1
|
Brown M, Dainty S, Strudwick N, Mihai AD, Watson JN, Dendooven R, Paton AW, Paton JC, Schröder M. Endoplasmic reticulum stress causes insulin resistance by inhibiting delivery of newly synthesized insulin receptors to the cell surface. Mol Biol Cell 2020; 31:2597-2629. [PMID: 32877278 PMCID: PMC7851869 DOI: 10.1091/mbc.e18-01-0013] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 08/21/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022] Open
Abstract
Accumulation of unfolded proteins in the endoplasmic reticulum (ER) causes ER stress and activates a signaling network known as the unfolded protein response (UPR). Here we characterize how ER stress and the UPR inhibit insulin signaling. We find that ER stress inhibits insulin signaling by depleting the cell surface population of the insulin receptor. ER stress inhibits proteolytic maturation of insulin proreceptors by interfering with transport of newly synthesized insulin proreceptors from the ER to the plasma membrane. Activation of AKT, a major target of the insulin signaling pathway, by a cytosolic, membrane-bound chimera between the AP20187-inducible FV2E dimerization domain and the cytosolic protein tyrosine kinase domain of the insulin receptor was not affected by ER stress. Hence, signaling events in the UPR, such as activation of the JNK mitogen-activated protein (MAP) kinases or the pseudokinase TRB3 by the ER stress sensors IRE1α and PERK, do not contribute to inhibition of signal transduction in the insulin signaling pathway. Indeed, pharmacologic inhibition and genetic ablation of JNKs, as well as silencing of expression of TRB3, did not restore insulin sensitivity or rescue processing of newly synthesized insulin receptors in ER-stressed cells. [Media: see text].
Collapse
Affiliation(s)
- Max Brown
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom
- North East England Stem Cell Institute (NESCI), Newcastle Upon Tyne NE1 4EP, United Kingdom
| | - Samantha Dainty
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom
- North East England Stem Cell Institute (NESCI), Newcastle Upon Tyne NE1 4EP, United Kingdom
| | - Natalie Strudwick
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom
- North East England Stem Cell Institute (NESCI), Newcastle Upon Tyne NE1 4EP, United Kingdom
| | - Adina D. Mihai
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom
- North East England Stem Cell Institute (NESCI), Newcastle Upon Tyne NE1 4EP, United Kingdom
| | - Jamie N. Watson
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom
- North East England Stem Cell Institute (NESCI), Newcastle Upon Tyne NE1 4EP, United Kingdom
| | - Robina Dendooven
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom
- North East England Stem Cell Institute (NESCI), Newcastle Upon Tyne NE1 4EP, United Kingdom
| | - Adrienne W. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - James C. Paton
- Research Centre for Infectious Diseases, Department of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Martin Schröder
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
- Biophysical Sciences Institute, Durham University, Durham DH1 3LE, United Kingdom
- North East England Stem Cell Institute (NESCI), Newcastle Upon Tyne NE1 4EP, United Kingdom
| |
Collapse
|
2
|
Zhang S, Xue L, Liu X, Zhang XC, Zhou R, Zhao H, Shen C, Pin JP, Rondard P, Liu J. Structural basis for distinct quality control mechanisms of GABA B receptor during evolution. FASEB J 2020; 34:16348-16363. [PMID: 33058267 DOI: 10.1096/fj.202001355rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 12/29/2022]
Abstract
Cell surface trafficking of many G protein-coupled receptors is tightly regulated. Among them, the mandatory heterodimer GABAB receptor for the main inhibitory neurotransmitter, γ-aminobutyric acid (GABA), is a model. In mammals, its cell surface trafficking is highly controlled by an endoplasmic reticulum retention signal in the C-terminal intracellular region of the GB1 subunit that is masked through a coiled-coil interaction with the GB2 subunit. Here, we investigate the molecular basis for the export of its homolog in Drosophila melanogaster that regulates the circadian rhythm and sleep. In contrast to mammals, the endoplasmic retention signal is carried by GB2, while GB1 reaches the cell surface alone. NMR analysis showed that the coiled-coil domain that controls GABAB heterodimer formation is structurally conserved between flies and mammals, despite specific features. These findings show the adaptation of a similar quality control system during evolution for maintaining the subunit composition of a functional heterodimeric receptor.
Collapse
Affiliation(s)
- Shenglan Zhang
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xue
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xuehui Liu
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xuejun Cai Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rui Zhou
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Han Zhao
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Cangsong Shen
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jean-Philippe Pin
- CNRS, INSERM, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, France
| | - Philippe Rondard
- CNRS, INSERM, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, France
| | - Jianfeng Liu
- Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
3
|
Juarez-Navarro K, Ayala-Garcia VM, Ruiz-Baca E, Meneses-Morales I, Rios-Banuelos JL, Lopez-Rodriguez A. Assistance for Folding of Disease-Causing Plasma Membrane Proteins. Biomolecules 2020; 10:biom10050728. [PMID: 32392767 PMCID: PMC7277483 DOI: 10.3390/biom10050728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
An extensive catalog of plasma membrane (PM) protein mutations related to phenotypic diseases is associated with incorrect protein folding and/or localization. These impairments, in addition to dysfunction, frequently promote protein aggregation, which can be detrimental to cells. Here, we review PM protein processing, from protein synthesis in the endoplasmic reticulum to delivery to the PM, stressing the main repercussions of processing failures and their physiological consequences in pathologies, and we summarize the recent proposed therapeutic strategies to rescue misassembled proteins through different types of chaperones and/or small molecule drugs that safeguard protein quality control and regulate proteostasis.
Collapse
|
4
|
Botta J, Appelhans J, McCormick PJ. Continuing challenges in targeting oligomeric GPCR-based drugs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 169:213-245. [DOI: 10.1016/bs.pmbts.2019.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Liu S, Li X, Yang J, Zhu R, Fan Z, Xu X, Feng W, Cui J, Sun J, Liu M. Misfolded proinsulin impairs processing of precursor of insulin receptor and insulin signaling in β cells. FASEB J 2019; 33:11338-11348. [PMID: 31311313 PMCID: PMC6766638 DOI: 10.1096/fj.201900442r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin resistance in classic insulin-responsive tissues is a hallmark of type 2 diabetes (T2D). However, the pathologic significance of β-cell insulin resistance and the underlying mechanisms contributing to defective insulin signaling in β cells remain largely unknown. Emerging evidence indicates that proinsulin misfolding is not only the molecular basis of mutant INS-gene–induced diabetes of youth (MIDY) but also an important contributor in the development and progression of T2D. However, the molecular basis of β-cell failure caused by misfolded proinsulin is still incompletely understood. Herein, using Akita mice expressing diabetes-causing mutant proinsulin, we found that misfolded proinsulin abnormally interacted with the precursor of insulin receptor (ProIR) in the endoplasmic reticulum (ER), impaired ProIR maturation to insulin receptor (IR), and decreased insulin signaling in β cells. Importantly, using db/db insulin-resistant mice, we found that oversynthesis of proinsulin led to an increased proinsulin misfolding, which resulted in impairments of ProIR processing and insulin signaling in β cells. These results reveal for the first time that misfolded proinsulin can interact with ProIR in the ER, impairing intracellular processing of ProIR and leading to defective insulin signaling that may contribute to β-cell failure in both MIDY and T2D.—Liu, S., Li, X., Yang, J., Zhu, R., Fan, Z., Xu, X., Feng, W., Cui, J., Sun, J., Liu, M. Misfolded proinsulin impairs processing of precursor of insulin receptor and insulin signaling in β cells.
Collapse
Affiliation(s)
- Shiqun Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Yang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Ruimin Zhu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenqian Fan
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoxi Xu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenli Feng
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingqiu Cui
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinhong Sun
- Department of Health Management, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
6
|
Klaver E, Zhao P, May M, Flanagan-Steet H, Freeze HH, Gilmore R, Wells L, Contessa J, Steet R. Selective inhibition of N-linked glycosylation impairs receptor tyrosine kinase processing. Dis Model Mech 2019; 12:dmm.039602. [PMID: 31101650 PMCID: PMC6602306 DOI: 10.1242/dmm.039602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/08/2019] [Indexed: 12/14/2022] Open
Abstract
Global inhibition of N-linked glycosylation broadly reduces glycan occupancy on glycoproteins, but identifying how this inhibition functionally impacts specific glycoproteins is challenging. This limits our understanding of pathogenesis in the congenital disorders of glycosylation (CDG). We used selective exo-enzymatic labeling of cells deficient in the two catalytic subunits of oligosaccharyltransferase - STT3A and STT3B - to monitor the presence and glycosylation status of cell surface glycoproteins. We show reduced abundance of two canonical tyrosine receptor kinases - the insulin receptor and insulin-like growth factor 1 receptor (IGF-1R) - at the cell surface in STT3A-null cells, due to decreased N-linked glycan site occupancy and proteolytic processing in combination with increased endoplasmic reticulum localization. Providing cDNA for Golgi-resident proprotein convertase subtilisin/kexin type 5a (PCSK5a) and furin cDNA to wild-type and mutant cells produced under-glycosylated forms of PCSK5a, but not furin, in cells lacking STT3A. Reduced glycosylation of PCSK5a in STT3A-null cells or cells treated with the oligosaccharyltransferase inhibitor NGI-1 corresponded with failure to rescue receptor processing, implying that alterations in the glycosylation of this convertase have functional consequences. Collectively, our findings show that STT3A-dependent inhibition of N-linked glycosylation on receptor tyrosine kinases and their convertases combines to impair receptor processing and surface localization. These results provide new insight into CDG pathogenesis and highlight how the surface abundance of some glycoproteins can be dually impacted by abnormal glycosylation.
