1
|
Noronha C, Ribeiro AS, Carvalho R, Mendes N, Reis J, Faria CC, Taipa R, Paredes J. Cadherin Expression Profiles Define Glioblastoma Differentiation and Patient Prognosis. Cancers (Basel) 2024; 16:2298. [PMID: 39001361 PMCID: PMC11240393 DOI: 10.3390/cancers16132298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024] Open
Abstract
Cadherins are cell-cell adhesion proteins which have been strongly implicated in cancer invasion, dissemination and metastasis capacity; thus, they are key players in the epithelial-to-mesenchymal transition (EMT) program. However, their role in glioblastoma (GBM), a primary central nervous system aggressive tumor, remains to be clarified. N-, E- and P-cadherin expression was analyzed on a large series of GBMs, characterized with clinical, imaging and neuropathological parameters, as well as with patients' survival data. In addition, cadherins' expression was studied in match-recurrent cases. Using TCGA data, cadherin expression profiles were also evaluated according to GBM transcription subtypes. N-cadherin expression was observed in 81.5% of GBM, followed by E-cadherin in 31% and P-cadherin in 20.8%. Upon tumor recurrence, P-cadherin was the only significantly upregulated cadherin compared with the primary tumor, being positive in 65.8% of the cases. Actually, P-cadherin gain was observed in 51.4% of matched primary-recurrent cases. Cadherins' co-expression was also explored. Interestingly, E- and N-cadherin co-expression identified a GBM subgroup with frequent epithelial differentiation and a significant survival benefit. On the other hand, subgroups with P-cadherin expression carried the worse prognosis. P- and N-cadherin co-expression correlated with the presence of a mesenchymal phenotype. Expressions of isolated P-cadherin or E- and P-cadherin co-expression were associated with imaging characteristics of aggressiveness, to highly heterogeneous tumors, an d to worse patient survival. Classical cadherins co-expression subgroups present consistent clinical, imaging, neuropathological and survival differences, which probably reflect different states of an EMT-like program in GBM.
Collapse
Affiliation(s)
- Carolina Noronha
- Neurosurgery Department, Hospital de Santo António, Centro Hospitalar e Universitário do Porto, 4050-366 Porto, Portugal
- Cancer Metastasis, i3S, Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- FMUP-Faculty of Medicine, University of Porto, 4200-135 Porto, Portugal
| | - Ana Sofia Ribeiro
- Cancer Metastasis, i3S, Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Rita Carvalho
- Cancer Metastasis, i3S, Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| | - Nuno Mendes
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
- Histology and Electron Microscopy, i3S, Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
| | - Joaquim Reis
- Neurosurgery Department, Hospital de Santo António, Centro Hospitalar e Universitário do Porto, 4050-366 Porto, Portugal
| | - Claudia C Faria
- Neurosurgery Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal
- IMM-Instituto de Medicina Molecular João Lobo Antunes, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | - Ricardo Taipa
- Neuropathology Department, Hospital de Santo António, Centro Hospitalar Universitário de Santo António, 4050-342 Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-346 Porto, Portugal
- ITR-Laboratory for Integrative and Translational Research in Population Health, 4050-600 Porto, Portugal
| | - Joana Paredes
- Cancer Metastasis, i3S, Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- FMUP-Faculty of Medicine, University of Porto, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
2
|
Irala D, Wang S, Sakers K, Nagendren L, Ulloa Severino FP, Bindu DS, Savage JT, Eroglu C. Astrocyte-secreted neurocan controls inhibitory synapse formation and function. Neuron 2024; 112:1657-1675.e10. [PMID: 38574730 PMCID: PMC11098688 DOI: 10.1016/j.neuron.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 01/22/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
Astrocytes strongly promote the formation and maturation of synapses by secreted proteins. Several astrocyte-secreted synaptogenic proteins controlling excitatory synapse development were identified; however, those that induce inhibitory synaptogenesis remain elusive. Here, we identify neurocan as an astrocyte-secreted inhibitory synaptogenic protein. After secretion from astrocytes, neurocan is cleaved into N- and C-terminal fragments. We found that these fragments have distinct localizations in the extracellular matrix. The neurocan C-terminal fragment localizes to synapses and controls cortical inhibitory synapse formation and function. Neurocan knockout mice lacking the whole protein or only its C-terminal synaptogenic domain have reduced inhibitory synapse numbers and function. Through super-resolution microscopy, in vivo proximity labeling by secreted TurboID, and astrocyte-specific rescue approaches, we discovered that the synaptogenic domain of neurocan localizes to somatostatin-positive inhibitory synapses and strongly regulates their formation. Together, our results unveil a mechanism through which astrocytes control circuit-specific inhibitory synapse development in the mammalian brain.
