1
|
Burghardt E, Rakijas J, Tyagi A, Majumder P, Olson BJSC, McDonald JA. Transcriptome analysis reveals temporally regulated genetic networks during Drosophila border cell collective migration. BMC Genomics 2023; 24:728. [PMID: 38041052 PMCID: PMC10693066 DOI: 10.1186/s12864-023-09839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Collective cell migration underlies many essential processes, including sculpting organs during embryogenesis, wound healing in the adult, and metastasis of cancer cells. At mid-oogenesis, Drosophila border cells undergo collective migration. Border cells round up into a small group at the pre-migration stage, detach from the epithelium and undergo a dynamic and highly regulated migration at the mid-migration stage, and stop at the oocyte, their final destination, at the post-migration stage. While specific genes that promote cell signaling, polarization of the cluster, formation of protrusions, and cell-cell adhesion are known to regulate border cell migration, there may be additional genes that promote these distinct active phases of border cell migration. Therefore, we sought to identify genes whose expression patterns changed during border cell migration. RESULTS We performed RNA-sequencing on border cells isolated at pre-, mid-, and post-migration stages. We report that 1,729 transcripts, in nine co-expression gene clusters, are temporally and differentially expressed across the three migration stages. Gene ontology analyses and constructed protein-protein interaction networks identified genes expected to function in collective migration, such as regulators of the cytoskeleton, adhesion, and tissue morphogenesis, but also uncovered a notable enrichment of genes involved in immune signaling, ribosome biogenesis, and stress responses. Finally, we validated the in vivo expression and function of a subset of identified genes in border cells. CONCLUSIONS Overall, our results identified differentially and temporally expressed genetic networks that may facilitate the efficient development and migration of border cells. The genes identified here represent a wealth of new candidates to investigate the molecular nature of dynamic collective cell migrations in developing tissues.
Collapse
Affiliation(s)
- Emily Burghardt
- Division of Biology, Kansas State University, 116 Ackert Hall, 1717 Claflin Rd, Manhattan, KS, 66506, USA
| | - Jessica Rakijas
- Division of Biology, Kansas State University, 116 Ackert Hall, 1717 Claflin Rd, Manhattan, KS, 66506, USA
| | - Antariksh Tyagi
- Division of Biology, Kansas State University, 116 Ackert Hall, 1717 Claflin Rd, Manhattan, KS, 66506, USA
| | - Pralay Majumder
- Department of Life Sciences, Presidency University, Kolkata, 700073, West Bengal, India
| | - Bradley J S C Olson
- Division of Biology, Kansas State University, 116 Ackert Hall, 1717 Claflin Rd, Manhattan, KS, 66506, USA.
| | - Jocelyn A McDonald
- Division of Biology, Kansas State University, 116 Ackert Hall, 1717 Claflin Rd, Manhattan, KS, 66506, USA.
| |
Collapse
|
2
|
Ibar C, Chinthalapudi K, Heissler SM, Irvine KD. Competition between myosin II and β H-spectrin regulates cytoskeletal tension. eLife 2023; 12:RP84918. [PMID: 37367948 DOI: 10.7554/elife.84918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Spectrins are membrane cytoskeletal proteins generally thought to function as heterotetramers comprising two α-spectrins and two β-spectrins. They influence cell shape and Hippo signaling, but the mechanism by which they influence Hippo signaling has remained unclear. We have investigated the role and regulation of the Drosophila β-heavy spectrin (βH-spectrin, encoded by the karst gene) in wing imaginal discs. Our results establish that βH-spectrin regulates Hippo signaling through the Jub biomechanical pathway due to its influence on cytoskeletal tension. While we find that α-spectrin also regulates Hippo signaling through Jub, unexpectedly, we find that βH-spectrin localizes and functions independently of α-spectrin. Instead, βH-spectrin co-localizes with and reciprocally regulates and is regulated by myosin. In vivo and in vitro experiments support a model in which βH-spectrin and myosin directly compete for binding to apical F-actin. This competition can explain the influence of βH-spectrin on cytoskeletal tension and myosin accumulation. It also provides new insight into how βH-spectrin participates in ratcheting mechanisms associated with cell shape change.
Collapse
Affiliation(s)
- Consuelo Ibar
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, United States
| | - Krishna Chinthalapudi
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, United States
| | - Sarah M Heissler
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, United States
| | - Kenneth D Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, United States
| |
Collapse
|
3
|
Barker TJ, Chan FY, Carvalho AX, Sundaram MV. Apical-basal polarity of the spectrin cytoskeleton in the C. elegans vulva. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000863. [PMID: 37396793 PMCID: PMC10308243 DOI: 10.17912/micropub.biology.000863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 07/04/2023]
Abstract
The C. elegans vulva is a polarized epithelial tube that has been studied extensively as a model for cell-cell signaling, cell fate specification, and tubulogenesis. Here we used endogenous fusions to show that the spectrin cytoskeleton is polarized in this organ, with conventional beta-spectrin ( UNC-70 ) found only at basolateral membranes and beta heavy spectrin ( SMA-1 ) found only at apical membranes. The sole alpha-spectrin ( SPC-1 ) is present at both locations but requires SMA-1 for its apical localization. Thus, beta spectrins are excellent markers for vulva cell membranes and polarity.
Collapse
Affiliation(s)
- Trevor J. Barker
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Fung-Yi Chan
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Ana X. Carvalho
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Meera V. Sundaram
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
4
|
Sobral AF, Chan FY, Norman MJ, Osório DS, Dias AB, Ferreira V, Barbosa DJ, Cheerambathur D, Gassmann R, Belmonte JM, Carvalho AX. Plastin and spectrin cooperate to stabilize the actomyosin cortex during cytokinesis. Curr Biol 2021; 31:5415-5428.e10. [PMID: 34666005 PMCID: PMC8699742 DOI: 10.1016/j.cub.2021.09.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/22/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022]
Abstract
Cytokinesis, the process that partitions the mother cell into two daughter cells, requires the assembly and constriction of an equatorial actomyosin network. Different types of non-motor F-actin crosslinkers localize to the network, but their functional contribution remains poorly understood. Here, we describe a synergy between the small rigid crosslinker plastin and the large flexible crosslinker spectrin in the C. elegans one-cell embryo. In contrast to single inhibitions, co-inhibition of plastin and the βH-spectrin (SMA-1) results in cytokinesis failure due to progressive disorganization and eventual collapse of the equatorial actomyosin network. Cortical localization dynamics of non-muscle myosin II in co-inhibited embryos mimic those observed after drug-induced F-actin depolymerization, suggesting that the combined action of plastin and spectrin stabilizes F-actin in the contractile ring. An in silico model predicts that spectrin is more efficient than plastin at stabilizing the ring and that ring formation is relatively insensitive to βH-spectrin length, which is confirmed in vivo with a sma-1 mutant that lacks 11 of its 29 spectrin repeats. Our findings provide the first evidence that spectrin contributes to cytokinesis and highlight the importance of crosslinker interplay for actomyosin network integrity.
Collapse
Affiliation(s)
- Ana Filipa Sobral
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Fung-Yi Chan
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Michael J Norman
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; Quantitative and Computational Developmental Biology Cluster, North Carolina State University, Raleigh, NC 27695, USA
| | - Daniel S Osório
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana Beatriz Dias
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Vanessa Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Daniel J Barbosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Dhanya Cheerambathur
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Reto Gassmann
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Julio Monti Belmonte
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; Quantitative and Computational Developmental Biology Cluster, North Carolina State University, Raleigh, NC 27695, USA
| | - Ana Xavier Carvalho
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
5
|
Grmai L, Harsh S, Lu S, Korman A, Deb IB, Bach EA. Transcriptomic analysis of feminizing somatic stem cells in the Drosophila testis reveals putative downstream effectors of the transcription factor Chinmo. G3 (BETHESDA, MD.) 2021; 11:jkab067. [PMID: 33751104 PMCID: PMC8759813 DOI: 10.1093/g3journal/jkab067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/24/2021] [Indexed: 11/12/2022]
Abstract
One of the best examples of sexual dimorphism is the development and function of the gonads, ovaries and testes, which produce sex-specific gametes, oocytes, and spermatids, respectively. The development of these specialized germ cells requires sex-matched somatic support cells. The sexual identity of somatic gonadal cells is specified during development and must be actively maintained during adulthood. We previously showed that the transcription factor Chinmo is required to ensure the male sexual identity of somatic support cells in the Drosophila melanogaster testis. Loss of chinmo from male somatic gonadal cells results in feminization: they transform from squamous to epithelial-like cells that resemble somatic cells in the female gonad but fail to properly ensheath the male germline, causing infertility. To identify potential target genes of Chinmo, we purified somatic cells deficient for chinmo from the adult Drosophila testis and performed next-generation sequencing to compare their transcriptome to that of control somatic cells. Bioinformatics revealed 304 and 1549 differentially upregulated and downregulated genes, respectively, upon loss of chinmo in early somatic cells. Using a combination of methods, we validated several differentially expressed genes. These data sets will be useful resources to the community.
Collapse
Affiliation(s)
- Lydia Grmai
- Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY
| | - Sneh Harsh
- Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY
| | - Sean Lu
- Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY
| | - Aryeh Korman
- Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY
| | - Ishan B Deb
- Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY
| | - Erika A Bach
- Department of Biochemistry & Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY
| |
Collapse
|
6
|
Cammarota C, Finegan TM, Wilson TJ, Yang S, Bergstralh DT. An Axon-Pathfinding Mechanism Preserves Epithelial Tissue Integrity. Curr Biol 2020; 30:5049-5057.e3. [PMID: 33065006 DOI: 10.1016/j.cub.2020.09.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/21/2020] [Accepted: 09/18/2020] [Indexed: 01/09/2023]
Abstract
Epithelial tissues form the boundaries of organs, where they perform a range of functions, including secretion, absorption, and protection. These tissues are commonly composed of discrete cell layers-sheets of cells that are one-cell thick. In multiple systems examined, epithelial cells round up and move in the apical direction before dividing, likely in response to neighbor-cell crowding [1-6]. Because of this movement, daughter cells may be born displaced from the tissue layer. Reintegration of these displaced cells supports tissue growth and maintains tissue architecture [4]. Two conserved IgCAMs (immunoglobulin superfamily cell adhesion molecules), neuroglian (Nrg) and fasciclin 2 (Fas2), participate in cell reintegration in the Drosophila follicular epithelium [4]. Like their vertebrate orthologs L1CAM and NCAM1/2, respectively, Nrg and Fas2 are cell adhesion molecules primarily studied in the context of nervous system development [7-10]. Consistent with this, we identify another neural IgCAM, Fasciclin 3 (Fas3), as a reintegration factor. Nrg, Fas2, and Fas3 are components of the insect septate junction, the functional equivalent of the vertebrate tight junction, but proliferating follicle cells do not have mature septate junctions, and we find that the septate junction protein neurexin IV does not participate in reintegration [11, 12]. Here, we show that epithelial reintegration works in the same way as IgCAM-mediated axon growth and pathfinding; it relies not only on extracellular adhesion but also mechanical coupling between IgCAMs and the lateral spectrin-based membrane skeleton. Our work indicates that reintegration is mediated by a distinct epithelial adhesion assembly that is compositionally and functionally equivalent to junctions made between axons.
