1
|
Basu S, Farago O. Mixing small proteins with lipids and cholesterol. J Chem Phys 2024; 161:224902. [PMID: 39651818 DOI: 10.1063/5.0239257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/25/2024] [Indexed: 12/11/2024] Open
Abstract
Many ternary mixtures composed of saturated and unsaturated lipids with cholesterol (Chol) exhibit a region of coexistence between liquid-disordered (Ld) and liquid-ordered (Lo) domains, bearing some similarities to lipid rafts in biological membranes. However, biological rafts also contain many proteins that interact with the lipids and modify the distribution of lipids. Here, we extend a previously published lattice model of ternary DPPC/DOPC/Chol mixtures by introducing a small amount of small proteins (peptides). We use Monte Carlo simulations to explore the mixing phase behavior of the components as a function of the interaction parameter representing the affinity between the proteins and the saturated DPPC chains and for different mixture compositions. At moderate fractions of DPPC, the system is in a two-phase Ld + Lo coexistence, and the proteins exhibit a simple partition behavior between the phases that depends on the protein-lipid affinity parameter. At low DPPC compositions, the mixture is in Ld phase with local nanoscopic ordered domains. The addition of proteins with sufficiently strong attraction to the saturated lipids can induce the separation of a distinct Lo large domain with tightly packed gel-like clusters of proteins and saturated lipids. Consistent with the theory of phase transitions, we observe that the domain sizes grow when the mixture composition is in the vicinity of the critical point. Our simulations show that the addition of a small amount of proteins to such mixtures can cause their size to grow even further and lead to the formation of metastable dynamic Lo domains with sizes comparable to biological rafts.
Collapse
Affiliation(s)
- Subhadip Basu
- Department of Biomedical Engineering, Ben Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Oded Farago
- Department of Biomedical Engineering, Ben Gurion University of the Negev, Be'er Sheva 84105, Israel
| |
Collapse
|
2
|
Stefanski KM, Huang H, Luu DD, Hutchison JM, Saksena N, Fisch AJ, Hasaka TP, Bauer JA, Kenworthy AK, Van Horn WD, Sanders CR. Small-Molecule Modulators of Lipid Raft Stability and Protein-Raft Partitioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620521. [PMID: 39713458 PMCID: PMC11661060 DOI: 10.1101/2024.10.28.620521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Development of an understanding of membrane nanodomains colloquially known as "lipid rafts" has been hindered by a lack of pharmacological tools to manipulate rafts and protein affinity for rafts. We screened 24,000 small molecules for modulators of the affinity of peripheral myelin protein 22 (PMP22) for rafts in giant plasma membrane vesicles (GPMVs). Hits were counter-screened against another raft protein, MAL, and tested for impact on raft, leading to two classes of compounds. Class I molecules altered the raft affinity of PMP22 and MAL and also reduced raft formation in a protein-dependent manner. Class II molecules modulated raft formation in a protein-independent manner. This suggests independent forces work collectively to stabilize lipid rafts. Both classes of compounds altered membrane fluidity in cells and modulated TRPM8 channel function. These compounds provide new tools for probing lipid raft function in cells and for furthering our understanding of raft biophysics. Teaser Compounds have been discovered that modulate the affinity of membrane proteins for lipid rafts as well as raft formation.
Collapse
|
3
|
Yang GS, Wagenknecht-Wiesner A, Yin B, Suresh P, London E, Baird BA, Bag N. Lipid-driven interleaflet coupling of plasma membrane order regulates FcεRI signaling in mast cells. Biophys J 2024; 123:2256-2270. [PMID: 37533258 PMCID: PMC11331041 DOI: 10.1016/j.bpj.2023.07.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023] Open
Abstract
Interleaflet coupling-the influence of one leaflet on the properties of the opposing leaflet-is a fundamental plasma membrane organizational principle. This coupling is proposed to participate in maintaining steady-state biophysical properties of the plasma membrane, which in turn regulates some transmembrane signaling processes. A prominent example is antigen (Ag) stimulation of signaling by clustering transmembrane receptors for immunoglobulin E (IgE), FcεRI. This transmembrane signaling depends on the stabilization of ordered regions in the inner leaflet for sorting of intracellular signaling components. The resting inner leaflet has a lipid composition that is generally less ordered than the outer leaflet and that does not spontaneously phase separate in model membranes. We propose that interleaflet coupling can mediate ordering and disordering of the inner leaflet, which is poised in resting cells to reorganize upon stimulation. To test this in live cells, we first established a straightforward approach to evaluate induced changes in membrane order by measuring inner leaflet diffusion of lipid probes by imaging fluorescence correlation spectroscopy, by imaging fluorescence correlation spectroscopy (ImFCS), before and after methyl-α-cyclodexrin (mαCD)-catalyzed exchange of outer leaflet lipids (LEX) with exogenous order- or disorder-promoting phospholipids. We examined the functional impact of LEX by monitoring two Ag-stimulated responses: recruitment of cytoplasmic Syk kinase to the inner leaflet and exocytosis of secretory granules (degranulation). Based on the ImFCS data in resting cells, we observed global increase or decrease of inner leaflet order when outer leaflet is exchanged with order- or disorder-promoting lipids, respectively. We find that the degree of both stimulated Syk recruitment and degranulation correlates positively with LEX-mediated changes of inner leaflet order in resting cells. Overall, our results show that resting-state lipid ordering of the outer leaflet influences the ordering of the inner leaflet, likely via interleaflet coupling. This imposed lipid reorganization modulates transmembrane signaling stimulated by Ag clustering of IgE-FcεRI.
Collapse
Affiliation(s)
- Gil-Suk Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | | | - Boyu Yin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Pavana Suresh
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Nirmalya Bag
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York; Department of Chemistry, Indian Institute of Technology, Kharagpur, India.
| |
Collapse
|
4
|
Osso LA, Hughes EG. Dynamics of mature myelin. Nat Neurosci 2024; 27:1449-1461. [PMID: 38773349 PMCID: PMC11515933 DOI: 10.1038/s41593-024-01642-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/05/2024] [Indexed: 05/23/2024]
Abstract
Myelin, which is produced by oligodendrocytes, insulates axons to facilitate rapid and efficient action potential propagation in the central nervous system. Traditionally viewed as a stable structure, myelin is now known to undergo dynamic modulation throughout life. This Review examines these dynamics, focusing on two key aspects: (1) the turnover of myelin, involving not only the renewal of constituents but the continuous wholesale replacement of myelin membranes; and (2) the structural remodeling of pre-existing, mature myelin, a newly discovered form of neural plasticity that can be stimulated by external factors, including neuronal activity, behavioral experience and injury. We explore the mechanisms regulating these dynamics and speculate that myelin remodeling could be driven by an asymmetry in myelin turnover or reactivation of pathways involved in myelin formation. Finally, we outline how myelin remodeling could have profound impacts on neural function, serving as an integral component of behavioral adaptation.
Collapse
Affiliation(s)
- Lindsay A Osso
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ethan G Hughes
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
5
|
Zhukov A, Vereshchagin M. Polar Glycerolipids and Membrane Lipid Rafts. Int J Mol Sci 2024; 25:8325. [PMID: 39125896 PMCID: PMC11312961 DOI: 10.3390/ijms25158325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Current understanding of the structure and functioning of biomembranes is impossible without determining the mechanism of formation of membrane lipid rafts. The formation of liquid-ordered and disordered phases (Lo and Ld) and lipid rafts in membranes and their simplified models is discussed. A new consideration of the processes of formation of lipid phases Lo and Ld and lipid rafts is proposed, taking into account the division of each of the glycerophospholipids into several groups. Generally accepted three-component schemes for modeling the membrane structure are critically considered. A four-component scheme is proposed, which is designed to more accurately assume the composition of lipids in the resulting Lo and Ld phases. The role of the polar head groups of phospholipids and, in particular, phosphatidylethanolamine is considered. The structure of membrane rafts and the possible absence of a clear boundary between the Lo and Ld phases are discussed.
Collapse
Affiliation(s)
| | - Mikhail Vereshchagin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia;
| |
Collapse
|
6
|
Yu C, Richly M, Hoang TT, El Beheiry M, Türkcan S, Masson JB, Alexandrou A, Bouzigues CI. Confinement energy landscape classification reveals membrane receptor nano-organization mechanisms. Biophys J 2024; 123:1882-1895. [PMID: 38845200 PMCID: PMC11267427 DOI: 10.1016/j.bpj.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/01/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
The cell membrane organization has an essential functional role through the control of membrane receptor confinement in micro- or nanodomains. Several mechanisms have been proposed to account for these properties, although some features have remained controversial, notably the nature, size, and stability of cholesterol- and sphingolipid-rich domains or lipid rafts. Here, we probed the effective energy landscape acting on single-nanoparticle-labeled membrane receptors confined in raft nanodomains- epidermal growth factor receptor (EGFR), Clostridium perfringens ε-toxin receptor (CPεTR), and Clostridium septicum α-toxin receptor (CSαTR)-and compared it with hop-diffusing transferrin receptors. By establishing a new analysis pipeline combining Bayesian inference, decision trees, and clustering approaches, we systematically classified single-protein trajectories according to the type of effective confining energy landscape. This revealed the existence of only two distinct organization modalities: confinement in a quadratic energy landscape for EGFR, CPεTR, and CSαTR (A), and free diffusion in confinement domains resulting from the steric hindrance due to F-actin barriers for transferrin receptor (B). The further characterization of effective confinement energy landscapes by Bayesian inference revealed the role of interactions with the domain environment in cholesterol- and sphingolipid-rich domains with (EGFR) or without (CPεTR and CSαTR) interactions with F-actin to regulate the confinement energy depth. These two distinct mechanisms result in the same organization type (A). We revealed that the apparent domain sizes for these receptor trajectories resulted from Brownian exploration of the energy landscape in a steady-state-like regime at a common effective temperature, independently of the underlying molecular mechanisms. These results highlight that confinement domains may be adequately described as interaction hotspots rather than rafts with abrupt domain boundaries. Altogether, these results support a new model for functional receptor confinement in membrane nanodomains and pave the way to the constitution of an atlas of membrane protein organization.
Collapse
Affiliation(s)
- Chao Yu
- Laboratoire Optique et Biosciences, CNRS UMR74645, Inserm U1182, Ecole Polytechnique, Institut Polytechnique Paris, Palaiseau, France
| | - Maximilian Richly
- Laboratoire Optique et Biosciences, CNRS UMR74645, Inserm U1182, Ecole Polytechnique, Institut Polytechnique Paris, Palaiseau, France
| | - Thi Thuy Hoang
- Laboratoire Optique et Biosciences, CNRS UMR74645, Inserm U1182, Ecole Polytechnique, Institut Polytechnique Paris, Palaiseau, France
| | - Mohammed El Beheiry
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Decision and Bayesian Computation, Paris, France; Épiméthée, INRIA, Paris, France
| | - Silvan Türkcan
- Laboratoire Optique et Biosciences, CNRS UMR74645, Inserm U1182, Ecole Polytechnique, Institut Polytechnique Paris, Palaiseau, France
| | - Jean-Baptiste Masson
- Institut Pasteur, Université Paris Cité, CNRS UMR 3571, Decision and Bayesian Computation, Paris, France; Épiméthée, INRIA, Paris, France
| | - Antigoni Alexandrou
- Laboratoire Optique et Biosciences, CNRS UMR74645, Inserm U1182, Ecole Polytechnique, Institut Polytechnique Paris, Palaiseau, France
| | - Cedric I Bouzigues
- Laboratoire Optique et Biosciences, CNRS UMR74645, Inserm U1182, Ecole Polytechnique, Institut Polytechnique Paris, Palaiseau, France.