Collapse
Affiliation(s)
- Elsenoor Klaver
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Melanie May
- Research Division, Greenwood Genetic Center, Greenwood, SC 29646, USA
| | | | - Hudson H Freeze
- Sanford Children's Health Research Center, Sanford-Burnham-Prebys Discovery Institute, La Jolla, CA 92037, USA
| | - Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worchester, MA 01655, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Joseph Contessa
- Departments of Therapeutic Radiology and Pharmacology, Yale University, New Haven, CT 06520, USA
| | - Richard Steet
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA .,Research Division, Greenwood Genetic Center, Greenwood, SC 29646, USA
| |
Collapse
|
7
|
Oliva-Vilarnau N, Hankeova S, Vorrink SU, Mkrtchian S, Andersson ER, Lauschke VM. Calcium Signaling in Liver Injury and Regeneration. Front Med (Lausanne) 2018; 5:192. [PMID: 30023358 PMCID: PMC6039545 DOI: 10.3389/fmed.2018.00192] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022] Open
Abstract
The liver fulfills central roles in metabolic control and detoxification and, as such, is continuously exposed to a plethora of insults. Importantly, the liver has a unique ability to regenerate and can completely recoup from most acute, non-iterative insults. However, multiple conditions, including viral hepatitis, non-alcoholic fatty liver disease (NAFLD), long-term alcohol abuse and chronic use of certain medications, can cause persistent injury in which the regenerative capacity eventually becomes dysfunctional, resulting in hepatic scaring and cirrhosis. Calcium is a versatile secondary messenger that regulates multiple hepatic functions, including lipid and carbohydrate metabolism, as well as bile secretion and choleresis. Accordingly, dysregulation of calcium signaling is a hallmark of both acute and chronic liver diseases. In addition, recent research implicates calcium transients as essential components of liver regeneration. In this review, we provide a comprehensive overview of the role of calcium signaling in liver health and disease and discuss the importance of calcium in the orchestration of the ensuing regenerative response. Furthermore, we highlight similarities and differences in spatiotemporal calcium regulation between liver insults of different etiologies. Finally, we discuss intracellular calcium control as an emerging therapeutic target for liver injury and summarize recent clinical findings of calcium modulation for the treatment of ischemic-reperfusion injury, cholestasis and NAFLD.
Collapse
Affiliation(s)
- Nuria Oliva-Vilarnau
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Simona Hankeova
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czechia
| | - Sabine U Vorrink
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Souren Mkrtchian
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Emma R Andersson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Volker M Lauschke
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Srinivasan S, Chitalia V, Meyer RD, Hartsough E, Mehta M, Harrold I, Anderson N, Feng H, Smith LEH, Jiang Y, Costello CE, Rahimi N. Hypoxia-induced expression of phosducin-like 3 regulates expression of VEGFR-2 and promotes angiogenesis. Angiogenesis 2015; 18:449-62. [PMID: 26059764 PMCID: PMC4600037 DOI: 10.1007/s10456-015-9468-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/04/2015] [Indexed: 12/18/2022]
Abstract
Expression and activation of vascular endothelial growth factor receptor 2 (VEGFR-2) by VEGF ligands are the main events in the stimulation of pathological angiogenesis. VEGFR-2 expression is generally low in the healthy adult blood vessels, but its expression is markedly increased in the pathological angiogenesis. In this report, we demonstrate that phosducin-like 3 (PDCL3), a recently identified chaperone protein involved in the regulation of VEGFR-2 expression, is required for angiogenesis in zebrafish and mouse. PDCL3 undergoes N-terminal methionine acetylation, and this modification affects PDCL3 expression and its interaction with VEGFR-2. Expression of PDCL3 is regulated by hypoxia, the known stimulator of angiogenesis. The mutant PDCL3 that is unable to undergo N-terminal methionine acetylation was refractory to the effect of hypoxia. The siRNA-mediated silencing of PDCL3 decreased VEGFR-2 expression resulting in a decrease in VEGF-induced VEGFR-2 phosphorylation, whereas PDCL3 over-expression increased VEGFR-2 protein. Furthermore, we show that PDCL3 protects VEGFR-2 from misfolding and aggregation. The data provide new insights for the chaperone function of PDCL3 in angiogenesis and the roles of hypoxia and N-terminal methionine acetylation in PDCL3 expression and its effect on VEGFR-2.
Collapse
Affiliation(s)
- Srimathi Srinivasan
- Departments of Pathology and Ophthalmology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Vipul Chitalia
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Rosana D Meyer
- Departments of Pathology and Ophthalmology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Edward Hartsough
- Departments of Pathology and Ophthalmology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Manisha Mehta
- Departments of Pathology and Ophthalmology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Itrat Harrold
- Section of Hematology and Medical Oncology, Department of Pharmacology and Experimental Therapeutics, The Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Nicole Anderson
- Section of Hematology and Medical Oncology, Department of Pharmacology and Experimental Therapeutics, The Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Hui Feng
- Section of Hematology and Medical Oncology, Department of Pharmacology and Experimental Therapeutics, The Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Lois E H Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yan Jiang
- Department of Biochemistry and Center for Biomedical Mass Spectrometry, School of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Catherine E Costello
- Department of Biochemistry and Center for Biomedical Mass Spectrometry, School of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Nader Rahimi
- Departments of Pathology and Ophthalmology, Boston University School of Medicine, Boston, MA, 02118, USA.
- Department of Pathology, Boston University Medical Campus, 670 Albany St., Room 510, Boston, MA, 02118, USA.
| |
Collapse
|
9
|
Arginine-induced insulin secretion in endoplasmic reticulum. Biochem Biophys Res Commun 2015; 466:717-22. [PMID: 26348775 DOI: 10.1016/j.bbrc.2015.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/03/2015] [Indexed: 01/31/2023]
Abstract
Arginine, a semi-essential amino acid, is known as one of the most strongest insulin secretagogues in a glucose-dependent manner, but major mechanism is unknown. Arginine induced insulin secretion in mice as well as β cell line, NIT-1, in which more than 90% of intracellular insulin is prionsulin without arginine cultivation. Arginine administration reduced prionsulin amount in 30 s, then insulin is secreted from NIT1 cells. These data indicated that the target factor(s) for arginine-induced insulin secretion located in endoplasmic reticulum (ER). We established the screening system for identifying the arginine mimetics. Brazilian propolis, not Chinese propolis, induced insulin secretion. To identify target factor(s) of arginine induced insulin secretion, our previous study was that nanobeads technology facilitated us to purify chemical-target factors. This time we chose the other way, proinsulin associating factor purification and arginine-immobilized agarose. Three proinsulin associating factors and 5 arginine interacting factors were identified. Among theses factors, Calnexin (CNX) was the only one factor, which belonged to both groups, suggesting that CNX might play a key role in arginine-induced insulin secretion in ER.
Collapse
|
10
|
Nätynki M, Kangas J, Miinalainen I, Sormunen R, Pietilä R, Soblet J, Boon LM, Vikkula M, Limaye N, Eklund L. Common and specific effects of TIE2 mutations causing venous malformations. Hum Mol Genet 2015; 24:6374-89. [PMID: 26319232 DOI: 10.1093/hmg/ddv349] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 08/24/2015] [Indexed: 01/09/2023] Open
Abstract
Venous malformations (VMs) are localized defects in vascular morphogenesis frequently caused by mutations in the gene for the endothelial tyrosine kinase receptor TIE2. Here, we report the analysis of a comprehensive collection of 22 TIE2 mutations identified in patients with VM, either as single amino acid substitutions or as double-mutations on the same allele. Using endothelial cell (EC) cultures, mouse models and ultrastructural analysis of tissue biopsies from patients, we demonstrate common as well as mutation-specific cellular and molecular features, on the basis of which mutations cluster into categories that correlate with data from genetic studies. Comparisons of double-mutants with their constituent single-mutant forms identified the pathogenic contributions of individual changes, and their compound effects. We find that defective receptor trafficking and subcellular localization of different TIE2 mutant forms occur via a variety of mechanisms, resulting in attenuated response to ligand. We also demonstrate, for the first time, that TIE2 mutations cause chronic activation of the MAPK pathway resulting in loss of normal EC monolayer due to extracellular matrix (ECM) fibronectin deficiency and leading to upregulation of plasminogen/plasmin proteolytic pathway. Corresponding EC and ECM irregularities are observed in affected tissues from mouse models and patients. Importantly, an imbalance between plasminogen activators versus inhibitors would also account for high d-dimer levels, a major feature of unknown cause that distinguishes VMs from other vascular anomalies.
Collapse
Affiliation(s)
- Marjut Nätynki
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Jaakko Kangas
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - Raija Sormunen
- Biocenter Oulu, University of Oulu, Oulu, Finland, Department of Pathology and Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Riikka Pietilä
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Julie Soblet
- Human Molecular Genetics, de Duve Institute, and
| | - Laurence M Boon
- Human Molecular Genetics, de Duve Institute, and Center for Vascular Anomalies, Division of Plastic Surgery, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | | | - Nisha Limaye
- Human Molecular Genetics, de Duve Institute, and
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland,
| |
Collapse
|
11
|
Wang P, Eshaq RS, Meshul CK, Moore C, Hood RL, Leidenheimer NJ. Neuronal gamma-aminobutyric acid (GABA) type A receptors undergo cognate ligand chaperoning in the endoplasmic reticulum by endogenous GABA. Front Cell Neurosci 2015; 9:188. [PMID: 26041994 PMCID: PMC4435044 DOI: 10.3389/fncel.2015.00188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/28/2015] [Indexed: 01/01/2023] Open
Abstract
GABAA receptors mediate fast inhibitory neurotransmission in the brain. Dysfunction of these receptors is associated with various psychiatric/neurological disorders and drugs targeting this receptor are widely used therapeutic agents. Both the efficacy and plasticity of GABAA receptor-mediated neurotransmission depends on the number of surface GABAA receptors. An understudied aspect of receptor cell surface expression is the post-translational regulation of receptor biogenesis within the endoplasmic reticulum (ER). We have previously shown that exogenous GABA can act as a ligand chaperone of recombinant GABAA receptors in the early secretory pathway leading us to now investigate whether endogenous GABA facilitates the biogenesis of GABAA receptors in primary cerebral cortical cultures. In immunofluorescence labeling experiments, we have determined that neurons expressing surface GABAA receptors contain both GABA and its degradative enzyme GABA transaminase (GABA-T). Treatment of neurons with GABA-T inhibitors, a treatment known to increase intracellular GABA levels, decreases the interaction of the receptor with the ER quality control protein calnexin, concomittantly increasing receptor forward-trafficking and plasma membrane insertion. The effect of GABA-T inhibition on the receptor/calnexin interaction is not due to the activation of surface GABAA or GABAB receptors. Consistent with our hypothesis that GABA acts as a cognate ligand chaperone in the ER, immunogold-labeling of rodent brain slices reveals the presence of GABA within the rough ER. The density of this labeling is similar to that present in mitochondria, the organelle in which GABA is degraded. Lastly, the effect of GABA-T inhibition on the receptor/calnexin interaction was prevented by pretreatment with a GABA transporter inhibitor. Together, these data indicate that endogenous GABA acts in the rough ER as a cognate ligand chaperone to facilitate the biogenesis of neuronal GABAA receptors.