Collapse
Affiliation(s)
- Christian Cammarota
- Department of Physics & Astronomy, University of Rochester, Rochester, NY 14627, USA
| | - Tara M Finegan
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Tyler J Wilson
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Sifan Yang
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Dan T Bergstralh
- Department of Physics & Astronomy, University of Rochester, Rochester, NY 14627, USA; Department of Biology, University of Rochester, Rochester, NY 14627, USA; Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14627, USA.
| |
Collapse
|
7
|
Huang SC, Liang JY, Vu LV, Yu FH, Ou AC, Ou JP, Zhang HS, Burnett KM, Benz EJ. Epithelial-specific isoforms of protein 4.1R promote adherens junction assembly in maturing epithelia. J Biol Chem 2020; 295:191-211. [PMID: 31776189 PMCID: PMC6952607 DOI: 10.1074/jbc.ra119.009650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 11/20/2019] [Indexed: 01/13/2023] Open
Abstract
Epithelial adherens junctions (AJs) and tight junctions (TJs) undergo disassembly and reassembly during morphogenesis and pathological states. The membrane-cytoskeleton interface plays a crucial role in junctional reorganization. Protein 4.1R (4.1R), expressed as a diverse array of spliceoforms, has been implicated in linking the AJ and TJ complex to the cytoskeleton. However, which specific 4.1 isoform(s) participate and the mechanisms involved in junctional stability or remodeling remain unclear. We now describe a role for epithelial-specific isoforms containing exon 17b and excluding exon 16 4.1R (4.1R+17b) in AJs. 4.1R+17b is exclusively co-localized with the AJs. 4.1R+17b binds to the armadillo repeats 1-2 of β-catenin via its membrane-binding domain. This complex is linked to the actin cytoskeleton via a bispecific interaction with an exon 17b-encoded peptide. Exon 17b peptides also promote fodrin-actin complex formation. Expression of 4.1R+17b forms does not disrupt the junctional cytoskeleton and AJs during the steady-state or calcium-dependent AJ reassembly. Overexpression of 4.1R-17b forms, which displace the endogenous 4.1R+17b forms at the AJs, as well as depletion of the 4.1R+17b forms both decrease junctional actin and attenuate the recruitment of spectrin to the AJs and also reduce E-cadherin during the initial junctional formation of the AJ reassembly process. Expressing 4.1R+17b forms in depleted cells rescues junctional localization of actin, spectrin, and E-cadherin assembly at the AJs. Together, our results identify a critical role for 4.1R+17b forms in AJ assembly and offer additional insights into the spectrin-actin-4.1R-based membrane skeleton as an emerging regulator of epithelial integrity and remodeling.
Collapse
Affiliation(s)
- Shu-Ching Huang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115; Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115.
| | - Jia Y Liang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Long V Vu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Faye H Yu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Alexander C Ou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Jennie Park Ou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Henry S Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Kimberly M Burnett
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | - Edward J Benz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115; Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115; Department of Pediatrics and Genetics, Harvard Medical School, Boston, Massachusetts 02115; Dana-Farber/Harvard Cancer Center, Boston, Massachusetts 02115
| |
Collapse
|
8
|
Balaji R, Weichselberger V, Classen AK. Response of epithelial cell and tissue shape to external forces in vivo. Development 2019; 146:dev.171256. [DOI: 10.1242/dev.171256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 07/29/2019] [Indexed: 12/25/2022]
Abstract
How actomyosin generates forces at epithelial adherens junctions has been extensively studied. However, less is known about how a balance between internal and external forces establishes epithelial cell, tissue and organ shape. We use the Drosophila egg chamber to investigate how contractility at adherens junction in the follicle epithelium is modulated to accommodate and resist forces arising from the growing germline. We find that between stages 6 and 9 adherens junction tension in the post-mitotic epithelium decreases, suggesting that the junctional network relaxes to accommodate germline growth. At that time, a prominent medial Myosin II network coupled to corrugating adherens junctions develops. Local enrichment of medial Myosin II in main body follicle cells resists germline-derived forces, thus constraining apical areas and consequently cuboidal cell shapes at stage 9. At the tissue and organ level, local reinforcement of medial-junctional architecture ensures the timely contact of main body cells with the expanding oocyte and imposes circumferential constraints on the germline guiding egg elongation. Our study provides insight into how adherens junction tension promotes cell and tissue shape transitions while integrating growth and shape of an internally enclosed structure in vivo.
Collapse
Affiliation(s)
- Ramya Balaji
- Albert-Ludwigs-University Freiburg, Center for Biological Systems Analysis, Habsburgerstr. 49, 79104 Freiburg, Germany
- Ludwig-Maximilians-University Munich, Faculty of Biology, Grosshaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Vanessa Weichselberger
- Albert-Ludwigs-University Freiburg, Center for Biological Systems Analysis, Habsburgerstr. 49, 79104 Freiburg, Germany
- Ludwig-Maximilians-University Munich, Faculty of Biology, Grosshaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Germany
| | - Anne-Kathrin Classen
- Albert-Ludwigs-University Freiburg, Center for Biological Systems Analysis, Habsburgerstr. 49, 79104 Freiburg, Germany
- Ludwig-Maximilians-University Munich, Faculty of Biology, Grosshaderner Str. 2-4, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
9
|
Wirshing ACE, Cram EJ. Spectrin regulates cell contractility through production and maintenance of actin bundles in the Caenorhabditis elegans spermatheca. Mol Biol Cell 2018; 29:2433-2449. [PMID: 30091661 PMCID: PMC6233056 DOI: 10.1091/mbc.e18-06-0347] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Disruption to the contractility of cells, including smooth muscle cells of the cardiovascular system and myoepithelial cells of the glandular epithelium, contributes to the pathophysiology of contractile tissue diseases, including asthma, hypertension, and primary Sjögren's syndrome. Cell contractility is determined by myosin activity and actomyosin network organization and is mediated by hundreds of protein-protein interactions, many directly involving actin. Here we use a candidate RNA interference screen of more than 100 Caenorhabditis elegans genes with predicted actin-binding and regulatory domains to identify genes that contribute to the contractility of the somatic gonad. We identify the spectrin cytoskeleton composed of SPC-1/α-spectrin, UNC-70/β-spectrin, and SMA-1/β heavy-spectrin as required for contractility and actin organization in the myoepithelial cells of the C. elegans spermatheca. We use imaging of fixed and live animals as well as tissue- and developmental-stage-specific disruption of the spectrin cytoskeleton to show that spectrin regulates the production of prominent central actin bundles and is required for maintenance of central actin bundles throughout successive rounds of stretch and contraction. We conclude that the spectrin cytoskeleton contributes to spermathecal contractility by promoting maintenance of the robust actomyosin bundles that drive contraction.
Collapse
Affiliation(s)
| | - Erin J Cram
- Department of Biology, Northeastern University, Boston, MA 02115
| |
Collapse
|
10
|
Forest E, Logeay R, Géminard C, Kantar D, Frayssinoux F, Heron-Milhavet L, Djiane A. The apical scaffold big bang binds to spectrins and regulates the growth of Drosophila melanogaster wing discs. J Cell Biol 2018; 217:1047-1062. [PMID: 29326287 PMCID: PMC5839784 DOI: 10.1083/jcb.201705107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/22/2017] [Accepted: 01/02/2018] [Indexed: 12/05/2022] Open
Abstract
During development, cell proliferation is regulated, ensuring that tissues reach their correct size and shape. Forest et al. show that the Drosophila melanogaster scaffold protein big bang (Bbg) controls epithelial tissue growth without affecting epithelial polarity and architecture. Bbg interacts with spectrins at the apical cortex and promotes Yki signaling and actomyosin contractility. During development, cell numbers are tightly regulated, ensuring that tissues and organs reach their correct size and shape. Recent evidence has highlighted the intricate connections between the cytoskeleton and the regulation of the key growth control Hippo pathway. Looking for apical scaffolds regulating tissue growth, we describe that Drosophila melanogaster big bang (Bbg), a poorly characterized multi-PDZ scaffold, controls epithelial tissue growth without affecting epithelial polarity and architecture. bbg-mutant tissues are smaller, with fewer cells that are less apically constricted than normal. We show that Bbg binds to and colocalizes tightly with the β-heavy–Spectrin/Kst subunit at the apical cortex and promotes Yki activity, F-actin enrichment, and the phosphorylation of the myosin II regulatory light chain Spaghetti squash. We propose a model in which the spectrin cytoskeleton recruits Bbg to the cortex, where Bbg promotes actomyosin contractility to regulate epithelial tissue growth.
