1
|
Evans-Yamamoto D, Dubé AK, Saha G, Plante S, Bradley D, Gagnon-Arsenault I, Landry CR. Parallel Nonfunctionalization of CK1δ/ε Kinase Ohnologs Following a Whole-Genome Duplication Event. Mol Biol Evol 2023; 40:msad246. [PMID: 37979156 PMCID: PMC10699747 DOI: 10.1093/molbev/msad246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
Whole-genome duplication (WGD) followed by speciation allows us to examine the parallel evolution of ohnolog pairs. In the yeast family Saccharomycetaceae, HRR25 is a rare case of repeated ohnolog maintenance. This gene has reverted to a single copy in Saccharomyces cerevisiae where it is now essential, but has been maintained as pairs in at least 7 species post-WGD. In S. cerevisiae, HRR25 encodes the casein kinase 1δ/ε and plays a role in a variety of functions through its kinase activity and protein-protein interactions (PPIs). We hypothesized that the maintenance of duplicated HRR25 ohnologs could be a result of repeated subfunctionalization. We tested this hypothesis through a functional complementation assay in S. cerevisiae, testing all pairwise combinations of 25 orthologs (including 7 ohnolog pairs). Contrary to our expectations, we observed no cases of pair-dependent complementation, which would have supported the subfunctionalization hypothesis. Instead, most post-WGD species have one ohnolog that failed to complement, suggesting their nonfunctionalization or neofunctionalization. The ohnologs incapable of complementation have undergone more rapid protein evolution, lost most PPIs that were observed for their functional counterparts and singletons from post-WGD and non-WGD species, and have nonconserved cellular localization, consistent with their ongoing loss of function. The analysis in Naumovozyma castellii shows that the noncomplementing ohnolog is expressed at a lower level and has become nonessential. Taken together, our results indicate that HRR25 orthologs are undergoing gradual nonfunctionalization.
Collapse
Affiliation(s)
- Daniel Evans-Yamamoto
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, QC, G1V 0A6, Canada
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-0882, Japan
- Institute for Advanced Biosciences, Keio University, Fujisawa, Kanagawa, 252-0882, Japan
| | - Alexandre K Dubé
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Gourav Saha
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, QC, G1V 0A6, Canada
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani K K Birla Goa Campus, South Goa, India
| | - Samuel Plante
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, QC, G1V 0A6, Canada
| | - David Bradley
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Isabelle Gagnon-Arsenault
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, Québec, QC, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, Québec, QC, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, Québec, QC, G1V 0A6, Canada
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-0882, Japan
| |
Collapse
|
2
|
Woodard TK, Rioux DJ, Prosser DC. Actin- and microtubule-based motors contribute to clathrin-independent endocytosis in yeast. Mol Biol Cell 2023; 34:ar117. [PMID: 37647159 PMCID: PMC10846617 DOI: 10.1091/mbc.e23-05-0164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023] Open
Abstract
Most eukaryotic cells utilize clathrin-mediated endocytosis as well as multiple clathrin-independent pathways to internalize proteins and membranes. Although clathrin-mediated endocytosis has been studied extensively and many machinery proteins have been identified, clathrin-independent pathways remain poorly characterized by comparison. We previously identified the first known yeast clathrin-independent endocytic pathway, which relies on the actin-modulating GTPase Rho1, the formin Bni1 and unbranched actin filaments, but does not require the clathrin coat or core clathrin machinery proteins. In this study, we sought to better understand clathrin-independent endocytosis in yeast by exploring the role of myosins as actin-based motors, because actin is required for endocytosis in yeast. We find that Myo2, which transports secretory vesicles, organelles and microtubules along actin cables to sites of polarized growth, participates in clathrin-independent endocytosis. Unexpectedly, the ability of Myo2 to transport microtubule plus ends to the cell cortex appears to be required for its role in clathrin-independent endocytosis. In addition, dynein, dynactin, and proteins involved in cortical microtubule capture are also required. Thus, our results suggest that interplay between actin and microtubules contributes to clathrin-independent internalization in yeast.
Collapse
Affiliation(s)
| | - Daniel J. Rioux
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
- Life Sciences, Virginia Commonwealth University, Richmond, VA 23284
| | - Derek C. Prosser
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| |
Collapse
|
3
|
Evans-Yamamoto D, Dubé AK, Saha G, Plante S, Bradley D, Gagnon-Arsenault I, Landry CR. Parallel nonfunctionalization of CK1δ/ε kinase ohnologs following a whole-genome duplication event. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560513. [PMID: 37873368 PMCID: PMC10592909 DOI: 10.1101/2023.10.02.560513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Whole genome duplication (WGD) followed by speciation allows us to examine the parallel evolution of ohnolog pairs. In the yeast family Saccharomycetaceae, HRR25 is a rare case of repeated ohnolog maintenance. This gene has reverted to a single copy in S. cerevisiae where it is now essential, but has been maintained as pairs in at least 7 species post WGD. In S. cerevisiae, HRR25 encodes the casein kinase (CK) 1δ/ε and plays a role in a variety of functions through its kinase activity and protein-protein interactions (PPIs). We hypothesized that the maintenance of duplicated HRR25 ohnologs could be a result of repeated subfunctionalization. We tested this hypothesis through a functional complementation assay in S. cerevisiae, testing all pairwise combinations of 25 orthologs (including 7 ohnolog pairs). Contrary to our expectations, we observed no cases of pair-dependent complementation, which would have supported the subfunctionalization hypothesis. Instead, most post-WGD species have one ohnolog that failed to complement, suggesting their nonfunctionalization or neofunctionalization. The ohnologs incapable of complementation have undergone more rapid protein evolution, lost most PPIs that were observed for their functional counterparts and singletons from post and non-WGD species, and have non-conserved cellular localization, consistent with their ongoing loss of function. The analysis in N. castelli shows that the non-complementing ohnolog is expressed at a lower level and has become non-essential. Taken together, our results indicate that HRR25 orthologs are undergoing gradual nonfunctionalization.
Collapse
Affiliation(s)
- Daniel Evans-Yamamoto
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, G1V 0A6, Canada
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-0882, Japan
- Institute for Advanced Biosciences, Keio University, Fujisawa, 252-0882, Japan
| | - Alexandre K Dubé
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, G1V 0A6, Canada
| | - Gourav Saha
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, G1V 0A6, Canada
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani K K Birla Goa campus, Zuarinagar, South Goa, Goa, India
- Current address: Department of Bioengineering, University of California, CA 90095, United States
| | - Samuel Plante
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, G1V 0A6, Canada
- Current address: Département de Biochimie, Université de Sherbrooke, Québec, J1K 0A5, Canada
| | - David Bradley
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, G1V 0A6, Canada
| | - Isabelle Gagnon-Arsenault
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, G1V 0A6, Canada
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V 0A6, Canada
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- Département de Biologie, Faculté des Sciences et de Génie, Université Laval, G1V 0A6, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines, Université Laval, G1V 0A6, Canada
- Centre de Recherche sur les Données Massives (CRDM), Université Laval, G1V 0A6, Canada
| |
Collapse
|
4
|
Hummel DR, Kaksonen M. Spatio-temporal regulation of endocytic protein assembly by SH3 domains in yeast. Mol Biol Cell 2023; 34:ar19. [PMID: 36696224 PMCID: PMC10011730 DOI: 10.1091/mbc.e22-09-0406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Clathrin-mediated endocytosis is a conserved eukaryotic membrane trafficking pathway that is driven by a sequentially assembled molecular machinery that contains over 60 different proteins. SH3 domains are the most abundant protein-protein interaction domain in this process, but the function of most SH3 domains in protein dynamics remains elusive. Using mutagenesis and live-cell fluorescence microscopy in the budding yeast Saccharomyces cerevisiae, we dissected SH3-mediated regulation of the endocytic pathway. Our data suggest that multiple SH3 domains regulate the actin nucleation-promoting Las17-Vrp1 complex, and that the network of SH3 interactions coordinates both Las17-Vrp1 assembly and dissociation. Furthermore, most endocytic SH3 domain proteins use the SH3 domain for their own recruitment, while a minority use the SH3 domain to recruit other proteins and not themselves. Our results provide a dynamic map of SH3 functions in yeast endocytosis and a framework for SH3 interaction network studies across biology.
Collapse
Affiliation(s)
- Daniel R Hummel
- Department of Biochemistry, University of Geneva, Department of Biochemistry, 1205 Genève, Switzerland
| | - Marko Kaksonen
- Department of Biochemistry, University of Geneva, Department of Biochemistry, 1205 Genève, Switzerland
| |
Collapse
|
5
|
Mulenga A, Radulovic Z, Porter L, Britten TH, Kim TK, Tirloni L, Gaithuma AK, Adeniyi-Ipadeola GO, Dietrich JK, Moresco JJ, Yates JR. Identification and characterization of proteins that form the inner core Ixodes scapularis tick attachment cement layer. Sci Rep 2022; 12:21300. [PMID: 36494396 PMCID: PMC9734129 DOI: 10.1038/s41598-022-24881-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Ixodes scapularis long-term blood feeding behavior is facilitated by a tick secreted bio adhesive (tick cement) that attaches tick mouthparts to skin tissue and prevents the host from dislodging the attached tick. Understanding tick cement formation is highly sought after as its disruption will prevent tick feeding. This study describes proteins that form the inner core layer of I. scapularis tick cement as disrupting these proteins will likely stop formation of the outer cortical layer. The inner core cement layer completes formation by 24 h of tick attachment. Thus, we used laser-capture microdissection to isolate cement from cryosections of 6 h and 24 h tick attachment sites and to distinguish between early and late inner core cement proteins. LC-MS/MS analysis identified 138 tick cement proteins (TCPs) of which 37 and 35 were unique in cement of 6 and 24 h attached ticks respectively. We grouped TCPs in 14 functional categories: cuticular protein (16%), tick specific proteins of unknown function, cytoskeletal proteins, and enzymes (13% each), enzymes (10%), antioxidant, glycine rich, scaffolding, heat shock, histone, histamine binding, proteases and protease inhibitors, and miscellaneous (3-6% each). Gene ontology analysis confirm that TCPs are enriched for bio adhesive properties. Our data offer insights into tick cement bonding patterns and set the foundation for understanding the molecular basis of I. scapularis tick cement formation.
