1
|
Francisco S, Lamacchia L, Turco A, Ermondi G, Caron G, Rossi Sebastiano M. Restoring adapter protein complex 4 function with small molecules: an in silico approach to spastic paraplegia 50. Protein Sci 2025; 34:e70006. [PMID: 39723768 DOI: 10.1002/pro.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
This study focuses on spastic paraplegia type 50 (SPG50), an adapter protein complex 4 deficiency syndrome caused by mutations in the adapter protein complex 4 subunit mu-1 (AP4M1) gene, and on the downstream alterations of the AP4M1 protein. We applied a battery of heterogeneous computational resources, encompassing two in-house tools described here for the first time, to (a) assess the druggability potential of AP4M1, (b) characterize SPG50-associated mutations and their 3D scenario, (c) identify mutation-tailored drug candidates for SPG50, and (d) elucidate their mechanisms of action by means of structural considerations on homology models of the adapter protein complex 4 core. Altogether, the collected results indicate R367Q as the mutation with the most promising potential of being corrected by small-molecule drugs, and the flavonoid rutin as best candidate for this purpose. Rutin shows promise in rescuing the interaction between the AP4M1 and adapter protein complex subunit beta-1 (AP4B1) subunits by means of a glue-like mode of action. Overall, this approach offers a framework that could be systematically applied to the investigation of mutation-wise molecular mechanisms in different hereditary spastic paraplegias, too.
Collapse
Affiliation(s)
- Serena Francisco
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Lorenzo Lamacchia
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Attilio Turco
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Giuseppe Ermondi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Giulia Caron
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Matteo Rossi Sebastiano
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
2
|
Ravichandran K, Schirra C, Urbansky K, Tu SM, Alawar N, Mannebach S, Krause E, Stevens D, Lancaster CRD, Flockerzi V, Rettig J, Chang HF, Becherer U. Required minimal protein domain of flower for synaptobrevin2 endocytosis in cytotoxic T cells. Cell Mol Life Sci 2024; 82:8. [PMID: 39694922 DOI: 10.1007/s00018-024-05528-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/18/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
Flower, a highly conserved protein, crucial for endocytosis and cellular fitness, has been implicated in cytotoxic T lymphocyte (CTL) killing efficiency through its role in cytotoxic granule (CG) endocytosis at the immune synapse (IS). This study explores the molecular cues that govern Flower-mediated CG endocytosis by analyzing uptake of Synaptobrevin2, a protein specific to CG in mouse CTL. Using immunogold electron microscopy and total internal fluorescence microscopy, we found that Flower translocates in a stimulus-dependent manner from small vesicles to the IS, thereby ensuring specificity in CG membrane protein recycling. Using confocal live-cell imaging, we assessed the ability of a range of naturally occurring mouse, human and Drosophila isoforms to rescue defective endocytosis in Flower KO CTLs. This analysis demonstrated that the N-terminal portion of the protein, encompassing amino acids 1-106 in mice, is the minimal domain necessary for Synaptobrevin2 endocytosis. Additionally, we identified two pivotal sites through site-specific mutation: a putative AP2-binding site, and a tyrosine at position 104 in mouse Flower. These findings provide insights into Flower's specific functional domain essential for CG endocytosis, which is a key process in mediating T cell serial killing required for the effective fight against cancer.
Collapse
Affiliation(s)
- Keerthana Ravichandran
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany
| | - Claudia Schirra
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany
| | - Katja Urbansky
- Department of Structural Biology, Center of Human and Molecular Biology (ZHMB), Faculty of Medicine Building 60, Saarland University, 66421, Homburg, Germany
| | - Szu-Min Tu
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany
| | - Nadia Alawar
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany
| | - Stefanie Mannebach
- Experimental and Clinical Pharmacology and Toxicology and Preclinical Center for Molecular Signaling, Saarland University, Homburg, Germany
| | - Elmar Krause
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany
| | - David Stevens
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany
| | - C Roy D Lancaster
- Department of Structural Biology, Center of Human and Molecular Biology (ZHMB), Faculty of Medicine Building 60, Saarland University, 66421, Homburg, Germany
| | - Veit Flockerzi
- Experimental and Clinical Pharmacology and Toxicology and Preclinical Center for Molecular Signaling, Saarland University, Homburg, Germany
| | - Jens Rettig
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany
| | - Hsin-Fang Chang
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany.
| | - Ute Becherer
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
3
|
Nguyen NTT, Müller R, Briukhovetska D, Weber J, Feucht J, Künkele A, Hudecek M, Kobold S. The Spectrum of CAR Cellular Effectors: Modes of Action in Anti-Tumor Immunity. Cancers (Basel) 2024; 16:2608. [PMID: 39061247 PMCID: PMC11274444 DOI: 10.3390/cancers16142608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Chimeric antigen receptor-T cells have spearheaded the field of adoptive cell therapy and have shown remarkable results in treating hematological neoplasia. Because of the different biology of solid tumors compared to hematological tumors, response rates of CAR-T cells could not be transferred to solid entities yet. CAR engineering has added co-stimulatory domains, transgenic cytokines and switch receptors to improve performance and persistence in a hostile tumor microenvironment, but because of the inherent cell type limitations of CAR-T cells, including HLA incompatibility, toxicities (cytokine release syndrome, neurotoxicity) and high costs due to the logistically challenging preparation process for autologous cells, the use of alternative immune cells is gaining traction. NK cells and γδ T cells that do not need HLA compatibility or macrophages and dendritic cells with additional properties such as phagocytosis or antigen presentation are increasingly seen as cellular vehicles with potential for application. As these cells possess distinct properties, clinicians and researchers need a thorough understanding of their peculiarities and commonalities. This review will compare these different cell types and their specific modes of action seen upon CAR activation.
Collapse
Affiliation(s)
- Ngoc Thien Thu Nguyen
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between the DKFZ Heidelberg and the University Hospital of the LMU, 80336 Munich, Germany
| | - Rasmus Müller
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
| | - Daria Briukhovetska
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
| | - Justus Weber
- Department of Medicine II, Chair in Cellular Immunotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (J.W.); (M.H.)
| | - Judith Feucht
- Cluster of Excellence iFIT “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tuebingen, Germany;
- Department of Hematology and Oncology, University Children’s Hospital Tuebingen, University of Tübingen, 72076 Tuebingen, Germany
| | - Annette Künkele
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany;
- German Cancer Consortium (DKTK), Partner Site Berlin, 10117 Berlin, Germany
| | - Michael Hudecek
- Department of Medicine II, Chair in Cellular Immunotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (J.W.); (M.H.)
- Fraunhofer Institute for Cell Therapy and Immunology, Cellular Immunotherapy Branch Site Würzburg, 97080 Würzburg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between the DKFZ Heidelberg and the University Hospital of the LMU, 80336 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München—German Research Center for Environmental Health Neuherberg, 85764 Oberschleißheim, Germany
| |
Collapse
|
4
|
Harmych SJ, Tydings CW, Meiler J, Singh B. Sequence and structural insights of monoleucine-based sorting motifs contained within the cytoplasmic domains of basolateral proteins. Front Cell Dev Biol 2024; 12:1379224. [PMID: 38495621 PMCID: PMC10940456 DOI: 10.3389/fcell.2024.1379224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
Delivery to the correct membrane domain in polarized epithelial cells is a critical regulatory mechanism for transmembrane proteins. The trafficking of these proteins is directed by short amino acid sequences known as sorting motifs. In six basolaterally-localized proteins lacking the canonical tyrosine- and dileucine-based basolateral sorting motifs, a monoleucine-based sorting motif has been identified. This review will discuss these proteins with an identified monoleucine-based sorting motif, their conserved structural features, as well as the future directions of study for this non-canonical basolateral sorting motif.
Collapse
Affiliation(s)
- Sarah J. Harmych
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Claiborne W. Tydings
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - Jens Meiler
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
5
|
Geng J, Wang J, Wang H. Emerging Landscape of Cell-Penetrating Peptide-Mediated Organelle Restoration and Replacement. ACS Pharmacol Transl Sci 2023; 6:229-244. [PMID: 36798470 PMCID: PMC9926530 DOI: 10.1021/acsptsci.2c00229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Indexed: 01/18/2023]
Abstract
Organelles are specialized subunits within a cell membrane that perform specific roles or functions, and their dysfunction can lead to a variety of pathophysiologies including developmental defects, aging, and diseases (cancer, cardiovascular and neurodegenerative diseases). Recent studies have shown that cell-penetrating peptide (CPP)-based pharmacological therapies delivered to organelles or even directly resulting in organelle replacement can restore cell function and improve or prevent disease. In this review, we summarized the current developments in the precise delivery of exogenous cargoes via CPPs at the organelle level, CPP-mediated organelle delivery, and discuss their feasibility as next-generation targeting strategies for the diagnosis and treatment of diseases at the organelle level.
Collapse
Affiliation(s)
- Jingping Geng
- Department
of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang443002, China
- Interdisciplinary
Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097Warszawa, Poland
| | - Jing Wang
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland21215, United States
| | - Hu Wang
- Department
of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang443002, China
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland21215, United States
| |
Collapse
|
6
|
Hu L, Tang Y, Mei L, Liang M, Huang J, Wang X, Wu L, Jiang J, Li L, Long F, Xiao J, Tan L, Lu S, Peng T. A new intracellular targeting motif in the cytoplasmic tail of the spike protein may act as a target to inhibit SARS-CoV-2 assembly. Antiviral Res 2023; 209:105509. [PMID: 36572190 PMCID: PMC9788845 DOI: 10.1016/j.antiviral.2022.105509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a threat to global public health, underscoring the urgent need for the development of preventive and therapeutic measures. The spike (S) protein of SARS-CoV-2, which mediates receptor binding and subsequent membrane fusion to promote viral entry, is a major target for current drug development and vaccine design. The S protein comprises a large N-terminal extracellular domain, a transmembrane domain, and a short cytoplasmic tail (CT) at the C-terminus. CT truncation of the S protein has been previously reported to promote the infectivity of SARS-CoV and SARS-CoV-2 pseudoviruses. However, the underlying molecular mechanism has not been precisely elucidated. In addition, the CT of various viral membrane glycoproteins play an essential role in the assembly of virions, yet the role of the S protein CT in SARS-CoV-2 infection remains unclear. In this study, through constructing a series of mutations of the CT of the S protein and analyzing their impact on the packaging of the SARS-CoV-2 pseudovirus and live SARS-CoV-2 virus, we identified V1264L1265 as a new intracellular targeting motif in the CT of the S protein, that regulates the transport and subcellular localization of the spike protein through the interactions with cytoskeleton and vesicular transport-related proteins, ARPC3, SCAMP3, and TUBB8, thereby modulating SARS-CoV-2 pseudovirus and live SARS-CoV-2 virion assembly. Either disrupting the V1264L1265 motif or reducing the expression of ARPC3, SCAMP3, and TUBB8 significantly repressed the assembly of the live SARS-CoV-2 virion, raising the possibility that the V1264L1265 motif and the host responsive pathways involved could be new drug targets for the treatment of SARS-CoV-2 infection. Our results extend the understanding of the role played by the S protein CT in the assembly of pseudoviruses and live SARS-CoV-2 virions, which will facilitate the application of pseudoviruses to the study of SARS-CoV-2 and provide potential strategies for the treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Longbo Hu
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China,Corresponding author
| | - Yongjie Tang
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Lingling Mei
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Mengdi Liang
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jinxian Huang
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xufei Wang
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Liping Wu
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiajing Jiang
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Leyi Li
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Fei Long
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jing Xiao
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Long Tan
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shaohua Lu
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China,Guangdong South China Vaccine, Guangzhou, China,Greater Bay Area Innovative Vaccine Technology Development Center, Guangzhou International Bio-island Laboratory, China,Corresponding author. State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| |
Collapse
|
7
|
Majumder P, Edmison D, Rodger C, Patel S, Reid E, Gowrishankar S. AP-4 regulates neuronal lysosome composition, function, and transport via regulating export of critical lysosome receptor proteins at the trans-Golgi network. Mol Biol Cell 2022; 33:ar102. [PMID: 35976706 PMCID: PMC9635302 DOI: 10.1091/mbc.e21-09-0473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The adaptor protein complex-4 or AP-4 is known to mediate autophagosome maturation through regulating sorting of transmembrane cargo such as ATG9A at the Golgi. There is a need to understand AP-4 function in neurons, as mutations in any of its four subunits cause a complex form of hereditary spastic paraplegia (HSP) with intellectual disability. While AP-4 has been implicated in regulating trafficking and distribution of cargo such as ATG9A and APP, little is known about its effect on neuronal lysosomal protein traffic, lysosome biogenesis and function. In this study, we demonstrate that in human iPSC-derived neurons AP-4 regulates lysosome composition, function and transport via regulating export of critical lysosomal receptors, including Sortilin 1, from the trans-Golgi network to endo-lysosomes. Additionally, loss of AP-4 causes endo-lysosomes to stall and build up in axonal swellings potentially through reduced recruitment of retrograde transport machinery to the organelle. These findings of axonal lysosome build-up are highly reminiscent of those observed in Alzheimer's disease as well as in neurons modelling the most common form of HSP, caused by spastin mutations. Our findings implicate AP-4 as a critical regulator of neuronal lysosome biogenesis and altered lysosome function and axonal endo-lysosome transport as an underlying defect in AP-4 deficient HSP. Additionally, our results also demonstrate the utility of the human i3Neuronal model system in investigating neuronal phenotypes observed in AP-4 deficient mice and/or the human AP-4 deficiency syndrome. [Media: see text] [Media: see text].