Collapse
Affiliation(s)
- Elodie Forest
- IRCM, Inserm, University of Montpellier, ICM, Montpellier, France
| | - Rémi Logeay
- IRCM, Inserm, University of Montpellier, ICM, Montpellier, France
| | - Charles Géminard
- IRCM, Inserm, University of Montpellier, ICM, Montpellier, France
| | - Diala Kantar
- IRCM, Inserm, University of Montpellier, ICM, Montpellier, France
| | | | | | - Alexandre Djiane
- IRCM, Inserm, University of Montpellier, ICM, Montpellier, France
| |
Collapse
|
11
|
Pauletto M, Milan M, Huvet A, Corporeau C, Suquet M, Planas JV, Moreira R, Figueras A, Novoa B, Patarnello T, Bargelloni L. Transcriptomic features of Pecten maximus oocyte quality and maturation. PLoS One 2017; 12:e0172805. [PMID: 28253290 PMCID: PMC5333834 DOI: 10.1371/journal.pone.0172805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/09/2017] [Indexed: 11/19/2022] Open
Abstract
The king scallop Pecten maximus is a high valuable species of great interest in Europe for both fishery and aquaculture. Notably, there has been an increased investment to produce seed for enhancement programmes of wild scallop populations. However, hatchery production is a relatively new industry and it is still underdeveloped. Major hurdles are spawning control and gamete quality. In the present study, a total of 14 scallops were sampled in the bay of Brest (Brittany, France) to compare transcriptomic profiles of mature oocytes collected by spawning induction or by stripping. To reach such a goal, a microarray analysis was performed by using a custom 8x60K oligonucleotide microarray representing 45,488 unique scallop contigs. First we identified genes that were differentially expressed depending on oocyte quality, estimated as the potential to produce D-larvae. Secondly, we investigated the transcriptional features of both stripped and spawned oocytes. Genes coding for proteins involved in cytoskeletal dynamics, serine/threonine kinases signalling pathway, mRNA processing, response to DNA damage, apoptosis and cell-cycle appeared to be of crucial importance for both oocyte maturation and developmental competence. This study allowed us to dramatically increase the knowledge about transcriptional features of oocyte quality and maturation, as well as to propose for the first time putative molecular markers to solve a major bottleneck in scallop aquaculture.
Collapse
Affiliation(s)
- Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - Massimo Milan
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - Arnaud Huvet
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l’Environnement Marin (LEMAR), Plouzané, France
| | - Charlotte Corporeau
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l’Environnement Marin (LEMAR), Plouzané, France
| | - Marc Suquet
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l’Environnement Marin (LEMAR), Plouzané, France
| | - Josep V. Planas
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona i Institut de Biomedicina de la Universitat de Barcelona, Barcelona, Spain
| | - Rebeca Moreira
- Instituto de Investigaciones Marinas (IIM-CSIC), Vigo, Pontevedra, Spain
| | - Antonio Figueras
- Instituto de Investigaciones Marinas (IIM-CSIC), Vigo, Pontevedra, Spain
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas (IIM-CSIC), Vigo, Pontevedra, Spain
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| |
Collapse
|
12
|
Khanal I, Elbediwy A, Diaz de la Loza MDC, Fletcher GC, Thompson BJ. Shot and Patronin polarise microtubules to direct membrane traffic and biogenesis of microvilli in epithelia. J Cell Sci 2016; 129:2651-9. [PMID: 27231092 PMCID: PMC4958304 DOI: 10.1242/jcs.189076] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/19/2016] [Indexed: 01/08/2023] Open
Abstract
In epithelial tissues, polarisation of microtubules and actin microvilli occurs along the apical-basal axis of each cell, yet how these cytoskeletal polarisation events are coordinated remains unclear. Here, we examine the hierarchy of events during cytoskeletal polarisation in Drosophila melanogaster epithelia. Core apical-basal polarity determinants polarise the spectrin cytoskeleton to recruit the microtubule-binding proteins Patronin (CAMSAP1, CAMSAP2 and CAMSAP3 in humans) and Shortstop [Shot; MACF1 and BPAG1 (also known as DST) in humans] to the apical membrane domain. Patronin and Shot then act to polarise microtubules along the apical-basal axis to enable apical transport of Rab11 endosomes by the Nuf-Dynein microtubule motor complex. Finally, Rab11 endosomes are transferred to the MyoV (also known as Didum in Drosophila) actin motor to deliver the key microvillar determinant Cadherin 99C to the apical membrane to organise the biogenesis of actin microvilli.
Collapse
Affiliation(s)
- Ichha Khanal
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Ahmed Elbediwy
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | | - Barry J Thompson
- The Francis Crick Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| |
Collapse
|
13
|
Ng BF, Selvaraj GK, Santa-Cruz Mateos C, Grosheva I, Alvarez-Garcia I, Martín-Bermudo MD, Palacios IM. α-Spectrin and integrins act together to regulate actomyosin and columnarization, and to maintain a monolayered follicular epithelium. Development 2016; 143:1388-99. [PMID: 26952981 PMCID: PMC4852512 DOI: 10.1242/dev.130070] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 02/18/2016] [Indexed: 12/26/2022]
Abstract
The spectrin cytoskeleton crosslinks actin to the membrane, and although it has been greatly studied in erythrocytes, much is unknown about its function in epithelia. We have studied the role of spectrins during epithelia morphogenesis using the Drosophila follicular epithelium (FE). As previously described, we show that α-Spectrin and β-Spectrin are essential to maintain a monolayered FE, but, contrary to previous work, spectrins are not required to control proliferation. Furthermore, spectrin mutant cells show differentiation and polarity defects only in the ectopic layers of stratified epithelia, similar to integrin mutants. Our results identify α-Spectrin and integrins as novel regulators of apical constriction-independent cell elongation, as α-Spectrin and integrin mutant cells fail to columnarize. Finally, we show that increasing and reducing the activity of the Rho1-Myosin II pathway enhances and decreases multilayering of α-Spectrin cells, respectively. Similarly, higher Myosin II activity enhances the integrin multilayering phenotype. This work identifies a primary role for α-Spectrin in controlling cell shape, perhaps by modulating actomyosin. In summary, we suggest that a functional spectrin-integrin complex is essential to balance adequate forces, in order to maintain a monolayered epithelium.
Collapse
Affiliation(s)
- Bing Fu Ng
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Gokul Kannan Selvaraj
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | | - Inna Grosheva
- Centro Andaluz de Biología del Desarrollo CSIC-Univ. Pablo de Olavide, Sevilla 41013, Spain
| | - Ines Alvarez-Garcia
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | | - Isabel M Palacios
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
14
|
Fletcher GC, Elbediwy A, Khanal I, Ribeiro PS, Tapon N, Thompson BJ. The Spectrin cytoskeleton regulates the Hippo signalling pathway. EMBO J 2015; 34:940-54. [PMID: 25712476 PMCID: PMC4388601 DOI: 10.15252/embj.201489642] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 01/15/2015] [Accepted: 01/21/2015] [Indexed: 12/20/2022] Open
Abstract
The Spectrin cytoskeleton is known to be polarised in epithelial cells, yet its role remains poorly understood. Here, we show that the Spectrin cytoskeleton controls Hippo signalling. In the developing Drosophila wing and eye, loss of apical Spectrins (alpha/beta-heavy dimers) produces tissue overgrowth and mis-regulation of Hippo target genes, similar to loss of Crumbs (Crb) or the FERM-domain protein Expanded (Ex). Apical beta-heavy Spectrin binds to Ex and co-localises with it at the apical membrane to antagonise Yki activity. Interestingly, in both the ovarian follicular epithelium and intestinal epithelium of Drosophila, apical Spectrins and Crb are dispensable for repression of Yki, while basolateral Spectrins (alpha/beta dimers) are essential. Finally, the Spectrin cytoskeleton is required to regulate the localisation of the Hippo pathway effector YAP in response to cell density human epithelial cells. Our findings identify both apical and basolateral Spectrins as regulators of Hippo signalling and suggest Spectrins as potential mechanosensors.
Collapse
Affiliation(s)
- Georgina C Fletcher
- Epithelial Biology Laboratory, Cancer Research UK - London Research Institute, London, UK
| | - Ahmed Elbediwy
- Epithelial Biology Laboratory, Cancer Research UK - London Research Institute, London, UK
| | - Ichha Khanal
- Epithelial Biology Laboratory, Cancer Research UK - London Research Institute, London, UK
| | - Paulo S Ribeiro
- Apoptosis and Cell Proliferation Laboratory, Cancer Research UK - London Research Institute, London, UK Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Nic Tapon
- Apoptosis and Cell Proliferation Laboratory, Cancer Research UK - London Research Institute, London, UK
| | - Barry J Thompson
- Epithelial Biology Laboratory, Cancer Research UK - London Research Institute, London, UK
| |
Collapse
|
15
|
Khanna MR, Mattie FJ, Browder KC, Radyk MD, Crilly SE, Bakerink KJ, Harper SL, Speicher DW, Thomas GH. Spectrin tetramer formation is not required for viable development in Drosophila. J Biol Chem 2014; 290:706-15. [PMID: 25381248 DOI: 10.1074/jbc.m114.615427] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The dominant paradigm for spectrin function is that (αβ)2-spectrin tetramers or higher order oligomers form membrane-associated two-dimensional networks in association with F-actin to reinforce the plasma membrane. Tetramerization is an essential event in such structures. We characterize the tetramerization interaction between α-spectrin and β-spectrins in Drosophila. Wild-type α-spectrin binds to both β- and βH-chains with high affinity, resembling other non-erythroid spectrins. However, α-spec(R22S), a tetramerization site mutant homologous to the pathological α-spec(R28S) allele in humans, eliminates detectable binding to β-spectrin and reduces binding to βH-spectrin ∼1000-fold. Even though spectrins are essential proteins, α-spectrin(R22S) rescues α-spectrin mutants to adulthood with only minor phenotypes indicating that tetramerization, and thus conventional network formation, is not the essential function of non-erythroid spectrin. Our data provide the first rigorous test for the general requirement for tetramer-based non-erythroid spectrin networks throughout an organism and find that they have very limited roles, in direct contrast to the current paradigm.
Collapse
Affiliation(s)
- Mansi R Khanna
- From the Department of Biology and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Floyd J Mattie
- From the Department of Biology and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Kristen C Browder
- From the Department of Biology and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Megan D Radyk
- From the Department of Biology and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Stephanie E Crilly
- From the Department of Biology and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Katelyn J Bakerink
- From the Department of Biology and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Sandra L Harper
- the Systems Biology Division, The Wistar Institute, Philadelphia, Pennsylvania 19104
| | - David W Speicher
- the Systems Biology Division, The Wistar Institute, Philadelphia, Pennsylvania 19104
| | - Graham H Thomas
- From the Department of Biology and the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| |
Collapse
|
16
|
Ivanov AI, Naydenov NG. Dynamics and regulation of epithelial adherens junctions: recent discoveries and controversies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 303:27-99. [PMID: 23445808 DOI: 10.1016/b978-0-12-407697-6.00002-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Adherens junctions (AJs) are evolutionarily conserved plasma-membrane structures that mediate cell-cell adhesions in multicellular organisms. They are organized by several types of adhesive integral membrane proteins, most notably cadherins and nectins that are clustered and stabilized by a number of cytoplasmic scaffolds. AJs are key regulators of tissue architecture and dynamics via control of cell proliferation, polarity, shape, motility, and survival. They are absolutely critical for normal tissue morphogenesis and their disruption results in pathological abnormalities in different tissues. Although the field of adherens-junction research dramatically progressed in recent years, a number of important questions remain controversial and poorly understood. This review outlines basic principles that regulate organization of AJs in mammalian epithelia and discusses recent advances and standing controversies in the field. A special attention is paid to the regulation of AJs by vesicle trafficking and the intracellular cytoskeleton as well as roles and mechanisms of adherens-junction disruption during tumor progression and tissue inflammation.