Collapse
Affiliation(s)
- Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA.
| | - Zeljko Radulovic
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
- Department of Biology, Stephen F. Austin State University, Nacogdoches, TX, USA
| | - Lindsay Porter
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
- Department of Biology, Stephen F. Austin State University, Nacogdoches, TX, USA
| | - Taylor Hollman Britten
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Lucas Tirloni
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Alex Kiarie Gaithuma
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Grace O Adeniyi-Ipadeola
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jolene K Dietrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - James J Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, TX, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
6
|
Skruzny M. The endocytic protein machinery as an actin-driven membrane-remodeling machine. Eur J Cell Biol 2022; 101:151267. [PMID: 35970066 DOI: 10.1016/j.ejcb.2022.151267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022] Open
Abstract
In clathrin-mediated endocytosis, a principal membrane trafficking route of all eukaryotic cells, forces are applied to invaginate the plasma membrane and form endocytic vesicles. These forces are provided by specific endocytic proteins and the polymerizing actin cytoskeleton. One of the best-studied endocytic systems is endocytosis in yeast, known for its simplicity, experimental amenability, and overall similarity to human endocytosis. Importantly, the yeast endocytic protein machinery generates and transmits tremendous force to bend the plasma membrane, making this system beneficial for mechanistic studies of cellular force-driven membrane reshaping. This review summarizes important protein players, molecular functions, applied forces, and open questions and perspectives of this robust, actin-powered membrane-remodeling protein machine.
Collapse
Affiliation(s)
- Michal Skruzny
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
7
|
Enshoji M, Miyano Y, Yoshida N, Nagano M, Watanabe M, Kunihiro M, Siekhaus DE, Toshima JY, Toshima J. Eps15/Pan1p is a master regulator of the late stages of the endocytic pathway. J Cell Biol 2022; 221:213415. [PMID: 35984332 PMCID: PMC9396825 DOI: 10.1083/jcb.202112138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/30/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
Endocytosis is a multistep process involving the sequential recruitment and action of numerous proteins. This process can be divided into two phases: an early phase, in which sites of endocytosis are formed, and a late phase in which clathrin-coated vesicles are formed and internalized into the cytosol, but how these phases link to each other remains unclear. In this study, we demonstrate that anchoring the yeast Eps15-like protein Pan1p to the peroxisome triggers most of the events occurring during the late phase at the peroxisome. At this ectopic location, Pan1p recruits most proteins that function in the late phases-including actin nucleation promoting factors-and then initiates actin polymerization. Pan1p also recruited Prk1 kinase and actin depolymerizing factors, thereby triggering disassembly immediately after actin assembly and inducing dissociation of endocytic proteins from the peroxisome. These observations suggest that Pan1p is a key regulator for initiating, processing, and completing the late phase of endocytosis.
Collapse
Affiliation(s)
- Mariko Enshoji
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Yoshiko Miyano
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Nao Yoshida
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Makoto Nagano
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Minami Watanabe
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Mayumi Kunihiro
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| | - Daria E. Siekhaus
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Junko Y. Toshima
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan,School of Health Science, Tokyo University of Technology, Ota-ku, Tokyo, Japan,Junko Y. Toshima:
| | - Jiro Toshima
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan,Correspondence to Jiro Toshima:
| |
Collapse
|
8
|
Na G, Choi HJ, Joo SY, Rim JH, Kim JA, Kim HY, Yu S, Jeong Y, Shin GC, Noh HE, Lee HY, Kim DH, Gee HY, Jung J, Choi JY. Heterogeneity of MYO15A variants significantly determine the feasibility of acoustic stimulation with hearing aid and cochlear implant. Hear Res 2021; 404:108227. [PMID: 33784549 DOI: 10.1016/j.heares.2021.108227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022]
Abstract
Autosomal recessive nonsyndromic hearing loss 3 (DFNB3) mainly leads to congenital and severe-to-profound hearing impairment, which is caused by variants in MYO15A. However, audiological heterogeneity in patients with DFNB3 hinders precision medicine in hearing rehabilitation. Here, we aimed to elucidate the heterogeneity of the auditory phenotypes of MYO15A variants according to the affected domain and the feasibilities for acoustic stimulation. We conducted whole-exome sequencing for 10 unrelated individuals from seven multiplex families with DFNB3; 11 MYO15A variants, including the novel frameshift c.900delT (p.Pro301Argfs*143) and nonsense c.4879G > T (p.Glu1627*) variants, were identified. In seven probands, residual hearing at low frequencies was significantly higher in the groups with one or two N-terminal frameshift variants in trans conformation compared to that in the group without these variants. This is consistent with the 56 individuals from the previously published reports that carried a varying number of N-terminal truncating variants in MYO15A. In addition, patients with missense variants in the second FERM domain had better hearing at low frequencies than patients without these variants. Subsequently, acoustic stimulation provided by devices such as hearing aids or cochlear implants was feasible in patients with one or two N-terminal truncating variants or a second FERM missense variant. In conclusion, N-terminal or second FERM variants in MYO15A allow the practical use of acoustic stimulation through hearing aids or electroacoustic stimulation for aural rehabilitation.
Collapse
Affiliation(s)
- Gina Na
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea; Department of Otorhinolaryngology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea
| | - Hye Ji Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea
| | - Sun Young Joo
- Department of Pharmacology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine Seoul, Republic of Korea
| | - John Hoon Rim
- Department of Pharmacology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine Seoul, Republic of Korea
| | - Jung Ah Kim
- Department of Pharmacology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine Seoul, Republic of Korea
| | - Hye-Youn Kim
- Department of Pharmacology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine Seoul, Republic of Korea
| | - Seyoung Yu
- Department of Pharmacology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine Seoul, Republic of Korea
| | - Yeonsu Jeong
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea
| | - Geun Cheol Shin
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea
| | - Hae Eun Noh
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea
| | - Ho Young Lee
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea
| | - Da Hye Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea
| | - Heon Yung Gee
- Department of Pharmacology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine Seoul, Republic of Korea.
| | - Jinsei Jung
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea; Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine Seoul, Republic of Korea.
| | - Jae Young Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seoul, Seodaemun-gu 03722, Republic of Korea
| |
Collapse
|
9
|
Aguilar-Aragon M, Fletcher G, Thompson BJ. The cytoskeletal motor proteins Dynein and MyoV direct apical transport of Crumbs. Dev Biol 2020; 459:126-137. [PMID: 31881198 PMCID: PMC7090908 DOI: 10.1016/j.ydbio.2019.12.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
Crumbs (Crb in Drosophila; CRB1-3 in mammals) is a transmembrane determinant of epithelial cell polarity and a regulator of Hippo signalling. Crb is normally localized to apical cell-cell contacts, just above adherens junctions, but how apical trafficking of Crb is regulated in epithelial cells remains unclear. We use the Drosophila follicular epithelium to demonstrate that polarized trafficking of Crb is mediated by transport along microtubules by the motor protein Dynein and along actin filaments by the motor protein Myosin-V (MyoV). Blocking transport of Crb-containing vesicles by Dynein or MyoV leads to accumulation of Crb within Rab11 endosomes, rather than apical delivery. The final steps of Crb delivery and stabilisation at the plasma membrane requires the exocyst complex and three apical FERM domain proteins - Merlin, Moesin and Expanded - whose simultaneous loss disrupts apical localization of Crb. Accordingly, a knock-in deletion of the Crb FERM-binding motif (FBM) also impairs apical localization. Finally, overexpression of Crb challenges this system, creating a sensitized background to identify components involved in cytoskeletal polarization, apical membrane trafficking and stabilisation of Crb at the apical domain.
Collapse
Affiliation(s)
- M Aguilar-Aragon
- The Francis Crick Institute, 1 Midland Rd, NW1 1AT, London, United Kingdom
| | - G Fletcher
- The Francis Crick Institute, 1 Midland Rd, NW1 1AT, London, United Kingdom
| | - B J Thompson
- The Francis Crick Institute, 1 Midland Rd, NW1 1AT, London, United Kingdom; The John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, ACT 2601, Canberra, Australia.
| |
Collapse
|
10
|
MacQuarrie CD, Mangione MC, Carroll R, James M, Gould KL, Sirotkin V. The S. pombe adaptor protein Bbc1 regulates localization of Wsp1 and Vrp1 during endocytic actin patch assembly. J Cell Sci 2019; 132:jcs233502. [PMID: 31391237 PMCID: PMC6771142 DOI: 10.1242/jcs.233502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/24/2019] [Indexed: 01/01/2023] Open
Abstract
Arp2/3 complex-nucleated branched actin networks provide the key force necessary for endocytosis. The Arp2/3 complex is activated by nucleation-promoting factors including the Schizosaccharomyces pombe Wiskott-Aldrich syndrome protein (Wsp1) and myosin-1 (Myo1). There are >40 known yeast endocytic proteins with distinct spatial and temporal localizations and functions; however, it is still unclear how these proteins work together to drive endocytosis. Here, we used quantitative live-cell imaging to determine the function of the uncharacterized S. pombe protein Bbc1. We discovered that Myo1 interacts with and recruits Bbc1 to sites of endocytosis. Bbc1 competes with the verprolin Vrp1 for localization to patches and association with Myo1, thus releasing Vrp1 and its binding partner Wsp1 from Myo1. Normally Myo1 remains at the base of the endocytic invagination and Vrp1-Wsp1 internalizes with the endocytic vesicle. However, in the absence of Bbc1, a portion of Vrp1-Wsp1 remains with Myo1 at the base of the invagination, and endocytic structures internalize twice as far. We propose that Bbc1 disrupts a transient interaction of Myo1 with Vrp1 and Wsp1 and thereby limits Arp2/3 complex-mediated nucleation of actin branches at the plasma membrane.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Cameron Dale MacQuarrie
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - MariaSanta C Mangione
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Robert Carroll
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Michael James
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Vladimir Sirotkin
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
11
|
Manenschijn HE, Picco A, Mund M, Rivier-Cordey AS, Ries J, Kaksonen M. Type-I myosins promote actin polymerization to drive membrane bending in endocytosis. eLife 2019; 8:44215. [PMID: 31385806 PMCID: PMC6684269 DOI: 10.7554/elife.44215] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 07/23/2019] [Indexed: 12/24/2022] Open
Abstract
Clathrin-mediated endocytosis in budding yeast requires the formation of a dynamic actin network that produces the force to invaginate the plasma membrane against the intracellular turgor pressure. The type-I myosins Myo3 and Myo5 are important for endocytic membrane reshaping, but mechanistic details of their function remain scarce. Here, we studied the function of Myo3 and Myo5 during endocytosis using quantitative live-cell imaging and genetic perturbations. We show that the type-I myosins promote, in a dose-dependent way, the growth and expansion of the actin network, which controls the speed of membrane and coat internalization. We found that this myosin-activity is independent of the actin nucleation promoting activity of myosins, and cannot be compensated for by increasing actin nucleation. Our results suggest a new mechanism for type-I myosins to produce force by promoting actin filament polymerization.