| |
Collapse
|
7
|
Pérez-Isidoro R, Valdez-Lara AG, Díaz-Salazar AJ, Hoeppener S, Guerrero-Sánchez C, Quintana-Owen P, Ruiz-Suárez JC, Schubert US, Ayora-Talavera G, De Jesús-Téllez MA, Saldívar-Guerra E. Biophysical investigation of liposome systems decorated with bioconjugated copolymers in the presence of amantadine. J Mater Chem B 2024; 12:5823-5837. [PMID: 38757473 DOI: 10.1039/d4tb00171k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Liposome-based technologies derived from lipids and polymers (e.g., PEGylated liposomes) have been recognized because of their applications in nanomedicine. However, since such systems represent myriad challenges and may promote immune responses, investigation of new biomaterials is mandatory. Here, we report on a biophysical investigation of liposomes decorated with bioconjugated copolymers in the presence (or absence) of amantadine (an antiviral medication). First, copolymers of poly(N,N-dimethylacrylamide-co-fluoresceinacrylate-co-acrylic acid-N-succinimide ester)-block-poly(N-isopropylacrylamide) (PDMA-b-PNIPAM) containing a fluorescence label were biofunctionalized with short peptides that resemble the sequence of the loops 220 and 130 of the binding receptor of the hemagglutinin (HA) protein of the influenza A virus. Then, the bioconjugated copolymers were self-assembled along with liposomes composed of 1,2 dimyristoyl-sn-glycero-3-phosphocholine, sphingomyelin, and cholesterol (MSC). These biohybrid systems, with and without amantadine, were systematically characterized using differential scanning calorimetry (DSC), dynamic light scattering (DLS), and cryogenic transmission electron microscopy (cryoTEM). Finally, the systems were tested in an in vitro study to evaluate cytotoxicity and direct immunofluorescence in Madin Darbin Canine Kidney (MDCK) cells. The biohybrid systems displayed long-term stability, thermo-responsiveness, hydrophilic-hydrophobic features, and fluorescence properties and were presumable endowed with cell targeting properties intrinsically integrated into the amino acid sequences of the utilized peptides, which indeed turn them into promising nanodevices for biomedical applications.
Collapse
Affiliation(s)
- Rosendo Pérez-Isidoro
- Centro de Investigación en Química Aplicada (CIQA), Enrique Reyna, 140, 25294 Saltillo, Coahuila, Mexico.
| | | | - Alma Jessica Díaz-Salazar
- Laboratorio de Bio-fisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 México City, Mexico
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 97743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Carlos Guerrero-Sánchez
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 97743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Patricia Quintana-Owen
- Departamento de Física Aplicada, CINVESTAV-IPN, Unidad Mérida, A.P. 73, Cordemex, 97310 Mérida, Yucatán, Mexico
| | | | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 97743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Guadalupe Ayora-Talavera
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 97743 Jena, Germany.
| | | | - Enrique Saldívar-Guerra
- Centro de Investigación en Química Aplicada (CIQA), Enrique Reyna, 140, 25294 Saltillo, Coahuila, Mexico.
| |
Collapse
|
8
|
Prokisch S, Büttner S. Partitioning into ER membrane microdomains impacts autophagic protein turnover during cellular aging. Sci Rep 2024; 14:13653. [PMID: 38871812 DOI: 10.1038/s41598-024-64493-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 06/09/2024] [Indexed: 06/15/2024] Open
Abstract
Eukaryotic membranes are compartmentalized into distinct micro- and nanodomains that rearrange dynamically in response to external and internal cues. This lateral heterogeneity of the lipid bilayer and associated clustering of distinct membrane proteins contribute to the spatial organization of numerous cellular processes. Here, we show that membrane microdomains within the endoplasmic reticulum (ER) of yeast cells are reorganized during metabolic reprogramming and aging. Using biosensors with varying transmembrane domain length to map lipid bilayer thickness, we demonstrate that in young cells, microdomains of increased thickness mainly exist within the nuclear ER, while progressing cellular age drives the formation of numerous microdomains specifically in the cortical ER. Partitioning of biosensors with long transmembrane domains into these microdomains increased protein stability and prevented autophagic removal. In contrast, reporters with short transmembrane domains progressively accumulated at the membrane contact site between the nuclear ER and the vacuole, the so-called nucleus-vacuole junction (NVJ), and were subjected to turnover via selective microautophagy occurring specifically at these sites. Reporters with long transmembrane domains were excluded from the NVJ. Our data reveal age-dependent rearrangement of the lateral organization of the ER and establish transmembrane domain length as a determinant of membrane contact site localization and autophagic degradation.
Collapse
Affiliation(s)
- Simon Prokisch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|
9
|
Bernard C, Carotenuto AR, Pugno NM, Fraldi M, Deseri L. Modelling lipid rafts formation through chemo-mechanical interplay triggered by receptor-ligand binding. Biomech Model Mechanobiol 2024; 23:485-505. [PMID: 38060155 PMCID: PMC10963483 DOI: 10.1007/s10237-023-01787-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/21/2023] [Indexed: 12/08/2023]
Abstract
Cell membranes, mediator of many biological mechanisms from adhesion and metabolism up to mutation and infection, are highly dynamic and heterogeneous environments exhibiting a strong coupling between biochemical events and structural re-organisation. This involves conformational changes induced, at lower scales, by lipid order transitions and by the micro-mechanical interplay of lipids with transmembrane proteins and molecular diffusion. Particular attention is focused on lipid rafts, ordered lipid microdomains rich of signalling proteins, that co-localise to enhance substance trafficking and activate different intracellular biochemical pathways. In this framework, the theoretical modelling of the dynamic clustering of lipid rafts implies a full multiphysics coupling between the kinetics of phase changes and the mechanical work performed by transmembrane proteins on lipids, involving the bilayer elasticity. This mechanism produces complex interspecific dynamics in which membrane stresses and chemical potentials do compete by determining different morphological arrangements, alteration in diffusive walkways and coalescence phenomena, with a consequent influence on both signalling potential and intracellular processes. Therefore, after identifying the leading chemo-mechanical interactions, the present work investigates from a modelling perspective the spatio-temporal evolution of raft domains to theoretically explain co-localisation and synergy between proteins' activation and raft formation, by coupling diffusive and mechanical phenomena to observe different morphological patterns and clustering of ordered lipids. This could help to gain new insights into the remodelling of cell membranes and could potentially suggest mechanically based strategies to control their selectivity, by orienting intracellular functions and mechanotransduction.
Collapse
Affiliation(s)
- Chiara Bernard
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
| | - Angelo Rosario Carotenuto
- Department of Structures for Engineering and Architecture, University of Naples "Federico II", Naples, Italy
- Laboratory of Integrated Mechanics and Imaging for Testing and Simulation (LIMITS), University of Naples "Federico II", Naples, Italy
| | - Nicola Maria Pugno
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy
- Laboratory for Bioinspired, Bionic, Nano, Meta Materials and Mechanics, University of Trento, Trento, Italy
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Massimiliano Fraldi
- Department of Structures for Engineering and Architecture, University of Naples "Federico II", Naples, Italy
- Laboratory of Integrated Mechanics and Imaging for Testing and Simulation (LIMITS), University of Naples "Federico II", Naples, Italy
- Département de Physique, LPENS, École Normale Supérieure-PSL, Paris, France
| | - Luca Deseri
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento, Italy.
- Department of Mechanical Engineering and Material Sciences, MEMS-SSoE, University of Pittsburgh, Pittsburgh, USA.
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, USA.
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, USA.
| |
Collapse
|
10
|
Yao H, Wang X, Chi J, Chen H, Liu Y, Yang J, Yu J, Ruan Y, Xiang X, Pi J, Xu JF. Exploring Novel Antidepressants Targeting G Protein-Coupled Receptors and Key Membrane Receptors Based on Molecular Structures. Molecules 2024; 29:964. [PMID: 38474476 DOI: 10.3390/molecules29050964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
Major Depressive Disorder (MDD) is a complex mental disorder that involves alterations in signal transmission across multiple scales and structural abnormalities. The development of effective antidepressants (ADs) has been hindered by the dominance of monoamine hypothesis, resulting in slow progress. Traditional ADs have undesirable traits like delayed onset of action, limited efficacy, and severe side effects. Recently, two categories of fast-acting antidepressant compounds have surfaced, dissociative anesthetics S-ketamine and its metabolites, as well as psychedelics such as lysergic acid diethylamide (LSD). This has led to structural research and drug development of the receptors that they target. This review provides breakthroughs and achievements in the structure of depression-related receptors and novel ADs based on these. Cryo-electron microscopy (cryo-EM) has enabled researchers to identify the structures of membrane receptors, including the N-methyl-D-aspartate receptor (NMDAR) and the 5-hydroxytryptamine 2A (5-HT2A) receptor. These high-resolution structures can be used for the development of novel ADs using virtual drug screening (VDS). Moreover, the unique antidepressant effects of 5-HT1A receptors in various brain regions, and the pivotal roles of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and tyrosine kinase receptor 2 (TrkB) in regulating synaptic plasticity, emphasize their potential as therapeutic targets. Using structural information, a series of highly selective ADs were designed based on the different role of receptors in MDD. These molecules have the favorable characteristics of rapid onset and low adverse drug reactions. This review offers researchers guidance and a methodological framework for the structure-based design of ADs.
Collapse
Affiliation(s)
- Hanbo Yao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Xiaodong Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaxin Chi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Haorong Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yilin Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiayi Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jiaqi Yu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Xufu Xiang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
11
|
Kekic M, Hanson KL, Perumal AS, Solana G, Rajendran K, Dash S, Nicolau DV, Dobroiu S, Dos Remedios CG, Nicolau DV. Biosensing using antibody-modulated motility of actin filaments on myosin-coated surfaces. Biosens Bioelectron 2024; 246:115879. [PMID: 38056344 DOI: 10.1016/j.bios.2023.115879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
Motor proteins, such as myosin and kinesin, are biological molecular motors involved in force generation and intracellular transport within living cells. The characteristics of molecular motors, i.e., their motility over long distances, their capacity of transporting cargoes, and their very efficient energy consumption, recommend them as potential operational elements of a new class of dynamic nano-devices, with potential applications in biosensing, analyte concentrators, and biocomputation. A possible design of a biosensor based on protein molecular motor comprises a surface with immobilized motors propelling cytoskeletal filaments, which are decorated with antibodies, presented as side-branches. Upon biomolecular recognition of these branches by secondary antibodies, the 'extensions' on the cytoskeletal filaments can achieve considerable lengths (longer than several diameters of the cytoskeletal filament carrier), thus geometrically impairing or halting motility. Because the filaments are several micrometers long, this sensing mechanism converts an event in the nanometer range, i.e., antibody-antigen sizes, into an event in the micrometer range: the visualization of the halting of motility of microns-long cytoskeletal filaments. Here we demonstrate the proof of concept of a sensing system comprising heavy-mero-myosin immobilized on surfaces propelling actin filaments decorated with actin antibodies, whose movement is halted upon the recognition with secondary anti-actin antibodies. Because antibodies to the actin-myosin system are involved in several rare diseases, the first possible application for such a device may be their prognosis and diagnosis. The results also provide insights into guidelines for designing highly sensitive and very fast biosensors powered by motor proteins.
Collapse
Affiliation(s)
- Murat Kekic
- Muscle Research Unit, Department of Anatomy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kristi L Hanson
- BioNanoEngineering Labs, Faculty of Engineering and Industrial Science, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | | | - Gerardin Solana
- BioNanoEngineering Labs, Faculty of Engineering and Industrial Science, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Kavya Rajendran
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Quebec, H3A 0C3, Canada
| | - Shantoshini Dash
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Quebec, H3A 0C3, Canada
| | - Dan V Nicolau
- BioNanoEngineering Labs, Faculty of Engineering and Industrial Science, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia; Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 1UL, UK
| | - Serban Dobroiu
- Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Quebec, H3A 0C3, Canada
| | - Cristobal G Dos Remedios
- Muscle Research Unit, Department of Anatomy, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Dan V Nicolau
- BioNanoEngineering Labs, Faculty of Engineering and Industrial Science, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia; Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Quebec, H3A 0C3, Canada.
| |
Collapse
|
12
|
Barrantes FJ. Modulation of a rapid neurotransmitter receptor-ion channel by membrane lipids. Front Cell Dev Biol 2024; 11:1328875. [PMID: 38274273 PMCID: PMC10808158 DOI: 10.3389/fcell.2023.1328875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Membrane lipids modulate the proteins embedded in the bilayer matrix by two non-exclusive mechanisms: direct or indirect. The latter comprise those effects mediated by the physicochemical state of the membrane bilayer, whereas direct modulation entails the more specific regulatory effects transduced via recognition sites on the target membrane protein. The nicotinic acetylcholine receptor (nAChR), the paradigm member of the pentameric ligand-gated ion channel (pLGIC) superfamily of rapid neurotransmitter receptors, is modulated by both mechanisms. Reciprocally, the nAChR protein exerts influence on its surrounding interstitial lipids. Folding, conformational equilibria, ligand binding, ion permeation, topography, and diffusion of the nAChR are modulated by membrane lipids. The knowledge gained from biophysical studies of this prototypic membrane protein can be applied to other neurotransmitter receptors and most other integral membrane proteins.