Collapse
Affiliation(s)
- Dolores Irala
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Shiyi Wang
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kristina Sakers
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Leykashree Nagendren
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Francesco Paolo Ulloa Severino
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC 27710, USA; Instituto Cajal, CSIC 28002 Madrid, Spain
| | | | - Justin T Savage
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Duke Institute for Brain Sciences (DIBS), Durham, NC 27710, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
3
|
Blondiaux A, Jia S, Annamneedi A, Çalışkan G, Nebel J, Montenegro-Venegas C, Wykes RC, Fejtova A, Walker MC, Stork O, Gundelfinger ED, Dityatev A, Seidenbecher CI. Linking epileptic phenotypes and neural extracellular matrix remodeling signatures in mouse models of epilepsy. Neurobiol Dis 2023; 188:106324. [PMID: 37838005 DOI: 10.1016/j.nbd.2023.106324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023] Open
Abstract
Epilepsies are multifaceted neurological disorders characterized by abnormal brain activity, e.g. caused by imbalanced synaptic excitation and inhibition. The neural extracellular matrix (ECM) is dynamically modulated by physiological and pathophysiological activity and critically involved in controlling the brain's excitability. We used different epilepsy models, i.e. mice lacking the presynaptic scaffolding protein Bassoon at excitatory, inhibitory or all synapse types as genetic models for rapidly generalizing early-onset epilepsy, and intra-hippocampal kainate injection, a model for acquired temporal lobe epilepsy, to study the relationship between epileptic seizures and ECM composition. Electroencephalogram recordings revealed Bassoon deletion at excitatory or inhibitory synapses having diverse effects on epilepsy-related phenotypes. While constitutive Bsn mutants and to a lesser extent GABAergic neuron-specific knockouts (BsnDlx5/6cKO) displayed severe epilepsy with more and stronger seizures than kainate-injected animals, mutants lacking Bassoon solely in excitatory forebrain neurons (BsnEmx1cKO) showed only mild impairments. By semiquantitative immunoblotting and immunohistochemistry we show model-specific patterns of neural ECM remodeling, and we also demonstrate significant upregulation of the ECM receptor CD44 in null and BsnDlx5/6cKO mutants. ECM-associated WFA-binding chondroitin sulfates were strongly augmented in seizure models. Strikingly, Brevican, Neurocan, Aggrecan and link proteins Hapln1 and Hapln4 levels reliably predicted seizure properties across models, suggesting a link between ECM state and epileptic phenotype.
Collapse
Affiliation(s)
| | - Shaobo Jia
- German Center for Neurodegenerative Diseases, Site Magdeburg (DZNE), Magdeburg, Germany
| | - Anil Annamneedi
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany; Institute of Biology, Otto-Von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg 39120, Germany
| | - Gürsel Çalışkan
- Institute of Biology, Otto-Von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg 39120, Germany
| | - Jana Nebel
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Carolina Montenegro-Venegas
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg 39120, Germany; Institute for Pharmacology and Toxicology, Otto von Guericke University, Magdeburg, Germany
| | - Robert C Wykes
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Nanomedicine Lab & Geoffrey Jefferson Brain Research Center, University of Manchester, Manchester M13 9PT, UK
| | - Anna Fejtova
- Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Oliver Stork
- Institute of Biology, Otto-Von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg 39120, Germany
| | - Eckart D Gundelfinger
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg 39120, Germany; Institute for Pharmacology and Toxicology, Otto von Guericke University, Magdeburg, Germany.
| | - Alexander Dityatev
- German Center for Neurodegenerative Diseases, Site Magdeburg (DZNE), Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg 39120, Germany; Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
| | - Constanze I Seidenbecher
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg 39120, Germany.
| |
Collapse
|
4
|
Irala D, Wang S, Sakers K, Nagendren L, Ulloa-Severino FP, Bindu DS, Eroglu C. Astrocyte-Secreted Neurocan Controls Inhibitory Synapse Formation and Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535448. [PMID: 37066164 PMCID: PMC10104008 DOI: 10.1101/2023.04.03.535448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Astrocytes strongly promote the formation and maturation of synapses by secreted proteins. To date, several astrocyte-secreted synaptogenic proteins controlling different stages of excitatory synapse development have been identified. However, the identities of astrocytic signals that induce inhibitory synapse formation remain elusive. Here, through a combination of in vitro and in vivo experiments, we identified Neurocan as an astrocyte-secreted inhibitory synaptogenic protein. Neurocan is a chondroitin sulfate proteoglycan that is best known as a protein localized to the perineuronal nets. However, Neurocan is cleaved into two after secretion from astrocytes. We found that the resulting N- and C-terminal fragments have distinct localizations in the extracellular matrix. While the N-terminal fragment remains associated with perineuronal nets, the Neurocan C-terminal fragment localizes to synapses and specifically controls cortical inhibitory synapse formation and function. Neurocan knockout mice lacking the whole protein or only its C-terminal synaptogenic region have reduced inhibitory synapse numbers and function. Through super-resolution microscopy and in vivo proximity labeling by secreted TurboID, we discovered that the synaptogenic domain of Neurocan localizes to somatostatin-positive inhibitory synapses and strongly regulates their formation. Together, our results unveil a mechanism through which astrocytes control circuit-specific inhibitory synapse development in the mammalian brain.