Collapse
Affiliation(s)
- Piyali Majumder
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Daisy Edmison
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Catherine Rodger
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, England, UK
| | - Sruchi Patel
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Evan Reid
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, England, UK
| | - Swetha Gowrishankar
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
8
|
Li Q, Holliday M, Pan JSC, Tan L, Li J, Sheikh-Hamad D. Interactions between leucines within the signal peptides of megalin and stanniocalcin-1 are crucial for regulation of mitochondrial metabolism. J Transl Med 2022; 102:534-544. [PMID: 35046485 DOI: 10.1038/s41374-022-00729-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/08/2022] Open
Abstract
The mitochondrial intracrine Stanniocalcin 1 (STC1) activates mitochondrial anti-oxidant defenses. LRP2 (megalin) shuttles STC1 to the mitochondria through retrograde early endosome-to-Golgi- and Rab32-mediated pathway, and LRP2 KO impairs mitochondrial respiration and glycolysis. We determined STC1-LRP2 interaction domains using HA- and FLAG-tagged fragments of STC1 and LRP2, respectively, co-expressed in HEK293T cells. The trans-membrane domain of LRP2 is required for trafficking to the mitochondria. STC1-FLAG expressed in LRP2 KO cells fails to reach the mitochondria; thus, mitochondrial STC1 is extracellularly-derived via LRP2-mediated trafficking. Tri-leucines L12-14 in LRP2's signal peptide interact with STC1's signal peptide. Mutant LRP2 (L(12-14)A) does not bind STC1, while hSTC1 lacking signal peptide or Leucines L8/9/11 does not bind LRP2. STC1 fails to induce respiration or glycolysis in megalin KO mouse embryonal fibroblasts (MEF) expressing mutant LRP2, while mutant hSTC1 (L8/L9/L11 - > A8/A9/A11) fails to reach the mitochondria or induce respiration and glycolysis in WT MEF. Our data suggest direct regulation of mitochondrial metabolism by extracellular cues and reveal an important role for signal peptides' leucines in protein-protein interactions and mitochondrial biology.
Collapse
Affiliation(s)
- Qingtian Li
- Division of Nephrology and Selzman Institute for Kidney Health, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael Holliday
- Division of Nephrology and Selzman Institute for Kidney Health, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VAMC, Houston, TX, 77030, USA
| | - Jenny Szu-Chin Pan
- Division of Nephrology and Selzman Institute for Kidney Health, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Li Tan
- Division of Nephrology and Selzman Institute for Kidney Health, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
- West China Medical Center of Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Jeffery Li
- Division of Nephrology and Selzman Institute for Kidney Health, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David Sheikh-Hamad
- Division of Nephrology and Selzman Institute for Kidney Health, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VAMC, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Hao G, Zhao X, Zhang M, Ying J, Yu F, Li S, Zhang Y. Vesicle trafficking in
Arabidopsis
pollen tubes. FEBS Lett 2022; 596:2231-2242. [DOI: 10.1002/1873-3468.14343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Guang‐Jiu Hao
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | - Xin‐Ying Zhao
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | | | - Jun Ying
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | - Fei Yu
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | - Sha Li
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | - Yan Zhang
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
- College of Life Sciences Nankai University China
- Frontiers Science Center for Cell Responses Nankai University China
| |
Collapse
|
10
|
Wang P, Cheng Y, Wu C, Luo R, Ma C, Zhou Y, Ma Z, Wang R, Su W, Fang L. Dearomatization-rearomatization strategy of tyrosine for peptide/protein modification through thiol-addition reactions. Chem Commun (Camb) 2021; 57:12968-12971. [PMID: 34792042 DOI: 10.1039/d1cc04191f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a dearomatization-rearomatization strategy for the modification of peptides/proteins through a thiol-Michael addition to the electrophilic cyclohexadienone intermediate that is generated in situ via the oxidation of tyrosine. This strategy enriches the conjugation toolbox and has great potential for applications in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Pengxin Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu, China.,Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Yulian Cheng
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Chunlei Wu
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Ruixiang Luo
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Caibing Ma
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Yimin Zhou
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Zhilong Ma
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Wu Su
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| | - Lijing Fang
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
11
|
Liyanage DS, Omeka WKM, Yang H, Lim C, Kwon H, Choi CY, Lee J. Expression profiling, immune functions, and molecular characteristics of the tetraspanin molecule CD63 from Amphiprion clarkii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104168. [PMID: 34118281 DOI: 10.1016/j.dci.2021.104168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/05/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
CD63, a member of the tetraspanin family, is involved in the activation of immune cells, antiviral immunity, and signal transduction. The economically important anemonefishes Amphiprion sp. often face disease outbreaks, and the present study aimed to characterize CD63 in Amphiprion clarkii (denoted AcCD63) to enable better disease management. The in-silico analysis revealed that the AcCD63 transcript is 723 bp long and encodes 240 amino acids. The 26.2 kDa protein has a theoretical isoelectric point of 5.51. Similar to other tetraspanins, AcCD63 consists of four domains: short N-/C-terminal domains and small/large extracellular loops. Pairwise sequence alignment revealed that AcCD63 has the highest identity (100%) and similarity (99.2%) with CD63 from Amphiprion ocellaris. Multiple sequence alignment identified a conserved tetraspanin CCG motif, PXSCC motif, and C-terminal lysosome-targeting GYEVM motif. The quantitative polymerase chain reaction analysis showed that AcCD63 was highly expressed in the spleen and head kidney tissue, with low levels of expression in the liver. Temporal expression patterns of AcCD63 were measured in the head kidney and blood tissue after injection of polyinosinic:polycytidylic acid (poly (I:C)), lipolysacharides (LPS), or Vibrio harveyi (V. harveyi). AcCD63 was upregulated at 12 h post-injection with poly (I:C) or V. harveyi, and at 24 h post-injection with all stimulants in the head kidney. At 24 h post-injection, poly (I:C) and LPS upregulated, whereas V. harveyi downregulated AcCD63 expression in the blood. All viral hemorrhagic septicemia virus transcripts (M, G, N, RdRp, P, and NV) were downregulated in response to AcCD63 overexpression, and removal of viral particles occurred via the involvement of AcCD63. The expression of antiviral genes MX dynamin-like GTPase 1, interferon regulatory factor 3, interferon-stimulated gene 15, interferon-gamma, and viperin in CD63-overexpressing fathead minnow cells was downregulated. Collectively, our findings suggest that AcCD63 is an immunologically important gene involved in the A. clarkii pathogen stress response.
Collapse
Affiliation(s)
- D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Chaehyeon Lim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hyukjae Kwon
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Cheol Young Choi
- Division of Marine Bioscience, Korea Maritime and Ocean University, Busan, 49112, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
12
|
Hassan Z, Kumar ND, Reggiori F, Khan G. How Viruses Hijack and Modify the Secretory Transport Pathway. Cells 2021; 10:2535. [PMID: 34685515 PMCID: PMC8534161 DOI: 10.3390/cells10102535] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/28/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic cells contain dynamic membrane-bound organelles that are constantly remodeled in response to physiological and environmental cues. Key organelles are the endoplasmic reticulum, the Golgi apparatus and the plasma membrane, which are interconnected by vesicular traffic through the secretory transport route. Numerous viruses, especially enveloped viruses, use and modify compartments of the secretory pathway to promote their replication, assembly and cell egression by hijacking the host cell machinery. In some cases, the subversion mechanism has been uncovered. In this review, we summarize our current understanding of how the secretory pathway is subverted and exploited by viruses belonging to Picornaviridae, Coronaviridae, Flaviviridae,Poxviridae, Parvoviridae and Herpesviridae families.
Collapse
Affiliation(s)
- Zubaida Hassan
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates;
- Department of Microbiology, School of Life Sciences, Modibbo Adama University, Yola PMB 2076, Nigeria
| | - Nilima Dinesh Kumar
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (N.D.K.); (F.R.)
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (N.D.K.); (F.R.)
| | - Gulfaraz Khan
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates;
| |
Collapse
|
13
|
Wang P, Cheng Y, Wu C, Zhou Y, Cheng Z, Li H, Wang R, Su W, Fang L. Tyrosine-Specific Modification via a Dearomatization-Rearomatization Strategy: Access to Azobenzene Functionalized Peptides. Org Lett 2021; 23:4137-4141. [PMID: 34010007 DOI: 10.1021/acs.orglett.1c01013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Azobenzene functionalized peptides are of great importance in photoresponsive biosystems and photopharmacology. Herein, we report an efficient approach to prepare azobenzene functionalized peptides through late-stage modification of tyrosine-containing peptides using a dearomatization-rearomatization strategy. This approach shows good chemoselectivity and site selectivity as well as sensitive group tolerance to various peptides. This method enriches the postsynthetic modification toolbox of peptides and has great potential to be applied in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Pengxin Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu, China.,Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yulian Cheng
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, Jiangsu, China
| | - Chunlei Wu
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yimin Zhou
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Zhehong Cheng
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Hongchang Li
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Drug Design & Synthesis, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Wu Su
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Lijing Fang
- Guangdong Key Laboratory of Nanomedicine, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| |
Collapse
|
14
|
Boisguérin P, Konate K, Josse E, Vivès E, Deshayes S. Peptide-Based Nanoparticles for Therapeutic Nucleic Acid Delivery. Biomedicines 2021; 9:583. [PMID: 34065544 PMCID: PMC8161338 DOI: 10.3390/biomedicines9050583] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
Gene therapy offers the possibility to skip, repair, or silence faulty genes or to stimulate the immune system to fight against disease by delivering therapeutic nucleic acids (NAs) to a patient. Compared to other drugs or protein treatments, NA-based therapies have the advantage of being a more universal approach to designing therapies because of the versatility of NA design. NAs (siRNA, pDNA, or mRNA) have great potential for therapeutic applications for an immense number of indications. However, the delivery of these exogenous NAs is still challenging and requires a specific delivery system. In this context, beside other non-viral vectors, cell-penetrating peptides (CPPs) gain more and more interest as delivery systems by forming a variety of nanocomplexes depending on the formulation conditions and the properties of the used CPPs/NAs. In this review, we attempt to cover the most important biophysical and biological aspects of non-viral peptide-based nanoparticles (PBNs) for therapeutic nucleic acid formulations as a delivery system. The most relevant peptides or peptide families forming PBNs in the presence of NAs described since 2015 will be presented. All these PBNs able to deliver NAs in vitro and in vivo have common features, which are characterized by defined formulation conditions in order to obtain PBNs from 60 nm to 150 nm with a homogeneous dispersity (PdI lower than 0.3) and a positive charge between +10 mV and +40 mV.