Collapse
Affiliation(s)
- Hetty E Manenschijn
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Andrea Picco
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.,NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Markus Mund
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | | | - Jonas Ries
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Marko Kaksonen
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.,NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
12
|
EhFP10: A FYVE family GEF interacts with myosin IB to regulate cytoskeletal dynamics during endocytosis in Entamoeba histolytica. PLoS Pathog 2019; 15:e1007573. [PMID: 30779788 PMCID: PMC6396940 DOI: 10.1371/journal.ppat.1007573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/01/2019] [Accepted: 01/08/2019] [Indexed: 01/07/2023] Open
Abstract
Motility and phagocytosis are key processes that are involved in invasive amoebiasis disease caused by intestinal parasite Entamoeba histolytica. Previous studies have reported unconventional myosins to play significant role in membrane based motility as well as endocytic processes. EhMyosin IB is the only unconventional myosin present in E. histolytica, is thought to be involved in both of these processes. Here, we report an interaction between the SH3 domain of EhMyosin IB and c-terminal domain of EhFP10, a Rho guanine nucleotide exchange factor. EhFP10 was found to be confined to Entamoeba species only, and to contain a c-terminal domain that binds and bundles actin filaments. EhFP10 was observed to localize in the membrane ruffles, phagocytic and macropinocytic cups of E. histolytica trophozoites. It was also found in early pinosomes but not early phagosomes. A crystal structure of the c-terminal SH3 domain of EhMyosin IB (EhMySH3) in complex with an EhFP10 peptide and co-localization studies established the interaction of EhMySH3 with EhFP10. This interaction was shown to lead to inhibition of actin bundling activity and to thereby regulate actin dynamics during endocytosis. We hypothesize that unique domain architecture of EhFP10 might be compensating the absence of Wasp and related proteins in Entamoeba, which are known partners of myosin SH3 domains in other eukaryotes. Our findings also highlights the role of actin bundling during endocytosis.
Collapse
|
13
|
Soczewka P, Kolakowski D, Smaczynska-de Rooij I, Rzepnikowska W, Ayscough KR, Kaminska J, Zoladek T. Yeast-model-based study identified myosin- and calcium-dependent calmodulin signalling as a potential target for drug intervention in chorea-acanthocytosis. Dis Model Mech 2019; 12:dmm.036830. [PMID: 30635263 PMCID: PMC6361151 DOI: 10.1242/dmm.036830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/07/2019] [Indexed: 01/03/2023] Open
Abstract
Chorea-acanthocytosis (ChAc) is a rare neurodegenerative disease associated with mutations in the human VPS13A gene. The mechanism of ChAc pathogenesis is unclear. A simple yeast model was used to investigate the function of the single yeast VSP13 orthologue, Vps13. Vps13, like human VPS13A, is involved in vesicular protein transport, actin cytoskeleton organisation and phospholipid metabolism. A newly identified phenotype of the vps13Δ mutant, sodium dodecyl sulphate (SDS) hypersensitivity, was used to screen a yeast genomic library for multicopy suppressors. A fragment of the MYO3 gene, encoding Myo3-N (the N-terminal part of myosin, a protein involved in the actin cytoskeleton and in endocytosis), was isolated. Myo3-N protein contains a motor head domain and a linker. The linker contains IQ motifs that mediate the binding of calmodulin, a negative regulator of myosin function. Amino acid substitutions that disrupt the interaction of Myo3-N with calmodulin resulted in the loss of vps13Δ suppression. Production of Myo3-N downregulated the activity of calcineurin, a protein phosphatase regulated by calmodulin, and alleviated some defects in early endocytosis events. Importantly, ethylene glycol tetraacetic acid (EGTA), which sequesters calcium and thus downregulates calmodulin and calcineurin, was a potent suppressor of vps13Δ. We propose that Myo3-N acts by sequestering calmodulin, downregulating calcineurin and increasing activity of Myo3, which is involved in endocytosis and, together with Osh2/3 proteins, functions in endoplasmic reticulum-plasma membrane contact sites. These results show that defects associated with vps13Δ could be overcome, and point to a functional connection between Vps13 and calcium signalling as a possible target for chemical intervention in ChAc. Yeast ChAc models may uncover the underlying pathological mechanisms, and may also serve as a platform for drug testing. This article has an associated First Person interview with the first author of the paper. Summary: Using the vps13Δ strain, a yeast model of the neurodegenerative disorder chorea-acanthocytosis, we found that its defects can be overcome by reduction of calcineurin activity and/or type-I-myosin activation.
Collapse
Affiliation(s)
- Piotr Soczewka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Genetics, Pawinskiego 5A, 02106 Warsaw, Poland
| | - Damian Kolakowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Genetics, Pawinskiego 5A, 02106 Warsaw, Poland
| | | | - Weronika Rzepnikowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Genetics, Pawinskiego 5A, 02106 Warsaw, Poland
| | - Kathryn R Ayscough
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Joanna Kaminska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Genetics, Pawinskiego 5A, 02106 Warsaw, Poland
| | - Teresa Zoladek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Department of Genetics, Pawinskiego 5A, 02106 Warsaw, Poland
| |
Collapse
|
14
|
Sun Y, Leong NT, Jiang T, Tangara A, Darzacq X, Drubin DG. Switch-like Arp2/3 activation upon WASP and WIP recruitment to an apparent threshold level by multivalent linker proteins in vivo. eLife 2017; 6. [PMID: 28813247 PMCID: PMC5559269 DOI: 10.7554/elife.29140] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/14/2017] [Indexed: 01/09/2023] Open
Abstract
Actin-related protein 2/3 (Arp2/3) complex activation by nucleation promoting factors (NPFs) such as WASP, plays an important role in many actin-mediated cellular processes. In yeast, Arp2/3-mediated actin filament assembly drives endocytic membrane invagination and vesicle scission. Here we used genetics and quantitative live-cell imaging to probe the mechanisms that concentrate NPFs at endocytic sites, and to investigate how NPFs regulate actin assembly onset. Our results demonstrate that SH3 (Src homology 3) domain-PRM (proline-rich motif) interactions involving multivalent linker proteins play central roles in concentrating NPFs at endocytic sites. Quantitative imaging suggested that productive actin assembly initiation is tightly coupled to accumulation of threshold levels of WASP and WIP, but not to recruitment kinetics or release of autoinhibition. These studies provide evidence that WASP and WIP play central roles in establishment of a robust multivalent SH3 domain-PRM network in vivo, giving actin assembly onset at endocytic sites a switch-like behavior. DOI:http://dx.doi.org/10.7554/eLife.29140.001 Actin is one of the most abundant proteins in yeast, mammalian and other eukaryotic cells. It assembles into long chains known as filaments that the cell uses to generate forces for various purposes. For example, actin filaments are needed to pull part of the membrane surrounding the cell inwards to bring molecules from the external environment into the cell by a process called endocytosis. In yeast, a member of the WASP family of proteins promotes the assembly of actin filaments around the site where endocytosis will occur. To achieve this, WASP interacts with several other proteins including WIP and myosin, a motor protein that moves along actin filaments to generate mechanical forces. However, it was not clear how these proteins work together to trigger actin filaments to assemble at the right place and time. Sun et al. addressed this question by studying yeast cells with genetic mutations affecting one or more of these proteins. The experiments show that WASP, myosin and WIP are recruited to sites where endocytosis is about to occur through specific interactions with other proteins. For example, a region of WASP known as the proline-rich domain can bind to proteins that contain an “SH3” domain. WASP and WIP arrive first, stimulating actin to assemble in an “all and nothing” manner and attracting myosin to the actin. Further experiments indicate that WASP and WIP need to reach a threshold level before actin starts to assemble. The findings of Sun et al. suggest that WASP and WIP play key roles in establishing the network of proteins needed for actin filaments to assemble during endocytosis. These proteins are needed for many other processes in yeast and other cells, including mammalian cells. Therefore, the next steps will be to investigate whether WASP and WIP use the same mechanism to operate in other situations. DOI:http://dx.doi.org/10.7554/eLife.29140.002
Collapse
Affiliation(s)
- Yidi Sun
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Nicole T Leong
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Tommy Jiang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Astou Tangara
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - David G Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
15
|
Gautam G, Rehman SAA, Pandey P, Gourinath S. Crystal structure of the PEG-bound SH3 domain of myosin IB from Entamoeba histolytica reveals its mode of ligand recognition. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2017; 73:672-682. [PMID: 28777082 DOI: 10.1107/s2059798317009639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/29/2017] [Indexed: 11/10/2022]
Abstract
The versatility in the recognition of various interacting proteins by the SH3 domain drives a variety of cellular functions. Here, the crystal structure of the C-terminal SH3 domain of myosin IB from Entamoeba histolytica (EhMySH3) is reported at a resolution of 1.7 Å in native and PEG-bound states. Comparisons with other structures indicated that the PEG molecules occupy protein-protein interaction pockets similar to those occupied by the peptides in other peptide-bound SH3-domain structures. Also, analysis of the PEG-bound EhMySH3 structure led to the recognition of two additional pockets, apart from the conventional polyproline and specificity pockets, that are important for ligand interaction. Molecular-docking studies combined with various comparisons revealed structural similarity between EhMySH3 and the SH3 domain of β-Pix, and this similarity led to the prediction that EhMySH3 preferentially binds targets containing type II-like PXXP motifs. These studies expand the understanding of the EhMySH3 domain and provide extensive structural knowledge, which is expected to help in predicting the interacting partners which function together with myosin IB during phagocytosis in E. histolytica infections.
Collapse
Affiliation(s)
- Gunjan Gautam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110 067, India
| | | | - Preeti Pandey
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110 067, India
| | - Samudrala Gourinath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110 067, India
| |
Collapse
|
16
|
Liu Z, Wu S, Chen Y, Han X, Gu Q, Yin Y, Ma Z. The microtubule end-binding protein FgEB1 regulates polar growth and fungicide sensitivity via different interactors in Fusarium graminearum. Environ Microbiol 2017; 19:1791-1807. [PMID: 28028881 DOI: 10.1111/1462-2920.13651] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/18/2016] [Indexed: 11/30/2022]
Abstract
In yeasts, the end-binding protein 1 (EB1) homologs regulate microtubule dynamics, cell polarization, and chromosome stability. However, functions of EB1 orthologs in plant pathogenic fungi have not been characterized yet. Here, we observed that the FgEB1 deletion mutant (ΔFgEB1) of Fusarium graminearum exhibits twisted hyphae, increased hyphal branching and curved conidia, indicating that FgEB1 is involved in the regulation of cellular polarity. Microscopic examination further showed that the microtubules of ΔFgEB1 exhibited less organized in comparison with those of the wild type. In addition, the lack of FgEB1 also altered the distribution of polarity-related class I myosin via the interaction with the actin. On the other hand, we identified four core septins as FgEB1-interacting proteins, and found that FgEB1 and septins regulated conidial polar growth in the opposite orientation. Interestingly, FgEB1 and FgKar9 constituted another complex that modulated the response to carbendazim, a microtubule-damaging agent specifically. In addition, the deletion of FgEB1 led to dramatically decreased deoxynivalenol (DON) biosynthesis. Taken together, results of this study indicate that FgEB1 regulates cellular polarity, fungicide sensitivity and DON biosynthesis via different interactors in F. graminarum, which provides a novel insight into understanding of the biological functions of EB1 in filamentous fungi.