Collapse
|
5
|
Noronha C, Ribeiro AS, Taipa R, Castro DS, Reis J, Faria C, Paredes J. Cadherin Expression and EMT: A Focus on Gliomas. Biomedicines 2021; 9:biomedicines9101328. [PMID: 34680444 PMCID: PMC8533397 DOI: 10.3390/biomedicines9101328] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/13/2022] Open
Abstract
Cadherins are calcium-binding proteins with a pivotal role in cell adhesion and tissue homeostasis. The cadherin-dependent mechanisms of cell adhesion and migration are exploited by cancer cells, contributing to tumor invasiveness and dissemination. In particular, cadherin switch is a hallmark of epithelial to mesenchymal transition, a complex development process vastly described in the progression of most epithelial cancers. This is characterized by drastic changes in cell polarity, adhesion, and motility, which lead from an E-cadherin positive differentiated epithelial state into a dedifferentiated mesenchymal-like state, prone to metastization and defined by N-cadherin expression. Although vastly explored in epithelial cancers, how these mechanisms contribute to the pathogenesis of other non-epithelial tumor types is poorly understood. Herein, the current knowledge on cadherin expression in normal development in parallel to tumor pathogenesis is reviewed, focusing on epithelial to mesenchymal transition. Emphasis is taken in the unascertained cadherin expression in CNS tumors, particularly in gliomas, where the potential contribution of an epithelial-to-mesenchymal-like process to glioma genesis and how this may be associated with changes in cadherin expression is discussed.
Collapse
Affiliation(s)
- Carolina Noronha
- Neurosurgery Department, Hospital de Santo António, Centro Hospitalar Universitario do Porto, 4099-001 Porto, Portugal; (C.N.); (J.R.)
- Cancer Metastasis Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Ana Sofia Ribeiro
- Cancer Metastasis Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Ricardo Taipa
- Neuropathology Unit, Hospital de Santo António, Centro Hospitalar Universitario do Porto, 4099-001 Porto, Portugal;
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Diogo S. Castro
- Stem Cells & Neurogenesis Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
| | - Joaquim Reis
- Neurosurgery Department, Hospital de Santo António, Centro Hospitalar Universitario do Porto, 4099-001 Porto, Portugal; (C.N.); (J.R.)
- Anatomy Department, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Cláudia Faria
- Neurosurgery Department, Hospital de Santa Maria, Centro Hospitalar Universitario Lisboa Norte, 1649-028 Lisboa, Portugal;
- IMM—Instituto de Medicina Molecular Joao Lobo Antunes, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Joana Paredes
- Cancer Metastasis Group, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence:
| |
Collapse
|
6
|
Niland S, Eble JA. Hold on or Cut? Integrin- and MMP-Mediated Cell-Matrix Interactions in the Tumor Microenvironment. Int J Mol Sci 2020; 22:ijms22010238. [PMID: 33379400 PMCID: PMC7794804 DOI: 10.3390/ijms22010238] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment (TME) has become the focus of interest in cancer research and treatment. It includes the extracellular matrix (ECM) and ECM-modifying enzymes that are secreted by cancer and neighboring cells. The ECM serves both to anchor the tumor cells embedded in it and as a means of communication between the various cellular and non-cellular components of the TME. The cells of the TME modify their surrounding cancer-characteristic ECM. This in turn provides feedback to them via cellular receptors, thereby regulating, together with cytokines and exosomes, differentiation processes as well as tumor progression and spread. Matrix remodeling is accomplished by altering the repertoire of ECM components and by biophysical changes in stiffness and tension caused by ECM-crosslinking and ECM-degrading enzymes, in particular matrix metalloproteinases (MMPs). These can degrade ECM barriers or, by partial proteolysis, release soluble ECM fragments called matrikines, which influence cells inside and outside the TME. This review examines the changes in the ECM of the TME and the interaction between cells and the ECM, with a particular focus on MMPs.