Collapse
Affiliation(s)
- Francisco J. Barrantes
- Biomedical Research Institute (BIOMED), Catholic University of Argentina (UCA)–National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
13
|
Samhan-Arias AK, Poejo J, Marques-da-Silva D, Martínez-Costa OH, Gutierrez-Merino C. Are There Lipid Membrane-Domain Subtypes in Neurons with Different Roles in Calcium Signaling? Molecules 2023; 28:7909. [PMID: 37894616 PMCID: PMC10708093 DOI: 10.3390/molecules28237909] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Lipid membrane nanodomains or lipid rafts are 10-200 nm diameter size cholesterol- and sphingolipid-enriched domains of the plasma membrane, gathering many proteins with different roles. Isolation and characterization of plasma membrane proteins by differential centrifugation and proteomic studies have revealed a remarkable diversity of proteins in these domains. The limited size of the lipid membrane nanodomain challenges the simple possibility that all of them can coexist within the same lipid membrane domain. As caveolin-1, flotillin isoforms and gangliosides are currently used as neuronal lipid membrane nanodomain markers, we first analyzed the structural features of these components forming nanodomains at the plasma membrane since they are relevant for building supramolecular complexes constituted by these molecular signatures. Among the proteins associated with neuronal lipid membrane nanodomains, there are a large number of proteins that play major roles in calcium signaling, such as ionotropic and metabotropic receptors for neurotransmitters, calcium channels, and calcium pumps. This review highlights a large variation between the calcium signaling proteins that have been reported to be associated with isolated caveolin-1 and flotillin-lipid membrane nanodomains. Since these calcium signaling proteins are scattered in different locations of the neuronal plasma membrane, i.e., in presynapses, postsynapses, axonal or dendritic trees, or in the neuronal soma, our analysis suggests that different lipid membrane-domain subtypes should exist in neurons. Furthermore, we conclude that classification of lipid membrane domains by their content in calcium signaling proteins sheds light on the roles of these domains for neuronal activities that are dependent upon the intracellular calcium concentration. Some examples described in this review include the synaptic and metabolic activity, secretion of neurotransmitters and neuromodulators, neuronal excitability (long-term potentiation and long-term depression), axonal and dendritic growth but also neuronal cell survival and death.
Collapse
Affiliation(s)
- Alejandro K. Samhan-Arias
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), C/Arturo Duperier 4, 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas ‘Sols-Morreale’ (CSIC-UAM), C/Arturo Duperier 4, 28029 Madrid, Spain
| | - Joana Poejo
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain;
| | - Dorinda Marques-da-Silva
- LSRE—Laboratory of Separation and Reaction Engineering and LCM—Laboratory of Catalysis and Materials, School of Management and Technology, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Oscar H. Martínez-Costa
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), C/Arturo Duperier 4, 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas ‘Sols-Morreale’ (CSIC-UAM), C/Arturo Duperier 4, 28029 Madrid, Spain
| | - Carlos Gutierrez-Merino
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain;
| |
Collapse
|
14
|
Riitano G, Capozzi A, Recalchi S, Augusto M, Conti F, Misasi R, Garofalo T, Sorice M, Manganelli V. Role of Lipid Rafts on LRP8 Signaling Triggered by Anti-β2-GPI Antibodies in Endothelial Cells. Biomedicines 2023; 11:3135. [PMID: 38137358 PMCID: PMC10740635 DOI: 10.3390/biomedicines11123135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Antiphospholipid antibody syndrome is an autoimmune disease characterized by thrombosis and/or pregnancy morbidity in association with circulating antiphospholipid antibodies, mainly anti-β2 glycoprotein 1 antibodies (anti-β2-GPI antibodies). Previous studies demonstrated that the signaling pathway may involve lipid rafts, plasma membrane microdomains enriched in glycosphingolipid and cholesterol. In this study, we analyzed the signaling pathway of LRP8/ApoER2, a putative receptor of anti-β2-GPI antibodies, through lipid rafts in human endothelial cells. LRP8, Dab2 and endothelial nitric oxide synthase (e-NOS) phosphorylation were evaluated using Western blot, Nitric Oxide (NO) production with cytofluorimetric analysis, LRP8 enrichment in lipid rafts via sucrose gradient fractionation, and scanning confocal microscopy analysis of its association with ganglioside GM1 was also conducted. The analyses demonstrated that affinity-purified anti-β2-GPI antibodies induced LRP8 and Dab-2 phosphorylation, together with a significant decrease in e-NOS phosphorylation, with consequent decrease in NO intracellular production. These effects were almost completely prevented by Methyl-β-cyclodextrin (MβCD), indicating the involvement of lipid rafts. It was supported with the observation of LRP8 enrichment in lipid raft fractions and its association with ganglioside GM1, detected with scanning confocal microscopy. These findings demonstrate that LRP8 signaling triggered by anti-β2-GPI antibodies in endothelial cells occurs through lipid rafts. It represents a new task for valuable therapeutic approaches, such as raft-targeted therapy, including cyclodextrins and statins.
Collapse
Affiliation(s)
- Gloria Riitano
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.R.); (A.C.); (S.R.); (R.M.); (T.G.); (V.M.)
| | - Antonella Capozzi
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.R.); (A.C.); (S.R.); (R.M.); (T.G.); (V.M.)
| | - Serena Recalchi
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.R.); (A.C.); (S.R.); (R.M.); (T.G.); (V.M.)
| | | | - Fabrizio Conti
- Rheumatology Unit, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, 00161 Rome, Italy;
| | - Roberta Misasi
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.R.); (A.C.); (S.R.); (R.M.); (T.G.); (V.M.)
| | - Tina Garofalo
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.R.); (A.C.); (S.R.); (R.M.); (T.G.); (V.M.)
| | - Maurizio Sorice
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.R.); (A.C.); (S.R.); (R.M.); (T.G.); (V.M.)
| | - Valeria Manganelli
- Department of Experimental Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.R.); (A.C.); (S.R.); (R.M.); (T.G.); (V.M.)
| |
Collapse
|
15
|
Tomishige N, Bin Nasim M, Murate M, Pollet B, Didier P, Godet J, Richert L, Sako Y, Mély Y, Kobayashi T. HIV-1 Gag targeting to the plasma membrane reorganizes sphingomyelin-rich and cholesterol-rich lipid domains. Nat Commun 2023; 14:7353. [PMID: 37990014 PMCID: PMC10663554 DOI: 10.1038/s41467-023-42994-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/26/2023] [Indexed: 11/23/2023] Open
Abstract
Although the human immunodeficiency virus type 1 lipid envelope has been reported to be enriched with host cell sphingomyelin and cholesterol, the molecular mechanism of the enrichment is not well understood. Viral Gag protein plays a central role in virus budding. Here, we report the interaction between Gag and host cell lipids using different quantitative and super-resolution microscopy techniques in combination with specific probes that bind endogenous sphingomyelin and cholesterol. Our results indicate that Gag in the inner leaflet of the plasma membrane colocalizes with the outer leaflet sphingomyelin-rich domains and cholesterol-rich domains, enlarges sphingomyelin-rich domains, and strongly restricts the mobility of sphingomyelin-rich domains. Moreover, Gag multimerization induces sphingomyelin-rich and cholesterol-rich lipid domains to be in close proximity in a curvature-dependent manner. Our study suggests that Gag binds, coalesces, and reorganizes pre-existing lipid domains during assembly.
Collapse
Affiliation(s)
- Nario Tomishige
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France.
- Cellular Informatics Laboratory, RIKEN CPR, Wako, Saitama, Japan.
| | - Maaz Bin Nasim
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Motohide Murate
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
- Cellular Informatics Laboratory, RIKEN CPR, Wako, Saitama, Japan
| | - Brigitte Pollet
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Julien Godet
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Ludovic Richert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN CPR, Wako, Saitama, Japan
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France.
| | - Toshihide Kobayashi
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France.
- Cellular Informatics Laboratory, RIKEN CPR, Wako, Saitama, Japan.
| |
Collapse
|
16
|
Toledo-Guardiola SM, Luongo C, Abril-Parreño L, Soriano-Úbeda C, Matás C. Different seminal ejaculated fractions in artificial insemination condition the protein cargo of oviductal and uterine extracellular vesicles in pig. Front Cell Dev Biol 2023; 11:1231755. [PMID: 37868907 PMCID: PMC10587466 DOI: 10.3389/fcell.2023.1231755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023] Open
Abstract
The seminal plasma (SP) is the liquid component of semen that facilitates sperm transport through the female genital tract. SP modulates the activity of the ovary, oviductal environment and uterine function during the periovulatory and early pregnancy period. Extracellular vesicles (EVs) secreted in the oviduct (oEVs) and uterus (uEVs) have been shown to influence the expression of endometrial genes that regulate fertilization and early embryo development. In some species, semen is composed of well-separated fractions that vary in concentration of spermatozoa and SP composition and volume. This study aimed to investigate the impact of different accumulative fractions of the porcine ejaculate (F1, composed of the sperm-rich fraction, SRF; F2, composed of F1 plus the intermediate fraction; F3, composed of F2 plus the post-SRF) on oEVs and uEVs protein cargo. Six days after the onset of estrus, we determined the oEVs and uEVs size and protein concentration in pregnant sows by artificial insemination (AI-sows) and in non-inseminated sows as control (C-sows). We also identified the main proteins in oEVs and uEVs, in AI-F1, AI-F2, AI-F3, and C-sows. Our results indicated that although the size of EVs is similar between AI- and C-sows, the protein concentration of both oEVs and uEVs was significantly lower in AI-sows (p < 0.05). Proteomic analysis identified 38 unique proteins in oEVs from AI-sows, mainly involved in protein stabilization, glycolytic and carbohydrate processes. The uEVs from AI-sows showed the presence of 43 unique proteins, including already-known fertility-related proteins (EZR, HSPAA901, PDS). We also demonstrated that the protein composition of oEVs and uEVs differed depending on the seminal fraction(s) inseminated (F1, F2, or F3). In conclusion, we found specific protein cargo in oEVs and uEVs according to the type of semen fraction the sow was inseminated with and whose functions these specific EVs proteins are closely associated with reproductive processes.