Collapse
Affiliation(s)
- Andrei I Ivanov
- Department of Human and Molecular Genetics, Virginia Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA.
| | | |
Collapse
|
17
|
Chen JE, Li JY, You ZY, Liu LL, Liang JS, Ma YY, Chen M, Zhang HR, Jiang ZD, Zhong BX. Proteome Analysis of Silkworm, Bombyx mori, Larval Gonads: Characterization of Proteins Involved in Sexual Dimorphism and Gametogenesis. J Proteome Res 2013; 12:2422-38. [DOI: 10.1021/pr300920z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jin-e Chen
- College of
Animal Sciences, Zhejiang University, Hangzhou
310058, PR China
- Institute
of Sericultural Research, Zhejiang Academy of Agricultural Sciences, Hangzhou
310021, PR China
| | - Jian-ying Li
- College of
Animal Sciences, Zhejiang University, Hangzhou
310058, PR China
- Institute
of Developmental and
Regenerative Biology, Hangzhou Normal University, Hangzhou 310036, PR China
| | - Zheng-ying You
- College of
Animal Sciences, Zhejiang University, Hangzhou
310058, PR China
| | - Li-li Liu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jian-she Liang
- College of Environmental and
Resource Sciences, Zhejiang University,
Hangzhou 310058, PR China
| | - Ying-ying Ma
- Zhejiang California International
NanoSystems Institute (ZCNI), Zhejiang University, Hangzhou 310029, PR China
| | - Ming Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Hua-rong Zhang
- Zhejiang California International
NanoSystems Institute (ZCNI), Zhejiang University, Hangzhou 310029, PR China
| | - Zhen-dong Jiang
- College of
Animal Sciences, Zhejiang University, Hangzhou
310058, PR China
| | - Bo-xiong Zhong
- College of
Animal Sciences, Zhejiang University, Hangzhou
310058, PR China
| |
Collapse
|
18
|
Gomez JM, Wang Y, Riechmann V. Tao controls epithelial morphogenesis by promoting Fasciclin 2 endocytosis. ACTA ACUST UNITED AC 2013; 199:1131-43. [PMID: 23266957 PMCID: PMC3529531 DOI: 10.1083/jcb.201207150] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tao initiates morphogenesis of a squamous epithelium by promoting the endocytosis of the adhesion molecule Fasciclin 2 from the lateral membrane. Regulation of epithelial cell shape, for example, changes in relative sizes of apical, basal, and lateral membranes, is a key mechanism driving morphogenesis. However, it is unclear how epithelial cells control the size of their membranes. In the epithelium of the Drosophila melanogaster ovary, cuboidal precursor cells transform into a squamous epithelium through a process that involves lateral membrane shortening coupled to apical membrane extension. In this paper, we report a mutation in the gene Tao, which resulted in the loss of this cuboidal to squamous transition. We show that the inability of Tao mutant cells to shorten their membranes was caused by the accumulation of the cell adhesion molecule Fasciclin 2, the Drosophila N-CAM (neural cell adhesion molecule) homologue. Fasciclin 2 accumulation at the lateral membrane of Tao mutant cells prevented membrane shrinking and thereby inhibited morphogenesis. In wild-type cells, Tao initiated morphogenesis by promoting Fasciclin 2 endocytosis at the lateral membrane. Thus, we identify here a mechanism controlling the morphogenesis of a squamous epithelium.
Collapse
Affiliation(s)
- Juan Manuel Gomez
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
| | | | | |
Collapse
|
19
|
Group choreography: mechanisms orchestrating the collective movement of border cells. Nat Rev Mol Cell Biol 2012; 13:631-45. [PMID: 23000794 DOI: 10.1038/nrm3433] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell movements are essential for animal development and homeostasis but also contribute to disease. Moving cells typically extend protrusions towards a chemoattractant, adhere to the substrate, contract and detach at the rear. It is less clear how cells that migrate in interconnected groups in vivo coordinate their behaviour and navigate through natural environments. The border cells of the Drosophila melanogaster ovary have emerged as an excellent model for the study of collective cell movement, aided by innovative genetic, live imaging, and photomanipulation techniques. Here we provide an overview of the molecular choreography of border cells and its more general implications.
Collapse
|
20
|
Urwyler O, Cortinas-Elizondo F, Suter B. Drosophila sosie functions with β(H)-Spectrin and actin organizers in cell migration, epithelial morphogenesis and cortical stability. Biol Open 2012; 1:994-1005. [PMID: 23213377 PMCID: PMC3507177 DOI: 10.1242/bio.20122154] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 06/26/2012] [Indexed: 11/25/2022] Open
Abstract
Morphogenesis in multicellular organisms requires the careful coordination of cytoskeletal elements, dynamic regulation of cell adhesion and extensive cell migration. sosie (sie) is a novel gene required in various morphogenesis processes in Drosophila oogenesis. Lack of sie interferes with normal egg chamber packaging, maintenance of epithelial integrity and control of follicle cell migration, indicating that sie is involved in controlling epithelial integrity and cell migration. For these functions sie is required both in the germ line and in the soma. Consistent with this, Sosie localizes to plasma membranes in the germ line and in the somatic follicle cells and is predicted to present an EGF-like domain on the extracellular side. Two positively charged residues, C-terminal to the predicted transmembrane domain (on the cytoplasmic side), are required for normal plasma membrane localization of Sosie. Because sie also contributes to normal cortical localization of βH-Spectrin, it appears that cortical βH-Spectrin mediates some of the functions of sosie. sie also interacts with the genes coding for the actin organizers Filamin and Profilin and, in the absence of sie function, F-actin is less well organized and nurse cells frequently fuse.
Collapse
Affiliation(s)
- Olivier Urwyler
- Present address: Vesalius Research Center, Flanders Institute of Biotechnology (VIB), University of Leuven (KUL), 3000 Leuven, Belgium
| | | | | |
Collapse
|
21
|
Tjota M, Lee SK, Wu J, Williams JA, Khanna MR, Thomas GH. Annexin B9 binds to β(H)-spectrin and is required for multivesicular body function in Drosophila. J Cell Sci 2012; 124:2914-26. [PMID: 21878499 DOI: 10.1242/jcs.078667] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of the cytoskeleton in protein trafficking is still being defined. Here, we describe a relationship between the small Ca(2+)-dependent membrane-binding protein Annexin B9 (AnxB9), apical β(Heavy)-spectrin (β(H)) and the multivesicular body (MVB) in Drosophila. AnxB9 binds to a subset of β(H) spliceoforms, and loss of AnxB9 results in an increase in basolateral β(H) and its appearance on cytoplasmic vesicles that overlap with the MVB markers Hrs, Vps16 and EPS15. Similar colocalizations are seen when β(H)-positive endosomes are generated either by upregulation of β(H) in pak mutants or through the expression of the dominant-negative version of β(H). In common with other mutations disrupting the MVB, we also show that there is an accumulation of ubiquitylated proteins and elevated EGFR signaling in the absence of AnxB9 or β(H). Loss of AnxB9 or β(H) function also causes the redistribution of the DE-Cadherin (encoded by shotgun) to endosomal vesicles, suggesting a rationale for the previously documented destabilization of the zonula adherens in karst (which encodes β(H)) mutants. Reduction of AnxB9 results in degradation of the apical-lateral boundary and the appearance of the basolateral proteins Coracle and Dlg on internal vesicles adjacent to β(H). These results indicate that AnxB9 and β(H) are intimately involved in endosomal trafficking to the MVB and play a role in maintaining high-fidelity segregation of the apical and lateral domains.
Collapse
Affiliation(s)
- Monika Tjota
- Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
22
|
Sarpal R, Pellikka M, Patel RR, Hui FYW, Godt D, Tepass U. Mutational analysis supports a core role for Drosophila α-catenin in adherens junction function. J Cell Sci 2012; 125:233-45. [PMID: 22266901 DOI: 10.1242/jcs.096644] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
α-catenin associates the cadherin-catenin complex with the actin cytoskeleton. α-catenin binds to β-catenin, which links it to the cadherin cytoplasmic tail, and F-actin, but also to a multitude of actin-associated proteins. These interactions suggest a highly complex cadherin-actin interface. Moreover, mammalian αE-catenin has been implicated in a cadherin-independent cytoplasmic function in Arp2/3-dependent actin regulation, and in cell signaling. The function and regulation of individual molecular interactions of α-catenin, in particular during development, are not well understood. We have generated mutations in Drosophila α-Catenin (α-Cat) to investigate α-Catenin function in this model, and to establish a setup for testing α-Catenin-related constructs in α-Cat-null mutant cells in vivo. Our analysis of α-Cat mutants in embryogenesis, imaginal discs and oogenesis reveals defects consistent with a loss of cadherin function. Compromising components of the Arp2/3 complex or its regulator SCAR ameliorate the α-Cat loss-of-function phenotype in embryos but not in ovaries, suggesting negative regulatory interactions between α-Catenin and the Arp2/3 complex in some tissues. We also show that the α-Cat mutant phenotype can be rescued by the expression of a DE-cadherin::α-Catenin fusion protein, which argues against an essential cytosolic, cadherin-independent role of Drosophila α-Catenin.