Collapse
|
7
|
Eble JA, Niland S. The extracellular matrix in tumor progression and metastasis. Clin Exp Metastasis 2019; 36:171-198. [PMID: 30972526 DOI: 10.1007/s10585-019-09966-1] [Citation(s) in RCA: 356] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) constitutes the scaffold of tissues and organs. It is a complex network of extracellular proteins, proteoglycans and glycoproteins, which form supramolecular aggregates, such as fibrils and sheet-like networks. In addition to its biochemical composition, including the covalent intermolecular cross-linkages, the ECM is also characterized by its biophysical parameters, such as topography, molecular density, stiffness/rigidity and tension. Taking these biochemical and biophysical parameters into consideration, the ECM is very versatile and undergoes constant remodeling. This review focusses on this remodeling of the ECM under the influence of a primary solid tumor mass. Within this tumor stroma, not only the cancer cells but also the resident fibroblasts, which differentiate into cancer-associated fibroblasts (CAFs), modify the ECM. Growth factors and chemokines, which are tethered to and released from the ECM, as well as metabolic changes of the cells within the tumor bulk, add to the tumor-supporting tumor microenvironment. Metastasizing cancer cells from a primary tumor mass infiltrate into the ECM, which variably may facilitate cancer cell migration or act as barrier, which has to be proteolytically breached by the infiltrating tumor cell. The biochemical and biophysical properties therefore determine the rates and routes of metastatic dissemination. Moreover, primed by soluble factors of the primary tumor, the ECM of distant organs may be remodeled in a way to facilitate the engraftment of metastasizing cancer cells. Such premetastatic niches are responsible for the organotropic preference of certain cancer entities to colonize at certain sites in distant organs and to establish a metastasis. Translational application of our knowledge about the cancer-primed ECM is sparse with respect to therapeutic approaches, whereas tumor-induced ECM alterations such as increased tissue stiffness and desmoplasia, as well as breaching the basement membrane are hallmark of malignancy and diagnostically and histologically harnessed.
Collapse
Affiliation(s)
- Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany.
| | - Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| |
Collapse
|
8
|
Pai VC, Lo IC, Huang YW, Tsai IC, Cheng HP, Shi GY, Wu HL, Jiang MJ. The chondroitin sulfate moiety mediates thrombomodulin-enhanced adhesion and migration of vascular smooth muscle cells. J Biomed Sci 2018; 25:14. [PMID: 29439742 PMCID: PMC5809974 DOI: 10.1186/s12929-018-0415-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/30/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Thrombomodulin (TM), a transmembrane glycoprotein highly expressed in endothelial cells (ECs), is a potent anticoagulant maintaining circulation homeostasis. Under inflammatory states, TM expression is drastically reduced in ECs while vascular smooth muscle cells (VSMCs) show a robust expression of TM. The functional role of TM in VSMCs remains elusive. METHODS We examined the role of TM in VSMCs activities in human aortic VSMCs stimulated with platelet-derived growth factor-BB (PDGF-BB). Using rat embryonic aorta-derived A7r5 VSMCs which do not express TM, the role of the chondroitin sulfate (CS) moiety of TM in VSMCs was delineated with cells expressing wild-type TM and the CS-devoid TM mutant. RESULTS Expression of TM enhanced cell migration and adhesion/spreading onto type I collagen, but had no effect on cell proliferation. Knocking down TM with short hairpin RNA reduced PDGF-stimulated adhesion and migration of human aortic VSMCs. In A7r5 cells, TM-mediated cell adhesion was eradicated by pretreatment with chondroitinase ABC which degrades CS moiety. Furthermore, the TM mutant (TMS490, 492A) devoid of CS moiety failed to increase cell adhesion, spreading or migration. Wild-type TM, but not TMS490, 492A, increased focal adhesion kinase (FAK) activation during cell adhesion, and TM-enhanced cell migration was abolished by a function-blocking anti-integrin β1 antibody. CONCLUSION Chondroitin sulfate modification is required for TM-mediated activation of β1-integrin and FAK, thereby enhancing adhesion and migration activity of VSMCs.
Collapse
Affiliation(s)
- Vincent Chunpeng Pai
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan, 70101, Taiwan
| | - I-Chung Lo
- Cardiovascular Research Center, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yan Wun Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan, 70101, Taiwan
| | - I-Ching Tsai
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan, 70101, Taiwan
| | - Hui-Pin Cheng
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan, 70101, Taiwan
| | - Guey-Yueh Shi
- Cardiovascular Research Center, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.,Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Hua-Lin Wu
- Cardiovascular Research Center, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.,Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Meei Jyh Jiang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan, 70101, Taiwan. .,Cardiovascular Research Center, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
9
|
Canning DR, Brelsford NR, Lovett NW. Chondroitin sulfate effects on neural stem cell differentiation. In Vitro Cell Dev Biol Anim 2015; 52:35-44. [PMID: 26288008 DOI: 10.1007/s11626-015-9941-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/10/2015] [Indexed: 11/25/2022]
Abstract
We have investigated the role chondroitin sulfate has on cell interactions during neural plate formation in the early chick embryo. Using tissue culture isolates from the prospective neural plate, we have measured neural gene expression profiles associated with neural stem cell differentiation. Removal of chondroitin sulfate from stage 4 neural plate tissue leads to altered associations of N-cadherin-positive neural progenitors and causes changes in the normal sequence of neural marker gene expression. Absence of chondroitin sulfate in the neural plate leads to reduced Sox2 expression and is accompanied by an increase in the expression of anterior markers of neural regionalization. Results obtained in this study suggest that the presence of chondroitin sulfate in the anterior chick embryo is instrumental in maintaining cells in the neural precursor state.