Collapse
Affiliation(s)
- Ping Wang
- Department of Biochemistry and Molecular Biology, Louisiana State University, Health Sciences Center-Shreveport Shreveport, LA, USA
| | - Randa S Eshaq
- Department of Biochemistry and Molecular Biology, Louisiana State University, Health Sciences Center-Shreveport Shreveport, LA, USA
| | - Charles K Meshul
- Veterans Hospital Portland/Research Services/Neurocytology Laboratory and Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | - Cynthia Moore
- Veterans Hospital Portland/Research Services/Neurocytology Laboratory and Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | - Rebecca L Hood
- Veterans Hospital Portland/Research Services/Neurocytology Laboratory and Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | - Nancy J Leidenheimer
- Department of Biochemistry and Molecular Biology, Louisiana State University, Health Sciences Center-Shreveport Shreveport, LA, USA
| |
Collapse
|
12
|
Lee D, Kraus A, Prins D, Groenendyk J, Aubry I, Liu WX, Li HD, Julien O, Touret N, Sykes BD, Tremblay ML, Michalak M. UBC9-dependent association between calnexin and protein tyrosine phosphatase 1B (PTP1B) at the endoplasmic reticulum. J Biol Chem 2015; 290:5725-38. [PMID: 25586181 DOI: 10.1074/jbc.m114.635474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Calnexin is a type I integral endoplasmic reticulum (ER) membrane protein, molecular chaperone, and a component of the translocon. We discovered a novel interaction between the calnexin cytoplasmic domain and UBC9, a SUMOylation E2 ligase, which modified the calnexin cytoplasmic domain by the addition of SUMO. We demonstrated that calnexin interaction with the SUMOylation machinery modulates an interaction with protein tyrosine phosphatase 1B (PTP1B), an ER-associated protein tyrosine phosphatase involved in the negative regulation of insulin and leptin signaling. We showed that calnexin and PTP1B form UBC9-dependent complexes, revealing a previously unrecognized contribution of calnexin to the retention of PTP1B at the ER membrane. This work shows that the SUMOylation machinery links two ER proteins from divergent pathways to potentially affect cellular protein quality control and energy metabolism.
Collapse
Affiliation(s)
- Dukgyu Lee
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| | - Allison Kraus
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| | - Daniel Prins
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| | - Jody Groenendyk
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| | - Isabelle Aubry
- McGill Cancer Centre, Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Wen-Xin Liu
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| | - Hao-Dong Li
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| | - Olivier Julien
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| | - Nicolas Touret
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| | - Brian D Sykes
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada and
| | - Michel L Tremblay
- McGill Cancer Centre, Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Marek Michalak
- McGill Cancer Centre, Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
13
|
Li F, Lok JB, Gasser RB, Korhonen PK, Sandeman MR, Shi D, Zhou R, Li X, Zhou Y, Zhao J, Hu M. Hc-daf-2 encodes an insulin-like receptor kinase in the barber's pole worm, Haemonchus contortus, and restores partial dauer regulation. Int J Parasitol 2014; 44:485-96. [PMID: 24727120 PMCID: PMC4516220 DOI: 10.1016/j.ijpara.2014.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/14/2014] [Accepted: 03/16/2014] [Indexed: 01/25/2023]
Abstract
Infective L3s (iL3s) of parasitic nematodes share common behavioural, morphological and developmental characteristics with the developmentally arrested (dauer) larvae of the free-living nematode Caenorhabditis elegans. It is proposed that similar molecular mechanisms regulate entry into or exit from the dauer stage in C. elegans, and the transition from free-living to parasitic forms of parasitic nematodes. In C. elegans, one of the key factors regulating the dauer transition is the insulin-like receptor (designated Ce-DAF-2) encoded by the gene Ce-daf-2. However, nothing is known about DAF-2 homologues in most parasitic nematodes. Here, using a PCR-based approach, we identified and characterised a gene (Hc-daf-2) and its inferred product (Hc-DAF-2) in Haemonchus contortus (a socioeconomically important parasitic nematode of ruminants). The sequence of Hc-DAF-2 displays significant sequence homology to insulin receptors (IR) in both vertebrates and invertebrates, and contains conserved structural domains. A sequence encoding an important proteolytic motif (RKRR) identified in the predicted peptide sequence of Hc-DAF-2 is consistent with that of the human IR, suggesting that it is involved in the formation of the IR complex. The Hc-daf-2 gene was transcribed in all life stages of H. contortus, with a significant up-regulation in the iL3 compared with other stages. To compare patterns of expression between Hc-daf-2 and Ce-daf-2, reporter constructs fusing the Ce-daf-2 or Hc-daf-2 promoter to sequence encoding GFP were microinjected into the N2 strain of C. elegans, and transgenic lines were established and examined. Both genes showed similar patterns of expression in amphidial (head) neurons, which relate to sensation and signal transduction. Further study by heterologous genetic complementation in a daf-2-deficient strain of C. elegans (CB1370) showed partial rescue of function by Hc-daf-2. Taken together, these findings provide a first insight into the roles of Hc-daf-2/Hc-DAF-2 in the biology and development of H. contortus, particularly in the transition to parasitism.
Collapse
Affiliation(s)
- Facai Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, Hubei, China
| | - James B Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Robin B Gasser
- Faculty of Veterinary Science, The University of Melbourne, Corner of Flemington Road and Park Drive, Parkville, Victoria 3010, Australia; Institute of Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, 16-18 Kaiserswerther Street, Berlin 14195, Germany
| | - Pasi K Korhonen
- Faculty of Veterinary Science, The University of Melbourne, Corner of Flemington Road and Park Drive, Parkville, Victoria 3010, Australia
| | - Mark R Sandeman
- School of Applied Sciences and Engineering, Monash University, Northways Road, Churchill, Victoria 3842, Australia
| | - Deshi Shi
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Xiangrui Li
- College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, Jiangsu, China
| | - Yanqin Zhou
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, Hubei, China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, 1 Shizishan Street, Wuhan 430070, Hubei, China.
| |
Collapse
|
14
|
Mahmazi S, Parivar K, Rahnema M, Ohadi M. Calreticulin novel mutations in type 2 diabetes mellitus. Int J Diabetes Dev Ctries 2013. [DOI: 10.1007/s13410-013-0152-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
15
|
Tamura T, Arai S, Nagaya H, Mizuguchi J, Wada I. Stepwise assembly of fibrinogen is assisted by the endoplasmic reticulum lectin-chaperone system in HepG2 cells. PLoS One 2013; 8:e74580. [PMID: 24040290 PMCID: PMC3769264 DOI: 10.1371/journal.pone.0074580] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 08/06/2013] [Indexed: 11/29/2022] Open
Abstract
The endoplasmic reticulum (ER) plays essential roles in protein folding and assembly of secretory proteins. ER-resident molecular chaperones and related enzymes assist in protein maturation by co-operated interactions and modifications. However, the folding/assembly of multimeric proteins is not well understood. Here, we show that the maturation of fibrinogen, a hexameric secretory protein (two trimers from α, β and γ subunits), occurs in a stepwise manner. The αγ complex, a precursor for the trimer, is retained in the ER by lectin-like chaperones, and the β subunit is incorporated into the αγ complex immediately after translation. ERp57, a protein disulfide isomerase homologue, is involved in the hexamer formation from two trimers. Our results indicate that the fibrinogen hexamer is formed sequentially, rather than simultaneously, using kinetic pause by lectin chaperones. This study provides a novel insight into the assembly of most abundant multi-subunit secretory proteins.
Collapse
Affiliation(s)
- Taku Tamura
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency (JST), Tokyo, Japan
- * E-mail:
| | - Seisuke Arai
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, Japan
| | - Hisao Nagaya
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Jun Mizuguchi
- The Chemo-Sero-Therapeutic Research Institute (Kaketsuken), Kumamoto, Japan
| | - Ikuo Wada
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency (JST), Tokyo, Japan
| |
Collapse
|
16
|
Srinivasan S, Meyer RD, Lugo R, Rahimi N. Identification of PDCL3 as a novel chaperone protein involved in the generation of functional VEGF receptor 2. J Biol Chem 2013; 288:23171-81. [PMID: 23792958 DOI: 10.1074/jbc.m113.473173] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Angiogenesis, a hallmark step in tumor metastasis and ocular neovascularization, is driven primarily by the function of VEGF ligand on one of its receptors, VEGF receptor 2 (VEGFR-2). Central to the proliferation and ensuing angiogenesis of endothelial cells, the abundance of VEGFR-2 on the surface of endothelial cells is essential for VEGF to recognize and activate VEGFR-2. We have identified phosducin-like 3 (PDCL3, also known as PhLP2A), through a yeast two-hybrid system, as a novel protein involved in the stabilization of VEGFR-2 by serving as a chaperone. PDCL3 binds to the juxtamembrane domain of VEGFR-2 and controls the abundance of VEGFR-2 by inhibiting its ubiquitination and degradation. PDCL3 increases VEGF-induced tyrosine phosphorylation and is required for VEGFR-2-dependent endothelial capillary tube formation and proliferation. Taken together, our data provide strong evidence for the role of PDCL3 in angiogenesis and establishes the molecular mechanism by which it regulates VEGFR-2 expression and function.