Collapse
Affiliation(s)
- S. M. Toledo-Guardiola
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum Universidad de Murcia, Murcia, Spain
| | - C. Luongo
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum Universidad de Murcia, Murcia, Spain
| | - L. Abril-Parreño
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum Universidad de Murcia, Murcia, Spain
| | - C. Soriano-Úbeda
- Departamento de Medicina, Cirugía y Anatomía Veterinaria, Universidad de Léon, León, Spain
| | - C. Matás
- Departamento de Fisiología, Facultad de Veterinaria, Campus de Excelencia Mare Nostrum Universidad de Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria Pascual Parrilla (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
17
|
Mayor S, Bhat A, Kusumi A. A Survey of Models of Cell Membranes: Toward a New Understanding of Membrane Organization. Cold Spring Harb Perspect Biol 2023; 15:a041394. [PMID: 37643877 PMCID: PMC10547391 DOI: 10.1101/cshperspect.a041394] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The cell membrane, the boundary that separates living cells from their environment, has been the subject of study for over a century. The fluid-mosaic model of Singer and Nicolson in 1972 proposed the plasma membrane as a two-dimensional fluid composed of lipids and proteins. Fifty years hence, advances in biophysical and biochemical tools, particularly optical imaging techniques, have allowed for a better understanding of the physical nature, organization, and composition of cell membranes. This has been made possible by visualizing membrane heterogeneities and their dynamics and appreciating the asymmetrical arrangement of lipids in living cell membranes. Despite these advances, mechanisms underlying the local spatiotemporal organization of membrane components remain unclear. This review surveys various models of membrane organization, culminating in a new model that incorporates nonequilibrium processes and forces exerted by interactions with extramembrane elements such as the actin cytoskeleton. The proposed model provides a comprehensive understanding of membrane organization, taking into account the dynamic nature of the cell membrane and its interactions with its immediate environment.
Collapse
Affiliation(s)
- Satyajit Mayor
- National Centre for Biological Science, TIFR, Bangalore 560065, India
| | - Abrar Bhat
- National Centre for Biological Science, TIFR, Bangalore 560065, India
| | - Akihiro Kusumi
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
18
|
Pinigin KV, Akimov SA. The Membrane-Mediated Interaction of Liquid-Ordered Lipid Domains in the Presence of Amphipathic Peptides. MEMBRANES 2023; 13:816. [PMID: 37887988 PMCID: PMC10608175 DOI: 10.3390/membranes13100816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023]
Abstract
The lipid membranes of living cells are composed of a large number of lipid types and can undergo phase separation with the formation of nanometer-scale liquid-ordered lipid domains, also called rafts. Raft coalescence, i.e., the fusion of lipid domains, is involved in important cell processes, such as signaling and trafficking. In this work, within the framework of the theory of elasticity of lipid membranes, we explore how amphipathic peptides adsorbed on lipid membranes may affect the domain-domain fusion processes. We show that the elastic deformations of lipid membranes drive amphipathic peptides to the boundary of lipid domains, which leads to an increase in the average energy barrier of the domain-domain fusion, even if the surface concentration of amphipathic peptides is low and the domain boundaries are only partially occupied by the peptides. This inhibition of the fusion of lipid domains may lead to negative side effects of using amphipathic peptides as antimicrobial agents.
Collapse
Affiliation(s)
- Konstantin V. Pinigin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| | - Sergey A. Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| |
Collapse
|
19
|
Sakamoto K, Akimoto T, Muramatsu M, Sansom MSP, Metzler R, Yamamoto E. Heterogeneous biological membranes regulate protein partitioning via fluctuating diffusivity. PNAS NEXUS 2023; 2:pgad258. [PMID: 37593200 PMCID: PMC10427746 DOI: 10.1093/pnasnexus/pgad258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/22/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023]
Abstract
Cell membranes phase separate into ordered L o and disordered L d domains depending on their compositions. This membrane compartmentalization is heterogeneous and regulates the localization of specific proteins related to cell signaling and trafficking. However, it is unclear how the heterogeneity of the membranes affects the diffusion and localization of proteins in L o and L d domains. Here, using Langevin dynamics simulations coupled with the phase-field (LDPF) method, we investigate several tens of milliseconds-scale diffusion and localization of proteins in heterogeneous biological membrane models showing phase separation into L o and L d domains. The diffusivity of proteins exhibits temporal fluctuations depending on the field composition. Increases in molecular concentrations and domain preference of the molecule induce subdiffusive behavior due to molecular collisions by crowding and confinement effects, respectively. Moreover, we quantitatively demonstrate that the protein partitioning into the L o domain is determined by the difference in molecular diffusivity between domains, molecular preference of domain, and molecular concentration. These results pave the way for understanding how biological reactions caused by molecular partitioning may be controlled in heterogeneous media. Moreover, the methodology proposed here is applicable not only to biological membrane systems but also to the study of diffusion and localization phenomena of molecules in various heterogeneous systems.
Collapse
Affiliation(s)
- Ken Sakamoto
- Department of System Design Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Takuma Akimoto
- Department of Physics, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Mayu Muramatsu
- Department of Mechanical Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Ralf Metzler
- Institute of Physics & Astronomy, University of Potsdam, Potsdam-Golm 14476, Germany
- Asia Pacific Centre for Theoretical Physics, Pohang 37673, Republic of Korea
| | - Eiji Yamamoto
- Department of System Design Engineering, Keio University, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
20
|
Puff N. Critical Role of Molecular Packing in Lo Phase Membrane Solubilization. MEMBRANES 2023; 13:652. [PMID: 37505018 PMCID: PMC10385406 DOI: 10.3390/membranes13070652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
Membrane solubilization induced by Triton X-100 (TX-100) was investigated. Different membrane compositions and phase states were studied along the detergent titration. Expected solubilization profiles were obtained but new information is provided. The fluorescence of nitrobenzoxadiazole (NBD)-labeled lipids indicates that the liquid-ordered (Lo)/liquid-disordered (Ld) phase coexistence is barely unaffected at sub-solubilizing detergent concentrations and highlights the vesicle-to-micelle transition. Moreover, the location of the NBD group in the bilayer emphasizes a detergent-membrane interaction in the case of the insoluble Lo phase membrane. It has also been shown that the molecular packing of the membrane loosens in the presence of TX-100, regardless of the solubilization profile. Motivated by studies on GPMVs, the solubilization of less ordered Lo phase membranes was considered in order to improve the effect of molecular packing on the extent of solubilization. Membranes composed of SM and Chol in an equimolar ratio doped with different amounts of PC were studied. The more ordered the Lo phase membrane is in the absence of detergent, the less likely it is to be solubilized. Furthermore, and in contrast to what is observed for membranes exhibiting an Lo/Ld phase coexistence, a very small decrease in the molecular packing of the Lo phase membrane radically modifies the extent of solubilization. These results have implications for the reliability of TX-100 insolubility as a method to detect ordered domains.
Collapse
Affiliation(s)
- Nicolas Puff
- Faculté des Sciences et Ingénierie, Sorbonne Université, UFR 925 Physics, F-75005 Paris, France
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, Université Paris Cité, F-75013 Paris, France
| |
Collapse
|
21
|
Woodward X, Javanainen M, Fábián B, Kelly CV. Nanoscale membrane curvature sorts lipid phases and alters lipid diffusion. Biophys J 2023; 122:2203-2215. [PMID: 36604961 PMCID: PMC10257122 DOI: 10.1016/j.bpj.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/23/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
The precise spatiotemporal control of nanoscale membrane shape and composition is the result of a complex interplay of individual and collective molecular behaviors. Here, we employed single-molecule localization microscopy and computational simulations to observe single-lipid diffusion and sorting in model membranes with varying compositions, phases, temperatures, and curvatures. Supported lipid bilayers were created over 50-nm-radius nanoparticles to mimic the size of naturally occurring membrane buds, such as endocytic pits and the formation of viral envelopes. The curved membranes recruited liquid-disordered lipid phases while altering the diffusion and sorting of tracer lipids. Disorder-preferring fluorescent lipids sorted to and experienced faster diffusion on the nanoscale curvature only when embedded in a membrane capable of sustaining lipid phase separation at low temperatures. The curvature-induced sorting and faster diffusion even occurred when the sample temperature was above the miscibility temperature of the planar membrane, implying that the nanoscale curvature could induce phase separation in otherwise homogeneous membranes. Further confirmation and understanding of these results are provided by continuum and coarse-grained molecular dynamics simulations with explicit and spontaneous curvature-phase coupling, respectively. The curvature-induced membrane compositional heterogeneity and altered dynamics were achieved only with a coupling of the curvature with a lipid phase separation. These cross-validating results demonstrate the complex interplay of lipid phases, molecular diffusion, and nanoscale membrane curvature that are critical for membrane functionality.
Collapse
Affiliation(s)
- Xinxin Woodward
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan
| | - Matti Javanainen
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic; Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Balázs Fábián
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Christopher V Kelly
- Department of Physics and Astronomy, Wayne State University, Detroit, Michigan.
| |
Collapse
|
22
|
Kwon S, Pantelopulos GA, Straub JE. Efficient calculation of the free energy for protein partitioning using restraining potentials. Biophys J 2023; 122:1914-1925. [PMID: 35962549 PMCID: PMC10257010 DOI: 10.1016/j.bpj.2022.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/14/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
An approach for the efficient simulation of phase-separated lipid bilayers, for use in the calculation of equilibrium free energies of partitioning between lipid domains, is proposed. The methodology exploits restraint potentials and rectangular aspect ratios that enforce lipid phase separation, allowing for the simulation of smaller systems that approximately reproduce bulk behavior. The utility of this approach is demonstrated through the calculation of potentials of mean force for the translation of a transmembrane protein between lipid domains. The impact of the imposed restraints on lipid tail ordering and lipid packing are explored, providing insight into how restraints can best be employed to compute accurate free-energy surfaces. This approach should be useful in the accurate calculation of equilibrium partition coefficients for transmembrane protein partitioning in heterogeneous membranes, providing insight into the thermodynamic driving forces that control this fundamental biophysical phenomenon.
Collapse
Affiliation(s)
- Seulki Kwon
- Department of Chemistry, Boston University, Boston, Massachusetts
| | - George A Pantelopulos
- Department of Chemistry, Boston University, Boston, Massachusetts; Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - John E Straub
- Department of Chemistry, Boston University, Boston, Massachusetts.
| |
Collapse
|
23
|
Nowakowski P, Stumpf BH, Smith AS, Maciołek A. Demixing of homogeneous binary lipid membranes induced by protein inclusions. Phys Rev E 2023; 107:054120. [PMID: 37329062 DOI: 10.1103/physreve.107.054120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 04/17/2023] [Indexed: 06/18/2023]
Abstract
We study a model of a lipid bilayer membrane described by two order parameters: the chemical composition described using the Gaussian model and the spatial configuration described with the elastic deformation model of a membrane with a finite thickness or, equivalently, for an adherent membrane. We assume and explain on physical grounds the linear coupling between the two order parameters. Using the exact solution, we calculate the correlation functions and order parameter profiles. We also study the domains that form around inclusions on the membrane. We propose and compare six distinct ways to quantify the size of such domains. Despite its simplicity, the model has many interesting features like the Fisher-Widom line and two distinct critical regions.
Collapse
Affiliation(s)
- Piotr Nowakowski
- Max-Planck-Institut für Intelligente Systeme Stuttgart, Heisenbergstr. 3, 70569 Stuttgart, Germany; Institut für Theoretische Physik IV, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; and Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Bernd Henning Stumpf
- PULS Group, Institut für Theoretische Physik, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | - Ana-Sunčana Smith
- PULS Group, Institut für Theoretische Physik, IZNF, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany and Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Anna Maciołek
- Max-Planck-Institut für Intelligente Systeme Stuttgart, Heisenbergstr. 3, 70569 Stuttgart, Germany and Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
24
|
Refinement of Singer-Nicolson fluid-mosaic model by microscopy imaging: Lipid rafts and actin-induced membrane compartmentalization. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184093. [PMID: 36423676 DOI: 10.1016/j.bbamem.2022.184093] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
Abstract
This year celebrates the 50th anniversary of the Singer-Nicolson fluid mosaic model for biological membranes. The next level of sophistication we have achieved for understanding plasma membrane (PM) structures, dynamics, and functions during these 50 years includes the PM interactions with cortical actin filaments and the partial demixing of membrane constituent molecules in the PM, particularly raft domains. Here, first, we summarize our current knowledge of these two structures and emphasize that they are interrelated. Second, we review the structure, molecular dynamics, and function of raft domains, with main focuses on raftophilic glycosylphosphatidylinositol-anchored proteins (GPI-APs) and their signal transduction mechanisms. We pay special attention to the results obtained by single-molecule imaging techniques and other advanced microscopy methods. We also clarify the limitations of present optical microscopy methods for visualizing raft domains, but emphasize that single-molecule imaging techniques can "detect" raft domains associated with molecules of interest in the PM.