Collapse
Affiliation(s)
- Zunyong Liu
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Sisi Wu
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Yun Chen
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xinyue Han
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Qin Gu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanni Yin
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhonghua Ma
- Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China.,State Key Laboratory of Rice Biology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
17
|
Yang J, Hao X, Cao X, Liu B, Nyström T. Spatial sequestration and detoxification of Huntingtin by the ribosome quality control complex. eLife 2016; 5. [PMID: 27033550 PMCID: PMC4868537 DOI: 10.7554/elife.11792] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/02/2016] [Indexed: 11/13/2022] Open
Abstract
Huntington disease (HD) is a neurological disorder caused by polyglutamine expansions in mutated Huntingtin (mHtt) proteins, rendering them prone to form inclusion bodies (IB). We report that in yeast, such IB formation is a factor-dependent process subjected to age-related decline. A genome-wide, high-content imaging approach, identified the E3 ubiquitin ligase, Ltn1 of the ribosome quality control complex (RQC) as a key factor required for IB formation, ubiquitination, and detoxification of model mHtt. The failure of ltn1∆ cells to manage mHtt was traced to another RQC component, Tae2, and inappropriate control of heat shock transcription factor, Hsf1, activity. Moreover, super-resolution microscopy revealed that mHtt toxicity in RQC-deficient cells was accompanied by multiple mHtt aggregates altering actin cytoskeletal structures and retarding endocytosis. The data demonstrates that spatial sequestration of mHtt into IBs is policed by the RQC-Hsf1 regulatory system and that such compartmentalization, rather than ubiquitination, is key to mHtt detoxification. DOI:http://dx.doi.org/10.7554/eLife.11792.001 Huntington’s disease is a neurological disease that is caused by mutations in the gene that encodes a protein called Htt. Individuals with this mutation gradually lose neurons as they age, resulting in declines in muscle coordination and mental abilities. The mutant Htt proteins tend to form clumps inside cells, but it is not clear if these clumps are the cause of the disease symptoms or whether they have a protective effect. Yang et al. used yeast as a model to investigate whether the mutant Htt proteins need other molecules to allow them to form clumps. The experiments identified several new molecules that are required for mutated Htt to form clumps. Some of these are components of a system called the Ribosome Quality Control (RQC) complex, which monitors newly made proteins and labels abnormal ones for destruction. However, Yang et al.’s findings suggest that the RQC complex regulates the formation of Htt clumps through a different pathway involving a protein called heat shock factor 1. In this case, cells would need to fine-tune heat shock factor 1 activity to make mutant Htt proteins clump together to protect cells from damage. Future experiments should expand Yang et al.’s findings to animal models of Huntington’s disease and identify which other molecules contribute to the formation of Htt clumps. One challenge will be to find out why older neurons fail to form clumps of Htt proteins, and whether this can be overcome by drugs that boost the activity of the molecules that Yang et al. identified. DOI:http://dx.doi.org/10.7554/eLife.11792.002
Collapse
Affiliation(s)
- Junsheng Yang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Xinxin Hao
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Xiuling Cao
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Thomas Nyström
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
18
|
Lara-Rojas F, Bartnicki-García S, Mouriño-Pérez RR. Localization and role of MYO-1, an endocytic protein in hyphae of Neurospora crassa. Fungal Genet Biol 2016; 88:24-34. [DOI: 10.1016/j.fgb.2016.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
|
19
|
Verschueren E, Spiess M, Gkourtsa A, Avula T, Landgraf C, Mancilla VT, Huber A, Volkmer R, Winsor B, Serrano L, Hochstenbach F, Distel B. Evolution of the SH3 Domain Specificity Landscape in Yeasts. PLoS One 2015; 10:e0129229. [PMID: 26068101 PMCID: PMC4466140 DOI: 10.1371/journal.pone.0129229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/06/2015] [Indexed: 11/18/2022] Open
Abstract
To explore the conservation of Src homology 3 (SH3) domain-mediated networks in evolution, we compared the specificity landscape of these domains among four yeast species, Saccharomyces cerevisiae, Ashbya gossypii, Candida albicans, and Schizosaccharomyces pombe, encompassing 400 million years of evolution. We first aligned and catalogued the families of SH3-containing proteins in these four species to determine the relationships between homologous domains. Then, we tagged and purified all soluble SH3 domains (82 in total) to perform a quantitative peptide assay (SPOT) for each SH3 domain. All SPOT readouts were hierarchically clustered and we observed that the organization of the SH3 specificity landscape in three distinct profile classes remains conserved across these four yeast species. We also produced a specificity profile for each SH3 domain from manually aligned top SPOT hits and compared the within-family binding motif consensus. This analysis revealed a striking example of binding motif divergence in a C. albicans Rvs167 paralog, which cannot be explained by overall SH3 sequence or interface residue divergence, and we validated this specificity change with a yeast two-hybrid (Y2H) assay. In addition, we show that position-weighted matrices (PWM) compiled from SPOT assays can be used for binding motif screening in potential binding partners and present cases where motifs are either conserved or lost among homologous SH3 interacting proteins. Finally, by comparing pairwise SH3 sequence identity to binding profile correlation we show that for ~75% of all analyzed families the SH3 specificity profile was remarkably conserved over a large evolutionary distance. Thus, a high sequence identity within an SH3 domain family predicts conserved binding specificity, whereas divergence in sequence identity often coincided with a change in binding specificity within this family. As such, our results are important for future studies aimed at unraveling complex specificity networks of peptide recognition domains in higher eukaryotes, including mammals.
Collapse
Affiliation(s)
- Erik Verschueren
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation-CRG, Barcelona, Spain
| | - Matthias Spiess
- Department of Molecular and Cellular Genetics, UMR7156, Université de Strasbourg and CNRS, Strasbourg, France
| | - Areti Gkourtsa
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Teja Avula
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Christiane Landgraf
- Institut für Medizinische Immunologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Victor Tapia Mancilla
- Department of Molecular and Cellular Genetics, UMR7156, Université de Strasbourg and CNRS, Strasbourg, France
- Institut für Medizinische Immunologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Aline Huber
- Department of Molecular and Cellular Genetics, UMR7156, Université de Strasbourg and CNRS, Strasbourg, France
| | - Rudolf Volkmer
- Institut für Medizinische Immunologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Barbara Winsor
- Department of Molecular and Cellular Genetics, UMR7156, Université de Strasbourg and CNRS, Strasbourg, France
| | - Luis Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation-CRG, Barcelona, Spain
| | - Frans Hochstenbach
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Distel
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
20
|
Zheng Z, Hou Y, Cai Y, Zhang Y, Li Y, Zhou M. Whole-genome sequencing reveals that mutations in myosin-5 confer resistance to the fungicide phenamacril in Fusarium graminearum. Sci Rep 2015; 5:8248. [PMID: 25648042 PMCID: PMC5389027 DOI: 10.1038/srep08248] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/09/2015] [Indexed: 11/30/2022] Open
Abstract
To determine the mechanism of resistance to the fungicide phenamacril (JS399-19) in Fusarium graminearum, the causal agent of Fusarium head blight, we sequenced and annotated the genome of the resistant strain YP-1 (generated by treating the F. graminearum reference strain PH-1 with phenamacril). Of 1.4 million total reads from an Illumina-based paired-end sequencing assay, 92.80% were aligned to the F. graminearum reference genome. Compared with strain PH-1, strain YP-1 contained 1,989 single-nucleotide polymorphisms that led to amino acid mutations in 132 genes. We sequenced 22 functional annotated genes of another F. graminearum sensitive strain (strain 2021) and corresponding resistant strains. The only mutation common to all of the resistant mutants occurred in the gene encoding myosin-5 (point mutations at codon 216, 217, 418, 420, or 786). To confirm whether the mutations in myosin-5 confer resistance to phenamacril, we exchanged the myosin-5 locus between the sensitive strain 2021 and the resistant strain Y2021A by homologous double exchange. The transformed mutants with a copy of the resistant fragment exhibited resistance to phenamacril, and the transformed mutant with a copy of the sensitive fragment exhibited sensitivity to phenamacril. These results indicate that mutations in myosin-5 confers resistance to phenamacril in F. graminearum.
Collapse
Affiliation(s)
- Zhitian Zheng
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing, 210095, China
| | - Yiping Hou
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing, 210095, China
| | - Yiqiang Cai
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing, 210095, China
| | - Yu Zhang
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing, 210095, China
| | - Yanjun Li
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing, 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing, 210095, China
| |
Collapse
|
21
|
Crosstalk between PI(4,5)P₂and CK2 modulates actin polymerization during endocytic uptake. Dev Cell 2014; 30:746-58. [PMID: 25268174 DOI: 10.1016/j.devcel.2014.07.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/13/2014] [Accepted: 07/28/2014] [Indexed: 01/02/2023]
Abstract
A transient burst of actin polymerization assists endocytic budding. How actin polymerization is controlled in this context is not understood. Here, we show that crosstalk between PI(4,5)P₂and the CK2 catalytic subunit Cka2 controls actin polymerization at endocytic sites. We find that phosphorylation of the myosin-I Myo5 by Cka2 downregulates Myo5-induced Arp2/3-dependent actin polymerization, whereas PI(4,5)P₂cooperatively relieves Myo5 autoinhibition and inhibits the catalytic activity of Cka2. Cka2 and the PI(4,5)P₂-5-phosphatases Sjl1 and Sjl2, the yeast synaptojanins, exhibit genetic interactions indicating functional redundancy. The ultrastructural analysis of plasma membrane invaginations in CK2 and synaptojanin mutants demonstrates that both cooperate to initiate constriction of the invagination neck, a process coupled to the remodeling of the endocytic actin network. Our data demonstrate a holoenzyme-independent function of CK2 in endocytic budding and establish a robust genetic, functional, and molecular link between PI(4,5)P₂and CK2, two masters of intracellular signaling.