Collapse
Affiliation(s)
- Srimathi Srinivasan
- Department of Pathology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
17
|
Chang J, Oikawa S, Ichihara G, Nanpei Y, Hotta Y, Yamada Y, Tada-Oikawa S, Iwahashi H, Kitagawa E, Takeuchi I, Yuda M, Ichihara S. Altered gene and protein expression in liver of the obese spontaneously hypertensive/NDmcr-cp rat. Nutr Metab (Lond) 2012; 9:87. [PMID: 22998770 PMCID: PMC3565951 DOI: 10.1186/1743-7075-9-87] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 09/07/2012] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED BACKGROUND It is difficult to study the mechanisms of the metabolic syndrome in humans due to the heterogeneous genetic background and lifestyle. The present study investigated changes in the gene and protein profiles in an animal model of the metabolic syndrome to identify the molecular targets associated with the pathogenesis and progression of obesity related to the metabolic syndrome. METHODS We extracted mRNAs and proteins from the liver tissues of 6- and 25-week-old spontaneously hypertensive/NIH -corpulent rat SHR/NDmcr-cp (CP), SHR/Lean (Lean) and Wistar Kyoto rats (WKY) and performed microarray analysis and two-dimensional difference in gel electrophoresis (2D-DIGE) linked to a matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF MS). RESULTS The microarray analysis identified 25 significantly up-regulated genes (P < 0.01; log10 > 1) and 31 significantly down-regulated genes (P < 0.01; log10 < -1) in 6- and 25-week-old CP compared with WKY and Lean. Several of these genes are known to be involved in important biological processes such as electron transporter activity, electron transport, lipid metabolism, ion transport, transferase, and ion channel activity. MALDI-TOF/TOF MS identified 31 proteins with ±1.2 fold change (P < 0.05) in 6- and 25-week-old CP, compared with age-matched WKY and Lean. The up-regulated proteins are involved in metabolic processes, biological regulation, catalytic activity, and binding, while the down-regulated proteins are involved in endoplasmic reticulum stress-related unfolded protein response. CONCLUSION Genes with significant changes in their expression in transcriptomic analysis matched very few of the proteins identified in proteomics analysis. However, annotated functional classifications might provide an important reference resource to understand the pathogenesis of obesity associated with the metabolic syndrome.
Collapse
Affiliation(s)
- Jie Chang
- Graduate School of Regional Innovation Studies, Mie University, 1577 Kurimamachiya-cho, Tsu 514-8507, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Vig S, Pandey AK, Verma G, Datta M. C/EBPα mediates the transcriptional suppression of human calreticulin gene expression by TNFα. Int J Biochem Cell Biol 2012; 44:113-22. [DOI: 10.1016/j.biocel.2011.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/29/2011] [Accepted: 10/11/2011] [Indexed: 01/22/2023]
|
19
|
Caruso MA, Sheridan MA. New insights into the signaling system and function of insulin in fish. Gen Comp Endocrinol 2011; 173:227-47. [PMID: 21726560 DOI: 10.1016/j.ygcen.2011.06.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/08/2011] [Accepted: 06/14/2011] [Indexed: 12/11/2022]
Abstract
Fish have provided essential information about the structure, biosynthesis, evolution, and function of insulin (INS) as well as about the structure, evolution, and mechanism of action of insulin receptors (IR). INS, insulin-like growth factor (IGF)-1, and IGF-2 share a common ancestor; INS and a single IGF occur in Agnathans, whereas INS and distinct IGF-1 and IGF-2s appear in Chondrichthyes. Some but not all teleost fish possess multiple INS genes, but it is not clear if they arose from a common gene duplication event or from multiple separate gene duplications. INS is produced by the endocrine pancreas of fish as well as by several other tissues, including brain, pituitary, gastrointestinal tract, and adipose tissue. INS regulates various aspects of feeding, growth, development, and intermediary metabolism in fish. The actions of INS are mediated through the insulin receptor (IR), a member of the receptor tyrosine kinase family. IRs are widely distributed in peripheral tissues of fish, and multiple IR subtypes that derive from distinct mRNAs have been described. The IRs of fish link to several cellular effector systems, including the ERK and IRS-PI3k-Akt pathways. The diverse effects of INS can be modulated by altering the production and release of INS as well as by adjusting the production/surface expression of IR. The diverse actions of INS in fish as well as the diverse nature of the neural, hormonal, and environmental factors known to affect the INS signaling system reflects the various life history patterns that have evolved to enable fish to occupy a wide range of aquatic habitats.
Collapse
Affiliation(s)
- Michael A Caruso
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | | |
Collapse
|
20
|
Abstract
Ever since the discovery of insulin and its role in the regulation of glucose uptake and utilization, there has been great interest in insulin, its structure and the way in which it interacts with its receptor and effects signal transduction. As the 90th anniversary of the discovery of insulin approaches, it is timely to provide an overview of the landmark discoveries relating to the structure and function of this remarkable molecule and its receptor.
Collapse
Affiliation(s)
- Colin W. Ward
- Walter and Eliza Hall Institute of Medical ResearchParkville, VIC, Australia
| | - Michael C. Lawrence
- Walter and Eliza Hall Institute of Medical ResearchParkville, VIC, Australia
- Department of Medical Biology, University of MelbourneParkville, VIC, Australia
- *Correspondence: Michael C. Lawrence, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, VIC 3052, Australia. e-mail:
| |
Collapse
|
21
|
Participation of lectin chaperones and thiol oxidoreductases in protein folding within the endoplasmic reticulum. Curr Opin Cell Biol 2010; 23:157-66. [PMID: 21094034 DOI: 10.1016/j.ceb.2010.10.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 10/05/2010] [Accepted: 10/21/2010] [Indexed: 01/21/2023]
Abstract
Protein folding within the endoplasmic reticulum occurs in conjunction with a complex array of molecular chaperones and folding catalysts that assist the folding process as well as function in quality control processes to monitor the outcome. In this review, we summarize recent advances in the calnexin/calreticulin chaperone system that is directed primarily toward Asn-linked glycoproteins, as well as the protein disulfide isomerase family of enzymes that catalyze disulfide formation, reduction, and isomerization. We highlight issues related to function and substrate specificity as well as the functional interplay between the two systems.
Collapse
|
22
|
Wallborn T, Wüller S, Klammt J, Kruis T, Kratzsch J, Schmidt G, Schlicke M, Müller E, van de Leur HS, Kiess W, Pfäffle R. A heterozygous mutation of the insulin-like growth factor-I receptor causes retention of the nascent protein in the endoplasmic reticulum and results in intrauterine and postnatal growth retardation. J Clin Endocrinol Metab 2010; 95:2316-24. [PMID: 20357178 DOI: 10.1210/jc.2009-2404] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Mutations in the IGF-I receptor (IGF1R) gene can be responsible for intrauterine and postnatal growth disorders. OBJECTIVE Here we report on a novel mutation in the IGF1R gene in a female patient. The aim of our study was to analyze the functional impact of this mutation. PATIENT At birth, the girl's length was 47 cm [-1.82 sd score (SDS)], and her weight was 2250 g (-2.26 SDS). Clinical examination revealed microcephaly and retarded cognitive development. She showed no postnatal catch-up growth but had relatively high IGF-I levels (+1.83 to +2.17 SDS). RESULTS Denaturing HPLC screening and direct DNA sequencing disclosed a heterozygous missense mutation resulting in an amino acid exchange from valine to glutamic acid at position 599 (V599E-IGF1R). Using various cell systems, we found that the V599E-IGF1R mutant was not tyrosine phosphorylated and had an impaired downstream signaling in the presence of IGF-I. Flow cytometry and live cell confocal laser scanning microscopy revealed a lack of cell surface expression due to an extensive retention of V599E-IGF1R proteins within the endoplasmic reticulum. CONCLUSION The V599E-IGF1R mutation interferes with the receptor's trafficking path, thereby abrogating proreceptor processing and plasma membrane localization. Diminished cell surface receptor density solely expressed from the patient's wild-type allele is supposed to lead to insufficient IGF-I signaling. We hypothesize that this mechanism results in intrauterine and postnatal growth retardation of the affected patient. The reported retention of the nascent IGF1R in the endoplasmic reticulum presents a novel mechanism of IGF-I resistance.
Collapse
Affiliation(s)
- Tillmann Wallborn
- University Hospital for Children and Adolescents, University of Leipzig, Liebigstrasse 20a, D-04103 Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Structural resolution of a tandem hormone-binding element in the insulin receptor and its implications for design of peptide agonists. Proc Natl Acad Sci U S A 2010; 107:6771-6. [PMID: 20348418 DOI: 10.1073/pnas.1001813107] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The C-terminal segment of the human insulin receptor alpha-chain (designated alphaCT) is critical to insulin binding as has been previously demonstrated by alanine scanning mutagenesis and photo-cross-linking. To date no information regarding the structure of this segment within the receptor has been available. We employ here the technique of thermal-factor sharpening to enhance the interpretability of the electron-density maps associated with the earlier crystal structure of the human insulin receptor ectodomain. The alphaCT segment is now resolved as being engaged with the central beta-sheet of the first leucine-rich repeat (L1) domain of the receptor. The segment is alpha-helical in conformation and extends 11 residues N-terminal of the classical alphaCT segment boundary originally defined by peptide mapping. This tandem structural element (alphaCT-L1) thus defines the intact primary insulin-binding surface of the apo-receptor. The structure, together with isothermal titration calorimetry data of mutant alphaCT peptides binding to an insulin minireceptor, leads to the conclusion that putative "insulin-mimetic" peptides in the literature act at least in part as mimics of the alphaCT segment as well as of insulin. Photo-cross-linking by novel bifunctional insulin derivatives demonstrates that the interaction of insulin with the alphaCT segment and the L1 domain occurs in trans, i.e., these components of the primary binding site are contributed by alternate alpha-chains within the insulin receptor homodimer. The tandem structural element defines a new target for the design of insulin agonists for the treatment of diabetes mellitus.