Collapse
Affiliation(s)
- Ritu Sarpal
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Naydenov NG, Ivanov AI. Spectrin-adducin membrane skeleton: A missing link between epithelial junctions and the actin cytoskeletion? BIOARCHITECTURE 2011; 1:186-191. [PMID: 22069512 DOI: 10.4161/bioa.1.4.17642] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 08/02/2011] [Accepted: 08/04/2011] [Indexed: 01/09/2023]
Abstract
Adherens junctions (AJs) and tight junctions (TJs) represent key adhesive structures that regulate the apico-basal polarity and barrier properties of epithelial layers. AJs and TJs readily undergo disassembly and reassembly during normal tissue remodeling and disruption of epithelial barriers in diseases. Such junctional plasticity depends on the orchestrated dynamics of the plasma membrane with its underlying F-actin cytoskeleton, however the interplay between these cellular structures remains poorly understood. Recent studies highlighted the spectrin-adducin-based membrane skeleton as an emerging regulator of AJ and TJ integrity and remodeling. Here we discuss new evidences implicating adducin, spectrin and other membrane skeleton proteins in stabilization of epithelial junctions and regulation of junctional dynamics. Based on the known ability of the membrane skeleton to link cortical actin filaments to the plasma membrane, we hypothesize that the spectrin-adducin network serves as a critical signal and force transducer from the actomyosin cytoskeleton to junctions during remodeling of AJs and TJs.
Collapse
|
24
|
Rac1 modulation of the apical domain is negatively regulated by β (Heavy)-spectrin. Mech Dev 2010; 128:116-28. [PMID: 21111816 DOI: 10.1016/j.mod.2010.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 11/17/2010] [Accepted: 11/18/2010] [Indexed: 12/21/2022]
Abstract
Epithelial polarity and morphogenesis require the careful coordination of signaling and cytoskeletal elements. In this paper, we describe multiple genetic interactions between the apical cytoskeletal protein β(H) and Rac1 signaling in Drosophila: activation of Rac1 signaling by expression of the exchange factor Trio, is strongly enhanced by reducing β(H) levels, and such reductions in β(H) levels alone are shown to cause an increase in GTP-Rac1 levels. In contrast, co-expression of a C-terminal fragment of β(H) (βH33) suppresses the Trio expression phenotype. In addition, sustained expression of βH33 alone in the eye induces a strong dominant phenotype that is similar to the expression of dominant negative Rac1(N17), and this phenotype is also suppressed by the co-expression of Trio or by knockdown of RacGAP50C. We further demonstrate that a loss-of-function allele in pak, a Rac1 effector and negative regulator of β(H)' dominantly suppresses larval lethality arising loss-of-function karst (β(H)) alleles. Furthermore, expression of constitutively active Pak(myr) in the larval salivary gland induces expansion of the apical membrane and destabilization of the apical polarity determinants Crumbs and aPKC. These effects resemble a Rac1 activation phenotype and are suppressed by βH33. Together, our data suggest that apical proteins including β(H) are negatively regulated by Rac1 activation, but that Rac1 signaling is also suppressed by β(H) through its C-terminal domain. Such a system would be bistable with either Rac1 or β(H) predominant. We suggest a model for apical domain maintenance wherein Rac1 down-regulation of β(H) (via Pak) is opposed by β(H)-mediated down-regulation of Rac1 signaling.
Collapse
|
25
|
Baines AJ. The spectrin-ankyrin-4.1-adducin membrane skeleton: adapting eukaryotic cells to the demands of animal life. PROTOPLASMA 2010; 244:99-131. [PMID: 20668894 DOI: 10.1007/s00709-010-0181-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 07/05/2010] [Indexed: 05/29/2023]
Abstract
The cells in animals face unique demands beyond those encountered by their unicellular eukaryotic ancestors. For example, the forces engendered by the movement of animals places stresses on membranes of a different nature than those confronting free-living cells. The integration of cells into tissues, as well as the integration of tissue function into whole animal physiology, requires specialisation of membrane domains and the formation of signalling complexes. With the evolution of mammals, the specialisation of cell types has been taken to an extreme with the advent of the non-nucleated mammalian red blood cell. These and other adaptations to animal life seem to require four proteins--spectrin, ankyrin, 4.1 and adducin--which emerged during eumetazoan evolution. Spectrin, an actin cross-linking protein, was probably the earliest of these, with ankyrin, adducin and 4.1 only appearing as tissues evolved. The interaction of spectrin with ankyrin is probably a prerequisite for the formation of tissues; only with the advent of vertebrates did 4.1 acquires the ability to bind spectrin and actin. The latter activity seems to allow the spectrin complex to regulate the cell surface accumulation of a wide variety of proteins. Functionally, the spectrin-ankyrin-4.1-adducin complex is implicated in the formation of apical and basolateral domains, in aspects of membrane trafficking, in assembly of certain signalling and cell adhesion complexes and in providing stability to otherwise mechanically fragile cell membranes. Defects in this complex are manifest in a variety of hereditary diseases, including deafness, cardiac arrhythmia, spinocerebellar ataxia, as well as hereditary haemolytic anaemias. Some of these proteins also function as tumor suppressors. The spectrin-ankyrin-4.1-adducin complex represents a remarkable system that underpins animal life; it has been adapted to many different functions at different times during animal evolution.
Collapse
Affiliation(s)
- Anthony J Baines
- School of Biosciences and Centre for Biomedical Informatics, University of Kent, Canterbury, CT2 7NJ, UK.
| |
Collapse
|
26
|
Lee HG, Zarnescu DC, MacIver B, Thomas GH. The cell adhesion molecule Roughest depends on beta(Heavy)-spectrin during eye morphogenesis in Drosophila. J Cell Sci 2010; 123:277-85. [PMID: 20048344 DOI: 10.1242/jcs.056853] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cell junctions have both structural and morphogenetic roles, and contain complex mixtures of proteins whose interdependencies are still largely unknown. Junctions are also major signaling centers that signify correct integration into a tissue, and modulate cell survival. During Drosophila eye development, the activity of the immunoglobulin cell adhesion molecule Roughest (also known as Irregular chiasm C-roughest protein) mediates interommatidial cell (IOC) reorganization, leading to an apoptotic event that refines the retinal lattice. Roughest and the cadherin-based zonula adherens (ZA) are interdependent and both are modulated by the apical polarity determinant, Crumbs. Here we describe a novel relationship between the Crumbs partner beta(Heavy)-spectrin (beta(H)), the ZA and Roughest. Ectopic expression of the C-terminal segment 33 of beta(H) (betaH33) induces defects in retinal morphogenesis, resulting the preferential loss of IOC. This effect is associated with ZA disruption and Roughest displacement. In addition, loss-of-function karst and roughest mutations interact to cause a synergistic and catastrophic effect on retinal development. Finally, we show that beta(H) coimmunoprecipitates with Roughest and that the distribution of Roughest protein is disrupted in karst mutant tissue. These results suggest that the apical spectrin membrane skeleton helps to coordinate the Cadherin-based ZA with Roughest-based morphogenesis.
Collapse
Affiliation(s)
- Hyun-Gwan Lee
- Department of Biology, Department of Biochemistry and Molecular Biology, Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
27
|
Genetic screen in Drosophila melanogaster uncovers a novel set of genes required for embryonic epithelial repair. Genetics 2009; 184:129-40. [PMID: 19884309 DOI: 10.1534/genetics.109.110288] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The wound healing response is an essential mechanism to maintain the integrity of epithelia and protect all organisms from the surrounding milieu. In the "purse-string" mechanism of wound closure, an injured epithelial sheet cinches its hole closed via an intercellular contractile actomyosin cable. This process is conserved across species and utilized by both embryonic as well as adult tissues, but remains poorly understood at the cellular level. In an effort to identify new players involved in purse-string wound closure we developed a wounding strategy suitable for screening large numbers of Drosophila embryos. Using this methodology, we observe wound healing defects in Jun-related antigen (encoding DJUN) and scab (encoding Drosophila alphaPS3 integrin) mutants and performed a forward genetics screen on the basis of insertional mutagenesis by transposons that led to the identification of 30 lethal insertional mutants with defects in embryonic epithelia repair. One of the mutants identified is an insertion in the karst locus, which encodes Drosophila beta(Heavy)-spectrin. We show beta(Heavy)-spectrin (beta(H)) localization to the wound edges where it presumably exerts an essential function to bring the wound to normal closure.
Collapse
|
28
|
Abstract
Spectrin is a cytoskeletal protein thought to have descended from an alpha-actinin-like ancestor. It emerged during evolution of animals to promote integration of cells into tissues by assembling signalling and cell adhesion complexes, by enhancing the mechanical stability of membranes and by promoting assembly of specialized membrane domains. Spectrin functions as an (alphabeta([H]))(2) tetramer that cross-links transmembrane proteins, membrane lipids and the actin cytoskeleton, either directly or via adaptor proteins such as ankyrin and 4.1. In the present paper, I review recent findings on the origins and adaptations in this system. (i) The genome of the choanoflagellate Monosiga brevicollis encodes alpha-, beta- and beta(Heavy)-spectrin, indicating that spectrins evolved in the immediate unicellular precursors of animals. (ii) Ankyrin and 4.1 are not encoded in that genome, indicating that spectrin gained function during subsequent animal evolution. (iii) Protein 4.1 gained a spectrin-binding activity in the evolution of vertebrates. (iv) Interaction of chicken or mammal beta-spectrin with PtdInsP(2) can be regulated by differential mRNA splicing, which can eliminate the PH (pleckstrin homology) domain in betaI- or betaII-spectrins; in the case of mammalian betaII-spectrin, the alternative C-terminal region encodes a phosphorylation site that regulates interaction with alpha-spectrin. (v) In mammalian evolution, the single pre-existing alpha-spectrin gene was duplicated, and one of the resulting pair (alphaI) neo-functionalized for rapid make-and-break of tetramers. I hypothesize that the elasticity of mammalian non-nucleated erythrocytes depends on the dynamic rearrangement of spectrin dimers/tetramers under the shearing forces experienced in circulation.
Collapse
|
29
|
Quantitative analysis of epithelial morphogenesis in Drosophila oogenesis: New insights based on morphometric analysis and mechanical modeling. Dev Biol 2009; 331:129-39. [PMID: 19409378 DOI: 10.1016/j.ydbio.2009.04.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 04/16/2009] [Accepted: 04/23/2009] [Indexed: 01/19/2023]
Abstract
The process of epithelial morphogenesis is ubiquitous in animal development, but much remains to be learned about the mechanisms that shape epithelial tissues. The follicle cell (FC) epithelium encapsulating the growing germline of Drosophila is an excellent system to study fundamental elements of epithelial development. During stages 8 to 10 of oogenesis, the FC epithelium transitions between simple geometries-cuboidal, columnar and squamous-and redistributes cell populations in processes described as posterior migration, squamous cell flattening and main body cell columnarization. Here we have carried out a quantitative morphometric analysis of these poorly understood events in order to establish the parameters of and delimit the potential processes that regulate the transitions. Our results compel a striking revision of accepted views of these phenomena, by showing that posterior migration does not involve FC movements, that there is no role for columnar cell apical constriction in FC morphogenesis, and that squamous cell flattening may be a compliant response to germline growth. We utilize mechanical modeling involving finite element computational technologies to demonstrate that time-varying viscoelastic properties and growth are sufficient to account for the bulk of the FC morphogenetic changes.