Collapse
Affiliation(s)
| | | | | | | | - Sébastien Deshayes
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34295 Montpellier, France; (P.B.); (K.K.); (E.J.); (E.V.)
| |
Collapse
|
15
|
Two Separate Tyrosine-Based YXXL/Φ Motifs within the Glycoprotein E Cytoplasmic Tail of Bovine Herpesvirus 1 Contribute in Virus Anterograde Neuronal Transport. Viruses 2020; 12:v12091025. [PMID: 32937797 PMCID: PMC7551581 DOI: 10.3390/v12091025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/31/2020] [Accepted: 09/12/2020] [Indexed: 12/30/2022] Open
Abstract
Bovine herpesvirus 1 (BHV-1) causes respiratory infection and abortion in cattle. Following a primary infection, BHV-1 establishes lifelong latency in the trigeminal ganglia (TG). Periodic reactivation of the latent virus in TG neurons results in anterograde virus transport to nerve endings in the nasal mucosa and nasal virus shedding. The BHV-1 glycoprotein E cytoplasmic tail (gE-CT) is necessary for virus cell-to-cell spread in epithelial cells and neuronal anterograde transport. Recently, we identified two tyrosine residues, Y467 and Y563, within the tyrosine-based motifs 467YTSL470 and 563YTVV566, which, together, account for the gE CT-mediated efficient cell-to-cell spread of BHV-1 in epithelial cells. Here, we determined that in primary neuron cultures in vitro, the individual alanine exchange Y467A or Y563A mutants had significantly diminished anterograde axonal spread. Remarkably, the double-alanine-exchanged Y467A/Y563A mutant virus was not transported anterogradely. Following intranasal infection of rabbits, both wild-type (wt) and the Y467A/Y563A mutant viruses established latency in the TG. Upon dexamethasone-induced reactivation, both wt and the mutant viruses reactivated and replicated equally efficiently in the TG. However, upon reactivation, only the wt, not the mutant, was isolated from nasal swabs. Therefore, the gE-CT tyrosine residues Y467 and Y563 together are required for gE CT-mediated anterograde neuronal transport.
Collapse
|
16
|
Liu T, Wang M, Cheng A, Jia R, Yang Q, Wu Y, Liu M, Zhao X, Chen S, Zhang S, Zhu D, Tian B, Rehman MU, Liu Y, Yu Y, Zhang L, Pan L, Chen X. Duck plague virus gE serves essential functions during the virion final envelopment through influence capsids budding into the cytoplasmic vesicles. Sci Rep 2020; 10:5658. [PMID: 32221415 PMCID: PMC7101321 DOI: 10.1038/s41598-020-62604-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/16/2020] [Indexed: 12/15/2022] Open
Abstract
Duck plague virus (DPV), a member of the alphaherpesviruses subfamily, causes massive ducks death and results in a devastating hit to duck industries in China. It is of great significance for us to analyze the functions of DPV genes for controlling the outbreak of duck plague. Thus, glycoproteins E (gE) of DPV, which requires viral cell-to-cell spreading and the final envelopment in herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV), was chosen herein. The gE mutant virus BAC-CHv-ΔgE was constructed by using a markerless two-step Red recombination system implemented on the DPV genome cloned into a bacterial artificial chromosome (BAC). Viral plaques on duck embryo fibroblast (DEF) cells of BAC-CHv-ΔgE were on average approximately 60% smaller than those produced by BAC-CHv virus. Viral replication kinetics showed that BAC-CHv-ΔgE grew to lower titers than BAC-CHv virus did in DEF cells. Electron microscopy confirmed that deleting of DPV gE resulted in a large number of capsids accumulating around vesicles and very few of them could bud into vesicles. The drastic inhibition of virion formation in the absence of the DPV gE indicated that it played an important role in virion morphogenesis before the final envelopment of intracytoplasmic nucleocapsids.
Collapse
Affiliation(s)
- Tian Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China. .,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Mujeeb Ur Rehman
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| | - Xiaoyue Chen
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, People's Republic of China
| |
Collapse
|
17
|
Lanno SM, Shimshak SJ, Peyser RD, Linde SC, Coolon JD. Investigating the role of Osiris genes in Drosophila sechellia larval resistance to a host plant toxin. Ecol Evol 2019; 9:1922-1933. [PMID: 30847082 PMCID: PMC6392368 DOI: 10.1002/ece3.4885] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/04/2018] [Accepted: 12/13/2018] [Indexed: 12/11/2022] Open
Abstract
The underlying genetic basis of adaptive phenotypic changes is generally poorly understood, yet a growing number of case studies are beginning to shed light on important questions about the molecular nature and pleiotropy of such changes. We use Drosophila sechellia, a dietary specialist fruit fly that evolved to specialize on a single toxic host plant, Morinda citrifolia, as a model for adaptive phenotypic change and seek to determine the genetic basis of traits associated with host specialization in this species. The fruit of M. citrifolia is toxic to other drosophilids, primarily due to high levels of the defense chemical octanoic acid (OA), yet D. sechellia has evolved resistance to OA. Our prior work identified three Osiris family genes that reside in a fine-mapped QTL for OA resistance: Osiris 6 (Osi6), Osi7, and Osi8, which can alter OA resistance in adult D. melanogaster when knocked down with RNA interference suggesting they may contribute to OA resistance in D. sechellia. Genetic mapping identified overlapping genomic regions involved in larval and adult OA resistance in D. sechellia, yet it remains unknown whether Osiris genes contribute to resistance in both life stages. Furthermore, because multiple genomic regions contribute to OA resistance, we aim to identify other gene(s) involved in this adaptation. Here, we identify candidate larval OA resistance genes using RNA sequencing to measure genome-wide differential gene expression in D. sechellia larvae after exposure to OA and functionally test identified genes for a role in OA resistance. We then test the Osiris genes previously shown to alter adult OA resistance for effects on OA resistance in larvae. We found that Osi8 knockdown decreased OA resistance in D. melanogaster larvae. These data suggest that evolved changes in Osi8 could impact OA resistance in multiple life stages while Osi6 and Osi7 may only impact adult resistance to OA.
Collapse
Affiliation(s)
| | | | - Rubye D. Peyser
- Department of BiologyWesleyan UniversityMiddletownConnecticut
| | - Samuel C. Linde
- Department of BiologyWesleyan UniversityMiddletownConnecticut
| | | |
Collapse
|
18
|
Zaręba-Kozioł M, Figiel I, Bartkowiak-Kaczmarek A, Włodarczyk J. Insights Into Protein S-Palmitoylation in Synaptic Plasticity and Neurological Disorders: Potential and Limitations of Methods for Detection and Analysis. Front Mol Neurosci 2018; 11:175. [PMID: 29910712 PMCID: PMC5992399 DOI: 10.3389/fnmol.2018.00175] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/09/2018] [Indexed: 12/20/2022] Open
Abstract
S-palmitoylation (S-PALM) is a lipid modification that involves the linkage of a fatty acid chain to cysteine residues of the substrate protein. This common posttranslational modification (PTM) is unique among other lipid modifications because of its reversibility. Hence, like phosphorylation or ubiquitination, it can act as a switch that modulates various important physiological pathways within the cell. Numerous studies revealed that S-PALM plays a crucial role in protein trafficking and function throughout the nervous system. Notably, the dynamic turnover of palmitate on proteins at the synapse may provide a key mechanism for rapidly changing synaptic strength. Indeed, palmitate cycling on postsynaptic density-95 (PSD-95), the major postsynaptic density protein at excitatory synapses, regulates the number of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) and thus affects synaptic transmission. Accumulating evidence suggests a relationship between impairments in S-PALM and severe neurological disorders. Therefore, determining the precise levels of S-PALM may be essential for understanding the ways in which this PTM is regulated in the brain and controls synaptic dynamics. Protein S-PALM can be characterized using metabolic labeling methods and biochemical tools. Both approaches are discussed herein in the context of specific methods and their advantages and disadvantages. This review clearly shows progress in the field, which has led to the development of new, more sensitive techniques that enable the detection of palmitoylated proteins and allow predictions of potential palmitate binding sites. Unfortunately, one significant limitation of these approaches continues to be the inability to use them in living cells.
Collapse
Affiliation(s)
- Monika Zaręba-Kozioł
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Izabela Figiel
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Bartkowiak-Kaczmarek
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Włodarczyk
- Laboratory of Cell Biophysics, Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
19
|
Schatz M, Tong PBV, Beaumelle B. Unconventional secretion of viral proteins. Semin Cell Dev Biol 2018; 83:8-11. [PMID: 29571970 DOI: 10.1016/j.semcdb.2018.03.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 12/25/2022]
Abstract
Although largely less numerous and characterized than bacterial secreted effectors, several viral virulence factors are secreted by virus infected cells. However, their mode of secretion only starts to be studied at the molecular level. Several of these viral effectors are secreted using an unconventional secretion pathway, i.e. despite the lack of signal sequence. We here review recent results illustrating the diversity of these pathways. In the case of HIV-1 proteins Tat and matrix (p17) proteins, secretion directly takes place at the plasma membrane level following binding to PI(4,5)P2. The secretion of HTLV-I Tax was found to partly rely on exocytic pathway intermediates. The secretion pathways of VP22 of Herpes simplex virus type I and VP40 of the Ebola virus are less well characterized but VP40 can be recruited to the plasma membrane by PI(4,5)P2 that thus appears as a key partner enabling the unconventional secretion of many viral proteins. Several studies indicated that circulating retroviral transactivating proteins Tat and Tax are involved in the development of AIDS and HTLV-I associated myelopathy/tropical spastic paraparesis, respectively.