Collapse
|
24
|
Garcia-Garcia J, Guney E, Aragues R, Planas-Iglesias J, Oliva B. Biana: a software framework for compiling biological interactions and analyzing networks. BMC Bioinformatics 2010; 11:56. [PMID: 20105306 PMCID: PMC3098100 DOI: 10.1186/1471-2105-11-56] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 01/27/2010] [Indexed: 12/13/2022] Open
Abstract
Background The analysis and usage of biological data is hindered by the spread of information across multiple repositories and the difficulties posed by different nomenclature systems and storage formats. In particular, there is an important need for data unification in the study and use of protein-protein interactions. Without good integration strategies, it is difficult to analyze the whole set of available data and its properties. Results We introduce BIANA (Biologic Interactions and Network Analysis), a tool for biological information integration and network management. BIANA is a Python framework designed to achieve two major goals: i) the integration of multiple sources of biological information, including biological entities and their relationships, and ii) the management of biological information as a network where entities are nodes and relationships are edges. Moreover, BIANA uses properties of proteins and genes to infer latent biomolecular relationships by transferring edges to entities sharing similar properties. BIANA is also provided as a plugin for Cytoscape, which allows users to visualize and interactively manage the data. A web interface to BIANA providing basic functionalities is also available. The software can be downloaded under GNU GPL license from http://sbi.imim.es/web/BIANA.php. Conclusions BIANA's approach to data unification solves many of the nomenclature issues common to systems dealing with biological data. BIANA can easily be extended to handle new specific data repositories and new specific data types. The unification protocol allows BIANA to be a flexible tool suitable for different user requirements: non-expert users can use a suggested unification protocol while expert users can define their own specific unification rules.
Collapse
Affiliation(s)
- Javier Garcia-Garcia
- Structural Bioinformatics Lab, Universitat Pompeu Fabra-IMIM, Barcelona Research Park of Biomedicine, Barcelona, Catalonia, Spain
| | | | | | | | | |
Collapse
|
25
|
Ye R, Jung DY, Jun JY, Li J, Luo S, Ko HJ, Kim JK, Lee AS. Grp78 heterozygosity promotes adaptive unfolded protein response and attenuates diet-induced obesity and insulin resistance. Diabetes 2010; 59:6-16. [PMID: 19808896 PMCID: PMC2797945 DOI: 10.2337/db09-0755] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the role of the endoplasmic reticulum (ER) chaperone glucose-regulated protein (GRP) 78/BiP in the pathogenesis of obesity, insulin resistance, and type 2 diabetes. RESEARCH DESIGN AND METHODS Male Grp78(+/-) mice and their wild-type littermates were subjected to a high-fat diet (HFD) regimen. Pathogenesis of obesity and type 2 diabetes was examined by multiple approaches of metabolic phenotyping. Tissue-specific insulin sensitivity was analyzed by hyperinsulinemic-euglycemic clamps. Molecular mechanism was explored via immunoblotting and tissue culture manipulation. RESULTS Grp78 heterozygosity increases energy expenditure and attenuates HFD-induced obesity. Grp78(+/-) mice are resistant to diet-induced hyperinsulinemia, liver steatosis, white adipose tissue (WAT) inflammation, and hyperglycemia. Hyperinsulinemic-euglycemic clamp studies revealed that Grp78 heterozygosity improves glucose metabolism independent of adiposity and following an HFD increases insulin sensitivity predominantly in WAT. As mechanistic explanations, Grp78 heterozygosity in WAT under HFD stress promotes adaptive unfolded protein response (UPR), attenuates translational block, and upregulates ER degradation-enhancing alpha-mannosidase-like protein (EDEM) and ER chaperones, thus improving ER quality control and folding capacity. Further, overexpression of the active form of ATF6 induces protective UPR and improves insulin signaling upon ER stress. CONCLUSIONS HFD-induced obesity and type 2 diabetes are improved in Grp78(+/-) mice. Adaptive UPR in WAT could contribute to this improvement, linking ER homeostasis to energy balance and glucose metabolism.
Collapse
Affiliation(s)
- Risheng Ye
- Department of Biochemistry and Molecular Biology, University of Southern California/Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Dae Young Jung
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - John Y. Jun
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jianze Li
- Department of Biochemistry and Molecular Biology, University of Southern California/Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Shengzhan Luo
- Department of Biochemistry and Molecular Biology, University of Southern California/Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Hwi Jin Ko
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jason K. Kim
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Amy S. Lee
- Department of Biochemistry and Molecular Biology, University of Southern California/Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California
- Corresponding author: Amy S. Lee,
| |
Collapse
|
26
|
Ma-Högemeier ZL, Körber C, Werner M, Racine D, Muth-Köhne E, Tapken D, Hollmann M. Oligomerization in the endoplasmic reticulum and intracellular trafficking of kainate receptors are subunit-dependent but not editing-dependent. J Neurochem 2009; 113:1403-15. [PMID: 20050975 DOI: 10.1111/j.1471-4159.2009.06559.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Investigating subunit assembly of ionotropic glutamate receptor complexes and their trafficking to the plasma membrane under physiological conditions in live cells has been challenging. By confocal imaging of fluorescently labeled kainate receptor (KAR) subunits combined with digital co-localization and fluorescence resonance energy (FRET) transfer analyses, we investigated the assembly of homomeric and heteromeric receptor complexes and identified the subcellular location of subunit interactions. Our data provide direct evidence for oligomerization of KAR subunits as early as following their biosynthesis in the endoplasmic reticulum (ER). These oligomeric assemblies pass through the Golgi apparatus en route to the plasma membrane. We show that the amino acid at the Q/R editing site of the KAR subunit GluR6 neither determines subunit oligomerization in the ER nor ER exit or plasma membrane expression, and that it does not alter GluR6 interaction with KA2. This finding sets KARs apart from alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors, where in the absence of auxiliary proteins Q isoforms exit the ER much more efficiently than R isoforms. Furthermore, although KA2 subunits do not form functional homotetrameric complexes, we visualized their oligomerization (at least dimerization) in the ER. Finally, we demonstrate that plasma membrane expression of GluR6/KA2 heteromeric complexes is modulated not only by GluR6 but also KA2.
Collapse
Affiliation(s)
- Zhan-Lu Ma-Högemeier
- Department of Biochemistry I-Receptor Biochemistry, Ruhr University Bochum, Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Vardatsikos G, Sahu A, Srivastava AK. The insulin-like growth factor family: molecular mechanisms, redox regulation, and clinical implications. Antioxid Redox Signal 2009; 11:1165-90. [PMID: 19014342 DOI: 10.1089/ars.2008.2161] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Insulin-like growth factor (IGF)-induced signaling networks are vital in modulating multiple fundamental cellular processes, such as cell growth, survival, proliferation, and differentiation. Aberrations in the generation or action of IGF have been suggested to play an important role in several pathological conditions, including metabolic disorders, neurodegenerative diseases, and multiple types of cancer. Yet the exact mechanism involved in the pathogenesis of these diseases by IGFs remains obscure. Redox pathways involving reactive oxygen species (ROS) and reactive nitrogen species (RNS) contribute to the pathogenetic mechanism of various diseases by modifying key signaling pathways involved in cell growth, proliferation, survival, and apoptosis. Furthermore, ROS and RNS have been demonstrated to alter IGF production and/or action, and vice versa, and thereby have the ability to modulate cellular functions, leading to clinical manifestations of diseases. In this review, we provide an overview on the IGF system and discuss the potential role of IGF-1/IGF-1 receptor and redox pathways in the pathophysiology of several diseases.
Collapse
Affiliation(s)
- George Vardatsikos
- Laboratory of Cell Signaling, Montreal Diabetes Research Center, Centre Hospitalier de l'Université de Montréal, Department of Medicine, Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
28
|
Jensen M, De Meyts P. Molecular mechanisms of differential intracellular signaling from the insulin receptor. VITAMINS AND HORMONES 2009; 80:51-75. [PMID: 19251034 DOI: 10.1016/s0083-6729(08)00603-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Binding of insulin to the insulin receptor (IR) leads to a cascade of intracellular signaling events, which regulate multiple biological processes such as glucose and lipid metabolism, gene expression, protein synthesis, and cell growth, division, and survival. However, the exact mechanism of how the insulin-IR interaction produces its own specific pattern of regulated cellular functions is not yet fully understood. Insulin analogs, anti-IR antibodies as well as synthetic insulin mimetic peptides that target the two insulin-binding regions of the IR, have been used to study the relationship between different aspects of receptor binding and function as well as providing new insights into the structure and function of the IR. This review focuses on the current knowledge of activation of the IR and how activation of the IR by different ligands initiates different cellular responses. Investigation of differential activation of the IR may provide clues to the molecular mechanisms of how the insulin-receptor interaction controls the specificity of the downstream signaling response. Differences in the kinetics of ligand-interaction with the IR, the magnitude of the signal as well as its subcelllar location all play important roles in determining/eliciting the different biological responses. Additional studies are nevertheless required to dissect the precise molecular mechanisms leading to the differential signaling from the IR.
Collapse
Affiliation(s)
- Maja Jensen
- Hagedorn Research Institute, 2820 Gentofte, Denmark
| | | |
Collapse
|
29
|
Mohan C, Lee GM. Calnexin overexpression sensitizes recombinant CHO cells to apoptosis induced by sodium butyrate treatment. Cell Stress Chaperones 2009; 14:49-60. [PMID: 18663604 PMCID: PMC2673906 DOI: 10.1007/s12192-008-0054-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 05/07/2008] [Accepted: 05/14/2008] [Indexed: 12/12/2022] Open
Abstract
Sodium butyrate (NaBu) can enhance the expression of foreign genes in recombinant Chinese hamster ovary (rCHO) cells, but it can also inhibit cell growth and induce cellular apoptosis. In this study, the potential role of calnexin (Cnx) expression in rCHO cells treated with 5 mM NaBu was investigated for rCHO cells producing tumor necrosis factor receptor FC. To regulate the Cnx expression level, a tetracycline-inducible system was used. Clones with different Cnx expression levels were selected and investigated. With regard to productivity per cell (q (p)), NaBu enhanced the q (p) by over twofold. Under NaBu treatment, Cnx overexpression further enhanced the q (p) by about 1.7-fold. However, under NaBu stress, the cells overexpressing Cnx showed a poorer viability profile with a consistent difference of over 25% in the viability when compared to the Cnx-repressed condition. This drop in the viability was attributed to increased apoptosis seen in these cells as evidenced by enhanced poly (ADP-ribose) polymerase cleavage and cytochrome C release. Ca(2+) localization staining and subsequent confocal imaging revealed elevated cytosolic Ca(2+) ([Ca(2+)](c)) in the Cnx-overexpressing cells when compared to the Cnx-repressed condition, thus endorsing the increased apoptosis observed in these cells. Taken together, Cnx overexpression not only improved the q (p) of cells treated with NaBu, but it also sensitized cells to apoptosis.