Collapse
Affiliation(s)
- David R Canning
- Department of Biological Sciences, Murray State University, Murray, KY, 42071, USA.
| | - Natalie R Brelsford
- Department of Biological Sciences, Murray State University, Murray, KY, 42071, USA
| | - Neil W Lovett
- Department of Biological Sciences, Murray State University, Murray, KY, 42071, USA
| |
Collapse
|
10
|
Cell adhesion properties of neural stem cells in the chick embryo. In Vitro Cell Dev Biol Anim 2014; 51:507-14. [PMID: 25487674 DOI: 10.1007/s11626-014-9851-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 11/20/2014] [Indexed: 12/21/2022]
Abstract
The nervous system of vertebrates is derived from an early embryonic region referred to as the neural plate. In the chick embryo, the neural plate is populated by neural stem cells specified from the epiblast shortly after the onset of gastrulation. Accompanying the formation of the plate, chondroitin sulfate glycosaminoglycans are expressed in the basal extracellular matrix. We describe in vitro experiments measuring cell adhesion of epiblast cells during the formation of the neural plate. Our findings may suggest that neural stem cells are set apart from non-neural epiblast by changes in relative cell-cell and cell-substrate adhesion. Specifically, changes in cell adhesion separating neural stem cells from the non-neural epiblast may be augmented by the presence of exogenous chondroitin-6-sulfate in the epiblast basal lamina at the time neural progenitors are specified in the epiblast.
Collapse
|
11
|
Photoreceptor replacement therapy: Challenges presented by the diseased recipient retinal environment. Vis Neurosci 2014; 31:333-44. [DOI: 10.1017/s0952523814000200] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractVision loss caused by the death of photoreceptors is the leading cause of irreversible blindness in the developed world. Rapid advances in stem cell biology and techniques in cell transplantation have made photoreceptor replacement by transplantation a very plausible therapeutic strategy. These advances include the demonstration of restoration of vision following photoreceptor transplantation and the generation of transplantable populations of donor cells from stem cells. In this review, we present a brief overview of the recent progress in photoreceptor transplantation. We then consider in more detail some of the challenges presented by the degenerating retinal environment that must play host to these transplanted cells, how these may influence transplanted photoreceptor cell integration and survival, and some of the progress in developing strategies to circumnavigate these issues.
Collapse
|
12
|
Weiner JA, Jontes JD. Protocadherins, not prototypical: a complex tale of their interactions, expression, and functions. Front Mol Neurosci 2013; 6:4. [PMID: 23515683 PMCID: PMC3601302 DOI: 10.3389/fnmol.2013.00004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/01/2013] [Indexed: 12/30/2022] Open
Abstract
The organization of functional neural circuits requires the precise and coordinated control of cell-cell interactions at nearly all stages of development, including neuronal differentiation, neuronal migration, axon outgrowth, dendrite arborization, and synapse formation and stabilization. This coordination is brought about by the concerted action of a large number of cell surface receptors, whose dynamic regulation enables neurons (and astrocytes) to adopt their proper roles within developing neural circuits. The protocadherins (Pcdhs) comprise a major family of cell surface receptors expressed in the developing vertebrate nervous system whose cellular and developmental roles are only beginning to be elucidated. In this review, we highlight selected recent results in several key areas of Pcdh biology and discuss their implications for our understanding of neural circuit formation and function.