Collapse
Affiliation(s)
- Malvina Schatz
- IRIM, UMR9004 University of Montpellier-CNRS, 1919 Route de Mende, 34293, MONTPELLIER Cedex 05, France
| | - Phuoc Bao Viet Tong
- IRIM, UMR9004 University of Montpellier-CNRS, 1919 Route de Mende, 34293, MONTPELLIER Cedex 05, France
| | - Bruno Beaumelle
- IRIM, UMR9004 University of Montpellier-CNRS, 1919 Route de Mende, 34293, MONTPELLIER Cedex 05, France.
| |
Collapse
|
20
|
Sakane H, Akasaki K. The Major Lysosomal Membrane Proteins LAMP-1 and LAMP-2 Participate in Differentiation of C2C12 Myoblasts. Biol Pharm Bull 2018; 41:1186-1193. [PMID: 30068868 DOI: 10.1248/bpb.b17-01030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lysosomes are organelles that play a crucial role in the degradation of endocytosed molecules, phagocytosed macromolecules and autophagic substrates. The membrane of lysosomes contains several highly glycosylated membrane proteins, and lysosome-associated membrane protein (LAMP)-1 and LAMP-2 account for a major portion of the lysosomal membrane glycoproteins. Although it is well known that LAMP-2 deficiency causes Danon disease, which is characterized by cardiomyopathy, myopathy and mental retardation, the roles of lysosomal membrane proteins including LAMP-1 and LAMP-2 in myogenesis are not fully understood. In this study, to understand the role of LAMP proteins in the course of differentiation of myoblasts into myotubes, we used C2C12 myoblasts and found that the protein and mRNA levels of LAMP-1 and LAMP-2 were increased in the course of differentiation of C2C12 myoblasts into myotubes. Then, we investigated the effects of LAMP-1 or LAMP-2 knockdown on C2C12 myotube formation, and found that LAMP-1 or LAMP-2 depletion impaired the differentiation of C2C12 myoblasts and reduced the diameter of C2C12 myotubes. LAMP-2 knockdown more severely impaired C2C12 myotube formation compared with LAMP-1 knockdown, and knockdown of LAMP-1 did not exacerbate the suppressive effects of LAMP-2 knockdown on C2C12 myotube formation. In addition, knockdown of LAMP-1 or LAMP-2 decreased the expression levels of myogenic regulatory factors, MyoD and myogenin. These results demonstrate that both LAMP-1 and LAMP-2 are involved in C2C12 myotube formation and LAMP-2 may contribute dominantly to it.
Collapse
Affiliation(s)
- Hiroshi Sakane
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University
| | - Kenji Akasaki
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University
| |
Collapse
|
21
|
Gururaj S, Evely KM, Pryce KD, Li J, Qu J, Bhattacharjee A. Protein kinase A-induced internalization of Slack channels from the neuronal membrane occurs by adaptor protein-2/clathrin-mediated endocytosis. J Biol Chem 2017; 292:19304-19314. [PMID: 28982974 DOI: 10.1074/jbc.m117.804716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/13/2017] [Indexed: 02/01/2023] Open
Abstract
The sodium-activated potassium (KNa) channel Kcnt1 (Slack) is abundantly expressed in nociceptor (pain-sensing) neurons of the dorsal root ganglion (DRG), where they transmit the large outward conductance IKNa and arbitrate membrane excitability. Slack channel expression at the DRG membrane is necessary for their characteristic firing accommodation during maintained stimulation, and reduced membrane channel density causes hyperexcitability. We have previously shown that in a pro-inflammatory state, a decrease in membrane channel expression leading to reduced Slack-mediated IKNa expression underlies DRG neuronal sensitization. An important component of the inflammatory milieu, PKA internalizes Slack channels from the DRG membrane, reduces IKNa, and produces DRG neuronal hyperexcitability when activated in cultured primary DRG neurons. Here, we show that this PKA-induced retrograde trafficking of Slack channels also occurs in intact spinal cord slices and that it is carried out by adaptor protein-2 (AP-2) via clathrin-mediated endocytosis. We provide mass spectrometric and biochemical evidence of an association of native neuronal AP-2 adaptor proteins with Slack channels, facilitated by a dileucine motif housed in the cytoplasmic Slack C terminus that binds AP-2. By creating a competitive peptide blocker of AP-2-Slack binding, we demonstrated that this interaction is essential for clathrin recruitment to the DRG membrane, Slack channel endocytosis, and DRG neuronal hyperexcitability after PKA activation. Together, these findings uncover AP-2 and clathrin as players in Slack channel regulation. Given the significant role of Slack in nociceptive neuronal excitability, the AP-2 clathrin-mediated endocytosis trafficking mechanism may enable targeting of peripheral and possibly, central neuronal sensitization.
Collapse
Affiliation(s)
| | - Katherine M Evely
- the Program for Neuroscience, University at Buffalo, State University of New York, Buffalo, New York 14214 and
| | - Kerri D Pryce
- From the Department of Pharmacology and Toxicology and
| | - Jun Li
- the New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York 14203
| | - Jun Qu
- the New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York 14203
| | - Arin Bhattacharjee
- From the Department of Pharmacology and Toxicology and .,the Program for Neuroscience, University at Buffalo, State University of New York, Buffalo, New York 14214 and
| |
Collapse
|
22
|
Garcia MD, Formoso K, Aparicio GI, Frasch ACC, Scorticati C. The Membrane Glycoprotein M6a Endocytic/Recycling Pathway Involves Clathrin-Mediated Endocytosis and Affects Neuronal Synapses. Front Mol Neurosci 2017; 10:296. [PMID: 28979185 PMCID: PMC5611492 DOI: 10.3389/fnmol.2017.00296] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/04/2017] [Indexed: 12/24/2022] Open
Abstract
Single point mutations or variations in the expression of the gene encoding the neuronal glycoprotein M6a have been associated with psychiatric disorders such as Alzheimer’s disease, depression and schizophrenia. In cultured neurons, M6a positively contributes to neurite extension, axon guidance, filopodia/spine outgrowth, and synapse formation. The endocytic processes of neuronal membrane proteins are linked to the differentiation, growth, signaling and plasticity of neurons. However, the roles of M6a and the precise mechanisms through which M6a internalizes and recycles back to the neuronal membrane are unknown. Here, by using a controlled in vitro assay, we showed that if 30–40% of M6a is endocytosed, the number of synapses in hippocampal neurons decreases. When re-establishing the levels of M6a at the cell surface, the number of synapses returned to normal values. M6a internalization involves clathrin-coated pits, probably by association between the adaptor protein 2 and the 251YEDI254 “tyrosine-based” motif located within the C-tail of M6a. Upon endocytosis, M6a is sorted to early endosome antigen 1- and Rab5-positive endosomes and then sorted back to the cell surface via Rab11-positive endosomes or to degradation via Rab7 and, finally LAMP-1-positive endosomes. Our results demonstrated that the levels of M6a at the cell surface modified the formation/maintenance of synapses, without altering the protein levels of synaptophysin or N-methyl-D-aspartate receptor type-1. This novel mechanism might be relevant during neuronal development, pruning and/or many of the neurological disorders in which the number of synapses is affected.
Collapse
Affiliation(s)
- Micaela D Garcia
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Karina Formoso
- Instituto de Investigaciones Biomédicas, Universidad Católica ArgentinaBuenos Aires, Argentina
| | - Gabriela I Aparicio
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Alberto C C Frasch
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Camila Scorticati
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| |
Collapse
|
23
|
Perturbing NR2B–PSD-95 interaction relieves neuropathic pain by inactivating CaMKII-CREB signaling. Neuroreport 2017; 28:856-863. [DOI: 10.1097/wnr.0000000000000849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Starodubova ES, Kuzmenko YV, Latanova AA, Preobrazhenskaya OV, Karpov VL. C-terminal lysosome targeting domain of CD63 modifies cellular localization of rabies virus glycoprotein. Mol Biol 2017. [DOI: 10.1134/s0026893317020200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Saimani U, Kim K. Traffic from the endosome towards trans-Golgi network. Eur J Cell Biol 2017; 96:198-205. [PMID: 28256269 DOI: 10.1016/j.ejcb.2017.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/24/2017] [Accepted: 02/16/2017] [Indexed: 11/16/2022] Open
Abstract
Retrograde passage of a transport carrier entails cargo sorting at the endosome, generation of a cargo-laden carrier and its movement along cytoskeletal tracks towards trans-Golgi network (TGN), tethering at the TGN, and fusion with the Golgi membrane. Significant advances have been made in understanding this traffic system, revealing molecular requirements in each step and the functional connection between them as well as biomedical implication of the dysregulation of those important traffic factors. This review focuses on describing up-to-date action mechanisms for retrograde transport from the endosomal system to the TGN.
Collapse
Affiliation(s)
- Uma Saimani
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65807, United States
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65807, United States.
| |
Collapse
|
26
|
Cerrato CP, Künnapuu K, Langel Ü. Cell-penetrating peptides with intracellular organelle targeting. Expert Opin Drug Deliv 2016; 14:245-255. [PMID: 27426871 DOI: 10.1080/17425247.2016.1213237] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION One of the major limiting steps in order to have an effective drug is the passage through one or more cell membranes to reach its site of action. To reach the action-site, the specific macromolecules are required to be delivered specifically to the cell compartment/organelle in their (pre)active form. Areas covered: In this review, we will discuss cell-penetrating peptides (CPPs) developed in the last decade to transport small RNA/DNA, plasmids, antibodies, and nanoparticles into specific sites of the cell. The article describes CPPs in complex with cargo molecules that target specific intracellular organelles and their potential for pharmacological or clinical use. Expert opinion: Organelle targeting is the ultimate goal to ensure selective delivery to the site of action in the cells. CPP technologies represent an important strategy to address drug delivery to specific intracellular compartments by covalent conjugation to targeting sequences, potentially enabling strategies to combat genomic diseases as well as infections, cancer, neurodegenerative and hereditary diseases. They have proven to be successful in delivering various therapeutic agents into cells however, further in vivo experiments and clinical trials are required to demonstrate the efficacy of this technology.
Collapse
Affiliation(s)
| | - Kadri Künnapuu
- b Laboratory of Molecular Biotechnology, Institute of Technology , University of Tartu , Tartu , Estonia
| | - Ülo Langel
- a Department of Neurochemistry , Stockholm University , Stockholm , Sweden.,b Laboratory of Molecular Biotechnology, Institute of Technology , University of Tartu , Tartu , Estonia
| |
Collapse
|
27
|
de Marcos Lousa C, Soubeyrand E, Bolognese P, Wattelet-Boyer V, Bouyssou G, Marais C, Boutté Y, Filippini F, Moreau P. Subcellular localization and trafficking of phytolongins (non-SNARE longins) in the plant secretory pathway. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2627-2639. [PMID: 26962210 PMCID: PMC4861013 DOI: 10.1093/jxb/erw094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
SNARE proteins are central elements of the machinery involved in membrane fusion of eukaryotic cells. In animals and plants, SNAREs have diversified to sustain a variety of specific functions. In animals, R-SNARE proteins called brevins have diversified; in contrast, in plants, the R-SNARE proteins named longins have diversified. Recently, a new subfamily of four longins named 'phytolongins' (Phyl) was discovered. One intriguing aspect of Phyl proteins is the lack of the typical SNARE motif, which is replaced by another domain termed the 'Phyl domain'. Phytolongins have a rather ubiquitous tissue expression in Arabidopsis but still await intracellular characterization. In this study, we found that the four phytolongins are distributed along the secretory pathway. While Phyl2.1 and Phyl2.2 are strictly located at the endoplasmic reticulum network, Phyl1.2 associates with the Golgi bodies, and Phyl1.1 locates mainly at the plasma membrane and partially in the Golgi bodies and post-Golgi compartments. Our results show that export of Phyl1.1 from the endoplasmic reticulum depends on the GTPase Sar1, the Sar1 guanine nucleotide exchange factor Sec12, and the SNAREs Sec22 and Memb11. In addition, we have identified the Y48F49 motif as being critical for the exit of Phyl1.1 from the endoplasmic reticulum. Our results provide the first characterization of the subcellular localization of the phytolongins, and we discuss their potential role in regulating the secretory pathway.