Collapse
|
22
|
Cheng J, Grassart A, Drubin DG. Myosin 1E coordinates actin assembly and cargo trafficking during clathrin-mediated endocytosis. Mol Biol Cell 2012; 23:2891-904. [PMID: 22675027 PMCID: PMC3408416 DOI: 10.1091/mbc.e11-04-0383] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
An actin-dependent role is shown for Myo1E in the trafficking of newly internalized cargo to early endosomes during CME. The results establish for mammalian cells, similar to budding yeast, interdependence in the recruitment of type I myosins, WIP/WIRE, and N-WASP to endocytic sites to assemble F-actin as endocytic vesicles are being formed. Myosin 1E (Myo1E) is recruited to sites of clathrin-mediated endocytosis coincident with a burst of actin assembly. The recruitment dynamics and lifetime of Myo1E are similar to those of tagged actin polymerization regulatory proteins. Like inhibition of actin assembly, depletion of Myo1E causes reduced transferrin endocytosis and a significant delay in transferrin trafficking to perinuclear compartments, demonstrating an integral role for Myo1E in these actin-mediated steps. Mistargeting of GFP-Myo1E or its src-homology 3 domain to mitochondria results in appearance of WIP, WIRE, N-WASP, and actin filaments at the mitochondria, providing evidence for Myo1E's role in actin assembly regulation. These results suggest for mammalian cells, similar to budding yeast, interdependence in the recruitment of type I myosins, WIP/WIRE, and N-WASP to endocytic sites for Arp2/3 complex activation to assemble F-actin as endocytic vesicles are being formed.
Collapse
Affiliation(s)
- Jackie Cheng
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
23
|
Bi E, Park HO. Cell polarization and cytokinesis in budding yeast. Genetics 2012; 191:347-87. [PMID: 22701052 PMCID: PMC3374305 DOI: 10.1534/genetics.111.132886] [Citation(s) in RCA: 223] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 11/04/2011] [Indexed: 12/26/2022] Open
Abstract
Asymmetric cell division, which includes cell polarization and cytokinesis, is essential for generating cell diversity during development. The budding yeast Saccharomyces cerevisiae reproduces by asymmetric cell division, and has thus served as an attractive model for unraveling the general principles of eukaryotic cell polarization and cytokinesis. Polarity development requires G-protein signaling, cytoskeletal polarization, and exocytosis, whereas cytokinesis requires concerted actions of a contractile actomyosin ring and targeted membrane deposition. In this chapter, we discuss the mechanics and spatial control of polarity development and cytokinesis, emphasizing the key concepts, mechanisms, and emerging questions in the field.
Collapse
Affiliation(s)
- Erfei Bi
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA.
| | | |
Collapse
|
24
|
Function and regulation of Saccharomyces cerevisiae myosins-I in endocytic budding. Biochem Soc Trans 2011; 39:1185-90. [DOI: 10.1042/bst0391185] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Myosins-I are widely expressed actin-dependent motors which bear a phospholipid-binding domain. In addition, some members of the family can trigger Arp2/3 complex (actin-related protein 2/3 complex)-dependent actin polymerization. In the early 1990s, the development of powerful genetic tools in protozoa and mammals and discovery of these motors in yeast allowed the demonstration of their roles in membrane traffic along the endocytic and secretory pathways, in vacuole contraction, in cell motility and in mechanosensing. The powerful yeast genetics has contributed towards dissecting in detail the function and regulation of Saccharomyces cerevisiae myosins-I Myo3 and Myo5 in endocytic budding from the plasma membrane. In the present review, we summarize the evidence, dissecting their exact role in membrane budding and the molecular mechanisms controlling their recruitment and biochemical activities at the endocytic sites.
Collapse
|
25
|
Boettner DR, Friesen H, Andrews B, Lemmon SK. Clathrin light chain directs endocytosis by influencing the binding of the yeast Hip1R homologue, Sla2, to F-actin. Mol Biol Cell 2011; 22:3699-714. [PMID: 21849475 PMCID: PMC3183023 DOI: 10.1091/mbc.e11-07-0628] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The clathrin light-chain (LC) N-terminal region interacts with the Sla2/Hip1/Hip1R family of ANTH/talin–like proteins. In vivo evidence shows that LC–Sla2 binding is important for releasing Sla2 attachments to actin in the endocytic coat. Loss of this regulation can suppress major actin defects during endocytosis. The role of clathrin light chain (CLC) in clathrin-mediated endocytosis is not completely understood. Previous studies showed that the CLC N-terminus (CLC-NT) binds the Hip1/Hip1R/Sla2 family of membrane/actin–binding factors and that overexpression of the CLC-NT in yeast suppresses endocytic defects of clathrin heavy-chain mutants. To elucidate the mechanistic basis for this suppression, we performed synthetic genetic array analysis with a clathrin CLC-NT deletion mutation (clc1-Δ19-76). clc1-Δ19-76 suppressed the internalization defects of null mutations in three late endocytic factors: amphiphysins (rvs161 and rvs167) and verprolin (vrp1). In actin sedimentation assays, CLC binding to Sla2 inhibited Sla2 interaction with F-actin. Furthermore, clc1-Δ19-76 suppression of the rvs and vrp phenotypes required the Sla2 actin-binding talin-Hip1/R/Sla2 actin-tethering C-terminal homology domain, suggesting that clc1-Δ19-76 promotes internalization by prolonging actin engagement by Sla2. We propose that CLC directs endocytic progression by pruning the Sla2-actin attachments in the clathrin lattice, providing direction for membrane internalization.
Collapse
Affiliation(s)
- Douglas R Boettner
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, FL 33101, USA
| | | | | | | |
Collapse
|
26
|
Hartman MA, Finan D, Sivaramakrishnan S, Spudich JA. Principles of unconventional myosin function and targeting. Annu Rev Cell Dev Biol 2011; 27:133-55. [PMID: 21639800 DOI: 10.1146/annurev-cellbio-100809-151502] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Unconventional myosins are a superfamily of actin-based motors implicated in diverse cellular processes. In recent years, much progress has been made in describing their biophysical properties, and headway has been made into analyzing their cellular functions. Here, we focus on the principles that guide in vivo motor function and targeting to specific cellular locations. Rather than describe each motor comprehensively, we outline the major themes that emerge from research across the superfamily and use specific examples to illustrate each. In presenting the data in this format, we seek to identify open questions in each field as well as to point out commonalities between them. To advance our understanding of myosins' roles in vivo, clearly we must identify their cellular cargoes and the protein complexes that regulate motor attachment to fully appreciate their functions on the cellular and developmental levels.
Collapse
Affiliation(s)
- M Amanda Hartman
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
27
|
Borth N, Walther A, Reijnst P, Jorde S, Schaub Y, Wendland J. Candida albicans Vrp1 is required for polarized morphogenesis and interacts with Wal1 and Myo5. Microbiology (Reading) 2010; 156:2962-2969. [DOI: 10.1099/mic.0.041707-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recently, a link between endocytosis and hyphal morphogenesis has been identified in Candida albicans via the Wiskott–Aldrich syndrome gene homologue WAL1. To get a more detailed mechanistic understanding of this link we have investigated a potentially conserved interaction between Wal1 and the C. albicans WASP-interacting protein (WIP) homologue encoded by VRP1. Deletion of both alleles of VRP1 results in strong hyphal growth defects under serum inducing conditions but filamentation can be observed on Spider medium. Mutant vrp1 cells show a delay in endocytosis – measured as the uptake and delivery of the lipophilic dye FM4-64 into small endocytic vesicles – compared to the wild-type. Vacuolar morphology was found to be fragmented in a subset of cells and the cortical actin cytoskeleton was depolarized in vrp1 daughter cells. The morphology of the vrp1 null mutant could be complemented by reintegration of the wild-type VRP1 gene at the BUD3 locus. Using the yeast two-hybrid system we could demonstrate an interaction between the C-terminal part of Vrp1 and the N-terminal part of Wal1, which contains the WH1 domain. Furthermore, we found that Myo5 has several potential interaction sites on Vrp1. This suggests that a Wal1–Vrp1–Myo5 complex plays an important role in endocytosis and the polarized localization of the cortical actin cytoskeleton to promote polarized hyphal growth in C. albicans.
Collapse
Affiliation(s)
- Nicole Borth
- Junior Research Group: Growth Control of Fungal Pathogens, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute and Department of Microbiology, Friedrich Schiller University, D-07745 Jena, Germany
- Carlsberg Laboratory, Yeast Biology, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | - Andrea Walther
- Junior Research Group: Growth Control of Fungal Pathogens, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute and Department of Microbiology, Friedrich Schiller University, D-07745 Jena, Germany
- Carlsberg Laboratory, Yeast Biology, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | - Patrick Reijnst
- Carlsberg Laboratory, Yeast Biology, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | - Sigyn Jorde
- Carlsberg Laboratory, Yeast Biology, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | - Yvonne Schaub
- Junior Research Group: Growth Control of Fungal Pathogens, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute and Department of Microbiology, Friedrich Schiller University, D-07745 Jena, Germany
| | - Jürgen Wendland
- Junior Research Group: Growth Control of Fungal Pathogens, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute and Department of Microbiology, Friedrich Schiller University, D-07745 Jena, Germany
- Carlsberg Laboratory, Yeast Biology, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| |
Collapse
|
28
|
Wong MH, Meng L, Rajmohan R, Yu S, Thanabalu T. Vrp1p-Las17p interaction is critical for actin patch polarization but is not essential for growth or fluid phase endocytosis in S. cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1332-46. [PMID: 20816901 DOI: 10.1016/j.bbamcr.2010.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 08/26/2010] [Accepted: 08/26/2010] [Indexed: 11/24/2022]
Abstract
Vrp1p (yeast WIP) forms a protein complex with Las17p (yeast WASP), however the physiological significance of the interaction has not been fully characterized. Vrp1p residues, (788)MPKPR(792) are essential for Vrp1p-Las17p interaction. While C-Vrp1p(364-817) complements all the defects of the vrp1Δ strain, C-Vrp1p(364-817)(5A) ((788)AAAAA(792)) does not complement any of the defects, due to its inability to localize to cortical patches. Targeting C-Vrp1p(364-817)(5A) to membranes using CAAX motif (C-Vrp1p(364-817)(5A)-CAAX) rescued the growth and endocytosis defect but not the actin patch polarization defect of vrp1Δ. Vrp1p can localize to cortical patches, either by binding to Las17p through LBD (Las17 Binding Domain, Vrp1p(760-817)) or independent of Las17p through residues in N-Vrp1p(1-364). Unlike Vrp1p, Vrp1p(5A) localizes poorly to cortical patches and complements all the defects of vrp1Δ strain except actin patch polarization at elevated temperature. N-Vrp1p(1-364) complements all the defects of vrp1Δ strain except the actin patch polarization defect while N-Vrp1p(1-364)-LBD fusion protein complements all the defects. Thus our results show that while both Vrp1p and Las17p are essential for many cellular processes, the two proteins do not necessarily have to bind to each other to carry out these cellular functions. However, Las17p-Vrp1p interaction is essential for actin patch polarization at elevated temperature.