Collapse
|
30
|
Lynch AM, Hardin J. The assembly and maintenance of epithelial junctions in C. elegans. Front Biosci (Landmark Ed) 2009; 14:1414-32. [PMID: 19273138 DOI: 10.2741/3316] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The epithelial tissues of the C. elegans embryo provide a "minimalist" system for examining phylogenetically conserved proteins that function in epithelial polarity and cell-cell adhesion in a multicellular organism. In this review, we provide an overview of three major molecular complexes at the apical surface of epithelial cells in the C. elegans embryo: the cadherin-catenin complex, the more basal DLG-1/AJM-1 complex, and the apical membrane domain, which shares similarities with the subapical complex in Drosophila and the PAR/aPKC complex in vertebrates. We discuss how the assembly of these complexes contributes to epithelial polarity and adhesion, proteins that act as effectors and/or regulators of each subdomain, and how these complexes functionally interact during embryonic morphogenesis. Although much remains to be clarified, significant progress has been made in recent years to clarify the role of these protein complexes in epithelial morphogenesis, and suggests that C. elegans will continue to be a fruitful system in which to elucidate functional roles for these proteins in a living embryo.
Collapse
Affiliation(s)
- Allison M Lynch
- Program in Genetics, University of Wisconsin-Madison, University of Wisconsin-Madison, Department of Zoology, University of Wisconsin-Madison, USA
| | | |
Collapse
|
31
|
Weber KL, Fischer RS, Fowler VM. Tmod3 regulates polarized epithelial cell morphology. J Cell Sci 2008; 120:3625-32. [PMID: 17928307 DOI: 10.1242/jcs.011445] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the role of the actin cytoskeleton in morphogenesis of polarized epithelial sheets is generally accepted as centrally important, the regulation of actin dynamics in this process remains unclear. Here, we show that the pointed-end capping protein Tmod3 contributes to epithelial cell shape within confluent monolayers of polarized epithelial cells. Tmod3 localizes to lateral cell membranes in polarized epithelia of several cell types. Reduction of Tmod3 levels by shRNA leads to a loss of F-actin and tropomyosins from lateral cell membranes, and a decrease in epithelial cell height, without effects on localisation of tight junction or adherens junction proteins, or any apparent changes in cell-cell adhesion. Instead, distribution of alphaII-spectrin on lateral membranes is disrupted upon reduction of Tmod3 levels, suggesting that loss of Tmod3 function leads to destabilization and disassembly of tropomyosin-coated actin filaments followed by disorganization of the spectrin-based membrane skeleton on lateral membranes. These data demonstrate for the first time a role for pointed-end capping in morphology regulation of polarized epithelial cells through stabilization of F-actin on lateral membranes. We propose that Tmod3-capped tropomyosin-actin filaments provide crucial links in the spectrin membrane skeleton of polarized epithelial cells, enabling the membrane skeleton to maintain cell shape.
Collapse
Affiliation(s)
- Kari L Weber
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
32
|
Drosophila follicle cells: morphogenesis in an eggshell. Semin Cell Dev Biol 2008; 19:271-82. [PMID: 18304845 DOI: 10.1016/j.semcdb.2008.01.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 01/16/2008] [Indexed: 01/15/2023]
Abstract
Epithelial morphogenesis is important for organogenesis and pivotal for carcinogenesis, but mechanisms that control it are poorly understood. The Drosophila follicular epithelium is a genetically tractable model to understand these mechanisms in vivo. This epithelium of follicle cells encases germline cells to create an egg. In this review, we summarize progress toward understanding mechanisms that maintain the epithelium or permit migrations essential for oogenesis. Cell-cell communication is important, but the same signals are used repeatedly to control distinct events. Understanding intrinsic mechanisms that alter responses to developmental signals will be important to understand regulation of cell shape and organization.
Collapse
|
33
|
Neuman-Silberberg FS. Drosophila female sterile mutation spoonbill interferes with multiple pathways in oogenesis. Genesis 2007; 45:369-81. [PMID: 17492752 DOI: 10.1002/dvg.20303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
spoonbill is a Drosophila female-sterile mutation, which displays a range of eggshell and egg chamber patterning defects. Previous analysis has shown that the mutation interfered with the function of two major signaling pathways, GRK/EGFR and DPP. In this report, the nature of spoonbill was further investigated to examine whether it was associated with additional pathways in oogenesis. Clonal analysis, presented here, demonstrated that most of the aberrant phenotypes associated with spoonbill were dependent on a mutant germline. Nevertheless, SPOONBILL may function also in the soma to ensure proper polarization and migration of the border-cell-cluster. Further, genetic interaction studies implicated spoonbill in additional unrelated pathways such as the one(s) involved in actin polymerization/depolymerization. Based on the previous data and the results presented here, it is anticipated that spoonbill may encode a multifunctional protein that perhaps coordinately regulated the activity of multiple signaling pathways during oogenesis.
Collapse
Affiliation(s)
- F Shira Neuman-Silberberg
- Department of Virology and Developmental Genetics, Faculty of Health Sciences and Cancer Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
34
|
Poulton JS, Deng WM. Cell-cell communication and axis specification in the Drosophila oocyte. Dev Biol 2007; 311:1-10. [PMID: 17884037 PMCID: PMC2174919 DOI: 10.1016/j.ydbio.2007.08.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 07/13/2007] [Accepted: 08/08/2007] [Indexed: 01/23/2023]
Abstract
Intercellular communication between the somatic and germline cells is vital to development of the Drosophila egg chamber. One critical outcome of this communication is the polarization of the oocyte along the anterior-posterior axis, a process induced by an unknown signal from the somatic follicle cells to the oocyte. The existence of this signal has been inferred from several reports demonstrating that the differentiation and patterning of the follicle cells by the spatially restricted activation of certain cell-signaling pathways is necessary for axis formation in the oocyte. These reports have also provided a framework for understanding how these signaling pathways are integrated to generate the follicle-cell pattern, but the precise role of the follicle cells in anterior-posterior axis formation remains enigmatic. Research has identified several genes that appear to be involved in the polarizing communication from the follicle cells to the oocyte. Interestingly the proteins encoded by most of these genes are associated with the extracellular matrix, suggesting a pivotal role for this complex biological component in the polarizing communication between the follicle cells and the oocyte. This review summarizes the findings in this area, and uses the experimental analyses of these genes to evaluate various models describing the possible nature of the polarizing signal, and the role of these genes in it.
Collapse
Affiliation(s)
| | - Wu-Min Deng
- *Corresponding author. E-mail address: (Wu-Min Deng)
| |
Collapse
|
35
|
Abstract
Identifying genes involved in the control of adherens junction (AJ) remodeling is essential to understanding epithelial morphogenesis. During follicular epithelium development in Drosophila melanogaster, the main body follicular cells (MBFCs) are displaced toward the oocyte and become columnar. Concomitantly, the stretched cells (StCs) become squamous and flatten around the nurse cells. By monitoring the expression of epithelial cadherin and Armadillo, I have discovered that the rate of AJ disassembly between the StCs is affected in follicles with somatic clones mutant for fringe or Delta and Serrate. This results in abnormal StC flattening and delayed MBFC displacement. Additionally, accumulation of the myosin II heavy chain Zipper is delayed at the AJs that require disassembly. Together, my results demonstrate that the Notch pathway controls AJ remodeling between the StCs and that this role is crucial for the timing of MBFC displacement and StC flattening. This provides new evidence that Notch, besides playing a key role in cell differentiation, also controls cell morphogenesis.
Collapse
Affiliation(s)
- Muriel Grammont
- Institut National de la Santé et de la Recherche Medicale, Unité 384, Clermont-Ferrand F-63001, France.
| |
Collapse
|
36
|
Conder R, Yu H, Zahedi B, Harden N. The serine/threonine kinase dPak is required for polarized assembly of F-actin bundles and apical–basal polarity in the Drosophila follicular epithelium. Dev Biol 2007; 305:470-82. [PMID: 17383630 DOI: 10.1016/j.ydbio.2007.02.034] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 01/29/2007] [Accepted: 02/23/2007] [Indexed: 01/24/2023]
Abstract
During epithelial development cells become polarized along their apical-basal axis and some epithelia also exhibit polarity in the plane of the tissue. Mutations in the gene encoding a Drosophila Pak family serine/threonine kinase, dPak, disrupt the follicular epithelium that covers developing egg chambers during oogenesis. The follicular epithelium normally exhibits planar polarized organization of basal F-actin bundles such that they lie perpendicular to the anterior-posterior axis of the egg chamber, and requires contact with the basement membrane for apical-basal polarization. During oogenesis, dPak becomes localized to the basal end of follicle cells and is required for polarized organization of the basal actin cytoskeleton and for epithelial integrity and apical-basal polarity. The receptor protein tyrosine phosphatase Dlar and integrins, all receptors for extracellular matrix proteins, are required for polarization of the basal F-actin bundles, and for correct dPak localization in follicle cells. dpak mutant follicle cells show increased beta(Heavy)-spectrin levels, and we speculate that dPak regulation of beta(Heavy)-spectrin, a known participant in the maintenance of membrane domains, is required for correct apical-basal polarization of the membrane. We propose that dPak mediates communication between the basement membrane and intracellular proteins required for polarization of the basal F-actin and for apical-basal polarity.