Collapse
|
25
|
Capozzi A, Manganelli V, Riitano G, Caissutti D, Longo A, Garofalo T, Sorice M, Misasi R. Advances in the Pathophysiology of Thrombosis in Antiphospholipid Syndrome: Molecular Mechanisms and Signaling through Lipid Rafts. J Clin Med 2023; 12:jcm12030891. [PMID: 36769539 PMCID: PMC9917860 DOI: 10.3390/jcm12030891] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
The pathological features of antiphospholipid syndrome (APS) are related to the activity of circulating antiphospholipid antibodies (aPLs) associated with vascular thrombosis and obstetric complications. Indeed, aPLs are not only disease markers, but also play a determining pathogenetic role in APS and exert their effects through the activation of cells and coagulation factors and inflammatory mediators for the materialization of the thromboinflammatory pathogenetic mechanism. Cellular activation in APS necessarily involves the interaction of aPLs with target receptors on the cell membrane, capable of triggering the signal transduction pathway(s). This interaction occurs at specific microdomains of the cell plasma membrane called lipid rafts. In this review, we focus on the key role of lipid rafts as signaling platforms in the pathogenesis of APS, and propose this pathogenetic step as a strategic target of new therapies in order to improve classical anti-thrombotic approaches with "new" immunomodulatory drugs.
Collapse
|
26
|
Li L, Ji J, Song F, Hu J. Intercellular Receptor-ligand Binding: Effect of Protein-membrane Interaction. J Mol Biol 2023; 435:167787. [PMID: 35952805 DOI: 10.1016/j.jmb.2022.167787] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 02/04/2023]
Abstract
Gaining insights into the intercellular receptor-ligand binding is of great importance for understanding numerous physiological and pathological processes, and stimulating new strategies in drug design and discovery. In contrast to the in vitro protein interaction in solution, the anchored receptor and ligand molecules interact with membrane in situ, which affects the intercellular receptor-ligand binding. Here, we review theoretical, simulation and experimental works regarding the regulatory effects of protein-membrane interactions on intercellular receptor-ligand binding mainly from the following aspects: membrane fluctuations, membrane curvature, glycocalyx, and lipid raft. In addition, we discuss biomedical significances and possible research directions to advance the field and highlight the importance of understanding of coupling effects of these factors in pharmaceutical development.
Collapse
Affiliation(s)
- Long Li
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, 210023 Nanjing, China; State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, 100190 Beijing, China
| | - Jing Ji
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Fan Song
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, 100190 Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jinglei Hu
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, 210023 Nanjing, China.
| |
Collapse
|
27
|
Isik OA, Cizmecioglu O. Rafting on the Plasma Membrane: Lipid Rafts in Signaling and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:87-108. [PMID: 36648750 DOI: 10.1007/5584_2022_759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The plasma membrane is not a uniform phospholipid bilayer; it has specialized membrane nano- or microdomains called lipid rafts. Lipid rafts are small cholesterol and sphingolipid-rich plasma membrane islands. Although their existence was long debated, their presence in the plasma membrane of living cells is now well accepted with the advent of super-resolution imaging techniques. It is interesting to note that lipid rafts function to compartmentalize receptors and their regulators and substantially modulate cellular signaling. In this review, we will examine the role of lipid rafts and caveolae-lipid raft-like microdomains with a distinct 3D morphology-in cellular signaling. Moreover, we will investigate how raft compartmentalized signaling regulates diverse physiological processes such as proliferation, apoptosis, immune signaling, and development. Also, the deregulation of lipid raft-mediated signaling during tumorigenesis and metastasis will be explored.
Collapse
Affiliation(s)
- Ozlem Aybuke Isik
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Onur Cizmecioglu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.
| |
Collapse
|
28
|
Rosenhouse-Dantsker A, Gazgalis D, Logothetis DE. PI(4,5)P 2 and Cholesterol: Synthesis, Regulation, and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:3-59. [PMID: 36988876 DOI: 10.1007/978-3-031-21547-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is the most abundant membrane phosphoinositide and cholesterol is an essential component of the plasma membrane (PM). Both lipids play key roles in a variety of cellular functions including as signaling molecules and major regulators of protein function. This chapter provides an overview of these two important lipids. Starting from a brief description of their structure, synthesis, and regulation, the chapter continues to describe the primary functions and signaling processes in which PI(4,5)P2 and cholesterol are involved. While PI(4,5)P2 and cholesterol can act independently, they often act in concert or affect each other's impact. The chapters in this volume on "Cholesterol and PI(4,5)P2 in Vital Biological Functions: From Coexistence to Crosstalk" focus on the emerging relationship between cholesterol and PI(4,5)P2 in a variety of biological systems and processes. In this chapter, the next section provides examples from the ion channel field demonstrating that PI(4,5)P2 and cholesterol can act via common mechanisms. The chapter ends with a discussion of future directions.
Collapse
Affiliation(s)
| | - Dimitris Gazgalis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
29
|
Kondrashov OV, Akimov SA. A Mechanism of Double-Membrane Vesicle Formation from Liquid-Ordered/Liquid-Disordered Phase Separated Spherical Membrane. MEMBRANES 2022; 13:25. [PMID: 36676832 PMCID: PMC9862188 DOI: 10.3390/membranes13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Genome replication of coronaviruses takes place in specific cellular compartments, in so-called double-membrane vesicles (DMVs), formed from the endoplasmic reticulum (ER). An intensive production of DMVs is induced by non-structural viral proteins. Here, we proposed a possible mechanism of the DMV formation from ER-derived spherical vesicles where liquid-ordered and liquid-disordered lipid phases coexist. These vesicles are supposed to divide into two homogeneous liquid-ordered and liquid-disordered vesicles. The formation of two spherical vesicles constituting DMV requires a mechanical work to be performed. We considered the excess energy of the boundary between the coexisting lipid phases as the main driving force behind the division of the initial vesicle. Explicitly accounting for the energy of elastic deformations and the interphase boundary energy, we analyzed a range of physical parameters where the DMV formation is possible. We concluded that this process can principally take place in a very narrow range of system parameters. The most probable diameter of DMVs formed according to the proposed mechanism appeared to be approximately 220 nm, in an agreement with the average diameter of DMVs observed in vivo. Our consideration predicts the DMV size to be strongly limited from above. The developed analysis can be utilized for the production of DMVs in model systems.
Collapse
|
30
|
Li L, Hu J, Różycki B, Ji J, Song F. Interplay of receptor-ligand binding and lipid domain formation during cell adhesion. Front Mol Biosci 2022; 9:1019477. [PMID: 36203878 PMCID: PMC9531914 DOI: 10.3389/fmolb.2022.1019477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 11/20/2022] Open
Abstract
Cell adhesion involved in biological processes such as cell migration, immune responses, and cancer metastasis, is mediated by the specific binding of receptor and ligand proteins. Some of these proteins exhibit affinity for nanoscale lipid clusters in cell membranes. A key question is how these nanoscale lipid clusters influence and react to the receptor-ligand binding during cell adhesion. In this article, we review recent computational studies that shed new light on the interplay of the receptor-ligand binding and the formation of lipid domains in adhering membranes. These studies indicate that the receptor-ligand binding promotes coalescence of lipid clusters into mesoscale domains, which, in turn, enhances both the affinity and cooperativity of the receptor-ligand binding in cell-cell adhesion with mobile ligands. In contrast, in the case of cell-extracellular matrix adhesion with immobile ligands, the receptor-ligand binding and the lipid cluster coalescence can be correlated or anti-correlated, depending strongly on the ligand distribution. These findings deepen our understanding of correlations between cell adhesion and membrane heterogeneities.
Collapse
Affiliation(s)
- Long Li
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing, China
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Jinglei Hu
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing, China
- *Correspondence: Jinglei Hu, ; Bartosz Różycki, ; Jing Ji,
| | - Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
- *Correspondence: Jinglei Hu, ; Bartosz Różycki, ; Jing Ji,
| | - Jing Ji
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- *Correspondence: Jinglei Hu, ; Bartosz Różycki, ; Jing Ji,
| | - Fan Song
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Ruan H, Zou C, Xu Y, Fang X, Xia T, Shi Y. N-(3-Oxododecanoyl) Homoserine Lactone Is a Generalizable Plasma Membrane Lipid-Ordered Domain Modifier. Front Physiol 2022; 12:758458. [PMID: 35295163 PMCID: PMC8920551 DOI: 10.3389/fphys.2021.758458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/28/2021] [Indexed: 11/29/2022] Open
Abstract
A mammalian plasma membrane is a structure on which several layers of complexity are built. The first order of complexity comes from the heterogeneity of lipid-ordered domains. Gangliosides in concert with cholesterol are preferentially packed on the outer leaflet and form lipid-ordered domains, commonly known as lipid rafts. The formation and dynamics of these domains impact nearly all membrane protein functions and are an intensely studied topic. However, tools suited for lipid domain alteration are extremely limited. Currently, methyl-β-cyclodextrin (MβCD) appears to be the most common way to disrupt lipid domains, which is believed to operate via cholesterol extraction. This significantly limits our ability in membrane biophysics research. Previously, we found that N-(3-oxo-dodecanoyl) homoserine lactone (3oc), a small signaling chemical produced by Pseudomonas aeruginosa, is highly efficient in altering lipid-ordered domains. In this study, 3oc was compared with MβCD in a series of biochemical, biophysical, and cell biological analyses. Per molarity, 3oc is more efficient than MβCD in domain alteration and appears to better retain membrane lipids after treatment. This finding will provide an essential reagent in membrane biophysics research.
Collapse
Affiliation(s)
- Hefei Ruan
- Beijing Key Lab for Immunological Research on Chronic Diseases, Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
| | - Chunlin Zou
- Beijing Key Lab for Immunological Research on Chronic Diseases, Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
| | - Yanni Xu
- Beijing Key Lab for Immunological Research on Chronic Diseases, Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tie Xia
- Beijing Key Lab for Immunological Research on Chronic Diseases, Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China
| | - Yan Shi
- Beijing Key Lab for Immunological Research on Chronic Diseases, Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine, Institute for Immunology, Tsinghua University, Beijing, China.,Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
32
|
Bag N, London E, Holowka DA, Baird BA. Transbilayer Coupling of Lipids in Cells Investigated by Imaging Fluorescence Correlation Spectroscopy. J Phys Chem B 2022; 126:2325-2336. [PMID: 35294838 DOI: 10.1021/acs.jpcb.2c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasma membranes host numerous receptors, sensors, and ion channels involved in cellular signaling. Phase separation within the plasma membrane has emerged as a key biophysical regulator of signaling reactions in multiple physiological and pathological contexts. There is much evidence that plasma membrane composition supports the coexistence of liquid-ordered (Lo) and liquid-disordered (Ld) phases or domains at physiological conditions. However, this phase/domain separation is nanoscopic and transient in live cells. It has been recently proposed that transbilayer coupling between the inner and outer leaflets of the plasma membrane is driven by their asymmetric lipid distribution and by dynamic cytoskeleton-lipid composites that contribute to the formation and transience of Lo/Ld phase separation in live cells. In this Perspective, we highlight new approaches to investigate how transbilayer coupling may influence phase separation. For quantitative evaluation of the impact of these interactions, we introduce an experimental strategy centered around Imaging Fluorescence Correlation Spectroscopy (ImFCS), which measures membrane diffusion with very high precision. To demonstrate this strategy, we choose two well-established model systems for transbilayer interactions: cross-linking by multivalent antigen of immunoglobulin E bound to receptor FcεRI and cross-linking by cholera toxin B of GM1 gangliosides. We discuss emerging methods to systematically perturb membrane lipid composition, particularly exchange of outer leaflet lipids with exogenous lipids using methyl alpha cyclodextrin. These selective perturbations may be quantitatively evaluated with ImFCS and other high-resolution biophysical tools to discover novel principles of lipid-mediated phase separation in live cells in the context of their pathophysiological relevance.