Collapse
Affiliation(s)
- Ming Hwa Wong
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Republic of Singapore
| | | | | | | | | |
Collapse
|
29
|
Calmodulin dissociation regulates Myo5 recruitment and function at endocytic sites. EMBO J 2010; 29:2899-914. [PMID: 20647997 DOI: 10.1038/emboj.2010.159] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 06/21/2010] [Indexed: 11/09/2022] Open
Abstract
Myosins-I are conserved proteins that bear an N-terminal motor head followed by a Tail Homology 1 (TH1) lipid-binding domain. Some myosins-I have an additional C-terminal extension (C(ext)) that promotes Arp2/3 complex-dependent actin polymerization. The head and the tail are separated by a neck that binds calmodulin or calmodulin-related light chains. Myosins-I are known to participate in actin-dependent membrane remodelling. However, the molecular mechanisms controlling their recruitment and their biochemical activities in vivo are far from being understood. In this study, we provided evidence suggesting the existence of an inhibitory interaction between the TH1 domain of the yeast myosin-I Myo5 and its C(ext). The TH1 domain prevented binding of the Myo5 C(ext) to the yeast WIP homologue Vrp1, Myo5 C(ext)-induced actin polymerization and recruitment of the Myo5 C(ext) to endocytic sites. Our data also indicated that calmodulin dissociation from Myo5 weakened the interaction between the neck and TH1 domains and the C(ext). Concomitantly, calmodulin dissociation triggered Myo5 binding to Vrp1, extended the myosin-I lifespan at endocytic sites and activated Myo5-induced actin polymerization.
Collapse
|
30
|
Munn AL, Thanabalu T. Verprolin: A cool set of actin-binding sites and some very HOT prolines. IUBMB Life 2009; 61:707-12. [DOI: 10.1002/iub.195] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
31
|
Idrissi FZ, Grötsch H, Fernández-Golbano IM, Presciatto-Baschong C, Riezman H, Geli MI. Distinct acto/myosin-I structures associate with endocytic profiles at the plasma membrane. J Cell Biol 2008; 180:1219-32. [PMID: 18347067 PMCID: PMC2290847 DOI: 10.1083/jcb.200708060] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 02/13/2008] [Indexed: 11/24/2022] Open
Abstract
Endocytosis in yeast requires actin and clathrin. Live cell imaging has previously shown that massive actin polymerization occurs concomitant with a slow 200-nm inward movement of the endocytic coat (Kaksonen, M., Y. Sun, and D.G. Drubin. 2003. Cell. 115:475-487). However, the nature of the primary endocytic profile in yeast and how clathrin and actin cooperate to generate an endocytic vesicle is unknown. In this study, we analyze the distribution of nine different proteins involved in endocytic uptake along plasma membrane invaginations using immunoelectron microscopy. We find that the primary endocytic profiles are tubular invaginations of up to 50 nm in diameter and 180 nm in length, which accumulate the endocytic coat components at the tip. Interestingly, significant actin labeling is only observed on invaginations longer than 50 nm, suggesting that initial membrane bending occurs before initiation of the slow inward movement. We also find that in the longest profiles, actin and the myosin-I Myo5p form two distinct structures that might be implicated in vesicle fission.
Collapse
Affiliation(s)
- Fatima-Zahra Idrissi
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Thanabalu T, Rajmohan R, Meng L, Ren G, Vajjhala PR, Munn AL. Verprolin function in endocytosis and actin organization. FEBS J 2007; 274:4103-25. [PMID: 17635585 DOI: 10.1111/j.1742-4658.2007.05936.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vrp1p (verprolin, End5p) is the yeast ortholog of human Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP). Vrp1p localizes to the cortical actin cytoskeleton, is necessary for its polarization to sites of growth and is also essential for endocytosis. At elevated temperature, Vrp1p becomes essential for growth. A C-terminal Vrp1p fragment (C-Vrp1p) retains the ability to localize to the cortical actin cytoskeleton and function in actin-cytoskeleton polarization, endocytosis and growth. Here, we demonstrate that two submodules in C-Vrp1p are required for actin-cytoskeleton polarization: a novel C-terminal actin-binding submodule (CABS) that contains a novel G-actin-binding domain, which we call a verprolin homology 2 C-terminal (VH2-C) domain; and a second submodule comprising the Las17p-binding domain (LBD) that binds Las17p (yeast WASP). The LBD localizes C-Vrp1p to membranes and the cortical actin cytoskeleton. Intriguingly, the LBD is sufficient to restore endocytosis and growth at elevated temperature to Vrp1p-deficient cells. The CABS also restores these functions, but only if modified by a lipid anchor to provide membrane association. Our findings highlight the role of Las17p binding for Vrp1p membrane association, suggest general membrane association may be more important than specific targeting to the cortical actin cytoskeleton for Vrp1p function in endocytosis and cell growth, and suggest that Vrp1p binding to individual effectors may alter their physiological activity.
Collapse
Affiliation(s)
- Thirumaran Thanabalu
- Institute of Molecular and Cell Biology, A*STAR Biomedical Science Institutes, Singapore
| | | | | | | | | | | |
Collapse
|
33
|
De Filippis V, Draghi A, Frasson R, Grandi C, Musi V, Fontana A, Pastore A. o-Nitrotyrosine and p-iodophenylalanine as spectroscopic probes for structural characterization of SH3 complexes. Protein Sci 2007; 16:1257-65. [PMID: 17567746 PMCID: PMC2206685 DOI: 10.1110/ps.062726807] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
High-throughput screening of protein-protein and protein-peptide interactions is of high interest both for biotechnological and pharmacological applications. Here, we propose the use of the noncoded amino acids o-nitrotyrosine and p-iodophenylalanine as spectroscopic probes in combination with circular dichroism and fluorescence quenching techniques (i.e., collisional quenching and resonance energy transfer) as a means to determine the peptide orientation in complexes with SH3 domains. Proline-rich peptides bind SH3 modules in two alternative orientations, according to their sequence motifs, classified as class I and class II. The method was tested on an SH3 domain from a yeast myosin that is known to recognize specifically class I peptides. We exploited the fluorescence quenching effects induced by o-nitrotyrosine and p-iodophenylalanine on the fluorescence signal of a highly conserved Trp residue, which is the signature of SH3 domains and sits directly in the binding pocket. In particular, we studied how the introduction of the two probes at different positions of the peptide sequence (i.e., N-terminally or C-terminally) influences the spectroscopic properties of the complex. This approach provides clear-cut evidence of the orientation of the binding peptide in the SH3 pocket. The chemical strategy outlined here can be easily extended to other protein modules, known to bind linear sequence motifs in a highly directional manner.
Collapse
|
34
|
Barker SL, Lee L, Pierce BD, Maldonado-Báez L, Drubin DG, Wendland B. Interaction of the endocytic scaffold protein Pan1 with the type I myosins contributes to the late stages of endocytosis. Mol Biol Cell 2007; 18:2893-903. [PMID: 17522383 PMCID: PMC1949359 DOI: 10.1091/mbc.e07-05-0436] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The yeast endocytic scaffold Pan1 contains an uncharacterized proline-rich domain (PRD) at its carboxy (C)-terminus. We report that the pan1-20 temperature-sensitive allele has a disrupted PRD due to a frame-shift mutation in the open reading frame of the domain. To reveal redundantly masked functions of the PRD, synthetic genetic array screens with a pan1DeltaPRD strain found genetic interactions with alleles of ACT1, LAS17 and a deletion of SLA1. Through a yeast two-hybrid screen, the Src homology 3 domains of the type I myosins, Myo3 and Myo5, were identified as binding partners for the C-terminus of Pan1. In vitro and in vivo assays validated this interaction. The relative timing of recruitment of Pan1-green fluorescent protein (GFP) and Myo3/5-red fluorescent protein (RFP) at nascent endocytic sites was revealed by two-color real-time fluorescence microscopy; the type I myosins join Pan1 at cortical patches at a late stage of internalization, preceding the inward movement of Pan1 and its disassembly. In cells lacking the Pan1 PRD, we observed an increased lifetime of Myo5-GFP at the cortex. Finally, Pan1 PRD enhanced the actin polymerization activity of Myo5-Vrp1 complexes in vitro. We propose that Pan1 and the type I myosins interactions promote an actin activity important at a late stage in endocytic internalization.
Collapse
Affiliation(s)
- Sarah L. Barker
- *Department of Biology, The Johns Hopkins University, Baltimore, MD 21218; and
| | - Linda Lee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - B. Daniel Pierce
- *Department of Biology, The Johns Hopkins University, Baltimore, MD 21218; and
| | | | - David G. Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Beverly Wendland
- *Department of Biology, The Johns Hopkins University, Baltimore, MD 21218; and
| |
Collapse
|
35
|
Meng L, Rajmohan R, Yu S, Thanabalu T. Actin binding and proline rich motifs of CR16 play redundant role in growth of vrp1Delta cells. Biochem Biophys Res Commun 2007; 357:289-94. [PMID: 17418095 DOI: 10.1016/j.bbrc.2007.03.144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 03/22/2007] [Indexed: 11/20/2022]
Abstract
CR16, (Glucocorticoid-regulated) belongs to the verprolin family of proteins which are characterized by the presence of a V domain (verprolin) at the N-terminal. Expression of CR16 suppressed the growth and endocytosis defect of vrp1Delta strain without correcting the actin patch polarization defect. The V domain of CR16 is critical for suppression of the growth defect of vrp1Delta strain but not for localisation to cortical actin patches. Mutations in the actin binding motif alone did not abolish the activity of CR16 but the mutations in combination with deletion of N-terminal proline rich motif abolished the ability of CR16 to suppress the growth defect. This suggests that the V domain of CR16 has two functionally redundant motifs and either one of these motifs is sufficient for suppressing the growth defect of vrp1Delta strain. This is in contrast to the observation that both WIP and WIRE require the actin binding motif for their activity.