Collapse
Affiliation(s)
- Chaya Mohan
- Department of Biological Sciences, KAIST, 373-1 Kusong-Dong, Yusong-Gu, Daejon, 305-701 South Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, 373-1 Kusong-Dong, Yusong-Gu, Daejon, 305-701 South Korea
| |
Collapse
|
30
|
Calreticulin regulates insulin receptor expression and its downstream PI3 Kinase/Akt signalling pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2344-51. [DOI: 10.1016/j.bbamcr.2008.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 08/27/2008] [Accepted: 08/28/2008] [Indexed: 01/09/2023]
|
31
|
Sparrow LG, Lawrence MC, Gorman JJ, Strike PM, Robinson CP, McKern NM, Ward CW. N-linked glycans of the human insulin receptor and their distribution over the crystal structure. Proteins 2008; 71:426-39. [DOI: 10.1002/prot.21768] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Abdulhussein R, Koo DHH, Vogel WF. Identification of disulfide-linked dimers of the receptor tyrosine kinase DDR1. J Biol Chem 2007; 283:12026-33. [PMID: 18065762 DOI: 10.1074/jbc.m704592200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Discoidin domain receptor 1 (DDR1) is a transmembrane receptor tyrosine kinase activated by triple-helical collagen. So far six different isoforms of DDR1 have been described. Aberrant expression and signaling of DDR1 have been implicated in several human diseases linked to accelerated matrix degradation and remodeling, including tumor invasion, atherosclerosis, and lung fibrosis. Here we show that DDR1 exists as a disulfide-linked dimer in transfected as well as endogenously expressing cells. This dimer formation occurred irrespective of its kinase domain, as dimers were also found for the truncated DDR1d isoform. A deletion analysis of the extracellular domain showed that DDR1 mutants lacking the stalk region failed to form dimers, whereas deletion of the discoidin domain did not prevent dimerization. Point mutagenesis within the stalk region suggested that cysteines 303 and 348 are necessary for dimerization, collagen binding, and activation of kinase function. The identification of DDR1 dimers provides new insights into the molecular structure of receptor tyrosine kinases and suggests distinct signaling mechanisms of each receptor subfamily.
Collapse
Affiliation(s)
- Rahim Abdulhussein
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | | | | |
Collapse
|
33
|
Ramos RR, Swanson AJ, Bass J. Calreticulin and Hsp90 stabilize the human insulin receptor and promote its mobility in the endoplasmic reticulum. Proc Natl Acad Sci U S A 2007; 104:10470-5. [PMID: 17563366 PMCID: PMC1965537 DOI: 10.1073/pnas.0701114104] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Elimination of misfolded membrane proteins in the endoplasmic reticulum (ER) affects cell survival and growth and can be triggered by either local physiologic events or disease-associated mutations. Regulation of signaling receptor degradation involves both cytosolic and ER luminal molecular chaperones, but the mechanisms and timing of this process remain uncertain. Here we report that calreticulin (CRT) and Hsp90 exert distinct effects on the stability and cell surface levels of native and misfolded forms of the human insulin receptor (hIR) and a human variant found in type A insulin resistance. CRT was unique in stabilizing the disease variant and in augmenting hIR expression when glycolysis was abrogated. Effects of Hsp90 were independent of receptor tyrosine phosphorylation and did not change levels of downstream signaling kinases. Live cell imaging revealed that movement of the hIR through the ER was accelerated by misfolding or by overexpression of either CRT or Hsp90. Together, our results indicate that both CRT and Hsp90 control expression of hIR at its earliest maturation stages and modulate its movement within the ER before either degradation or cell surface expression.
Collapse
Affiliation(s)
- Rowena R. Ramos
- Departments of Medicine and
- Evanston Northwestern Healthcare Research Institute, Evanston, IL 60208
| | - Andrea J. Swanson
- Departments of Medicine and
- Evanston Northwestern Healthcare Research Institute, Evanston, IL 60208
| | - Joseph Bass
- Departments of Medicine and
- Neurobiology and Physiology, Northwestern University, Evanston, IL 60208; and
- Evanston Northwestern Healthcare Research Institute, Evanston, IL 60208
- To whom correspondence should be addressed at:
Northwestern University, 2200 Campus Drive, Pancoe 4405, Evanston, IL 60208. E-mail:
| |
Collapse
|
34
|
Cromlish WA, Tang M, Kyskan R, Tran L, Kennedy BP. PTP1B-dependent insulin receptor phosphorylation/residency in the endocytic recycling compartment of CHO-IR cells. Biochem Pharmacol 2006; 72:1279-92. [PMID: 16956584 DOI: 10.1016/j.bcp.2006.07.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 07/31/2006] [Accepted: 07/31/2006] [Indexed: 12/22/2022]
Abstract
Insulin binds to the alpha subunit of the insulin receptor (IR) on the cell surface. The insulin-IR complex is subsequently internalized and trafficked within the cell. Endocytosed receptors, devoid of insulin, recycle back to the plasma membrane through the endocytic recycling compartment (ERC). Using a high content screening system, we investigate the intracellular trafficking of the IR and its phosphorylation state, within the ERC, in response to protein tyrosine phosphatase-1B (PTP1B) inhibition. Insulin stimulates, in a time- and dose-dependent manner, the accumulation of phosphorylated IR (pY(1158,1162,1163 IR) in the ERC of CHO-IR cells. Treatment of CHO-IR cells with PTP1B-specific inhibitors or siRNA leads to dose-dependent increases in IR residency and phosphorylation within the ERC. The results also demonstrate that PTP1B redistributes within CHO-IR cells upon insulin challenge. The established system will allow for efficient screening of candidate inhibitors for the modulation of PTP1B activity.
Collapse
Affiliation(s)
- Wanda A Cromlish
- Department of Biochemistry & Molecular Biology, Merck Frosst Centre for Therapeutic Research, Pointe-Claire-Dorval, Pointe-Claire-Dorval, Quebec, Canada.
| | | | | | | | | |
Collapse
|
35
|
Michineau S, Alhenc-Gelas F, Rajerison RM. Human bradykinin B2 receptor sialylation and N-glycosylation participate with disulfide bonding in surface receptor dimerization. Biochemistry 2006; 45:2699-707. [PMID: 16489763 DOI: 10.1021/bi051674v] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
G-Protein-coupled receptors (GPCRs) act on the cell surface where they recognize and convert external stimuli to modulate cellular activity and are regulated by agonist and various partner molecules. We here studied the cell surface post-translationally modified forms of a GPCR, the human bradykinin B2 receptor. This was by means of detailed molecular analysis of the cell surface forms of N-glycosylation site mutant and wild-type receptors that were treated with glycosidases, neuraminidase, and/or the reducing agent dithiothreitol or not treated before Western blotting. We found that the receptor undergoes similar glycosylation processes and similar cell surface organization in CHO-K1 and HEK 293 cells, used for stable and transient receptor expression, respectively. The receptor is present as dimers and monomers on the cell surface. The dimers result from heterologous association of differently glycosylated mature receptor molecules. Importantly, receptor sialylation and N-glycosylation participate with disulfide bonding in the stabilization of the cell surface human B2 receptor dimers.
Collapse
|
36
|
Bulenger S, Marullo S, Bouvier M. Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. Trends Pharmacol Sci 2005; 26:131-7. [PMID: 15749158 DOI: 10.1016/j.tips.2005.01.004] [Citation(s) in RCA: 372] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The idea that G-protein-coupled receptors (GPCRs) can function as dimers is now generally accepted. Although an increasing amount of data suggests that dimers represent the basic signaling unit for most, if not all, members of this receptor family, GPCR dimerization might also be necessary to pass quality-control checkpoints of the biosynthetic pathway of GPCRs. To date, this hypothesis has been demonstrated unambiguously only for a small number of receptors that must form heterodimers to be exported properly to the plasma membrane (referred to as obligatory heterodimers). However, increasing evidence suggests that homodimerization might have a similar role in the receptor maturation process for many GPCRs.
Collapse
Affiliation(s)
- Sébastien Bulenger
- Cell Biology Department, Institut Cochin, 27 rue du Fg St Jacques, 75014 Paris, France
| | | | | |
Collapse
|
37
|
Andrade Ferreira I, Akkerman JWN. IRS-1 and Vascular Complications in Diabetes Mellitus. VITAMINS AND HORMONES 2005; 70:25-67. [PMID: 15727801 DOI: 10.1016/s0083-6729(05)70002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The expected explosive increase in the number of patients with diabetes mellitus will increase the stress on health care. Treatment is focused on preventing vascular complications associated with the disorder. In order to develop better treatment regimens, the field of research has made a great effort in understanding this disorder. This chapter summarizes the current views on the insulin signaling pathway with emphasis on intracellular signaling events associated with insulin resistance, which lead to the prothrombotic condition in the vasculature of patience with diabetes mellitus.
Collapse
Affiliation(s)
- I Andrade Ferreira
- Thrombosis and Haemostasis Laboratory, Department of Hematology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | | |
Collapse
|
38
|
Vooijs M, Schroeter EH, Pan Y, Blandford M, Kopan R. Ectodomain Shedding and Intramembrane Cleavage of Mammalian Notch Proteins Are Not Regulated through Oligomerization. J Biol Chem 2004; 279:50864-73. [PMID: 15448134 DOI: 10.1074/jbc.m409430200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Intramembrane cleaving proteases such as site 2 protease, gamma-secretase, and signal peptide peptidase hydrolyze peptide bonds within the transmembrane domain (TMD) of signaling molecules such as SREBP, Notch, and HLA-E, respectively. All three enzymes require a prior cleavage at the juxtamembrane region by another protease. It has been proposed that removing the extracellular domain allows dissociation of substrate TMD, held together by the extracellular domain or loop. Using gamma-secretase as a model intramembrane cleaving protease and Notch as a model substrate, we investigated whether activating and inactivating mutations in Notch modulate gamma-secretase cleavage through changes in oligomerization. We find that although the Notch epidermal growth factor repeats can promote dimer formation, most surface Notch molecules in mammalian cells are monomeric as are constitutively active or inactive Notch1 proteins. Using a bacterial assay for TM dimerization, we find that the isolated TMD of Notch and amyloid precursor protein self-associate and that mutations affecting Notch cleavage by gamma-secretase cleavage do not alter TMD dimerization. Our results indicate that ligand-induced reversal of controlled TMD dimerization by the Notch extracellular domain is unlikely to underlie the regulatory mechanism of intramembranous cleavage.