Collapse
Affiliation(s)
- Joshua A Weiner
- Department of Biology, The University of Iowa Iowa City, IA, USA
| | | |
Collapse
|
13
|
Yu P, Pisitkun T, Wang G, Wang R, Katagiri Y, Gucek M, Knepper MA, Geller HM. Global analysis of neuronal phosphoproteome regulation by chondroitin sulfate proteoglycans. PLoS One 2013; 8:e59285. [PMID: 23527152 PMCID: PMC3601063 DOI: 10.1371/journal.pone.0059285] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/13/2013] [Indexed: 01/01/2023] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are major components of the extracellular matrix which mediate inhibition of axonal regeneration after injury to the central nervous system (CNS). Several neuronal receptors for CSPGs have recently been identified; however, the signaling pathways by which CSPGs restrict axonal growth are still largely unknown. In this study, we applied quantitative phosphoproteomics to investigate the global changes in protein phosphorylation induced by CSPGs in primary neurons. In combination with isobaric Tags for Relative and Absolute Quantitation (iTRAQ) labeling, strong cation exchange chromatography (SCX) fractionation, immobilized metal affinity chromatography (IMAC) and LC-MS/MS, we identified and quantified 2214 unique phosphopeptides corresponding to 1118 phosphoproteins, with 118 changing significantly in abundance with CSPG treatment. The proteins that were regulated by CSPGs included key components of synaptic vesicle trafficking, axon guidance mediated by semaphorins, integrin signaling, cadherin signaling and EGF receptor signaling pathways. A significant number of the regulated proteins are cytoskeletal and related proteins that have been implicated in regulating neurite growth. Another highly represented protein category regulated by CSPGs is nucleic acid binding proteins involved in RNA post-transcriptional regulation. Together, by screening the overall phosphoproteome changes induced by CSPGs, this data expand our understanding of CSPG signaling, which provides new insights into development of strategies for overcoming CSPG inhibition and promoting axonal regeneration after CNS injury.
Collapse
Affiliation(s)
- Panpan Yu
- Developmental Neurobiology Section, Cell Biology and Physiology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Trairak Pisitkun
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, Division of Intramural Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Guanghui Wang
- Proteomics Core Facility, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rong Wang
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Yasuhiro Katagiri
- Developmental Neurobiology Section, Cell Biology and Physiology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marjan Gucek
- Proteomics Core Facility, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mark A. Knepper
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, Division of Intramural Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Herbert M. Geller
- Developmental Neurobiology Section, Cell Biology and Physiology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
14
|
Modifying neurorepair and neuroregenerative factors with tPA and edaravone after transient middle cerebral artery occlusion in rat brain. Brain Res 2011; 1436:168-77. [PMID: 22221736 DOI: 10.1016/j.brainres.2011.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 12/05/2011] [Accepted: 12/09/2011] [Indexed: 11/20/2022]
Abstract
Changes in expression of neurorepair and neuroregenerative factors were examined after transient cerebral ischemia in relation to the effects of tissue plasminogen activator (tPA) and the free radical scavenger edaravone. Physiological saline or edaravone was injected twice during 90 min of transient middle cerebral artery occlusion (tMCAO) in rats, followed by the same saline or tPA at reperfusion. Sizes of the infarct and protein factors relating to neurorepair and neuroregeneration were examined at 4d after tMCAO. The protein factors examined were: a chondroitin sulfate proteoglycan neurocan, semaphorin type 3A (Sema3A), a myelin-associated glycoprotein receptor (Nogo receptor, Nogo-R), a synaptic regenerative factor (growth associated protein-43, GAP43), and a chemotropic factor netrin receptor (deleted in colorectal cancer, DCC). Two groups treated by edaravone only or edaravone plus tPA showed a reduction in infarct volume compared to the two groups treated by vehicle only or vehicle plus tPA. Immunohistochemistry and western blot analyses indicated that protein expression of neurocan, Sema3A, Nogo-R, GAP43, and DCC was decreased with tPA, but recovered with edaravone. Additive edaravone prevented the reductions of these five proteins induced by tPA. The present study demonstrates for the first time that exogenous tPA reduced protein factors involved in inhibiting and promoting axonal growth, but that edaravone ameliorated such damage in brain repair after acute ischemia.
Collapse
|
15
|
Molecular Crosstalk between Integrins and Cadherins: Do Reactive Oxygen Species Set the Talk? JOURNAL OF SIGNAL TRANSDUCTION 2011; 2012:807682. [PMID: 22203898 PMCID: PMC3238397 DOI: 10.1155/2012/807682] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 08/24/2011] [Indexed: 11/18/2022]
Abstract
The coordinate modulation of the cellular functions of cadherins and integrins plays an essential role in fundamental physiological and pathological processes, including morphogenesis, tissue differentiation and renewal, wound healing, immune surveillance, inflammatory response, tumor progression, and metastasis. However, the molecular mechanisms underlying the fine-tuned functional communication between cadherins and integrins are still elusive. This paper focuses on recent findings towards the involvement of reactive oxygen species (ROS) in the regulation of cell adhesion and signal transduction functions of integrins and cadherins, pointing to ROS as emerging strong candidates for modulating the molecular crosstalk between cell-matrix and cell-cell adhesion receptors.