Collapse
Affiliation(s)
- Carine de Marcos Lousa
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK Faculty of Clinical and Applied Sciences, School of Biomedical Sciences, Leeds Beckett University, Portland Building 611, Leeds Beckett University City Campus, LS1 3HE, Leeds, UK
| | - Eric Soubeyrand
- CNRS-University of Bordeaux, UMR 5200 Membrane Biogenesis Laboratory, INRA Bordeaux Aquitaine, 71 Avenue Edouard Bourlaux, CS 20032, 33140 Villenave d'Ornon, France
| | - Paolo Bolognese
- Molecular Biology and Bioinformatics Unit, Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Valerie Wattelet-Boyer
- CNRS-University of Bordeaux, UMR 5200 Membrane Biogenesis Laboratory, INRA Bordeaux Aquitaine, 71 Avenue Edouard Bourlaux, CS 20032, 33140 Villenave d'Ornon, France
| | - Guillaume Bouyssou
- CNRS-University of Bordeaux, UMR 5200 Membrane Biogenesis Laboratory, INRA Bordeaux Aquitaine, 71 Avenue Edouard Bourlaux, CS 20032, 33140 Villenave d'Ornon, France
| | - Claireline Marais
- CNRS-University of Bordeaux, UMR 5200 Membrane Biogenesis Laboratory, INRA Bordeaux Aquitaine, 71 Avenue Edouard Bourlaux, CS 20032, 33140 Villenave d'Ornon, France
| | - Yohann Boutté
- CNRS-University of Bordeaux, UMR 5200 Membrane Biogenesis Laboratory, INRA Bordeaux Aquitaine, 71 Avenue Edouard Bourlaux, CS 20032, 33140 Villenave d'Ornon, France
| | - Francesco Filippini
- Molecular Biology and Bioinformatics Unit, Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Patrick Moreau
- CNRS-University of Bordeaux, UMR 5200 Membrane Biogenesis Laboratory, INRA Bordeaux Aquitaine, 71 Avenue Edouard Bourlaux, CS 20032, 33140 Villenave d'Ornon, France Bordeaux Imaging Center, UMS 3420 CNRS, US004 INSERM, University of Bordeaux, 33000 Bordeaux, France
| |
Collapse
|
28
|
Chakrabandhu K, Huault S, Durivault J, Lang K, Ta Ngoc L, Bole A, Doma E, Dérijard B, Gérard JP, Pierres M, Hueber AO. An Evolution-Guided Analysis Reveals a Multi-Signaling Regulation of Fas by Tyrosine Phosphorylation and its Implication in Human Cancers. PLoS Biol 2016; 14:e1002401. [PMID: 26942442 PMCID: PMC4778973 DOI: 10.1371/journal.pbio.1002401] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/09/2016] [Indexed: 12/14/2022] Open
Abstract
Demonstrations of both pro-apoptotic and pro-survival abilities of Fas (TNFRSF6/CD95/APO-1) have led to a shift from the exclusive “Fas apoptosis” to “Fas multisignals” paradigm and the acceptance that Fas-related therapies face a major challenge, as it remains unclear what determines the mode of Fas signaling. Through protein evolution analysis, which reveals unconventional substitutions of Fas tyrosine during divergent evolution, evolution-guided tyrosine-phosphorylated Fas proxy, and site-specific phosphorylation detection, we show that the Fas signaling outcome is determined by the tyrosine phosphorylation status of its death domain. The phosphorylation dominantly turns off the Fas-mediated apoptotic signal, while turning on the pro-survival signal. We show that while phosphorylations at Y232 and Y291 share some common functions, their contributions to Fas signaling differ at several levels. The findings that Fas tyrosine phosphorylation is regulated by Src family kinases (SFKs) and the phosphatase SHP-1 and that Y291 phosphorylation primes clathrin-dependent Fas endocytosis, which contributes to Fas pro-survival signaling, reveals for the first time the mechanistic link between SFK/SHP-1-dependent Fas tyrosine phosphorylation, internalization route, and signaling choice. We also demonstrate that levels of phosphorylated Y232 and Y291 differ among human cancer types and differentially respond to anticancer therapy, suggesting context-dependent involvement of Fas phosphorylation in cancer. This report provides a new insight into the control of TNF receptor multisignaling by receptor phosphorylation and its implication in cancer biology, which brings us a step closer to overcoming the challenge in handling Fas signaling in treatments of cancer as well as other pathologies such as autoimmune and degenerative diseases. Signalling by the tumor necrosis factor receptor (TNFR) superfamily member Fas can promote either survival or death of a cell, but the mechanism underlying this choice is unclear. This study reveals that the outcome of Fas signalling (death versus survival) is determined by the tyrosine phosphorylation status of its death domain. The versatility of the tumor necrosis factor receptor superfamily members in cell fate regulation is well illustrated by the dual signaling generated by one of the most extensively studied members of the family, Fas (CD95/TNFSFR6). Upon binding its ligand, Fas is able to elicit both pro-death and pro-survival signals. Until now, we have lacked mechanistic knowledge about when and how one signaling output of Fas is favored over the other. We demonstrate here that the outcome of Fas signaling is determined by the phosphorylation status of two tyrosine residues (Y232 and Y291) within the death domain. Dephosphorylation of Fas tyrosines by SHP-1 tyrosine phosphatase turns on the pro-apoptotic signal whereas the tyrosine phosphorylation by Src family kinases (SFKs) turns off the pro-apoptotic signal and turns on the pro-survival signal. Furthermore, we provide evidence that Fas tyrosine phosphorylation status may vary among different cancer types and influence the response to anti-cancer treatments. This information reveals an opportunity to use the screening of Fas tyrosine phosphorylation, a newly discovered direct molecular indicator of Fas functional output, to aid the design of Fas-related cancer therapies.
Collapse
Affiliation(s)
| | - Sébastien Huault
- Univ. Nice Sophia Antipolis, CNRS, Inserm, iBV, 06100 Nice, France
| | - Jérôme Durivault
- Univ. Nice Sophia Antipolis, CNRS, Inserm, iBV, 06100 Nice, France
| | - Kévin Lang
- Univ. Nice Sophia Antipolis, CNRS, Inserm, iBV, 06100 Nice, France
| | - Ly Ta Ngoc
- Univ. Nice Sophia Antipolis, CNRS, Inserm, iBV, 06100 Nice, France
| | - Angelique Bole
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, UM2, Marseille, France, INSERM, U1104, Marseille, France, and CNRS, UMR 7280, Marseille, France
| | - Eszter Doma
- Univ. Nice Sophia Antipolis, CNRS, Inserm, iBV, 06100 Nice, France
| | - Benoit Dérijard
- Univ. Nice Sophia Antipolis, CNRS, Inserm, iBV, 06100 Nice, France
| | | | - Michel Pierres
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, UM2, Marseille, France, INSERM, U1104, Marseille, France, and CNRS, UMR 7280, Marseille, France
| | - Anne-Odile Hueber
- Univ. Nice Sophia Antipolis, CNRS, Inserm, iBV, 06100 Nice, France
- * E-mail: (AOH); (KC)
| |
Collapse
|
29
|
Bak A, Folimonova SY. The conundrum of a unique protein encoded by citrus tristeza virus that is dispensable for infection of most hosts yet shows characteristics of a viral movement protein. Virology 2015; 485:86-95. [PMID: 26210077 DOI: 10.1016/j.virol.2015.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/03/2015] [Accepted: 07/04/2015] [Indexed: 11/22/2022]
Abstract
Citrus tristeza virus (CTV), one of the most economically important viruses, produces a unique protein, p33, which is encoded only in the genomes of isolates of CTV. Recently, we demonstrated that membrane association of the p33 protein confers virus ability to extend its host range. In this work we show that p33 shares characteristics of viral movement proteins. Upon expression in a host cell, the protein localizes to plasmodesmata and displays the ability to form extracellular tubules. Furthermore, p33 appears to traffic via the cellular secretory pathway and the actin network to plasmodesmata locations and is likely being recycled through the endocytic pathway. Finally, our study reveals that p33 colocalizes with a putative movement protein of CTV, the p6 protein. These results suggest a potential role of p33 as a noncanonical viral movement protein, which mediates virus translocation in the specific hosts.
Collapse
Affiliation(s)
- Aurélie Bak
- University of Florida, Plant Pathology Department, Gainesville, FL 32611, USA
| | | |
Collapse
|
30
|
Xu Y, Streets AJ, Hounslow AM, Tran U, Jean-Alphonse F, Needham AJ, Vilardaga JP, Wessely O, Williamson MP, Ong ACM. The Polycystin-1, Lipoxygenase, and α-Toxin Domain Regulates Polycystin-1 Trafficking. J Am Soc Nephrol 2015; 27:1159-73. [PMID: 26311459 DOI: 10.1681/asn.2014111074] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 07/21/2015] [Indexed: 12/24/2022] Open
Abstract
Mutations in polycystin-1 (PC1) give rise to autosomal dominant polycystic kidney disease, an important and common cause of kidney failure. Despite its medical importance, the function of PC1 remains poorly understood. Here, we investigated the role of the intracellular polycystin-1, lipoxygenase, and α-toxin (PLAT) signature domain of PC1 using nuclear magnetic resonance, biochemical, cellular, and in vivo functional approaches. We found that the PLAT domain targets PC1 to the plasma membrane in polarized epithelial cells by a mechanism involving the selective binding of the PLAT domain to phosphatidylserine and L-α-phosphatidylinositol-4-phosphate (PI4P) enriched in the plasma membrane. This process is regulated by protein kinase A phosphorylation of the PLAT domain, which reduces PI4P binding and recruits β-arrestins and the clathrin adaptor AP2 to trigger PC1 internalization. Our results reveal a physiological role for the PC1-PLAT domain in renal epithelial cells and suggest that phosphorylation-dependent internalization of PC1 is closely linked to its function in renal development and homeostasis.
Collapse
Affiliation(s)
- Yaoxian Xu
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, United Kingdom; Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Andrew J Streets
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Andrea M Hounslow
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Uyen Tran
- Department of Cellular and Molecular Medicine, Cleveland Clinic Foundation, Cleveland, Ohio; and
| | - Frederic Jean-Alphonse
- Laboratory of GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Andrew J Needham
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Jean-Pierre Vilardaga
- Laboratory of GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Oliver Wessely
- Department of Cellular and Molecular Medicine, Cleveland Clinic Foundation, Cleveland, Ohio; and
| | - Michael P Williamson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Albert C M Ong
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, United Kingdom;
| |
Collapse
|
31
|
ZOU JUNRONG, GUO PEI, LV NONGHUA, HUANG DEQIANG. Lipopolysaccharide-induced tumor necrosis factor-α factor enhances inflammation and is associated with cancer (Review). Mol Med Rep 2015; 12:6399-404. [DOI: 10.3892/mmr.2015.4243] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 06/03/2015] [Indexed: 11/06/2022] Open
|
32
|
Ujike M, Taguchi F. Incorporation of spike and membrane glycoproteins into coronavirus virions. Viruses 2015; 7:1700-25. [PMID: 25855243 PMCID: PMC4411675 DOI: 10.3390/v7041700] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 12/15/2022] Open
Abstract
The envelopes of coronaviruses (CoVs) contain primarily three proteins; the two major glycoproteins spike (S) and membrane (M), and envelope (E), a non-glycosylated protein. Unlike other enveloped viruses, CoVs bud and assemble at the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC). For efficient virion assembly, these proteins must be targeted to the budding site and to interact with each other or the ribonucleoprotein. Thus, the efficient incorporation of viral envelope proteins into CoV virions depends on protein trafficking and protein–protein interactions near the ERGIC. The goal of this review is to summarize recent findings on the mechanism of incorporation of the M and S glycoproteins into the CoV virion, focusing on protein trafficking and protein–protein interactions.