Collapse
Affiliation(s)
- Ryan Conder
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | | | | | | |
Collapse
|
37
|
Szafranski P, Goode S. Basolateral junctions are sufficient to suppress epithelial invasion duringDrosophilaoogenesis. Dev Dyn 2007; 236:364-73. [PMID: 17103414 DOI: 10.1002/dvdy.21020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Epithelial junctions play crucial roles during metazoan evolution and development by facilitating tissue formation, maintenance, and function. Little is known about the role of distinct types of junctions in controlling epithelial transformations leading to invasion of neighboring tissues. Discovering the key junction complexes that control these processes and how they function may also provide mechanistic insight into carcinoma cell invasion. Here, using the Drosophila ovary as a model, we show that four proteins of the basolateral junction (BLJ), Fasciclin-2, Neuroglian, Discs-large, and Lethal-giant-larvae, but not proteins of other epithelial junctions, directly suppress epithelial tumorigenesis and invasion. Remarkably, the expression pattern of Fasciclin-2 predicts which cells will invade. We compared the apicobasal polarity of BLJ tumor cells to border cells (BCs), an epithelium-derived cluster that normally migrates during mid-oogenesis. Both tumor cells and BCs differentiate a lateralized membrane pattern that is necessary but not sufficient for invasion. Independent of lateralization, derepression of motility pathways is also necessary, as indicated by a strong linear correlation between faster BC migration and an increased incidence of tumor invasion. However, without membrane lateralization, derepression of motility pathways is also not sufficient for invasion. Our results demonstrate that spatiotemporal patterns of basolateral junction activity directly suppress epithelial invasion by organizing the cooperative activity of distinct polarity and motility pathways.
Collapse
|
38
|
Hülsmeier J, Pielage J, Rickert C, Technau GM, Klämbt C, Stork T. Distinct functions of alpha-Spectrin and beta-Spectrin during axonal pathfinding. Development 2007; 134:713-22. [PMID: 17215305 DOI: 10.1242/dev.02758] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell-shape changes during development require a precise coupling of the cytoskeleton with proteins situated in the plasma membrane. Important elements controlling the shape of cells are the Spectrin proteins that are expressed as a subcortical cytoskeletal meshwork linking specific membrane receptors with F-actin fibers. Here, we demonstrate that Drosophila karussell mutations affect beta-spectrin and lead to distinct axonal patterning defects in the embryonic CNS. karussell mutants display a slit-sensitive axonal phenotype characterized by axonal looping in stage-13 embryos. Further analyses of individual, labeled neuroblast lineages revealed abnormally structured growth cones in these animals. Cell-type-specific rescue experiments demonstrate that beta-Spectrin is required autonomously and non-autonomously in cortical neurons to allow normal axonal patterning. Within the cell, beta-Spectrin is associated with alpha-Spectrin. We show that expression of the two genes is tightly regulated by post-translational mechanisms. Loss of beta-Spectrin significantly reduces levels of neuronal alpha-Spectrin expression, whereas gain of beta-Spectrin leads to an increase in alpha-Spectrin protein expression. Because the loss of alpha-spectrin does not result in an embryonic nervous system phenotype, beta-Spectrin appears to act at least partially independent of alpha-Spectrin to control axonal patterning.
Collapse
Affiliation(s)
- Jörn Hülsmeier
- Institut für Neurobiologie, Badestr. 9, 48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Tian E, Ten Hagen KG. A UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase is required for epithelial tube formation. J Biol Chem 2007; 282:606-14. [PMID: 17098739 DOI: 10.1074/jbc.m606268200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Epithelial tubes are essential for the proper function of a diverse array of eukaryotic organs. Here we present a novel class of genes required for maintaining epithelial cell shape, polarity, and paracellular barrier function in the Drosophila embryonic tracheal system. Mutations in one member of the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase family (pgant35A) are recessive lethal and result in tracheal tubes that are irregular in diameter and morphology. Further analysis of the pgant35A mutants reveals diminished levels of the apical determinant Crbs and the luminal marker 2A12, concomitant with increased staining in cytoplasmic vesicles within tracheal cells. GalNAc-containing glycoproteins are severely diminished along the apical region of the tracheal system as well. Tracheal cells become irregular in size and shape, and septate junction proteins are mislocalized to a more apical position. Most notably, paracellular barrier function is lost in the tracheal system of the mutants. Overexpression of wild type pgant35A under control of the trachea-specific breathless (btl) promoter results in partial rescue of the lethality. We propose a model where pgant35A is required to establish proper apical composition of tracheal cells by influencing apical delivery of proteins/glycoproteins. Disruption of the normal apical content results in altered cell morphology and loss of paracellular barrier function. These studies demonstrate a previously unrecognized requirement for mucin-type O-glycosylation in epithelial tube integrity and have obvious implications for epithelial morphogenesis in higher eukaryotes, since a unique ortholog to pgant35A exists in mammals.
Collapse
Affiliation(s)
- E Tian
- Developmental Glycobiology Unit, NIDCR, National Institutes of Health, Bethesda, Maryland 20892-4370, USA
| | | |
Collapse
|
40
|
Fakhouri M, Elalayli M, Sherling D, Hall JD, Miller E, Sun X, Wells L, LeMosy EK. Minor proteins and enzymes of the Drosophila eggshell matrix. Dev Biol 2006; 293:127-41. [PMID: 16515779 PMCID: PMC2701256 DOI: 10.1016/j.ydbio.2006.01.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 01/26/2006] [Accepted: 01/27/2006] [Indexed: 11/29/2022]
Abstract
The Drosophila eggshell provides an in vivo model system for extracellular matrix assembly, in which programmed gene expression, cell migrations, extracellular protein trafficking, proteolytic processing, and cross-linking are all required to generate a multi-layered and regionally complex architecture. While abundant structural components of the eggshell are known and are being characterized, less is known about non-abundant structural, regulatory, and enzymatic components that are likely to play critical roles in eggshell assembly. We have used sensitive mass spectrometry-based analyses of fractionated eggshell matrices to validate six previously predicted eggshell proteins and to identify eleven novel components, and have characterized the expression patterns of many of their mRNAs. Among these are several putative structural or regulatory (non-enzymatic) proteins, most larger in mass than the major eggshell proteins and often showing preferential expression in follicle cells overlying specific structural features of the eggshell. Of particular note are the putative enzymes, some likely to be involved in matrix cross-linking (two yellow family members previously implicated in eggshell integrity, a heme peroxidase, and a small-molecule oxidoreductase) and others possibly involved in matrix proteolysis or adhesion (proteins related to cathepsins B and D). This work provides a framework for future molecular studies of eggshell assembly.
Collapse
Affiliation(s)
- Mazen Fakhouri
- Department of Cellular Biology and Anatomy, Medical College of Georgia, 1120 15 St., CB2915, Augusta, GA 30912, USA
| | - Maggie Elalayli
- Department of Cellular Biology and Anatomy, Medical College of Georgia, 1120 15 St., CB2915, Augusta, GA 30912, USA
| | | | - Jacklyn D. Hall
- Department of Cellular Biology and Anatomy, Medical College of Georgia, 1120 15 St., CB2915, Augusta, GA 30912, USA
| | | | - Xutong Sun
- Department of Cellular Biology and Anatomy, Medical College of Georgia, 1120 15 St., CB2915, Augusta, GA 30912, USA
| | | | - Ellen K. LeMosy
- Department of Cellular Biology and Anatomy, Medical College of Georgia, 1120 15 St., CB2915, Augusta, GA 30912, USA
| |
Collapse
|
41
|
Albrecht S, Wang S, Holz A, Bergter A, Paululat A. The ADAM metalloprotease Kuzbanian is crucial for proper heart formation in Drosophila melanogaster. Mech Dev 2006; 123:372-87. [PMID: 16713197 DOI: 10.1016/j.mod.2006.03.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 03/07/2006] [Accepted: 03/09/2006] [Indexed: 10/24/2022]
Abstract
We have screened a collection of EMS mutagenized fly lines in order to identify genes involved in cardiogenesis. In the present work, we have studied a group of alleles exhibiting a hypertrophic heart. Our analysis revealed that the ADAM protein (A Disintegrin And Metalloprotease) Kuzbanian, which is the functional homologue of the vertebrate ADAM10, is crucial for proper heart formation. ADAMs are a family of transmembrane proteins that play a critical role during the proteolytic conversion (shedding) of membrane bound proteins to soluble forms. Enzymes harboring a sheddase function recently became candidates for causing several congenital diseases, like distinct forms of the Alzheimer disease. ADAMs play also a pivotal role during heart formation and vascularisation in vertebrates, therefore mutations in ADAM genes potentially could cause congenital heart defects in humans. In Drosophila, the zygotic loss of an active form of the Kuzbanian protein results in a dramatic excess of cardiomyocytes, accompanied by a loss of pericardial cells. Our data presented herein suggest that Kuzbanian acts during lateral inhibition within the cardiac primordium. Furthermore we discuss a second function of Kuzbanian in heart cell morphogenesis.
Collapse
Affiliation(s)
- Stefanie Albrecht
- Universität Osnabrück, Fachbereich Biologie/Chemie, Zoologie, Barbarastrasse 11, D-49069 Osnabrück, Germany
| | | | | | | | | |
Collapse
|
42
|
Phillips MD, Thomas GH. Brush border spectrin is required for early endosome recycling in Drosophila. J Cell Sci 2006; 119:1361-70. [PMID: 16537648 DOI: 10.1242/jcs.02839] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An apical brush border is a characteristic of many mature epithelia. This dynamic structure consists of dense microvilli supported by F-actin bundles that protrude into the apical cytoplasm, where they are crosslinked by spectrin and myosin II to form the terminal web. Little is known about the terminal web, through which vesicles transit to and from the apical membrane. Analysis of mutations in beta(Heavy)-spectrin, the Drosophila brush border spectrin, reveals that this protein is necessary for the maintenance of Rab5 endosomes in the midgut. As a consequence, an apical H+ V-ATPase that is probably responsible for lumenal acidification is lost both from the brush border and Rab5 endosomes. Epistasis tests indicate that beta(Heavy)-spectrin is required during endocytosis after Dynamin and before Rab5-mediated endosome activities. These data are consistent with the location of spectrin in the terminal web, and suggest that this molecule is required for correct sorting decisions at the early endosome.