Collapse
Affiliation(s)
- Nirmalya Bag
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, United States
| | - David A Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
33
|
Kang M. Regression Analysis of Confocal FRAP and its Application to Diffusion in Membranes. J Fluoresc 2022; 32:1031-1038. [DOI: 10.1007/s10895-022-02926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/01/2022] [Indexed: 11/29/2022]
|
34
|
Ma C, Wang C, Luo D, Yan L, Yang W, Li N, Gao N. Structural insights into the membrane microdomain organization by SPFH family proteins. Cell Res 2022; 32:176-189. [PMID: 34975153 PMCID: PMC8807802 DOI: 10.1038/s41422-021-00598-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023] Open
Abstract
The lateral segregation of membrane constituents into functional microdomains, conceptually known as lipid raft, is a universal organization principle for cellular membranes in both prokaryotes and eukaryotes. The widespread Stomatin, Prohibitin, Flotillin, and HflK/C (SPFH) family proteins are enriched in functional membrane microdomains at various subcellular locations, and therefore were hypothesized to play a scaffolding role in microdomain formation. In addition, many SPFH proteins are also implicated in highly specific processes occurring on the membrane. However, none of these functions is understood at the molecular level. Here we report the structure of a supramolecular complex that is isolated from bacterial membrane microdomains and contains two SPFH proteins (HflK and HflC) and a membrane-anchored AAA+ protease FtsH. HflK and HflC form a circular 24-mer assembly, featuring a laterally segregated membrane microdomain (20 nm in diameter) bordered by transmembrane domains of HflK/C and a completely sealed periplasmic vault. Four FtsH hexamers are embedded inside this microdomain through interactions with the inner surface of the vault. These observations provide a mechanistic explanation for the role of HflK/C and their mitochondrial homologs prohibitins in regulating membrane-bound AAA+ proteases, and suggest a general model for the organization and functionalization of membrane microdomains by SPFH proteins.
Collapse
Affiliation(s)
- Chengying Ma
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Chengkun Wang
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Dingyi Luo
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Lu Yan
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Wenxian Yang
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Ningning Li
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Ning Gao
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Centre for Life Sciences, School of Life Sciences, Peking University, Beijing, China ,grid.11135.370000 0001 2256 9319National Biomedical Imaging Center, Peking University, Beijing, China
| |
Collapse
|
35
|
Kondrashov OV, Kuzmin PI, Akimov SA. Hydrophobic Mismatch Controls the Mode of Membrane-Mediated Interactions of Transmembrane Peptides. MEMBRANES 2022; 12:89. [PMID: 35054615 PMCID: PMC8781805 DOI: 10.3390/membranes12010089] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 01/01/2023]
Abstract
Various cellular processes require the concerted cooperative action of proteins. The possibility for such synchronization implies the occurrence of specific long-range interactions between the involved protein participants. Bilayer lipid membranes can mediate protein-protein interactions via relatively long-range elastic deformations induced by the incorporated proteins. We considered the interactions between transmembrane peptides mediated by elastic deformations using the framework of the theory of elasticity of lipid membranes. An effective peptide shape was assumed to be cylindrical, hourglass-like, or barrel-like. The interaction potentials were obtained for membranes of different thicknesses and elastic rigidities. Cylindrically shaped peptides manifest almost neutral average interactions-they attract each other at short distances and repel at large ones, independently of membrane thickness or rigidity. The hourglass-like peptides repel each other in thin bilayers and strongly attract each other in thicker bilayers. On the contrary, the barrel-like peptides repel each other in thick bilayers and attract each other in thinner membranes. These results potentially provide possible mechanisms of control for the mode of protein-protein interactions in membrane domains with different bilayer thicknesses.
Collapse
Affiliation(s)
- Oleg V. Kondrashov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia;
| | | | - Sergey A. Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia;
| |
Collapse
|
36
|
Vachon L, Smaani A, Tessier N, Jean G, Demers A, Milasan A, Ardo N, Jarry S, Villeneuve L, Alikashani A, Finherty V, Ruiz M, Sorci-Thomas MG, Mayer G, Martel C. Downregulation of low-density lipoprotein receptor mRNA in lymphatic endothelial cells impairs lymphatic function through changes in intracellular lipids. Theranostics 2022; 12:1440-1458. [PMID: 35154499 PMCID: PMC8771568 DOI: 10.7150/thno.58780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
Rationale: Impairment in lymphatic transport is associated with the onset and progression of atherosclerosis in animal models. The downregulation of low-density-lipoprotein receptor (LDLR) expression, rather than increased circulating cholesterol level per se, is involved in early atherosclerosis-related lymphatic dysfunction. Enhancing lymphatic function in Ldlr-/- mice with a mutant form of VEGF-C (VEGF-C 152s), a selective VEGFR-3 agonist, successfully delayed atherosclerotic plaque onset when mice were subsequently fed a high-fat diet. However, the specific mechanisms by which LDLR protects against lymphatic function impairment is unknown. Methods and results: We have thus injected wild-type and Pcsk9-/- mice with an adeno-associated virus type 1 expressing a shRNA for silencing Ldlr in vivo. We herein report that lymphatic contractility is reduced upon Ldlr dowregulation in wild-type mice only. Our in vitro experiments reveal that a decrease in LDLR expression at the mRNA level reduces the chromosome duplication phase and the protein expression of VEGFR-3, a membrane-bound key lymphatic marker. Furthermore, it also significantly reduced the levels of 18 lipid subclasses, including key constituents of lipid rafts as well as the transcription of several genes involved in cholesterol biosynthesis and cellular and metabolic processes. Exogenous PCSK9 only reduces lymphatic endothelial-LDLR at the protein level and does not affect lymphatic endothelial cell integrity. This puts forward that PCSK9 may act upon lymphatic muscle cells to mediate its effect on lymphatic contraction capacity in vivo. Conclusion: Our results suggest that treatments that specifically palliate the down regulation of LDLR mRNA in lymphatic endothelial cells preserve the integrity of the lymphatic endothelium and sustain lymphatic function, a prerequisite player in atherosclerosis.
Collapse
Affiliation(s)
- Laurent Vachon
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Ali Smaani
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Nolwenn Tessier
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Gabriel Jean
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Annie Demers
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Andreea Milasan
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Nadine Ardo
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Stéphanie Jarry
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Louis Villeneuve
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | | | - Vincent Finherty
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| | - Matthieu Ruiz
- Department of Nutrition, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Metabolomics platform, Montreal, Quebec, Canada
| | | | - Gaétan Mayer
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
| | - Catherine Martel
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Montreal Heart Institute, Research Center, Montreal, Quebec, Canada
| |
Collapse
|
37
|
Chung LH, Liu D, Liu XT, Qi Y. Ceramide Transfer Protein (CERT): An Overlooked Molecular Player in Cancer. Int J Mol Sci 2021; 22:13184. [PMID: 34947980 PMCID: PMC8705978 DOI: 10.3390/ijms222413184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 12/26/2022] Open
Abstract
Sphingolipids are a class of essential lipids implicated in constructing cellular membranes and regulating nearly all cellular functions. Sphingolipid metabolic network is centered with the ceramide-sphingomyelin axis. Ceramide is well-recognized as a pro-apoptotic signal; while sphingomyelin, as the most abundant type of sphingolipids, is required for cell growth. Therefore, the balance between these two sphingolipids can be critical for cancer cell survival and functioning. Ceramide transfer protein (CERT) dictates the ratio of ceramide to sphingomyelin within the cell. It is the only lipid transfer protein that specifically delivers ceramide from the endoplasmic reticulum to the Golgi apparatus, where ceramide serves as the substrate for sphingomyelin synthesis. In the past two decades, an increasing body of evidence has suggested a critical role of CERT in cancer, but much more intensive efforts are required to draw a definite conclusion. Herein, we review all research findings of CERT, focusing on its molecular structure, cellular functions and implications in cancer. This comprehensive review of CERT will help to better understand the molecular mechanism of cancer and inspire to identify novel druggable targets.
Collapse
Affiliation(s)
- Long Hoa Chung
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, NSW 2050, Australia; (D.L.); (X.T.L.)
| | | | | | - Yanfei Qi
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, NSW 2050, Australia; (D.L.); (X.T.L.)
| |
Collapse
|
38
|
Kondrashov OV, Pinigin KV, Akimov SA. Characteristic lengths of transmembrane peptides controlling their tilt and lateral distribution between membrane domains. Phys Rev E 2021; 104:044411. [PMID: 34781459 DOI: 10.1103/physreve.104.044411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 10/04/2021] [Indexed: 11/07/2022]
Abstract
Lipids and proteins of plasma membranes of eukaryotic cells are supposed to form protein-lipid domains, characterized by a different molecular order, bilayer thickness, and elastic parameters. Several mechanisms of preferable distribution of transmembrane proteins to the ordered or disordered membrane domains have been revealed. The mismatch between the length of the protein transmembrane domain and hydrophobic thickness of the lipid bilayer is considered to be an important driving force of protein lateral sorting. Utilizing the continuum theory of elasticity, we analyzed optimal configurations and preferable membrane domains for single-pass transmembrane peptides of various hydrophobic lengths and effective molecular shapes. We obtained that short transmembrane peptides stand perpendicularly to the membrane plane. The exceedance of a certain characteristic length leads to the tilt of the peptide. This length depends on the bilayer thickness. Thus, in the membrane with coexisting ordered (thicker) and disordered (thinner) phases tilting of the peptide in each phase is governed by its individual characteristic length. The lateral distribution of the peptides between ordered and disordered membrane domains is shown to be described by two additional characteristic lengths. The exceedance of the smaller one drives the peptide towards a more ordered and thicker membrane, while the exceedance of the larger characteristic length switches the preferable membrane domain from ordered and thicker to disordered and thinner. Thus, membrane proteins with long enough transmembrane domains are predicted to accumulate in the thinner disordered membrane as compared to the thicker ordered bilayer. For hourglass-like and barrel-like shaped transmembrane peptides the specific regime of sorting was obtained: the peptides distributed almost equally between the phases in a wide range of peptide lengths. This finding allowed explaining the experimental data on lateral distribution of transmembrane peptide tLAT.
Collapse
Affiliation(s)
- Oleg V Kondrashov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow 119071, Russia
| | - Konstantin V Pinigin
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow 119071, Russia
| | - Sergey A Akimov
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow 119071, Russia
| |
Collapse
|
39
|
Wang J, Feng S, Zhu H. Influence of amphotericin B on the DPPC/DOPC/sterols mixed monolayer in the presence of calcium ions. Biophys Chem 2021; 279:106695. [PMID: 34649214 DOI: 10.1016/j.bpc.2021.106695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/26/2022]
Abstract
Amphotericin B, an acquainted antifungal drug, has reattracted the attention of most scholars due to its one important advantage of making the fungus less resistant. Amphotericin B's antifungal properties are derived from its ability to interact with ergosterols on the fungal cells' membrane to form pores. However, the cholesterol in the human cell membranes is similar in structure to ergosterol, which cause the drug to produce certain toxicity and make the clinical use of amphotericin B limited. The study of the interaction between amphotericin B and lipid monolayer in the presence of cholesterol or ergosterol is crucial to understanding the mechanism of effect of the drug on cell membranes. Langmuir monolayer as a model for half of cell membranes can precisely control the proportion of components and the solution environment, which has been used to do a lot of research about the interaction of amphotericin B with lipids. It is noteworthy that some ions associated with life activities play an important role in it, such as calcium ions. In this work, the surface pressure-mean molecular area isotherms, elastic modulus and the surface pressure-time curves of DPPC/DOPC/sterol mixed monolayer with or without amphotericin B were studied in the different concentration of calcium ions. The morphology of the Langmuir-Blodgett films transferred on the mica were observed by atomic force microscopy. The results shown that AmB changed the elastic modulus and surface morphology of DPPC/DOPC/sterol mxied monolayer, which was significantly different with different types of sterols. Calcium ions can regulate the effect of this drug, which was clearly different due to different types of sterols. This work provides useful information to further understand the influence mechanism of calcium ions on the interaction between AmB and phospholipid/sterol monolayer, which is helpful to find out the effect mechanism of calcium ion on the interaction between AmB and phospholipid monolayer containing ergosterol or cholesterol and to understand the mechanism of AmB influencing on the membrane of fungal or human cells.