Collapse
Affiliation(s)
- Makoto Ujike
- Laboratory of Virology and Viral Infections, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan.
| | - Fumihiro Taguchi
- Laboratory of Virology and Viral Infections, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-8602, Japan.
| |
Collapse
|
33
|
Andrzejewska Z, Névo N, Thomas L, Bailleux A, Chauvet V, Benmerah A, Antignac C. Lysosomal Targeting of Cystinosin Requires AP-3. Traffic 2015; 16:712-26. [PMID: 25753619 DOI: 10.1111/tra.12277] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 01/28/2023]
Abstract
Cystinosin is a lysosomal cystine transporter defective in cystinosis, an autosomal recessive lysosomal storage disorder. It is composed of seven transmembrane (TM) domains and contains two lysosomal targeting motifs: a tyrosine-based signal (GYDQL) in its C-terminal tail and a non-classical motif in its fifth inter-TM loop. Using the yeast two-hybrid system, we showed that the GYDQL motif specifically interacted with the μ subunit of the adaptor protein complex 3 (AP-3). Moreover, cell surface biotinylation and total internal reflection fluorescence microscopy revealed that cystinosin was partially mislocalized to the plasma membrane (PM) in AP-3-depleted cells. We generated a chimeric CD63 protein to specifically analyze the function of the GYDQL motif. This chimeric protein was targeted to lysosomes in a manner similar to cystinosin and was partially mislocalized to the PM in AP-3 knockdown cells where it also accumulated in the trans-Golgi network and early endosomes. Together with the fact that the surface levels of cystinosin and of the CD63-GYDQL chimeric protein were not increased when clathrin-mediated endocytosis was impaired, our data show that the tyrosine-based motif of cystinosin is a 'strong' AP-3 interacting motif responsible for lysosomal targeting of cystinosin by a direct intracellular pathway.
Collapse
Affiliation(s)
- Zuzanna Andrzejewska
- Inserm U1163, Laboratory of Hereditary Kidney Diseases, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Nathalie Névo
- Inserm U1163, Laboratory of Hereditary Kidney Diseases, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Lucie Thomas
- Inserm U1163, Laboratory of Hereditary Kidney Diseases, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Anne Bailleux
- Inserm U1163, Laboratory of Hereditary Kidney Diseases, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Véronique Chauvet
- Inserm U1163, Laboratory of Hereditary Kidney Diseases, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Alexandre Benmerah
- Inserm U1163, Laboratory of Hereditary Kidney Diseases, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Corinne Antignac
- Inserm U1163, Laboratory of Hereditary Kidney Diseases, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Genetics, Necker Hospital, Paris,, France
| |
Collapse
|
34
|
Coceres VM, Alonso AM, Nievas YR, Midlej V, Frontera L, Benchimol M, Johnson PJ, de Miguel N. The C-terminal tail of tetraspanin proteins regulates their intracellular distribution in the parasite Trichomonas vaginalis. Cell Microbiol 2015; 17:1217-29. [PMID: 25703821 DOI: 10.1111/cmi.12431] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 01/05/2023]
Abstract
The parasite Trichomonas vaginalis is the causative agent of trichomoniasis, a prevalent sexually transmitted infection. Here, we report the cellular analysis of T.vaginalis tetraspanin family (TvTSPs). This family of membrane proteins has been implicated in cell adhesion, migration and proliferation in vertebrates. We found that the expression of several members of the family is up-regulated upon contact with vaginal ectocervical cells. We demonstrate that most TvTSPs are localized on the surface and intracellular vesicles and that the C-terminal intracellular tails of surface TvTSPs are necessary for proper localization. Analyses of full-length TvTSP8 and a mutant that lacks the C-terminal tail indicates that surface-localized TvTSP8 is involved in parasite aggregation, suggesting a role for this protein in parasite : parasite interaction.
Collapse
Affiliation(s)
- V M Coceres
- Laboratorio de Parásitos Anaerobios, Instituto de Investigaciones Biotecnológicas-Instituto Tecnologico Chascomús (IIB-INTECH), CONICET-UNSAM, Chascomus, B7130IWA, Argentina
| | - A M Alonso
- Laboratorio de Parásitos Anaerobios, Instituto de Investigaciones Biotecnológicas-Instituto Tecnologico Chascomús (IIB-INTECH), CONICET-UNSAM, Chascomus, B7130IWA, Argentina
| | - Y R Nievas
- Laboratorio de Parásitos Anaerobios, Instituto de Investigaciones Biotecnológicas-Instituto Tecnologico Chascomús (IIB-INTECH), CONICET-UNSAM, Chascomus, B7130IWA, Argentina
| | - V Midlej
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - L Frontera
- Laboratorio de Parásitos Anaerobios, Instituto de Investigaciones Biotecnológicas-Instituto Tecnologico Chascomús (IIB-INTECH), CONICET-UNSAM, Chascomus, B7130IWA, Argentina
| | - M Benchimol
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil.,Unigranrio, Universidade do Grande Rio, Rio de Janeiro, Brazil
| | - P J Johnson
- Department of Microbiology, Immunology, Molecular Genetics, University of California, Los Angeles, CA, 90095-1489, USA
| | - N de Miguel
- Laboratorio de Parásitos Anaerobios, Instituto de Investigaciones Biotecnológicas-Instituto Tecnologico Chascomús (IIB-INTECH), CONICET-UNSAM, Chascomus, B7130IWA, Argentina
| |
Collapse
|
35
|
Zhang Y, Moeini-Naghani I, Bai J, Santos-Sacchi J, Navaratnam DS. Tyrosine motifs are required for prestin basolateral membrane targeting. Biol Open 2015; 4:197-205. [PMID: 25596279 PMCID: PMC4365488 DOI: 10.1242/bio.201410629] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Prestin is targeted to the lateral wall of outer hair cells (OHCs) where its electromotility is critical for cochlear amplification. Using MDCK cells as a model system for polarized epithelial sorting, we demonstrate that prestin uses tyrosine residues, in a YXXΦ motif, to target the basolateral surface. Both Y520 and Y667 are important for basolateral targeting of prestin. Mutation of these residues to glutamine or alanine resulted in retention within the Golgi and delayed egress from the Golgi in Y667Q. Basolateral targeting is restored upon mutation to phenylalanine suggesting the importance of a phenol ring in the tyrosine side chain. We also demonstrate that prestin targeting to the basolateral surface is dependent on AP1B (μ1B), and that prestin uses transferrin containing early endosomes in its passage from the Golgi to the basolateral plasma membrane. The presence of AP1B (μ1B) in OHCs, and parallels between prestin targeting to the basolateral surface of OHCs and polarized epithelial cells suggest that outer hair cells resemble polarized epithelia rather than neurons in this important phenotypic measure.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - JunPing Bai
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Joseph Santos-Sacchi
- Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Dhasakumar S Navaratnam
- Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA Department of Neurobiology, Yale School of Medicine, New Haven, CT 06510, USA Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
36
|
O'Kelly I. Endocytosis as a mode to regulate functional expression of two-pore domain potassium (K₂p) channels. Pflugers Arch 2014; 467:1133-42. [PMID: 25413469 PMCID: PMC4428836 DOI: 10.1007/s00424-014-1641-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 11/06/2022]
Abstract
Two-pore domain potassium (K2P) channels are implicated in an array of physiological and pathophysiological roles. As a result of their biophysical properties, these channels produce a background leak K+ current which has a direct effect on cellular membrane potential and activity. The regulation of potassium leak from cells through K2P channels is of critical importance to cell function, development and survival. Controlling the cell surface expression of these channels is one mode to regulate their function and is achieved through a balance between regulated channel delivery to and retrieval from the cell surface. Here, we explore the modes of retrieval of K2P channels from the plasma membrane and observe that K2P channels are endocytosed in both a clathrin-mediated and clathrin-independent manner. K2P channels use a variety of pathways and show altered internalisation and sorting in response to external cues. These pathways working in concert, equip the cell with a range of approaches to maintain steady state levels of channels and to respond rapidly should changes in channel density be required.
Collapse
Affiliation(s)
- Ita O'Kelly
- Human Development and Health, Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK, I.M.O'
| |
Collapse
|
37
|
Nakatsu F, Hase K, Ohno H. The Role of the Clathrin Adaptor AP-1: Polarized Sorting and Beyond. MEMBRANES 2014; 4:747-63. [PMID: 25387275 PMCID: PMC4289864 DOI: 10.3390/membranes4040747] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/27/2014] [Accepted: 10/29/2014] [Indexed: 11/16/2022]
Abstract
The selective transport of proteins or lipids by vesicular transport is a fundamental process supporting cellular physiology. The budding process involves cargo sorting and vesicle formation at the donor membrane and constitutes an important process in vesicular transport. This process is particularly important for the polarized sorting in epithelial cells, in which the cargo molecules need to be selectively sorted and transported to two distinct destinations, the apical or basolateral plasma membrane. Adaptor protein (AP)-1, a member of the AP complex family, which includes the ubiquitously expressed AP-1A and the epithelium-specific AP-1B, regulates polarized sorting at the trans-Golgi network and/or at the recycling endosomes. A growing body of evidence, especially from studies using model organisms and animals, demonstrates that the AP-1-mediated polarized sorting supports the development and physiology of multi-cellular units as functional organs and tissues (e.g., cell fate determination, inflammation and gut immune homeostasis). Furthermore, a possible involvement of AP-1B in the pathogenesis of human diseases, such as Crohn's disease and cancer, is now becoming evident. These data highlight the significant contribution of AP-1 complexes to the physiology of multicellular organisms, as master regulators of polarized sorting in epithelial cells.
Collapse
Affiliation(s)
- Fubito Nakatsu
- Department of Cell Biology, Yale University School of Medicine, 295 Congress Avenue, BCMM237, New Haven, CT 06510, USA.
| | - Koji Hase
- Department of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan.
| | - Hiroshi Ohno
- RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa 230-0045, Japan.
| |
Collapse
|
38
|
Wang X, Cai Y, Wang H, Zeng Y, Zhuang X, Li B, Jiang L. Trans-Golgi network-located AP1 gamma adaptins mediate dileucine motif-directed vacuolar targeting in Arabidopsis. THE PLANT CELL 2014; 26:4102-18. [PMID: 25351491 PMCID: PMC4247576 DOI: 10.1105/tpc.114.129759] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/17/2014] [Accepted: 09/29/2014] [Indexed: 05/18/2023]
Abstract
Membrane proteins on the tonoplast are indispensible for vacuolar functions in plants. However, how these proteins are transported to the vacuole and how they become separated from plasma membrane proteins remain largely unknown. In this study, we used Arabidopsis thaliana vacuolar ion transporter1 (VIT1) as a reporter to study the mechanisms of tonoplast targeting. We showed that VIT1 reached the tonoplast through a pathway involving the endoplasmic reticulum (ER), Golgi, trans-Golgi network (TGN), prevacuolar compartment, and tonoplast. VIT1 contains a putative N-terminal dihydrophobic type ER export signal, and its N terminus has a conserved dileucine motif (EKQTLL), which is responsible for tonoplast targeting. In vitro peptide binding assays with synthetic VIT1 N terminus identified adaptor protein complex-1 (AP1) subunits that interacted with the dileucine motif. A deficiency of AP1 gamma adaptins in Arabidopsis cells caused relocation of tonoplast proteins containing the dileucine motif, such as VIT1 and inositol transporter1, to the plasma membrane. The dileucine motif also effectively rerouted the plasma membrane protein SCAMP1 to the tonoplast. Together with subcellular localization studies showing that AP1 gamma adaptins localize to the TGN, we propose that the AP1 complex on the TGN mediates tonoplast targeting of membrane proteins with the dileucine motif.