Collapse
|
16
|
Kwok JC, Tan CL, Wang D, Heller J, Fawcett JW. Chondroitin Sulfates in Axon Regeneration and Plasticity. TRENDS GLYCOSCI GLYC 2011. [DOI: 10.4052/tigg.23.201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Jessica C.F. Kwok
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, United Kingdom
| | - Chin Lik Tan
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, United Kingdom
| | - Difei Wang
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, United Kingdom
| | - Janosch Heller
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, United Kingdom
| | - James W. Fawcett
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, United Kingdom
| |
Collapse
|
17
|
Sajad M, Zargan J, Chawla R, Umar S, Khan HA. Upregulation of CSPG3 accompanies neuronal progenitor proliferation and migration in EAE. J Mol Neurosci 2010; 43:531-40. [PMID: 21107918 DOI: 10.1007/s12031-010-9476-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 11/07/2010] [Indexed: 01/26/2023]
Abstract
The molecular identities of signals that regulate the CNS lesion remodeling remain unclear. Herein, we report for the first time that extracellular matrix chondroitin sulphate proteoglycan, CSPG3 (neurocan) is upregulated after primary inflammatory injury. EAE was induced using myelin oligodendrocyte glycoprotein (MOG) (35-55) which was characterized by massive polymorphonuclear cell infiltration and loss of myelin basic protein expression along with steep decrease of CNPase. Periventricular white matter (PVWM) and cortex presented with astrogliosis evidenced by increased Glial fibrillary acidic protein (GFAP) immunoreactivity 20 days post immunization (p.i). Neuronal progenitor cell (NPC) proliferation increased after first acute episode in the subventricular zone (SVZ), corpus callosum, and cortex, indicating migration of cells to structures other than rostral migration stream and olfactory bulb, which is indicative of cell recruitment for repair process and was confirmed by presence of thin myelin sheaths in the shadow plaques. Earlier CSPG3 has been demonstrated to impede regeneration. We observed neuroinflammation-induced up-regulation of the CSPG3 expression in two most affected regions viz. PVWM and cortex after proliferation and migration of NPCs. Our results show possible role of reactive astrogliosis in lesion remodeling and redefine the relation between inflammation and endogenous cellular repair which can aid in designing of newer therapeutic strategies.
Collapse
Affiliation(s)
- Mir Sajad
- Developmental Toxicology Laboratory, Department of Medical Elementology & Toxicology, Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| | | | | | | | | |
Collapse
|
18
|
Shypitsyna A, Málaga-Trillo E, Reuter A, Stuermer CAO. Origin of Nogo-A by domain shuffling in an early jawed vertebrate. Mol Biol Evol 2010; 28:1363-70. [PMID: 21098000 DOI: 10.1093/molbev/msq313] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Unlike mammals, fish are able to regenerate axons in their central nervous system. This difference has been partly attributed to the loss/acquisition of inhibitory proteins during evolution. Nogo-A--the longest isoform of the reticulon4 (rtn4) gene product--is commonly found in mammalian myelin where it acts as a potent inhibitor of axonal regeneration. Interestingly, fish RTN4 isoforms were previously reported to lack the most inhibitory Nogo-A-specific region (NSR). Nevertheless, fish axons collapse on contact with mammalian NSR, suggesting that fish possess a functional Nogo-A receptor but not its ligand. To reconcile these findings, we revisited the early evolution of rtn4. Mining of current genome databases established the unequivocal presence of NSR-coding sequences in fish rtn4 paralogues. Further comparative analyses indicate that the common ancestor of fish and tetrapods had an NSR-coding rtn4 gene, which underwent duplication and divergent evolution in bony fish. Our genomic survey also revealed that the cephalochordate Branchiostoma floridae contains a single rtn gene lacking the NSR. Hence, Nogo-A most probably arose independently in the rtn4 gene of a gnathostome ancestor before the split of the fish and tetrapod lineages. Close examination of the NSR uncovered clusters of structural and sequential similarities with neurocan (NCAN), an inhibitory proteoglycan of the glial scar. Notably, the shared presence of transposable elements in ncan and rtn4 genes suggests that Nogo-A originated via insertion of an ncan-like sequence into the rtn4 gene of an early jawed vertebrate with myelinated axons.