Collapse
Affiliation(s)
- Matthew D Phillips
- Departments of Biology, and of Biochemistry and Molecular Biology, The Pennsylvania State University, 208 Erwin W. Mueller Laboratory, University Park, PA 16802, USA
| | | |
Collapse
|
43
|
Praitis V, Ciccone E, Austin J. SMA-1 spectrin has essential roles in epithelial cell sheet morphogenesis in C. elegans. Dev Biol 2005; 283:157-70. [PMID: 15890334 DOI: 10.1016/j.ydbio.2005.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 03/24/2005] [Accepted: 04/06/2005] [Indexed: 01/27/2023]
Abstract
During Caenorhabditis elegans development, the embryo acquires its vermiform shape due to changes in the shape of epithelial cells, a process that requires an apically localized actin cytoskeleton. We show that SMA-1, an ortholog of beta(H)-spectrin required for normal morphogenesis, localizes to the apical membrane of epithelial cells when these cells are rapidly elongating. In spc-1 alpha-spectrin mutants, SMA-1 localizes to the apical membrane but its organization is altered, consistent with the hypothesis these proteins act together to form an apically localized spectrin-based membrane skeleton (SBMS). SMA-1 is required to maintain the association between actin and the apical membrane; sma-1 mutant embryos fail to elongate because actin, which provides the driving force for cell shape change, dissociates from the apical membrane skeleton during morphogenesis. Analysis of sma-1 expression constructs and mutant strains indicates SMA-1 maintains the association between actin and the apical membrane via interactions at its N-terminus and this activity is independent of alpha-spectrin. SMA-1 also preserves dynamic changes in the organization of the apical membrane skeleton. Taken together, our results show the SMA-1 SBMS plays a dynamic role in converting changes in actin organization into changes in epithelial cell shape during C. elegans embryogenesis.
Collapse
Affiliation(s)
- Vida Praitis
- Biology Department, Grinnell College, Grinnell, IA 50112, USA.
| | | | | |
Collapse
|
44
|
Zarnescu DC, Jin P, Betschinger J, Nakamoto M, Wang Y, Dockendorff TC, Feng Y, Jongens TA, Sisson JC, Knoblich JA, Warren ST, Moses K. Fragile X protein functions with lgl and the par complex in flies and mice. Dev Cell 2005; 8:43-52. [PMID: 15621528 DOI: 10.1016/j.devcel.2004.10.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 09/19/2004] [Accepted: 10/22/2004] [Indexed: 11/22/2022]
Abstract
Fragile X syndrome, the most common form of inherited mental retardation, is caused by loss of function for the Fragile X Mental Retardation 1 gene (FMR1). FMR1 protein (FMRP) has specific mRNA targets and is thought to be involved in their transport to subsynaptic sites as well as translation regulation. We report a saturating genetic screen of the Drosophila autosomal genome to identify functional partners of dFmr1. We recovered 19 mutations in the tumor suppressor lethal (2) giant larvae (dlgl) gene and 90 mutations at other loci. dlgl encodes a cytoskeletal protein involved in cellular polarity and cytoplasmic transport and is regulated by the PAR complex through phosphorylation. We provide direct evidence for a Fmrp/Lgl/mRNA complex, which functions in neural development in flies and is developmentally regulated in mice. Our data suggest that Lgl may regulate Fmrp/mRNA sorting, transport, and anchoring via the PAR complex.
Collapse
Affiliation(s)
- Daniela C Zarnescu
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Qian L, Liu J, Bodmer R. Neuromancer Tbx20-related genes (H15/midline) promote cell fate specification and morphogenesis of the Drosophila heart. Dev Biol 2005; 279:509-24. [PMID: 15733676 DOI: 10.1016/j.ydbio.2005.01.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 01/11/2005] [Indexed: 11/22/2022]
Abstract
The Tbx family of transcription factors are prominently expressed in the early cardiac primordium throughout the animal kingdom. Mutations in Tbx genes result invariably in defective formation and function of the heart, including congenital heart disease in humans. Similar to their vertebrate counterpart, the Drosophila Tbx20 gene pair, neuromancer1 (nmr1, FlyBase:H15) and neuromancer2 (nmr2, Flybase:mid), exhibits a dynamic expression pattern, including in all contractile myocardial cells. Deletion mutants of nmr1 combined with mesoderm-specific knock-down of nmr2 exhibit phenotypes that suggest nmr is critical for correct specification of the cardiac progenitor populations as well as for morphogenesis and assembly of the contractile heart tube. Loss-of-nmr-function causes a switch in cell fates in the cardiogenic region, in that the progenitors expressing the homeobox gene even skipped (eve) are expanded accompanied by a corresponding reduction of the progenitors expressing the homeobox gene ladybird (lbe). As a result, the number of differentiating myocardial cells is severely reduced whereas pericardial cell populations are expanded. Conversely, pan-mesodermal expression of nmr represses eve, while causing an expansion of cardiac lbe expression, as well as ectopic mesodermal expression of the homeobox gene tinman. In addition, nmr mutants with less severe penetrance exhibit cell alignment defects of the myocardium at the dorsal midline, suggesting nmr is also required for cell polarity acquisition of the heart tube. In exploring the regulation of nmr, we find that the GATA factor Pannier is essential for cardiac expression, and acts synergistically with Tinman in promoting nmr expression. Moreover, reducing nmr function in the absence of pannier further aggravates the deficit in cardiac mesoderm specification. Taken together, the data suggest that nmr acts both in concert with and subsequent to pannier and tinman in cardiac specification and differentiation. We propose that nmr is another determinant of cardiogenesis, along with tinman and pannier.
Collapse
Affiliation(s)
- Li Qian
- The Burnham Institute, Center for Neuroscienes and Aging, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
46
|
Horne-Badovinac S, Bilder D. Mass transit: Epithelial morphogenesis in theDrosophila egg chamber. Dev Dyn 2005; 232:559-74. [PMID: 15704134 DOI: 10.1002/dvdy.20286] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epithelial cells use a striking array of morphogenetic behaviors to sculpt organs and body plans during development. Although it is clear that epithelial morphogenesis is largely driven by cytoskeletal rearrangements and changes in cell adhesion, little is known about how these processes are coordinated to construct complex biological structures from simple sheets of cells. The follicle cell epithelium of the Drosophila egg chamber exhibits a diverse range of epithelial movements in a genetically accessible tissue, making it an outstanding system for the study of epithelial morphogenesis. In this review, we move chronologically through the process of oogenesis, highlighting the dynamic movements of the follicle cells. We discuss the cellular architecture and patterning events that set the stage for morphogenesis, detail individual cellular movements, and focus on current knowledge of the cellular processes that drive follicle cell behavior.
Collapse
Affiliation(s)
- Sally Horne-Badovinac
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720-3200, USA
| | | |
Collapse
|
47
|
Zhang X, Yuan M, Wang X. Identification and function analysis of spectrin-like protein in pollen tubes of lily (Lilium davidii Duch). CHINESE SCIENCE BULLETIN-CHINESE 2004. [DOI: 10.1007/bf03184130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Lemmers C, Médina E, Lane-Guermonprez L, Arsanto JP, Le Bivic A. Rôle des protéines Crumbs dans le contrôle de la morphogenèse des cellules épithéliales et des photorécepteurs. Med Sci (Paris) 2004; 20:663-7. [PMID: 15329816 DOI: 10.1051/medsci/2004206-7663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Degeneration of retina can have many causes and among the genes involved, CRB1 has been shown to be associated with Retinitis pigmentosa (RP) group 12 and Leber congenital amaurosis (LCA), two dramatic pathologies in young patients. CRB1 belongs to a family of genes conserved from Caenorhabditis elegans to human. In Drosophila melanogaster, for example, crb is essential both for the formation of the adherens junctions in epithelial cells of ectodermal origin during gastrulation and for the morphogenesis of photoreceptors in the eye. Crumbs is a transmembrane protein with a short cytoplasmic domain that interacts with scaffold proteins, Stardust and Discs lost, and with the apical cytoskeleton made of moesin and betaheavy-spectrin. The extracellular domain of Crumbs is essential for its function in photoreceptors but so far there are no known proteins interacting with it. In human, there are three known crb homologues, CRB1, 2 and 3, and CRB1 is expressed in the retina and localizes to the adherens junctions of the rods. Based on the model drawn from Drosophila, CRB1 could be involved in maintaining the morphology of rods to ensure a normal function of the retina. This is supported by the fact that the homologues of the known partners of Crumbs are also conserved in human and expressed in the retina. Understanding the precise molecular mechanism by which CRB1 acts will help to find new therapies for patients suffering from RP12 and LCA.
Collapse
Affiliation(s)
- Céline Lemmers
- UMR 6156, Laboratoire de neurogenèse et morphogenèse au cours du développement et chez l'adulte (NMDA), IBDM, Campus de Luminy, Case 907. 13288 Marseille Cedex 09. France
| | | | | | | | | |
Collapse
|
49
|
Kroschewski R. Molecular Mechanisms of Epithelial Polarity: About Shapes, Forces, and Orientation Problems. Physiology (Bethesda) 2004; 19:61-6. [PMID: 15016904 DOI: 10.1152/nips.01501.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In a variety of organs, epithelial cells assemble into networks of cysts and tubules. Such structures can be reproduced in vitro. Here the importance of plasma membrane compartmentalization and forces that drive morphogenetic events during cystogenesis are discussed.
Collapse
Affiliation(s)
- Ruth Kroschewski
- Institute of Biochemistry, Swiss Federal Institute of Technology Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
50
|
Szafranski P, Goode S. A Fasciclin 2 morphogenetic switch organizes epithelial cell cluster polarity and motility. Development 2004; 131:2023-36. [PMID: 15056617 DOI: 10.1242/dev.01097] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Little is known about how intercellular communication is regulated in epithelial cell clusters to control delamination and migration. We investigate this problem using Drosophila border cells as a model. We find that just preceding cell cluster delamination, expression of transmembrane immunoglobulin superfamily member, Fasciclin 2, is lost in outer border cells, but not in inner polar cells of the cluster. Loss of Fasciclin 2 expression in outer border cells permits a switch in Fasciclin 2 polarity in the inner polar cells. This polarity switch, which is organized in collaboration with neoplastic tumor suppressors Discs large and Lethal-giant-larvae, directs cluster asymmetry essential for timing delamination from the epithelium. Fas2-mediated communication between polar and border cells maintains localization of Discs large and Lethal-giant-larvae in border cells to inhibit the rate of cluster migration. These findings are the first to show how a switch in cell adhesion molecule polarity regulates asymmetry and delamination of an epithelial cell cluster. The finding that Discs large and Lethal-giant-larvae inhibit the rate of normal cell cluster movement suggests that their loss in metastatic tumors may directly contribute to tumor motility. Furthermore, our results provide novel insight into the intimate link between epithelial polarity and acquisition of motile polarity that has important implications for development of invasive carcinomas.
Collapse
Affiliation(s)
- Przemyslaw Szafranski
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|