Collapse
Affiliation(s)
- Xiangfeng Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Hao Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Baiying Li
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
39
|
Paramyxovirus glycoprotein incorporation, assembly and budding: a three way dance for infectious particle production. Viruses 2014; 6:3019-54. [PMID: 25105277 PMCID: PMC4147685 DOI: 10.3390/v6083019] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 12/21/2022] Open
Abstract
Paramyxoviruses are a family of negative sense RNA viruses whose members cause serious diseases in humans, such as measles virus, mumps virus and respiratory syncytial virus; and in animals, such as Newcastle disease virus and rinderpest virus. Paramyxovirus particles form by assembly of the viral matrix protein, the ribonucleoprotein complex and the surface glycoproteins at the plasma membrane of infected cells and subsequent viral budding. Two major glycoproteins expressed on the viral envelope, the attachment protein and the fusion protein, promote attachment of the virus to host cells and subsequent virus-cell membrane fusion. Incorporation of the surface glycoproteins into infectious progeny particles requires coordinated interplay between the three viral structural components, driven primarily by the matrix protein. In this review, we discuss recent progress in understanding the contributions of the matrix protein and glycoproteins in driving paramyxovirus assembly and budding while focusing on the viral protein interactions underlying this process and the intracellular trafficking pathways for targeting viral components to assembly sites. Differences in the mechanisms of particle production among the different family members will be highlighted throughout.
Collapse
|
40
|
Liu Y, Cui X, Sun YE, Yang X, Ni K, Zhou Y, Ma Z, Gu X. Intrathecal injection of the peptide myr-NR2B9c attenuates bone cancer pain via perturbing N-methyl-D-aspartate receptor-PSD-95 protein interactions in mice. Anesth Analg 2014; 118:1345-54. [PMID: 24842180 DOI: 10.1213/ane.0000000000000202] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND N-methyl-D-aspartate receptor (NMDARs)-dependent central sensitization plays an important role in cancer pain. Binding of NMDAR subunit 2B (NR2B) by postsynaptic density protein-95 (PSD-95) can couple NMDAR activity to intracellular enzymes, such as neuronal nitric oxide synthase (nNOS), facilitate downstream signaling pathways, and modulate NMDAR stability, contributing to synaptic plasticity. In this study, we investigated whether perturbing the specific interaction between spinal NR2B-containing NMDAR and PSD-95, using a peptide-mimetic strategy, could attenuate bone cancer-related pain behaviors. METHODS Osteosarcoma cells were implanted into the intramedullary space of the right femurs of C3H/HeJ mice to induce progressive bone cancer-related pain behaviors. Western blotting was applied to examine the expression of spinal phospho-Tyr1472 NR2B, nNOS, and PSD-95. We further investigated the effects of intrathecal injection of the mimetic peptide Myr-NR2B9c, which competitively disrupts the interaction between PSD-95 and NR2B, on nociceptive behaviors and on the upregulation of phospho-Tyr1472 NR2B, nNOS, and PSD-95 associated with bone cancer pain in the spinal cord. RESULTS Inoculation of osteosarcoma cells induced progressive bone cancer pain and resulted in a significant upregulation of phospho-Tyr1472 NR2B, nNOS, and PSD-95. Intrathecal administration of Myr-NR2B9c attenuated bone cancer-evoked mechanical allodynia, thermal hyperalgesia, and reduced spinal phospho-Tyr1472 NR2B, nNOS, and PSD-95 expression. CONCLUSIONS Intrathecal administration of Myr-NR2B9c reduced bone cancer pain. Internalization of spinal NR2B and dissociation NR2B-containing NMDARs activation from downstream nNOS signaling may contribute to the analgesic effects of Myr-NR2B9c. This approach may circumvent the negative consequences associated with blocking NMDARs, and may be a novel strategy for the treatment of bone cancer pain.
Collapse
Affiliation(s)
- Yue Liu
- From the Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Su Y, Al-Lamki RS, Blake-Palmer KG, Best A, Golder ZJ, Zhou A, Karet Frankl FE. Physical and functional links between anion exchanger-1 and sodium pump. J Am Soc Nephrol 2014; 26:400-9. [PMID: 25012180 DOI: 10.1681/asn.2013101063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Anion exchanger-1 (AE1) mediates chloride-bicarbonate exchange across the plasma membranes of erythrocytes and, via a slightly shorter transcript, kidney epithelial cells. On an omnivorous human diet, kidney AE1 is mainly active basolaterally in α-intercalated cells of the collecting duct, where it is functionally coupled with apical proton pumps to maintain normal acid-base homeostasis. The C-terminal tail of AE1 has an important role in its polarized membrane residency. We have identified the β1 subunit of Na(+),K(+)-ATPase (sodium pump) as a binding partner for AE1 in the human kidney. Kidney AE1 and β1 colocalized in renal α-intercalated cells and coimmunoprecipitated (together with the catalytic α1 subunit of the sodium pump) from human kidney membrane fractions. ELISA and fluorescence titration assays confirmed that AE1 and β1 interact directly, with a Kd value of 0.81 μM. GST-AE1 pull-down assays using human kidney membrane proteins showed that the last 11 residues of AE1 are important for β1 binding. siRNA-induced knockdown of β1 in cell culture resulted in a significant reduction in kidney AE1 levels at the cell membrane, whereas overexpression of kidney AE1 increased cell surface sodium pump levels. Notably, membrane staining of β1 was reduced throughout collecting ducts of AE1-null mouse kidney, where increased fractional excretion of sodium has been reported. These data suggest a requirement of β1 for proper kidney AE1 membrane residency, and that activities of AE1 and the sodium pump are coregulated in kidney.
Collapse
Affiliation(s)
- Ya Su
- Departments of Medical Genetics and
| | - Rafia S Al-Lamki
- Division of Renal Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | - Fiona E Karet Frankl
- Departments of Medical Genetics and Division of Renal Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
42
|
Akasaki K, Shiotsu K, Michihara A, Ide N, Wada I. Constitutive expression of a COOH-terminal leucine mutant of lysosome-associated membrane protein-1 causes its exclusive localization in low density intracellular vesicles. J Biochem 2014; 156:39-49. [PMID: 24695761 DOI: 10.1093/jb/mvu020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lysosome-associated membrane protein-1 (LAMP-1) is a type I transmembrane protein with a short cytoplasmic tail that possesses a lysosome-targeting signal of GYQTI(382)-COOH. Wild-type (WT)-LAMP-1 was exclusively localized in high density lysosomes, and efficiency of LAMP-1's transport to lysosomes depends on its COOH-terminal amino acid residue. Among many different COOH-terminal amino acid substitution mutants of LAMP-1, a leucine-substituted mutant (I382L) displays the most efficient targeting to late endosomes and lysosomes [Akasaki et al. (2010) J. Biochem. 148: , 669-679]. In this study, we generated two human hepatoma cell lines (HepG2 cell lines) that stably express WT-LAMP-1 and I382L, and compared their intracellular distributions. The subcellular fractionation study using Percoll density gradient centrifugation revealed that WT-LAMP-1 had preferential localization in the high density secondary lysosomes where endogenous human LAMP-1 was enriched. In contrast, a major portion of I382L was located in a low density fraction. The low density fraction also contained approximately 80% of endogenous human LAMP-1 and significant amounts of endogenous β-glucuronidase and LAMP-2, which probably represents occurrence of low density lysosomes in the I382L-expressing cells. Double immunofluorescence microscopic analyses distinguished I382L-containing intracellular vesicles from endogenous LAMP-1-containing lysosomes and early endosomes. Altogether, constitutive expression of I382L causes its aberrant intracellular localization and generation of low density lysosomes, indicating that the COOH-terminal isoleucine is critical for normal localization of LAMP-1 in the dense lysosomes.
Collapse
Affiliation(s)
- Kenji Akasaki
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729-0292; and Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Keiko Shiotsu
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729-0292; and Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Akihiro Michihara
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729-0292; and Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Norie Ide
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729-0292; and Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Ikuo Wada
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima 729-0292; and Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| |
Collapse
|
43
|
Identification of GPM6A and GPM6B as potential new human lymphoid leukemia-associated oncogenes. Cell Oncol (Dordr) 2014; 37:179-91. [PMID: 24916915 DOI: 10.1007/s13402-014-0171-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Previously, we found that the Graffi murine leukemia virus (MuLV) is able to induce a wide spectrum of hematologic malignancies in vivo. Using high-density oligonucleotide microarrays, we established the gene expression profiles of several of these malignancies, thereby specifically focusing on genes deregulated in the lymphoid sub-types. We observed over-expression of a variety of genes, including Arntl2, Bfsp2, Gfra2, Gpm6a, Gpm6b, Nln, Fbln1, Bmp7, Etv5 and Celsr1 and, in addition, provided evidence that Fmn2 and Parm-1 may act as novel oncogenes. In the present study, we assessed the expression patterns of eight selected human homologs of these genes in primary human B-cell malignancies, and explored the putative oncogenic potential of GPM6A and GPM6B. METHODS The gene expression levels of the selected human homologs were tested in human B-cell malignancies by semi-quantitative RT-PCR. The protein expression profiles of human GPM6A and GPM6B were analyzed by Western blotting. The localization and the effect of GPM6A and GPM6B on the cytoskeleton were determined using confocal and indirect immunofluorescence microscopy. To confirm the oncogenic potential of GPM6A and GPM6B, classical colony formation assays in soft agar and focus forming assays were used. The effects of these proteins on the cell cycle were assessed by flow cytometry analysis. RESULTS Using semi-quantitative RT-PCR, we found that most of the primary B-cell malignancies assessed showed altered expression patterns of the genes tested, including GPM6A and GPM6B. Using confocal microscopy, we found that the GPM6A protein (isoform 3) exhibits a punctate cytoplasmic localization and that the GPM6B protein (isoform 4) exhibits a peri-nuclear and punctate cytoplasmic localization. Interestingly, we found that exogenous over-expression of both proteins in NIH/3T3 cells alters the actin and microtubule networks and induces the formation of long filopodia-like protrusions. Additionally, we found that these over-expressing NIH/3T3 cells exhibit anchorage-independent growth and enhanced proliferation rates. Cellular transformation (i.e., loss of contact inhibition) was, however, only observed after exogenous over-expression of GPM6B. CONCLUSIONS Our results indicate that several human homologs of the genes found to be deregulated in Graffi MuLV experimental mouse models may serve as candidate biomarkers for human B-cell malignancies. In addition, we found that GPM6A and GPM6B may act as novel oncogenes in the development of these malignancies.