Collapse
Affiliation(s)
- Lei Meng
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Republic of Singapore
| | | | | | | |
Collapse
|
36
|
Krendel M, Osterweil EK, Mooseker MS. Myosin 1E interacts with synaptojanin-1 and dynamin and is involved in endocytosis. FEBS Lett 2007; 581:644-50. [PMID: 17257598 PMCID: PMC1861834 DOI: 10.1016/j.febslet.2007.01.021] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 01/08/2007] [Accepted: 01/11/2007] [Indexed: 11/21/2022]
Abstract
Myosin 1E is one of two "long-tailed" human Class I myosins that contain an SH3 domain within the tail region. SH3 domains of yeast and amoeboid myosins I interact with activators of the Arp2/3 complex, an important regulator of actin polymerization. No binding partners for the SH3 domains of myosins I have been identified in higher eukaryotes. In the current study, we show that two proteins with prominent functions in endocytosis, synaptojanin-1 and dynamin, bind to the SH3 domain of human Myo1E. Myosin 1E co-localizes with clathrin- and dynamin-containing puncta at the plasma membrane and this co-localization requires an intact SH3 domain. Expression of Myo1E tail, which acts in a dominant-negative manner, inhibits endocytosis of transferrin. Our findings suggest that myosin 1E may contribute to receptor-mediated endocytosis.
Collapse
Affiliation(s)
- Mira Krendel
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| | | | | |
Collapse
|
37
|
Moseley JB, Goode BL. The yeast actin cytoskeleton: from cellular function to biochemical mechanism. Microbiol Mol Biol Rev 2006; 70:605-45. [PMID: 16959963 PMCID: PMC1594590 DOI: 10.1128/mmbr.00013-06] [Citation(s) in RCA: 295] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All cells undergo rapid remodeling of their actin networks to regulate such critical processes as endocytosis, cytokinesis, cell polarity, and cell morphogenesis. These events are driven by the coordinated activities of a set of 20 to 30 highly conserved actin-associated proteins, in addition to many cell-specific actin-associated proteins and numerous upstream signaling molecules. The combined activities of these factors control with exquisite precision the spatial and temporal assembly of actin structures and ensure dynamic turnover of actin structures such that cells can rapidly alter their cytoskeletons in response to internal and external cues. One of the most exciting principles to emerge from the last decade of research on actin is that the assembly of architecturally diverse actin structures is governed by highly conserved machinery and mechanisms. With this realization, it has become apparent that pioneering efforts in budding yeast have contributed substantially to defining the universal mechanisms regulating actin dynamics in eukaryotes. In this review, we first describe the filamentous actin structures found in Saccharomyces cerevisiae (patches, cables, and rings) and their physiological functions, and then we discuss in detail the specific roles of actin-associated proteins and their biochemical mechanisms of action.
Collapse
Affiliation(s)
- James B Moseley
- Department of Biology and The Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | | |
Collapse
|
38
|
Sun Y, Martin AC, Drubin DG. Endocytic internalization in budding yeast requires coordinated actin nucleation and myosin motor activity. Dev Cell 2006; 11:33-46. [PMID: 16824951 DOI: 10.1016/j.devcel.2006.05.008] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 05/03/2006] [Accepted: 05/16/2006] [Indexed: 10/24/2022]
Abstract
Actin polymerization essential for endocytic internalization in budding yeast is controlled by four nucleation promoting factors (NPFs) that each exhibits a unique dynamic behavior at endocytic sites. How each NPF functions and is regulated to restrict actin assembly to late stages of endocytic internalization is not known. Quantitative analysis of NPF biochemical activities, and genetic analysis of recruitment and regulatory mechanisms, defined a linear pathway in which protein composition changes at endocytic sites control actin assembly and function. We show that yeast WASP initiates actin assembly at endocytic sites and that this assembly and the recruitment of a yeast WIP-like protein by WASP recruit a type I myosin with both NPF and motor activities. Importantly, type I myosin motor and NPF activities are separable, and both contribute to endocytic coat inward movement, which likely represents membrane invagination. These results reveal a mechanism in which actin nucleation and myosin motor activity cooperate to promote endocytic internalization.
Collapse
Affiliation(s)
- Yidi Sun
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
39
|
Musi V, Birdsall B, Fernandez-Ballester G, Guerrini R, Salvatori S, Serrano L, Pastore A. New approaches to high-throughput structure characterization of SH3 complexes: the example of Myosin-3 and Myosin-5 SH3 domains from S. cerevisiae. Protein Sci 2006; 15:795-807. [PMID: 16600966 PMCID: PMC2242487 DOI: 10.1110/ps.051785506] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
SH3 domains are small protein modules that are involved in protein-protein interactions in several essential metabolic pathways. The availability of the complete genome and the limited number of clearly identifiable SH3 domains make the yeast Saccharomyces cerevisae an ideal proteomic-based model system to investigate the structural rules dictating the SH3-mediated protein interactions and to develop new tools to assist these studies. In the present work, we have determined the solution structure of the SH3 domain from Myo3 and modeled by homology that of the highly homologous Myo5, two myosins implicated in actin polymerization. We have then implemented an integrated approach that makes use of experimental and computational methods to characterize their binding properties. While accommodating their targets in the classical groove, the two domains have selectivity in both orientation and sequence specificity of the target peptides. From our study, we propose a consensus sequence that may provide a useful guideline to identify new natural partners and suggest a strategy of more general applicability that may be of use in other structural proteomic studies.
Collapse
Affiliation(s)
- Valeria Musi
- National Institute for Medical Research, London NW71AA, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
40
|
Kaksonen M, Toret CP, Drubin DG. Harnessing actin dynamics for clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 2006; 7:404-14. [PMID: 16723976 DOI: 10.1038/nrm1940] [Citation(s) in RCA: 549] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Actin polymerization often occurs at the plasma membrane to drive the protrusion of lamellipodia and filopodia at the leading edge of migrating cells. A role for actin polymerization in another cellular process that involves the reshaping of the plasma membrane--namely endocytosis--has recently been established. Live-cell imaging studies are shedding light on the order and timing of the molecular events and mechanisms of actin function during endocytosis.
Collapse
Affiliation(s)
- Marko Kaksonen
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| | | | | |
Collapse
|
41
|
Krzewski K, Chen X, Orange JS, Strominger JL. Formation of a WIP-, WASp-, actin-, and myosin IIA-containing multiprotein complex in activated NK cells and its alteration by KIR inhibitory signaling. ACTA ACUST UNITED AC 2006; 173:121-32. [PMID: 16606694 PMCID: PMC2063796 DOI: 10.1083/jcb.200509076] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The tumor natural killer (NK) cell line YTS was used to examine the cytoskeletal rearrangements required for cytolysis. A multiprotein complex weighing approximately 1.3 mD and consisting of WASp-interacting protein (WIP), Wiskott-Aldrich syndrome protein (WASp), actin, and myosin IIA that formed during NK cell activation was identified. After induction of an inhibitory signal, the recruitment of actin and myosin IIA to a constitutive WIP-WASp complex was greatly decreased. Both actin and myosin IIA were recruited to WIP in the absence of WASp. This recruitment correlated with increased WIP phosphorylation, which was mediated by PKCtheta. Furthermore, the disruption of WIP expression by WIP RNA interference prevented the formation of this protein complex and led to almost complete inhibition of cytotoxic activity. Thus, the multiprotein complex is important for NK cell function, killer cell immunoglobulin-like receptor inhibitory signaling affects proteins involved in cytoskeletal rearrangements, and WIP plays a central role in the formation of the complex and in the regulation of NK cell activity.
Collapse
Affiliation(s)
- Konrad Krzewski
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
42
|
Ren G, Vajjhala P, Lee JS, Winsor B, Munn AL. The BAR domain proteins: molding membranes in fission, fusion, and phagy. Microbiol Mol Biol Rev 2006; 70:37-120. [PMID: 16524918 PMCID: PMC1393252 DOI: 10.1128/mmbr.70.1.37-120.2006] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Bin1/amphiphysin/Rvs167 (BAR) domain proteins are a ubiquitous protein family. Genes encoding members of this family have not yet been found in the genomes of prokaryotes, but within eukaryotes, BAR domain proteins are found universally from unicellular eukaryotes such as yeast through to plants, insects, and vertebrates. BAR domain proteins share an N-terminal BAR domain with a high propensity to adopt alpha-helical structure and engage in coiled-coil interactions with other proteins. BAR domain proteins are implicated in processes as fundamental and diverse as fission of synaptic vesicles, cell polarity, endocytosis, regulation of the actin cytoskeleton, transcriptional repression, cell-cell fusion, signal transduction, apoptosis, secretory vesicle fusion, excitation-contraction coupling, learning and memory, tissue differentiation, ion flux across membranes, and tumor suppression. What has been lacking is a molecular understanding of the role of the BAR domain protein in each process. The three-dimensional structure of the BAR domain has now been determined and valuable insight has been gained in understanding the interactions of BAR domains with membranes. The cellular roles of BAR domain proteins, characterized over the past decade in cells as distinct as yeasts, neurons, and myocytes, can now be understood in terms of a fundamental molecular function of all BAR domain proteins: to sense membrane curvature, to bind GTPases, and to mold a diversity of cellular membranes.
Collapse
Affiliation(s)
- Gang Ren
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | | | | | |
Collapse
|
43
|
Soulard A, Friant S, Fitterer C, Orange C, Kaneva G, Mirey G, Winsor B. The WASP/Las17p-interacting protein Bzz1p functions with Myo5p in an early stage of endocytosis. PROTOPLASMA 2005; 226:89-101. [PMID: 16231105 DOI: 10.1007/s00709-005-0108-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Accepted: 03/30/2005] [Indexed: 05/04/2023]
Abstract
The formation of actin filaments is crucial for endocytosis and other interrelated cellular phenomena such as motility, polarized morphogenesis, and cytokinesis. In this paper we have investigated the role of the WASP/Las17-interacting protein Bzz1p in endocytosis and trafficking to the vacuole. We and others have recently shown that Bzz1p is an actin patch protein that interacts directly with Las17p via a SH3-polyproline interaction. Bzz1p functions with type I myosins to restore polarity of the actin cytoskeleton after NaCl stress. In an in vitro bead assay, GST-Bzz1p fusion protein triggers a functional actin polymerization machinery through its two C-terminal SH3 domains. In this paper we implicate Bzz1p with the type I myosins both in fluid-phase and in the internalization step of receptor-mediated endocytosis. As deduced from their localization as GFP fusions, the vacuolar delivery of endocytic and biosynthetic cargoes as well as the multivesicular body pathway appear unaffected. We further elucidate Bzz1p direct participation in actin polymerization by demonstrating that each of the SH3 domains of Bzz1p individually is able to trigger actin polymerization in a cell-free system dependent on Arp2/3, Las17p, Vrp1p, and the type I myosins. Taken together, our results show that Bzz1p participates, essentially via its SH3 domains, in early steps of endocytosis together with known actin nucleation activators.