Collapse
Affiliation(s)
- Marc Vooijs
- Department of Molecular Biology and Pharmacology, Division of Dermatology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
39
|
Ding Q, Gros R, Chorazyczewski J, Ferguson SSG, Feldman RD. Isoform-Specific Regulation of Adenylyl Cyclase Function by Disruption of Membrane Trafficking. Mol Pharmacol 2004; 67:564-71. [PMID: 15547246 DOI: 10.1124/mol.104.006817] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oligomerization plays an important role in endoplasmic reticulum processing and membrane insertion (and ultimately in regulation of function) of a number of transmembrane spanning proteins. Furthermore, it is known that adenylyl cyclases (ACs), critical regulators of cellular functions, associate into higher order (dimeric) forms. However, the importance of these higher order aggregates in regulating adenylyl cyclase activity or trafficking to the cell membrane is unclear. Therefore, we examined the potential role of oligomerization in the membrane trafficking of adenylyl cyclase. For this purpose, the ability of full-length adenylyl cyclase and various truncation mutants to self-assemble and to be targeted to the cell membrane was assessed. A truncation mutant comprised of the initial six transmembrane spanning domains and half of the C1 catalytic domain coimmunoprecipitated with full-length AC VI. Using both biotinylation assays and assessment of enzyme distribution using sucrose density gradients, we demonstrate that expression of this mutant in human embryonic kidney 293 cells impaired the ability of AC VI to traffic to the plasma membrane. Furthermore, mutant expression resulted in a significant reduction in adenylyl cyclase activity. The decrease in AC VI membrane expression was not caused by alterations in enzyme transcription. The effect of the mutant was specific for the AC V and VI isoforms and expression of the transmembrane M1 domain but not the C1a domain was required for the mutant to affect adenylyl cyclase activity. In aggregate, these data suggest that alterations in the ability of adenylyl cyclases to form higher order forms regulate both enzyme trafficking and enzyme activity.
Collapse
Affiliation(s)
- Qingming Ding
- Robarts Research Institute, 100 Perth Dr., London, ON, Canada N6A 5K8
| | | | | | | | | |
Collapse
|
40
|
Salahpour A, Angers S, Mercier JF, Lagacé M, Marullo S, Bouvier M. Homodimerization of the β2-Adrenergic Receptor as a Prerequisite for Cell Surface Targeting. J Biol Chem 2004; 279:33390-7. [PMID: 15155738 DOI: 10.1074/jbc.m403363200] [Citation(s) in RCA: 248] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although homodimerization has been demonstrated for a large number of G protein-coupled receptors (GPCRs), no general role has been attributed to this process. Because it is known that oligomerization plays a key role in the quality control and endoplasmic reticulum (ER) export of many proteins, we sought to determine if homodimerization could play such a role in GPCR biogenesis. Using the beta2-adrenergic receptor (beta2AR) as a model, cell fractionation studies revealed that receptor homodimerization is an event occurring as early as the ER. Supporting the hypothesis that receptor homodimerization is involved in ER processing, beta2AR mutants lacking an ER-export motif or harboring a heterologous ER-retention signal dimerized with the wild-type receptor and inhibited its trafficking to the cell surface. Finally, in addition to inhibiting receptor dimerization, disruption of the putative dimerization motif, 276GXXXGXXXL284, prevented normal trafficking of the receptor to the plasma membrane. Taken together, these data indicate that beta2AR homodimerization plays an important role in ER export and cell surface targeting.
Collapse
Affiliation(s)
- Ali Salahpour
- Department of Biochemistry and Groupe de Recherche sur le Système Nerveux Autonome, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Wu JJ, Guidotti G. Proreceptor Dimerization Is Required for Insulin Receptor Post-translational Processing. J Biol Chem 2004; 279:25765-73. [PMID: 15075343 DOI: 10.1074/jbc.m314281200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The insulin receptor is a transmembrane protein dimer composed of two alphabeta monomers held together by inter-alpha-chain disulfide bonds. In a previous report we described a monomeric insulin receptor obtained by replacing Cys-524, -682, -683, and -685 with serine. The membrane-bound monomeric insulin receptors could be cross-linked to dimers in the presence of insulin, indicating that although covalent interactions had been abolished, noncovalent dimerization could still occur in the membrane. To eliminate noncovalent dimerization, we replaced all or some of Cys-524, -682, -683, and -685 with arginine or aspartic acid with the expectation that the electrostatic repulsion at these contact sites would prevent noncovalent dimerization. The results indicate that mutant insulin receptors that are able to form covalent dimers are expressed at the wild type level; mutants that can form noncovalent dimers are expressed at half the level of the wild type receptor, whereas insulin receptor mutants that cannot dimerize are expressed at less than 10% of the wild type level. To elucidate the mechanism of the decrease in expression of the mutant insulin receptors, we examined their subcellular localization and biosynthesis. The results suggest that the extent of expression of these mutant receptors is related to their ability to form covalent or noncovalent dimers at the proreceptor stage.
Collapse
Affiliation(s)
- James Jianping Wu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
42
|
Samani AA, Chevet E, Fallavollita L, Galipeau J, Brodt P. Loss of Tumorigenicity and Metastatic Potential in Carcinoma Cells Expressing the Extracellular Domain of the Type 1 Insulin-Like Growth Factor Receptor. Cancer Res 2004; 64:3380-5. [PMID: 15150088 DOI: 10.1158/0008-5472.can-03-3780] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The receptor for the type 1 insulin-like growth factor (IGF-IR) was identified as a major regulator of the malignant phenotype and a target for cancer therapy. In the present study, a novel IGF-IR mutant consisting of the entire extracellular domain of the receptor (IGFIR(933)) was genetically engineered and expressed in highly metastatic H-59 murine lung carcinoma cells. We show here that the cells expressed a truncated heterotetramer (beta(m)-alpha-alpha-beta(m)) that was secreted into the medium and could neutralize the effects of exogenous IGF-I, thus diminishing IGF-I-induced signaling and blocking IGF-I-mediated cellular functions such as cell proliferation, invasion, and survival. In vivo, tumor incidence and growth rate were markedly reduced in mice inoculated s.c. with H-59/IGFIR(933) cells. Moreover, after the intrasplenic/portal inoculation of these cells, there was a 90% reduction in the incidence of hepatic metastases and a significant increase in the long-term, disease-free survival of the mice compared with controls. Our results identify the IGFIR(933) as a potent antitumorigenic and antimetastatic agent with potential applications for cancer gene therapy.
Collapse
Affiliation(s)
- Amir Abbas Samani
- Department of Medicine, McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
43
|
Romsicki Y, Reece M, Gauthier JY, Asante-Appiah E, Kennedy BP. Protein tyrosine phosphatase-1B dephosphorylation of the insulin receptor occurs in a perinuclear endosome compartment in human embryonic kidney 293 cells. J Biol Chem 2004; 279:12868-75. [PMID: 14722096 DOI: 10.1074/jbc.m309600200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein tyrosine phosphatase-1B (PTP-1B) is a negative regulator of insulin signaling. It is thought to carry out this role by interacting with and dephosphorylating the activated insulin receptor (IR). However, little is known regarding the nature of the cellular interaction between these proteins, especially because the IR is localized to the plasma membrane and PTP-1B to the endoplasmic reticulum. Using confocal microscopy and fluorescence resonance energy transfer (FRET), the interaction between PTP-1B and the IR was examined in co-transfected human embryonic kidney 293 cells. Biological activities were not significantly affected for either PTP-1B or the IR with the fusion of W1B-green fluorescent protein (GFP) to the N terminus of PTP-1B (W1B-PTP-1B) or the fusion of Topaz-GFP to the C terminus of the IR (Topaz-IR). FRET between W1B and Topaz was monitored in cells transfected with either wild type PTP-1B (W1B-PTP-1B) or the substrate-trapping form PTP-1B(D181A) (W1B-PTP-1B(D181A)) and Topaz-IR. Co-expression of W1B-PTP-1B with Topaz-IR resulted in distribution of Topaz-IR to the plasma membrane, but no FRET was obtained upon insulin treatment. In contrast, co-expression of W1B-PTP-1B(D181A) with Topaz-IR caused an increase in cytosolic Topaz-IR fluorescence and, in some cells, a significant basal FRET signal, suggesting that PTP-1B is interacting with the IR during its synthesis. Stimulation of these cells with insulin resulted in a rapid induction of FRET that increased over time and was localized to a perinuclear spot. Co-expression of Topaz-IR with a GFP-labeled RhoB endosomal marker and treatment of the cells with insulin identified a perinuclear endosome compartment as the site of localization. Furthermore, the insulin-induced FRET could be prevented by the treatment of the cells with a specific PTP-1B inhibitor. These results suggest that PTP-1B appears not only to interact with and dephosphorylate the insulin-stimulated IR in a perinuclear endosome compartment but is also involved in maintaining the IR in a dephosphorylated state during its biosynthesis.