Collapse
|
44
|
Chu HC, Tseng WL, Lee HY, Cheng JC, Chang SS, Yung BYM, Tseng CP. Distinct effects of Disabled-2 on transferrin uptake in different cell types and culture conditions. Cell Biol Int 2014; 38:1252-9. [PMID: 24889971 DOI: 10.1002/cbin.10316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/06/2014] [Indexed: 11/10/2022]
Abstract
Iron uptake by the transferrin (Tf)-transferrin receptor (TfR) complex is critical for erythroid differentiation. The mechanisms of TfR trafficking have been examined, but the adaptor proteins involved in this process are not fully elucidated. We have investigated the role of the adaptor protein, Disabled-2 (Dab2), in erythroid differentiation and Tf uptake in the cells of hematopoietic lineage. Dab2 was upregulated in a time-dependent manner during erythroid differentiation of mouse embryonic stem cells and human K562 erythroleukemic cells. Attenuating Dab2 expression in K562 cells diminished TfR internalization and increased surface levels of TfR concomitantly with a decrease in Tf uptake and erythroid differentiation. Dab2 regulated Tf uptake of the suspended, but not adherent, cultures of K562 cells. In contrast, Dab2 is not involved in TfR trafficking in the HeLa cells with epithelial origin. These differential effects are Dab2-specific because attenuating the expression of adaptor protein 2 μ subunit inhibited the uptake of Tf regardless of culture condition. We offer novel insight of Dab2 function in iron uptake and TfR internalization for the suspended culture of hematopoietic lineage cells.
Collapse
Affiliation(s)
- Hui-Chun Chu
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan, 333, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
45
|
Minakshi R, Padhan K. The YXXΦ motif within the severe acute respiratory syndrome coronavirus (SARS-CoV) 3a protein is crucial for its intracellular transport. Virol J 2014; 11:75. [PMID: 24762043 PMCID: PMC4004515 DOI: 10.1186/1743-422x-11-75] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/04/2014] [Indexed: 12/04/2022] Open
Abstract
Background The SARS coronavirus (SARS-CoV) 3a protein functions as an ion channel, induces apoptosis and is important for viral pathogenesis. It is expressed on the cell surface and contains a tyrosine-based sorting motif and a di-acidic motif, which may be crucial for its intracellular trafficking. However the role of these motifs is not fully understood in the case of 3a protein. Methods The subcellular distribution of the 3a protein was studied by immunofluorescence staining of cells transfected with wild type and mutant constructs along with markers for different intracellular compartments. Semi-quantitative RT-PCR was performed to estimate the mRNA where as western blotting was carried out to detect protein levels of wild type and mutant 3a proteins. In vitro transcription- translation was performed to estimate cell free protein synthesis. Results While the wild type 3a protein is efficiently transported to the plasma membrane, the protein with mutations in the tyrosine and valine residues within the YXXV motif (ΔYXXΦ) accumulated in the Golgi compartment. However the 3a protein with mutations within the EXD di-acidic motif (ΔEXD) showed an intracellular distribution similar to the wild type protein. Increased retention of the ΔYXXΦ protein in the Golgi compartment also increased its association with lipid droplets. The ΔYXXΦ protein also expressed at significantly lower levels compared to the wild type 3a protein, which was reversed with Brefeldin A and Aprotinin. Conclusions The data suggest that the YXXΦ motif of the SARS-CoV 3a protein is necessary for Golgi to plasma membrane transport, in the absence of which the protein is targeted to lysosomal degradation compartment via lipid droplets.
Collapse
Affiliation(s)
| | - Kartika Padhan
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
46
|
Carluccio AV, Zicca S, Stavolone L. Hitching a ride on vesicles: cauliflower mosaic virus movement protein trafficking in the endomembrane system. PLANT PHYSIOLOGY 2014; 164:1261-70. [PMID: 24477592 PMCID: PMC3938618 DOI: 10.1104/pp.113.234534] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/29/2014] [Indexed: 05/08/2023]
Abstract
The transport of a viral genome from cell to cell is enabled by movement proteins (MPs) targeting the cell periphery to mediate the gating of plasmodesmata. Given their essential role in the development of viral infection, understanding the regulation of MPs is of great importance. Here, we show that cauliflower mosaic virus (CaMV) MP contains three tyrosine-based sorting signals that interact with an Arabidopsis (Arabidopsis thaliana) μA-adaptin subunit. Fluorophore-tagged MP is incorporated into vesicles labeled with the endocytic tracer N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylamino)phenyl)hexatrienyl)pyridinium dibromide. The presence of at least one of the three endocytosis motifs is essential for internalization of the protein from the plasma membrane to early endosomes, for tubule formation, and for CaMV infection. In addition, we show that MP colocalizes in vesicles with the Rab GTPase AtRAB-F2b, which is resident in prevacuolar late endosomal compartments that deliver proteins to the vacuole for degradation. Altogether, these results demonstrate that CaMV MP traffics in the endocytic pathway and that virus viability depends on functional host endomembranes.
Collapse
Affiliation(s)
| | | | - Livia Stavolone
- Istituto di Virologia Vegetale, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| |
Collapse
|
47
|
Fénéant L, Levy S, Cocquerel L. CD81 and hepatitis C virus (HCV) infection. Viruses 2014; 6:535-72. [PMID: 24509809 PMCID: PMC3939471 DOI: 10.3390/v6020535] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 01/29/2014] [Accepted: 02/02/2014] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C Virus (HCV) infection is a global public health problem affecting over 160 million individuals worldwide. Its symptoms include chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. HCV is an enveloped RNA virus mainly targeting liver cells and for which the initiation of infection occurs through a complex multistep process involving a series of specific cellular entry factors. This process is likely mediated through the formation of a tightly orchestrated complex of HCV entry factors at the plasma membrane. Among HCV entry factors, the tetraspanin CD81 is one of the best characterized and it is undoubtedly a key player in the HCV lifecycle. In this review, we detail the current knowledge on the involvement of CD81 in the HCV lifecycle, as well as in the immune response to HCV infection.
Collapse
Affiliation(s)
- Lucie Fénéant
- Center for Infection and Immunity of Lille, CNRS-UMR8204, Inserm-U1019, Institut Pasteur de Lille, Université Lille Nord de France, Institut de Biologie de Lille, 1 rue du Pr Calmette, CS50447, 59021 Lille Cedex, France.
| | - Shoshana Levy
- Department of Medicine, Division of Oncology, CCSR, Stanford University Medical Center, Stanford, CA 94305, USA.
| | - Laurence Cocquerel
- Center for Infection and Immunity of Lille, CNRS-UMR8204, Inserm-U1019, Institut Pasteur de Lille, Université Lille Nord de France, Institut de Biologie de Lille, 1 rue du Pr Calmette, CS50447, 59021 Lille Cedex, France.
| |
Collapse
|
48
|
Singh B, Coffey RJ. Trafficking of epidermal growth factor receptor ligands in polarized epithelial cells. Annu Rev Physiol 2013; 76:275-300. [PMID: 24215440 DOI: 10.1146/annurev-physiol-021113-170406] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A largely unilamellar epithelial layer lines body cavities and organ ducts such as the digestive tract and kidney tubules. This polarized epithelium is composed of biochemically and functionally separate apical and basolateral surfaces. The epidermal growth factor receptor (EGFR) signaling pathway is a critical regulator of epithelial homeostasis and is perturbed in a number of epithelial disorders. It is underappreciated that in vivo EGFR signaling is most often initiated by cell-surface delivery and processing of one of seven transmembrane ligands, resulting in release of the soluble form that binds EGFR. In polarized epithelial cells, EGFR is restricted largely to the basolateral surface, and apical or basolateral ligand delivery therefore has important biological consequences. In vitro approaches have been used to study the biosynthesis, cell-surface delivery, proteolytic processing, and release of soluble EGFR ligands in polarized epithelial cells. We review these results, discuss their relevance to normal physiology, and demonstrate the pathophysiological consequences of aberrant trafficking. These studies have uncovered a rich diversity of apico-basolateral trafficking mechanisms among the EGFR ligands, provided insights into the pathogenesis of an inherited magnesium-wasting disorder of the kidney (isolated renal hypomagnesemia), and identified a new mode of EGFR ligand signaling via exosomes.
Collapse
Affiliation(s)
- Bhuminder Singh
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232; ,
| | | |
Collapse
|
49
|
Mutations in the cytoplasmic domain of the Newcastle disease virus fusion protein confer hyperfusogenic phenotypes modulating viral replication and pathogenicity. J Virol 2013; 87:10083-93. [PMID: 23843643 DOI: 10.1128/jvi.01446-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Newcastle disease virus (NDV) fusion protein (F) mediates fusion of viral and host cell membranes and is a major determinant of NDV pathogenicity. In the present study, we demonstrate the effects of functional properties of F cytoplasmic tail (CT) amino acids on virus replication and pathogenesis. Out of a series of C-terminal deletions in the CT, we were able to rescue mutant viruses lacking two or four residues (rΔ2 and rΔ4). We further rescued viral mutants with individual amino acid substitutions at each of these four terminal residues (rM553A, rK552A, rT551A, and rT550A). In addition, the NDV F CT has two conserved tyrosine residues (Y524 and Y527) and a dileucine motif (LL536-537). In other paramyxoviruses, these residues were shown to affect fusion activity and are central elements in basolateral targeting. The deletion of 2 and 4 CT amino acids and single tyrosine substitution resulted in hyperfusogenic phenotypes and increased viral replication and pathogenesis. We further found that in rY524A and rY527A viruses, disruption of the targeting signals did not reduce the expression on the apical or basolateral surface in polarized Madin-Darby canine kidney cells, whereas in double tyrosine mutant, it was reduced on both the apical and basolateral surfaces. Interestingly, in rL536A and rL537A mutants, the F protein expression was more on the apical than on the basolateral surface, and this effect was more pronounced in the rL537A mutant. We conclude that these wild-type residues in the NDV F CT have an effect on regulating F protein biological functions and thus modulating viral replication and pathogenesis.
Collapse
|
50
|
Transformation of polarized epithelial cells by apical mistrafficking of epiregulin. Proc Natl Acad Sci U S A 2013; 110:8960-5. [PMID: 23671122 DOI: 10.1073/pnas.1305508110] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Establishment and maintenance of apico-basolateral trafficking pathways are critical to epithelial homeostasis. Loss of polarity and trafficking fidelity are thought to occur as a consequence of transformation; however, here we report that selective mistrafficking of the epidermal growth factor receptor (EGFR) ligand epiregulin (EREG) from the basolateral to the apical cell surface drives transformation. Normally, EREG is preferentially delivered to the basolateral surface of polarized Madin-Darby canine kidney cells. EREG basolateral trafficking is regulated by a conserved tyrosine-based basolateral sorting motif in its cytoplasmic domain (YXXΦ: Y(156)ERV). Both Y156 and V159 are required for basolateral sorting of EREG, because Y156A and V159G substitutions redirect EREG to the apical cell surface. We also show that basolateral sorting of EREG is adaptor protein 1B-independent. Apical mistrafficking of EREG has a distinctive phenotype. In contrast to transient EGFR tyrosine phosphorylation after basolateral EREG stimulation, apical EREG leads to prolonged EGFR tyrosine phosphorylation, which may be related, at least in part, to a lack of negative regulatory Y1045 phosphorylation and subsequent ubiquitylation. Notably, Madin-Darby canine kidney cells stably expressing apically mistrafficked EREG form significantly larger, hyperproliferative, poorly differentiated, and locally invasive tumors in nude mice compared with WT EREG-expressing cells.
Collapse
|