Collapse
Affiliation(s)
- Juan Wang
- Shaanxi Engineering Research Center of Controllable Neutron Source, School of Science, Xijing University, Xi'an 710123, China.
| | - Shun Feng
- Shaanxi Engineering Research Center of Controllable Neutron Source, School of Science, Xijing University, Xi'an 710123, China
| | - Hao Zhu
- Shaanxi Engineering Research Center of Controllable Neutron Source, School of Science, Xijing University, Xi'an 710123, China
| |
Collapse
|
40
|
Haack F, Köster T, Uhrmacher AM. Receptor/Raft Ratio Is a Determinant for LRP6 Phosphorylation and WNT/β-Catenin Signaling. Front Cell Dev Biol 2021; 9:706731. [PMID: 34485292 PMCID: PMC8416303 DOI: 10.3389/fcell.2021.706731] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/12/2021] [Indexed: 11/21/2022] Open
Abstract
Microdomains or lipid rafts greatly affect the distribution of proteins and peptides in the membrane and play a vital role in the formation and activation of receptor/protein complexes. A prominent example for the decisive impact of lipid rafts on signaling is LRP6, whose localization to the same lipid rafts domain as the kinase CK1γ is crucial for its successful phosphorylation and the subsequent activation of the signalosome, hence WNT/β-catenin signaling. However, according to various experimental measurements, approximately 25 to 35 % of the cell plasma membrane is covered by nanoscopic raft domains with diameters ranging between 10 to 200 nm. Extrapolating/Translating these values to the membrane of a “normal sized” cell yields a raft abundance, that, by far, outnumbers the membrane-associated pathway components of most individual signaling pathway, such as receptor and kinases. To analyze whether and how the quantitative ratio between receptor and rafts affects LRP6 phosphorylation and WNT/β-catenin pathway activation, we present a computational modeling study, that for the first time employs realistic raft numbers in a compartment-based pathway model. Our simulation experiments indicate, that for receptor/raft ratios smaller than 1, i.e., when the number of raft compartments clearly exceeds the number of pathway specific membrane proteins, we observe significant decrease in LRP6 phosphorylation and downstream pathway activity. Our results suggest that pathway specific targeting and sorting mechanism are required to significantly narrow down the receptor/raft ratio and to enable the formation of the LRP6 signalosome, hence signaling.
Collapse
Affiliation(s)
- Fiete Haack
- Modeling and Simulation Group, Institute for Visual and Analytic Computing, Institute of Electric Engineering and Computer Science, University of Rostock, Rostock, Germany
| | - Till Köster
- Modeling and Simulation Group, Institute for Visual and Analytic Computing, Institute of Electric Engineering and Computer Science, University of Rostock, Rostock, Germany
| | - Adelinde M Uhrmacher
- Modeling and Simulation Group, Institute for Visual and Analytic Computing, Institute of Electric Engineering and Computer Science, University of Rostock, Rostock, Germany
| |
Collapse
|
41
|
Yokoyama N, Hanafusa K, Hotta T, Oshima E, Iwabuchi K, Nakayama H. Multiplicity of Glycosphingolipid-Enriched Microdomain-Driven Immune Signaling. Int J Mol Sci 2021; 22:9565. [PMID: 34502474 PMCID: PMC8430928 DOI: 10.3390/ijms22179565] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Glycosphingolipids (GSLs), together with cholesterol, sphingomyelin (SM), and glycosylphosphatidylinositol (GPI)-anchored and membrane-associated signal transduction molecules, form GSL-enriched microdomains. These specialized microdomains interact in a cis manner with various immune receptors, affecting immune receptor-mediated signaling. This, in turn, results in the regulation of a broad range of immunological functions, including phagocytosis, cytokine production, antigen presentation and apoptosis. In addition, GSLs alone can regulate immunological functions by acting as ligands for immune receptors, and exogenous GSLs can alter the organization of microdomains and microdomain-associated signaling. Many pathogens, including viruses, bacteria and fungi, enter host cells by binding to GSL-enriched microdomains. Intracellular pathogens survive inside phagocytes by manipulating intracellular microdomain-driven signaling and/or sphingolipid metabolism pathways. This review describes the mechanisms by which GSL-enriched microdomains regulate immune signaling.
Collapse
Affiliation(s)
- Noriko Yokoyama
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Kei Hanafusa
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Tomomi Hotta
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Eriko Oshima
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Kazuhisa Iwabuchi
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
| | - Hitoshi Nakayama
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
| |
Collapse
|
42
|
Lipid-based and protein-based interactions synergize transmembrane signaling stimulated by antigen clustering of IgE receptors. Proc Natl Acad Sci U S A 2021; 118:2026583118. [PMID: 34433665 DOI: 10.1073/pnas.2026583118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Antigen (Ag) crosslinking of immunoglobulin E-receptor (IgE-FcεRI) complexes in mast cells stimulates transmembrane (TM) signaling, requiring phosphorylation of the clustered FcεRI by lipid-anchored Lyn tyrosine kinase. Previous studies showed that this stimulated coupling between Lyn and FcεRI occurs in liquid ordered (Lo)-like nanodomains of the plasma membrane and that Lyn binds directly to cytosolic segments of FcεRI that it initially phosphorylates for amplified activity. Net phosphorylation above a nonfunctional threshold is achieved in the stimulated state but not in the resting state, and current evidence supports the hypothesis that this relies on Ag crosslinking to disrupt a balance between Lyn and tyrosine phosphatase activities. However, the structural interactions that underlie the stimulation process remain poorly defined. This study evaluates the relative contributions and functional importance of different types of interactions leading to suprathreshold phosphorylation of Ag-crosslinked IgE-FcεRI in live rat basophilic leukemia mast cells. Our high-precision diffusion measurements by imaging fluorescence correlation spectroscopy on multiple structural variants of Lyn and other lipid-anchored probes confirm subtle, stimulated stabilization of the Lo-like nanodomains in the membrane inner leaflet and concomitant sharpening of segregation from liquid disordered (Ld)-like regions. With other structural variants, we determine that lipid-based interactions are essential for access by Lyn, leading to phosphorylation of and protein-based binding to clustered FcεRI. By contrast, TM tyrosine phosphatase, PTPα, is excluded from these regions due to its Ld-preference and steric exclusion of TM segments. Overall, we establish a synergy of lipid-based, protein-based, and steric interactions underlying functional TM signaling in mast cells.
Collapse
|
43
|
Hossain M, Blanchard GJ. Ceramide-mediation of diffusion in supported lipid bilayers. Chem Phys Lipids 2021; 238:105090. [PMID: 33971138 PMCID: PMC8222156 DOI: 10.1016/j.chemphyslip.2021.105090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/09/2021] [Accepted: 05/05/2021] [Indexed: 11/30/2022]
Abstract
The fluidity and compositional heterogeneity of the mammalian plasma membrane play deterministic roles in a variety of membrane functions. Designing model bilayer systems allows for compositional control over these properties. Ceramide is a phospholipid capable of extensive headgroup-region hydrogen bonding, and we report here on the role of ceramide in planar model bilayers. We use fluorescence recovery after photobleaching (FRAP) to obtain translational diffusion constants of two chromophores in supported model bilayers composed of cholesterol, 1,2-dioleoyl-sn-phosphatidylcholine (DOPC), sphingomyelin, and ceramide. FRAP data for perylene report on the acyl chain region of the model bilayer and FRAP data for 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) sense diffusional dynamics in the bilayer headgroup region. Dynamics in the headgroup region exhibit anomalous diffusion behavior that is characteristic of spatially heterogeneous media.
Collapse
Affiliation(s)
- Masroor Hossain
- Michigan State University, Department of Chemistry, 578 S. Shaw Lane, East Lansing, MI, 48824, USA
| | - G J Blanchard
- Michigan State University, Department of Chemistry, 578 S. Shaw Lane, East Lansing, MI, 48824, USA.
| |
Collapse
|
44
|
ESCRT-III induces phase separation in model membranes prior to budding and causes invagination of the liquid-ordered phase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183689. [PMID: 34224704 DOI: 10.1016/j.bbamem.2021.183689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 06/05/2021] [Accepted: 06/27/2021] [Indexed: 11/21/2022]
Abstract
Membrane fission triggered by the endosomal sorting complex required for transport (ESCRT) is an important process observed in several pathogenic and non-pathogenic cellular events. From a synthetic-biology viewpoint, ESCRT proteins represent an interesting machinery for the construction of cell mimetic sub-compartments produced by fission. Since their discovery, the studies on ESCRT-III-mediated action, have mainly focused on protein dynamics, ignoring the role of lipid organization and membrane phase state. Recently, it has been suggested that membrane buds formed by the action of ESCRT-III are generated from transient microdomains in endosomal membranes. However, the interplay between membrane domain formation and ESCRT remodeling pathways has not been investigated. Here, giant unilamellar vesicles made of ternary lipid mixtures, either homogeneous in phase or exhibiting liquid-ordered/liquid-disordered phase coexistence, were employed as a model membrane system. These vesicles were incubated with purified recombinant ESCRT-III proteins from the parasite Entamoeba histolytica. In homogeneous membranes, we observe that EhVps32 can trigger domain formation while EhVps20 preferentially co-localizes in the liquid disordered phase. The addition of EhVps24 appears to induce the formation of intraluminal vesicles produced from the liquid-ordered phase. In phase separated membranes, the intraluminal vesicles are also generated from the liquid-ordered phase and presumably emerge from the phase boundary region. Our findings reinforce the hypothesis that ESCRT-mediated remodeling depends on the membrane phase state. Furthermore, the obtained results point to a potential synthetic biology approach for establishing eukaryotic mimics of artificial cells with microcompartments of specific membrane composition, which can also differ from that of the mother vesicle.
Collapse
|
45
|
Göhring J, Kellner F, Schrangl L, Platzer R, Klotzsch E, Stockinger H, Huppa JB, Schütz GJ. Temporal analysis of T-cell receptor-imposed forces via quantitative single molecule FRET measurements. Nat Commun 2021; 12:2502. [PMID: 33947864 PMCID: PMC8096839 DOI: 10.1038/s41467-021-22775-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 03/25/2021] [Indexed: 02/01/2023] Open
Abstract
Mechanical forces acting on ligand-engaged T-cell receptors (TCRs) have previously been implicated in T-cell antigen recognition, yet their magnitude, spread, and temporal behavior are still poorly defined. We here report a FRET-based sensor equipped either with a TCR-reactive single chain antibody fragment or peptide-loaded MHC, the physiological TCR-ligand. The sensor was tethered to planar glass-supported lipid bilayers (SLBs) and informed most directly on the magnitude and kinetics of TCR-imposed forces at the single molecule level. When confronting T-cells with gel-phase SLBs we observed both prior and upon T-cell activation a single, well-resolvable force-peak of approximately 5 pN and force loading rates on the TCR of 1.5 pN per second. When facing fluid-phase SLBs instead, T-cells still exerted tensile forces yet of threefold reduced magnitude and only prior to but not upon activation.