Collapse
Affiliation(s)
- A Soulard
- Equipe Cytosquelette et Trafic Intracellulaire, Laboratoire Génétique Moléculaire, Génomique et Microbiologie, Unité Mixte de Recherche 7156 du Centre National de la Recherche Scientifique, Institut de Physiologie et Chimie Biologique, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Aspenström P. The verprolin family of proteins: Regulators of cell morphogenesis and endocytosis. FEBS Lett 2005; 579:5253-9. [PMID: 16182290 DOI: 10.1016/j.febslet.2005.08.053] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 08/12/2005] [Accepted: 08/22/2005] [Indexed: 11/28/2022]
Abstract
The verprolin family of proteins, WIP, CR16 and WIRE/WICH, has emerged as critical regulators of cytoskeletal organisation in vertebrate cells. The founding father of the family, verprolin, was originally identified in budding yeast and later shown to be needed for actin polymerisation during polarised growth and during endocytosis. The vertebrate verprolins regulate actin dynamics either by binding directly to actin, by binding the WASP family of proteins or by binding to other actin regulating proteins. Interestingly, also the vertebrate verprolins have been implicated in endocytosis, demonstrating that most of the functional modules in this fascinating group of proteins have been conserved from yeast to man.
Collapse
Affiliation(s)
- Pontus Aspenström
- Ludwig Institute for Cancer Research, Biomedical Center, Uppsala University, Sweden.
| |
Collapse
|
45
|
Sirotkin V, Beltzner CC, Marchand JB, Pollard TD. Interactions of WASp, myosin-I, and verprolin with Arp2/3 complex during actin patch assembly in fission yeast. ACTA ACUST UNITED AC 2005; 170:637-48. [PMID: 16087707 PMCID: PMC2171502 DOI: 10.1083/jcb.200502053] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Yeast actin patches are dynamic structures that form at the sites of cell growth and are thought to play a role in endocytosis. We used biochemical analysis and live cell imaging to investigate actin patch assembly in fission yeast Schizosaccharomyces pombe. Patch assembly proceeds via two parallel pathways: one dependent on WASp Wsp1p and verprolin Vrp1p converges with another dependent on class 1 myosin Myo1p to activate the actin-related protein 2/3 (Arp2/3) complex. Wsp1p activates Arp2/3 complex via a conventional mechanism, resulting in branched filaments. Myo1p is a weaker Arp2/3 complex activator that makes unstable branches and is enhanced by verprolin. During patch assembly in vivo, Wsp1p and Vrp1p arrive first independent of Myo1p. Arp2/3 complex associates with nascent activator patches over 6–9 s while remaining stationary. After reaching a maximum concentration, Arp2/3 complex patches move centripetally as activator proteins dissociate. Genetic dependencies of patch formation suggest that patch formation involves cross talk between Myo1p and Wsp1p/Vrp1p pathways.
Collapse
Affiliation(s)
- Vladimir Sirotkin
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
46
|
Ren G, Wang J, Brinkworth R, Winsor B, Kobe B, Munn AL. Verprolin Cytokinesis Function Mediated by the Hof One Trap Domain. Traffic 2005; 6:575-93. [PMID: 15941409 DOI: 10.1111/j.1600-0854.2005.00300.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In budding yeast, partitioning of the cytoplasm during cytokinesis can proceed via a pathway dependent on the contractile actomyosin ring, as in other eukaryotes, or alternatively via a septum deposition pathway dependent on an SH3 domain protein, Hof1/Cyk2 (the yeast PSTPIP1 ortholog). In dividing yeast cells, Hof1 forms a ring at the bud neck distinct from the actomyosin ring, and this zone is active in septum deposition. We previously showed the yeast Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP) ortholog, verprolin/Vrp1/End5, interacts with Hof1 and facilitates Hof1 recruitment to the bud neck. A Vrp1 fragment unable to interact with yeast WASP (Las17/Bee1), localize to the actin cytoskeleton or function in polarization of the cortical actin cytoskeleton nevertheless retains function in Hof1 recruitment and cytokinesis. Here, we show the ability of this Vrp1 fragment to bind the Hof1 SH3 domain via its Hof one trap (HOT) domain is critical for cytokinesis. The Vrp1 HOT domain consists of three tandem proline-rich motifs flanked by serines. Unexpectedly, the Hof1 SH3 domain itself is not required for cytokinesis and indeed appears to negatively regulate cytokinesis. The Vrp1 HOT domain promotes cytokinesis by binding to the Hof1 SH3 domain and counteracting its inhibitory effect.
Collapse
Affiliation(s)
- Gang Ren
- Laboratory of Yeast Cell Biology, Institute of Molecular and Cell Biology, A*STAR Biomedical Sciences Institutes, Singapore, 138673, Republic of Singapore
| | | | | | | | | | | |
Collapse
|
47
|
Oberholzer U, Iouk TL, Thomas DY, Whiteway M. Functional characterization of myosin I tail regions in Candida albicans. EUKARYOTIC CELL 2005; 3:1272-86. [PMID: 15470256 PMCID: PMC522603 DOI: 10.1128/ec.3.5.1272-1286.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The molecular motor myosin I is required for hyphal growth in the pathogenic yeast Candida albicans. Specific myosin I functions were investigated by a deletion analysis of five neck and tail regions. Hyphal formation requires both the TH1 region and the IQ motifs. The TH2 region is important for optimal hyphal growth. All of the regions, except for the SH3 and acidic (A) regions that were examined individually, were required for the localization of myosin I at the hyphal tip. Similarly, all of the domains were required for the association of myosin I with pelletable actin-bound complexes. Moreover, the hyphal tip localization of cortical actin patches, identified by both rhodamine-phalloidin staining and Arp3-green fluorescent protein signals, was dependent on myosin I. Double deletion of the A and SH3 domains depolarized the distribution of the cortical actin patches without affecting the ability of the mutant to form hyphae, suggesting that myosin I has distinct functions in these processes. Among the six myosin I tail domain mutants, the ability to form hyphae was strictly correlated with endocytosis. We propose that the uptake of cell wall remodeling enzymes and excess plasma membrane is critical for hyphal formation.
Collapse
Affiliation(s)
- Ursula Oberholzer
- Genetics Group, Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec H3A 2B2, Canada.
| | | | | | | |
Collapse
|
48
|
Huckaba TM, Gay AC, Pantalena LF, Yang HC, Pon LA. Live cell imaging of the assembly, disassembly, and actin cable-dependent movement of endosomes and actin patches in the budding yeast, Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2004; 167:519-30. [PMID: 15534003 PMCID: PMC2172478 DOI: 10.1083/jcb.200404173] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using FM4-64 to label endosomes and Abp1p-GFP or Sac6p-GFP to label actin patches, we find that (1) endosomes colocalize with actin patches as they assemble at the bud cortex; (2) endosomes colocalize with actin patches as they undergo linear, retrograde movement from buds toward mother cells; and (3) actin patches interact with and disassemble at FM4-64–labeled internal compartments. We also show that retrograde flow of actin cables mediates retrograde actin patch movement. An Arp2/3 complex mutation decreases the frequency of cortical, nonlinear actin patch movements, but has no effect on the velocity of linear, retrograde actin patch movement. Rather, linear actin patch movement occurs at the same velocity and direction as the movement of actin cables. Moreover, actin patches require actin cables for retrograde movements and colocalize with actin cables as they undergo retrograde movement. Our studies support a mechanism whereby actin cables serve as “conveyor belts” for retrograde movement and delivery of actin patches/endosomes to FM4-64–labeled internal compartments.
Collapse
Affiliation(s)
- Thomas M Huckaba
- Department of Anatomy and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
49
|
Jonsdottir GA, Li R. Dynamics of Yeast Myosin I. Curr Biol 2004; 14:1604-9. [PMID: 15341750 DOI: 10.1016/j.cub.2004.08.055] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 07/16/2004] [Accepted: 07/21/2004] [Indexed: 11/21/2022]
Abstract
Cortical actin patches are dynamic structures required for endocytosis in yeast. Recent studies have shown that components of cortical patches localize to the plasma membrane in a precisely orchestrated manner, and their movements at and away from the plasma membrane may define the endocytic membrane invagination and vesicle scission events, respectively. Here, through live-cell imaging, we analyze the dynamics of the highly conserved class I unconventional myosin, Myo5, which also localizes to cortical patches and is known to be involved in endocytosis and actin nucleation. Myo5 exhibits a pattern of dynamic localization different from all cortical patch components analyzed to date. Myo5 associates with cortical patches only transiently and remains stationary during its brief cortical lifespan. The peak of Myo5 association with cortical patches immediately precedes the fast movement of Arp2/3 complex-associated structures away from the plasma membrane, thus correlating precisely with the proposed vesicle scission event. To further test the role of Myo5, we generated a temperature-sensitive mutant myo5 allele. In the myo5 mutant cells, Myo5 exhibits a significantly extended cortical lifespan as a result of a general impairment of Myo5 function, and Arp2 patches exhibit an extended slow-movement phase prior to the fast movement toward the cell interior. The myo5 mutant cells are defective in fluid-phase endocytosis and exhibit an increased number of invaginations on the membrane. Based on these results, we hypothesize that the myosin I motor protein facilitates the membrane fusion/vesicle scission event of endocytosis.
Collapse
|
50
|
Paavilainen VO, Bertling E, Falck S, Lappalainen P. Regulation of cytoskeletal dynamics by actin-monomer-binding proteins. Trends Cell Biol 2004; 14:386-94. [PMID: 15246432 DOI: 10.1016/j.tcb.2004.05.002] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The actin cytoskeleton is a vital component of several key cellular and developmental processes in eukaryotes. Many proteins that interact with filamentous and/or monomeric actin regulate the structure and dynamics of the actin cytoskeleton. Actin-filament-binding proteins control the nucleation, assembly, disassembly and crosslinking of actin filaments, whereas actin-monomer-binding proteins regulate the size, localization and dynamics of the large pool of unpolymerized actin in cells. In this article, we focus on recent advances in understanding how the six evolutionarily conserved actin-monomer-binding proteins - profilin, ADF/cofilin, twinfilin, Srv2/CAP, WASP/WAVE and verprolin/WIP - interact with actin monomers and regulate their incorporation into filament ends. We also present a model of how, together, these ubiquitous actin-monomer-binding proteins contribute to cytoskeletal dynamics and actin-dependent cellular processes.
Collapse
Affiliation(s)
- Ville O Paavilainen
- Program in Cellular Biotechnology, Institute of Biotechnology, PO Box 56, University of Helsinki, Helsinki 00014, Finland
| | | | | | | |
Collapse
|