Collapse
MESH Headings
- Blotting, Western
- Cell Line
- Cell Membrane/metabolism
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Endoplasmic Reticulum/metabolism
- Endosomes/metabolism
- Enzyme Inhibitors/pharmacology
- Fluorescence Resonance Energy Transfer
- Genetic Vectors
- Green Fluorescent Proteins
- Humans
- Image Processing, Computer-Assisted
- Insulin/metabolism
- Kinetics
- Luminescent Proteins/metabolism
- Microscopy, Confocal
- Microscopy, Fluorescence
- Models, Chemical
- Phosphorylation
- Precipitin Tests
- Protein Binding
- Protein Structure, Tertiary
- Protein Tyrosine Phosphatase, Non-Receptor Type 1
- Protein Tyrosine Phosphatases/chemistry
- Protein Tyrosine Phosphatases/metabolism
- Receptor, Insulin/chemistry
- Receptor, Insulin/metabolism
- Recombinant Fusion Proteins/metabolism
- Signal Transduction
- Transfection
Collapse
Affiliation(s)
- Yolanda Romsicki
- Department of Biochemistry & Molecular Biology, Merck Frosst Centre for Therapeutic Research, Pointe-Claire-Dorval, Quebec H9R 4P8, Canada
| | | | | | | | | |
Collapse
|
44
|
Ozaslan D, Wang S, Ahmed BA, Kocabas AM, McCastlain JC, Bene A, Kilic F. Glycosyl modification facilitates homo- and hetero-oligomerization of the serotonin transporter. A specific role for sialic acid residues. J Biol Chem 2003; 278:43991-4000. [PMID: 12944413 PMCID: PMC3042025 DOI: 10.1074/jbc.m306360200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serotonin transporter (SERT) is an oligomeric glycoprotein with two sialic acid residues on each of two complex oligosaccharide molecules. In this study, we investigated the contribution of N-glycosyl modification to the structure and function of SERT in two model systems: wild-type SERT expressed in sialic acid-defective Lec4 Chinese hamster ovary (CHO) cells and a mutant form (after site-directed mutagenesis of Asn-208 and Asn-217 to Gln) of SERT, QQ, expressed in parental CHO cells. In both systems, SERT monomers required modification with both complex oligosaccharide residues to associate with each other and to function in homo-oligomeric forms. However, defects in sialylated N-glycans did not alter surface expression of the SERT protein. Furthermore, in heterologous (CHO and Lec4 cells) and endogenous (placental choriocarcinoma JAR cells) expression systems, we tested whether glycosyl modification also manipulates the hetero-oligomeric interactions of SERT, specifically with myosin IIA. SERT is phosphorylated by cGMP-dependent protein kinase G through interactions with anchoring proteins, and myosin is a protein kinase G-anchoring protein. A physical interaction between myosin and SERT was apparent; however, defects in sialylated N-glycans impaired association of SERT with myosin as well as the stimulation of the serotonin uptake function in the cGMP-dependent pathway. We propose that sialylated N-glycans provide a favorable conformation to SERT that allows the transporter to function most efficiently via its protein-protein interactions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fusun Kilic
- To whom correspondence should be addressed: Dept. of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham St., 516, Little Rock, AR 72205. Tel.: 501-526-6488; Fax: 501-686-8169;
| |
Collapse
|
45
|
Bell SL, Xu G, Khatri IA, Wang R, Rahman S, Forstner JF. N-linked oligosaccharides play a role in disulphide-dependent dimerization of intestinal mucin Muc2. Biochem J 2003; 373:893-900. [PMID: 12744721 PMCID: PMC1223556 DOI: 10.1042/bj20030096] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2003] [Revised: 04/16/2003] [Accepted: 05/13/2003] [Indexed: 11/17/2022]
Abstract
Within the C-terminal domain of many secretory mucins is a 'cystine knot' (CK), which is needed for dimer formation in the endoplasmic reticulum. Previous studies indicate that in addition to an unpaired cysteine, the three intramolecular cystine bonds of the knot are important for stability of the dimers formed by rat intestinal mucin Muc2. The present study was undertaken to determine whether the two N-glycans N9 and N10, located near the first and second cysteines of the knot, also play a role in dimer formation. The C-terminal domain of rat Muc2 (RMC), a truncated RMC mutant containing the CK, and mutants lacking N9 and N10 sites, were expressed in COS-1 cells and the products monitored by radioactive [(35)S]Met/Cys metabolic pulse-chase and immunoprecipitation. Mutation of N9, but not N10, caused increased synthesis of dimers over a 2-h chase period. The N9 mutant remained associated with calreticulin for a prolonged period. About 34-38% of the total labelled products of RMC and its mutants was secreted into the media by 2 h, but the proportion in dimer form was dramatically reduced for the N9 mutant, suggesting lower dimer stability relative to RMC or its N10 mutant. We conclude that under normal conditions the presence of the N9 glycan functions to maintain a folding rate for mucin monomers that is sufficiently slow to allow structural maturation and stability of Muc2 dimers. To our knowledge this report is the first demonstration that a specific N-glycan plays a definitive role in mucin dimer formation.
Collapse
Affiliation(s)
- Sherilyn L Bell
- Division of Structural Biology & Biochemistry, Research Institute, The Hospital for Sick Children and the University of Toronto, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| | | | | | | | | | | |
Collapse
|
46
|
Hua QX, Nakagawa SH, Wilken J, Ramos RR, Jia W, Bass J, Weiss MA. A divergent INS protein in Caenorhabditis elegans structurally resembles human insulin and activates the human insulin receptor. Genes Dev 2003; 17:826-31. [PMID: 12654724 PMCID: PMC196032 DOI: 10.1101/gad.1058003] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Caenorhabditis elegans contains a family of putative insulin-like genes proposed to regulate dauer arrest and senescence. These sequences often lack characteristic sequence features of human insulin essential for its folding, structure, and function. Here, we describe the structure and receptor-binding properties of INS-6, a single-chain polypeptide expressed in specific neurons. Despite multiple nonconservative changes in sequence, INS-6 recapitulates an insulin-like fold. Although lacking classical receptor-binding determinants, INS-6 binds to and activates the human insulin receptor. Its activity is greater than that of an analogous single-chain human insulin analog.
Collapse
Affiliation(s)
- Qing-Xin Hua
- Department of Biochemistry, Case Western Reserve School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Di Jeso B, Ulianich L, Pacifico F, Leonardi A, Vito P, Consiglio E, Formisano S, Arvan P. Folding of thyroglobulin in the calnexin/calreticulin pathway and its alteration by loss of Ca2+ from the endoplasmic reticulum. Biochem J 2003; 370:449-58. [PMID: 12401114 PMCID: PMC1223171 DOI: 10.1042/bj20021257] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2002] [Revised: 10/17/2002] [Accepted: 10/28/2002] [Indexed: 11/17/2022]
Abstract
During its initial folding in the endoplasmic reticulum (ER), newly synthesized thyroglobulin (Tg) is known to interact with calnexin and other ER molecular chaperones, but its interaction with calreticulin has not been examined previously. In the present study, we have investigated the interactions of endogenous Tg with calreticulin and with several other ER chaperones. We find that, in FRTL-5 and PC-Cl3 cells, calnexin and calreticulin interact with newly synthesized Tg in a carbohydrate-dependent manner, with largely overlapping kinetics that are concomitant with the maturation of Tg intrachain disulphide bonds, preceding Tg dimerization and exit from the ER. Calreticulin co-precipitates more newly synthesized Tg than does calnexin; however, using two different experimental approaches, calnexin and calreticulin were found in ternary complexes with Tg, making this the first endogenous protein reported in ternary complexes with calnexin and calreticulin in the ER of live cells. Depletion of Ca(2+) from the ER elicited by thapsigargin (a specific inhibitor of ER Ca(2+)-ATPases) results in retention of Tg in this organelle. Interestingly, thapsigargin treatment induces the premature exit of Tg from the calnexin/calreticulin cycle, while stabilizing and prolonging interactions of Tg with BiP (immunoglobulin heavy chain binding protein) and GRP94 (glucose-regulated protein 94), two chaperones whose binding is not carbohydrate-dependent. Our results suggest that calnexin and calreticulin, acting in ternary complexes with a large glycoprotein substrate such as Tg, might be engaged in the folding of distinct domains, and indicate that lumenal Ca(2+) strongly influences the folding of exportable glycoproteins, in part by regulating the balance of substrate binding to different molecular chaperone systems within the ER.
Collapse
Affiliation(s)
- Bruno Di Jeso
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Facoltà di Scienze MM. FF. NN., Università degli Studi di Lecce, Centro Ecotekne, 73100 Lecce, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Calnexin and Calreticulin, Molecular Chaperones of the Endoplasmic Reticulum. ACTA ACUST UNITED AC 2003. [DOI: 10.1007/978-1-4419-9258-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
|
49
|
Veselovsky AV, Ivanov YD, Ivanov AS, Archakov AI, Lewi P, Janssen P. Protein-protein interactions: mechanisms and modification by drugs. J Mol Recognit 2002; 15:405-22. [PMID: 12501160 DOI: 10.1002/jmr.597] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein-protein interactions form the proteinaceous network, which plays a central role in numerous processes in the cell. This review highlights the main structures, properties of contact surfaces, and forces involved in protein-protein interactions. The properties of protein contact surfaces depend on their functions. The characteristics of contact surfaces of short-lived protein complexes share some similarities with the active sites of enzymes. The contact surfaces of permanent complexes resemble domain contacts or the protein core. It is reasonable to consider protein-protein complex formation as a continuation of protein folding. The contact surfaces of the protein complexes have unique structure and properties, so they represent prospective targets for a new generation of drugs. During the last decade, numerous investigations have been undertaken to find or design small molecules that block protein dimerization or protein(peptide)-receptor interaction, or on the other hand, induce protein dimerization.
Collapse
|
50
|
De Meyts P, Whittaker J. Structural biology of insulin and IGF1 receptors: implications for drug design. Nat Rev Drug Discov 2002; 1:769-83. [PMID: 12360255 DOI: 10.1038/nrd917] [Citation(s) in RCA: 434] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes mellitus -- in which the body produces insufficient amounts of insulin or the insulin that is produced does not function properly to control blood glucose -- is an increasingly common disorder. Prospective clinical studies have proven the benefits of tighter glucose control in reducing the frequency and severity of complications of the disease, leading to the advocation of earlier and more aggressive use of insulin therapy. Given the reluctance of patients with type 2 diabetes to inject themselves with insulin, orally active insulin mimetics would be a major therapeutic advance. Here, we discuss recent progress in understanding the structure-function relationships of the insulin and insulin-like growth factor 1 (IGF1) receptors, their mechanism of activation and their implications for the design of insulin-receptor agonists for diabetes therapy and IGF1-receptor antagonists for cancer therapy.
Collapse
Affiliation(s)
- Pierre De Meyts
- Receptor Biology Laboratory, Hagedorn Research Institute, Niels Steensens Vej 6, DK-2820 Gentofte, Denmark.
| | | |
Collapse
|