Collapse
Affiliation(s)
- Janett Göhring
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Institute of Applied Physics, TU Wien, Vienna, Austria
| | - Florian Kellner
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - René Platzer
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Enrico Klotzsch
- Institute of Applied Physics, TU Wien, Vienna, Austria
- Laboratory of Applied Mechanobiology, Department for Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
- Institute of Biology, Experimental Biophysics/ Mechanobiology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Johannes B Huppa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | | |
Collapse
|
46
|
Rubio-Sánchez R, Barker SE, Walczak M, Cicuta P, Michele LD. A Modular, Dynamic, DNA-Based Platform for Regulating Cargo Distribution and Transport between Lipid Domains. NANO LETTERS 2021; 21:2800-2808. [PMID: 33733783 PMCID: PMC8050828 DOI: 10.1021/acs.nanolett.0c04867] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/03/2021] [Indexed: 05/04/2023]
Abstract
Cell membranes regulate the distribution of biological machinery between phase-separated lipid domains to facilitate key processes including signaling and transport, which are among the life-like functionalities that bottom-up synthetic biology aims to replicate in artificial-cellular systems. Here, we introduce a modular approach to program partitioning of amphiphilic DNA nanostructures in coexisting lipid domains. Exploiting the tendency of different hydrophobic "anchors" to enrich different phases, we modulate the lateral distribution of our devices by rationally combining hydrophobes and by changing nanostructure size and topology. We demonstrate the functionality of our strategy with a bioinspired DNA architecture, which dynamically undergoes ligand-induced reconfiguration to mediate cargo transport between domains via lateral redistribution. Our findings pave the way to next-generation biomimetic platforms for sensing, transduction, and communication in synthetic cellular systems.
Collapse
Affiliation(s)
- Roger Rubio-Sánchez
- Biological
and Soft Systems, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Simone Eizagirre Barker
- Biological
and Soft Systems, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Michal Walczak
- Biological
and Soft Systems, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Pietro Cicuta
- Biological
and Soft Systems, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Lorenzo Di Michele
- Biological
and Soft Systems, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Molecular
Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, United Kingdom
| |
Collapse
|
47
|
Cortada E, Serradesanferm R, Brugada R, Verges M. The voltage-gated sodium channel β2 subunit associates with lipid rafts by S-palmitoylation. J Cell Sci 2021; 134:jcs.252189. [PMID: 33602743 DOI: 10.1242/jcs.252189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
The voltage-gated sodium channel is critical for cardiomyocyte function. It consists of a protein complex comprising a pore-forming α subunit and associated β subunits. In polarized Madin-Darby canine kidney cells, we show evidence by acyl-biotin exchange that β2 is S-acylated at Cys-182. Interestingly, we found that palmitoylation increases β2 association with detergent-resistant membranes. β2 localizes exclusively to the apical surface. However, depletion of plasma membrane cholesterol, or blocking intracellular cholesterol transport, caused mislocalization of β2, as well as of the non-palmitoylable C182S mutant, to the basolateral domain. Apical β2 did not undergo endocytosis and displayed limited diffusion within the plane of the membrane; such behavior suggests that, at least in part, it is cytoskeleton anchored. Upon acute cholesterol depletion, its mobility was greatly reduced, and a slight reduction was also measured as a result of lack of palmitoylation, supporting β2 association with cholesterol-rich lipid rafts. Indeed, lipid raft labeling confirmed a partial overlap with apical β2. Although β2 palmitoylation was not required to promote surface localization of the α subunit, our data suggest that it is likely implicated in lipid raft association and the polarized localization of β2.
Collapse
Affiliation(s)
- Eric Cortada
- Cardiovascular Genetics Group, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Prov. Girona, Spain.,Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), 17190 Salt, Prov. Girona, Spain
| | - Robert Serradesanferm
- Cardiovascular Genetics Group, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Prov. Girona, Spain.,Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), 17190 Salt, Prov. Girona, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Group, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Prov. Girona, Spain.,Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), 17190 Salt, Prov. Girona, Spain.,Medical Sciences Department, University of Girona Medical School, 17071 Girona, Spain.,Cardiology Department, Hospital Josep Trueta - University of Girona Medical School, 17007 Girona, Spain
| | - Marcel Verges
- Cardiovascular Genetics Group, Girona Biomedical Research Institute (IDIBGI), 17190 Salt, Prov. Girona, Spain .,Biomedical Research Networking Center on Cardiovascular Diseases (CIBERCV), 17190 Salt, Prov. Girona, Spain.,Medical Sciences Department, University of Girona Medical School, 17071 Girona, Spain
| |
Collapse
|
48
|
Casarotto PC, Girych M, Fred SM, Kovaleva V, Moliner R, Enkavi G, Biojone C, Cannarozzo C, Sahu MP, Kaurinkoski K, Brunello CA, Steinzeig A, Winkel F, Patil S, Vestring S, Serchov T, Diniz CRAF, Laukkanen L, Cardon I, Antila H, Rog T, Piepponen TP, Bramham CR, Normann C, Lauri SE, Saarma M, Vattulainen I, Castrén E. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell 2021; 184:1299-1313.e19. [PMID: 33606976 PMCID: PMC7938888 DOI: 10.1016/j.cell.2021.01.034] [Citation(s) in RCA: 365] [Impact Index Per Article: 121.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 12/22/2020] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
It is unclear how binding of antidepressant drugs to their targets gives rise to the clinical antidepressant effect. We discovered that the transmembrane domain of tyrosine kinase receptor 2 (TRKB), the brain-derived neurotrophic factor (BDNF) receptor that promotes neuronal plasticity and antidepressant responses, has a cholesterol-sensing function that mediates synaptic effects of cholesterol. We then found that both typical and fast-acting antidepressants directly bind to TRKB, thereby facilitating synaptic localization of TRKB and its activation by BDNF. Extensive computational approaches including atomistic molecular dynamics simulations revealed a binding site at the transmembrane region of TRKB dimers. Mutation of the TRKB antidepressant-binding motif impaired cellular, behavioral, and plasticity-promoting responses to antidepressants in vitro and in vivo. We suggest that binding to TRKB and allosteric facilitation of BDNF signaling is the common mechanism for antidepressant action, which may explain why typical antidepressants act slowly and how molecular effects of antidepressants are translated into clinical mood recovery.
Collapse
Affiliation(s)
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Senem M Fred
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Vera Kovaleva
- Institute of Biotechnology-HILIFE, University of Helsinki, Helsinki, Finland
| | - Rafael Moliner
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Giray Enkavi
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Caroline Biojone
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | | | | | - Katja Kaurinkoski
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | | | - Anna Steinzeig
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Frederike Winkel
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Sudarshan Patil
- Department of Biomedicine and KG Jebsen Center for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Stefan Vestring
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tsvetan Serchov
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cassiano R A F Diniz
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland; Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paul, Brazil
| | - Liina Laukkanen
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland
| | - Iseline Cardon
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland; Brain Master Program, Faculty of Science, Aix-Marseille Université, Marseille, France; Department of Psychiatry, University of Regensburg, Regenburg, Germany
| | - Hanna Antila
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tomasz Rog
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Timo Petteri Piepponen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Clive R Bramham
- Department of Biomedicine and KG Jebsen Center for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Claus Normann
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Basics in Neuromodulation (NeuroModul Basics), University of Freiburg, Freiburg, Germany
| | - Sari E Lauri
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland; Molecular and Integrative Biosciences Research Program, University of Helsinki, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology-HILIFE, University of Helsinki, Helsinki, Finland
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland; Computational Physics Laboratory, Tampere University, Tampere, Finland
| | - Eero Castrén
- Neuroscience Center-HILIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
49
|
Sorice M, Misasi R, Riitano G, Manganelli V, Martellucci S, Longo A, Garofalo T, Mattei V. Targeting Lipid Rafts as a Strategy Against Coronavirus. Front Cell Dev Biol 2021; 8:618296. [PMID: 33614627 PMCID: PMC7890255 DOI: 10.3389/fcell.2020.618296] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Lipid rafts are functional membrane microdomains containing sphingolipids, including gangliosides, and cholesterol. These regions are characterized by highly ordered and tightly packed lipid molecules. Several studies revealed that lipid rafts are involved in life cycle of different viruses, including coronaviruses. Among these recently emerged the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The main receptor for SARS-CoV-2 is represented by the angiotensin-converting enzyme-2 (ACE-2), although it also binds to sialic acids linked to host cell surface gangliosides. A new type of ganglioside-binding domain within the N-terminal portion of the SARS-CoV-2 spike protein was identified. Lipid rafts provide a suitable platform able to concentrate ACE-2 receptor on host cell membranes where they may interact with the spike protein on viral envelope. This review is focused on selective targeting lipid rafts components as a strategy against coronavirus. Indeed, cholesterol-binding agents, including statins or methyl-β-cyclodextrin (MβCD), can affect cholesterol, causing disruption of lipid rafts, consequently impairing coronavirus adhesion and binding. Moreover, these compounds can block downstream key molecules in virus infectivity, reducing the levels of proinflammatory molecules [tumor necrosis factor alpha (TNF-α), interleukin (IL)-6], and/or affecting the autophagic process involved in both viral replication and clearance. Furthermore, cyclodextrins can assemble into complexes with various drugs to form host-guest inclusions and may be used as pharmaceutical excipients of antiviral compounds, such as lopinavir and remdesivir, by improving bioavailability and solubility. In conclusion, the role of lipid rafts-affecting drugs in the process of coronavirus entry into the host cells prompts to introduce a new potential task in the pharmacological approach against coronavirus.
Collapse
Affiliation(s)
- Maurizio Sorice
- Department of Experimental Medicine, “Sapienza” University, Rome, Italy
| | - Roberta Misasi
- Department of Experimental Medicine, “Sapienza” University, Rome, Italy
| | - Gloria Riitano
- Department of Experimental Medicine, “Sapienza” University, Rome, Italy
| | | | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, “Sabina Universitas”, Rieti, Italy
| | - Agostina Longo
- Department of Experimental Medicine, “Sapienza” University, Rome, Italy
| | - Tina Garofalo
- Department of Experimental Medicine, “Sapienza” University, Rome, Italy
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, “Sabina Universitas”, Rieti, Italy
| |
Collapse
|
50
|
Jin W, Zucker M, Pralle A. Membrane nanodomains homeostasis during propofol anesthesia as function of dosage and temperature. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183511. [PMID: 33245892 DOI: 10.1016/j.bbamem.2020.183511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/01/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
Some anesthetics bind and potentiate γ-aminobutyric-acid-type receptors, but no universal mechanism for general anesthesia is known. Furthermore, often encountered complications such as anesthesia induced amnesia are not understood. General anesthetics are hydrophobic molecules easily dissolving into lipid bilayers. Recently, it was shown that general anesthetics perturb phase separation in vesicles extracted from fixed cells. Unclear is whether under physiological conditions general anesthetics induce perturbation of the lipid bilayer, and whether this contributes to the transient loss of consciousness or anesthesia side effects. Here we show that propofol perturbs lipid nanodomains in the outer and inner leaflet of the plasma membrane in intact cells, affecting membrane nanodomains in a concentration dependent manner: 1 μM to 5 μM propofol destabilize nanodomains; however, propofol concentrations higher than 5 μM stabilize nanodomains with time. Stabilization occurs only at physiological temperature and in intact cells. This process requires ARP2/3 mediated actin nucleation and Myosin II activity. The rate of nanodomain stabilization is potentiated by GABAA receptor activity. Our results show that active nanodomain homeostasis counteracts the initial disruption causing large changes in cortical actin. SIGNIFICANCE STATEMENT: General anesthesia is a routine medical procedure with few complications, yet a small number of patients experience side-effects that persist for weeks and months. Very young children are at risk for effects on brain development. Elderly patients often exhibit subsequent amnesia. Here, we show that the general anesthetic propofol perturbs the ultrastructure of the lipid bilayer of the cell membrane in intact cells. Initially propofol destabilized lipid nanodomains. However, with increasing incubation time and propofol concentration, the effect is reversed and nanodomains are further stabilized. We show that this stabilization is caused by the activation of the actin cortex under the membrane. These perturbations of membrane bilayer and cortical actin may explain how propofol affects neuronal plasticity at synapses.
Collapse
Affiliation(s)
- Weixiang Jin
- Dept. of Physics, University at Buffalo, SUNY, Buffalo, NY 14260-1500, USA
| | - Michael Zucker
- Dept. of Physics, University at Buffalo, SUNY, Buffalo, NY 14260-1500, USA
| | - Arnd Pralle
- Dept. of Physics, University at Buffalo, SUNY, Buffalo, NY 14260-1500, USA.
| |
Collapse
|