5. [PMID: 20603070 DOI: 10.1016/j.molcel.2010.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this issue of Molecular Cell, Roberts-Galbraith and colleagues report that a key cytokinetic regulator in fission yeast, Cdc15, is phosphorylated on numerous sites that collectively, but not individually, control its oligomerization state and its associations with the plasma membrane and interacting proteins.
Collapse
Affiliation(s)
- Michael Glotzer
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| |
Collapse
|
50
|
Waite AL, Schaner P, Richards N, Balci-Peynircioglu B, Masters SL, Brydges SD, Fox M, Hong A, Yilmaz E, Kastner DL, Reinherz EL, Gumucio DL. Pyrin Modulates the Intracellular Distribution of PSTPIP1. PLoS One 2009; 4:e6147. [PMID: 19584923 PMCID: PMC2702820 DOI: 10.1371/journal.pone.0006147] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 06/03/2009] [Indexed: 01/23/2023] Open
Abstract
PSTPIP1 is a cytoskeleton-associated adaptor protein that links PEST-type phosphatases to their substrates. Mutations in PSTPIP1 cause PAPA syndrome (Pyogenic sterile Arthritis, Pyoderma gangrenosum, and Acne), an autoinflammatory disease. PSTPIP1 binds to pyrin and mutations in pyrin result in familial Mediterranean fever (FMF), a related autoinflammatory disorder. Since disease-associated mutations in PSTPIP1 enhance pyrin binding, PAPA syndrome and FMF are thought to share a common pathoetiology. The studies outlined here describe several new aspects of PSTPIP1 and pyrin biology. We document that PSTPIP1, which has homology to membrane-deforming BAR proteins, forms homodimers and generates membrane-associated filaments in native and transfected cells. An extended FCH (Fes-Cip4 homology) domain in PSTPIP1 is necessary and sufficient for its self-aggregation. We further show that the PSTPIP1 filament network is dependent upon an intact tubulin cytoskeleton and that the distribution of this network can be modulated by pyrin, indicating that this is a dynamic structure. Finally, we demonstrate that pyrin can recruit PSTPIP1 into aggregations (specks) of ASC, another pyrin binding protein. ASC specks are associated with inflammasome activity. PSTPIP1 molecules with PAPA-associated mutations are recruited by pyrin to ASC specks with particularly high efficiency, suggesting a unique mechanism underlying the robust inflammatory phenotype of PAPA syndrome.
Collapse
Affiliation(s)
- Andrea L. Waite
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Philip Schaner
- Division of Radiology/Oncology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Neil Richards
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | | | - Seth L. Masters
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | - Susannah D. Brydges
- Genetics and Genomics Branch, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Michelle Fox
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Arthur Hong
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Engin Yilmaz
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Daniel L. Kastner
- Genetics and Genomics Branch, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Ellis L. Reinherz
- Harvard Medical School, Laboratory of Immunology, Dana Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Deborah L. Gumucio
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|