Collapse
|
19
|
Nielsen J, Kulahin N, Walmod PS. Extracellular protein interactions mediated by the neural cell adhesion molecule, NCAM: heterophilic interactions between NCAM and cell adhesion molecules, extracellular matrix proteins, and viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:23-53. [PMID: 20017013 DOI: 10.1007/978-1-4419-1170-4_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Janne Nielsen
- Protein Laboratory, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
20
|
Li H, Ren Z, Kang X, Zhang L, Li X, Wang Y, Xue T, Shen Y, Liu Y. Identification of tyrosine-phosphorylated proteins associated with metastasis and functional analysis of FER in human hepatocellular carcinoma cells. BMC Cancer 2009; 9:366. [PMID: 19835603 PMCID: PMC2770568 DOI: 10.1186/1471-2407-9-366] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 10/16/2009] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Aberrant activity of tyrosine-phosphorylated proteins is commonly associated with HCC metastasis. Cell signaling events driven by these proteins are implicated in numerous processes that alter cancer cell behavior. Exploring the activities and signaling pathways of these proteins in HCC metastasis may help in identifying new candidate molecules for HCC-targeted therapy. METHODS Hep3B (a nonmetastatic HCC cell line) and MHCC97H (a highly metastatic HCC cell line) were used in this study, and the tyrosine-phosphorylated proteins expressed in these cell lines were profiled by a phosphoproteomics technique based on LC-MS/MS. Protein-protein interaction and functional clustering analyses were performed to determine the activities of the identified proteins and the signaling pathways closely related to HCC metastasis. RESULTS In both cell lines, a total of 247 phosphotyrosine (pTyr) proteins containing 281 pTyr sites were identified without any stimulation. The involvement of almost 30% of these in liver or liver cancer has not been reported previously. Biological process clustering analysis indicated that pTyr proteins involved in cell motility, migration, protein autophosphorylation, cell-cell communication, and antiapoptosis functions were overexpressed during metastasis. Pathway clustering analysis revealed that signaling pathways such as those involved in EGFR signaling, cytokine- and chemokine-mediated signal transduction, and the PI3K and JAK-STAT cascades were significantly activated during HCC metastasis. Moreover, noncanonical regulation of the JNK cascade might also provide new targets for HCC metastasis. After comparing the pTyr proteins that were differentially expressed during HCC cell metastasis, we selected FER, a nonreceptor tyrosine kinase, and validated its role in terms of both expression and function. The data confirmed that FER might play a critical role in the invasion and metastasis of HCC. CONCLUSION The identification of pTyr proteins and signaling pathways associated with HCC metastasis could provide useful information for selecting new molecular intervention targets. Moreover, FER might serve as a novel drug target in future HCC therapy.
Collapse
Affiliation(s)
- Haiyu Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nielsen J, Kulahin N, Walmod PS. Extracellular Protein Interactions Mediated by the Neural Cell Adhesion Molecule, NCAM: Heterophilic Interactions Between NCAM and Cell Adhesion Molecules, Extracellular Matrix Proteins, and Viruses. Neurochem Res 2008. [DOI: 10.1007/s11064-008-9761-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Hu B, Kong LL, Matthews RT, Viapiano MS. The proteoglycan brevican binds to fibronectin after proteolytic cleavage and promotes glioma cell motility. J Biol Chem 2008; 283:24848-59. [PMID: 18611854 DOI: 10.1074/jbc.m801433200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The adult neural parenchyma contains a distinctive extracellular matrix that acts as a barrier to cell and neurite motility. Nonneural tumors that metastasize to the central nervous system almost never infiltrate it and instead displace the neural tissue as they grow. In contrast, invasive gliomas disrupt the extracellular matrix and disperse within the neural tissue. A major inhibitory component of the neural matrix is the lectican family of chondroitin sulfate proteoglycans, of which brevican is the most abundant member in the adult brain. Interestingly, brevican is also highly up-regulated in gliomas and promotes glioma dispersion by unknown mechanisms. Here we show that brevican secreted by glioma cells enhances cell adhesion and motility only after proteolytic cleavage. At the molecular level, brevican promotes epidermal growth factor receptor activation, increases the expression of cell adhesion molecules, and promotes the secretion of fibronectin and accumulation of fibronectin microfibrils on the cell surface. Moreover, the N-terminal cleavage product of brevican, but not the full-length protein, associates with fibronectin in cultured cells and in surgical samples of glioma. Taken together, our results provide the first evidence of the cellular and molecular mechanisms that may underlie the motility-promoting role of brevican in primary brain tumors. In addition, these results underscore the important functional implications of brevican processing in glioma progression.
Collapse
Affiliation(s)
- Bin Hu
- Center for Molecular Neurobiology, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
23
|
Bekirov IH, Nagy V, Svoronos A, Huntley GW, Benson DL. Cadherin-8 and N-cadherin differentially regulate pre- and postsynaptic development of the hippocampal mossy fiber pathway. Hippocampus 2008; 18:349-63. [PMID: 18064706 DOI: 10.1002/hipo.20395] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cells sort into regions and groups in part by their selective surface expression of particular classic cadherins during development. In the nervous system, cadherin-based sorting can define axon tracts, restrict axonal and dendritic arbors to particular regions or layers, and may encode certain aspects of synapse specificity. The underlying model has been that afferents and their targets hold in common the expression of a particular cadherin, thereby providing a recognition code of homophilic cadherin binding. However, most neurons express multiple cadherins, and it is not clear whether multiple cadherins all act similarly in shaping neural circuitry. Here we asked how two such cadherins, cadherin-8 and N-cadherin, influence the guidance and differentiation of hippocampal mossy fibers. Using organotypic hippocampal cultures, we find that cadherin-8 regulates mossy fiber fasciculation and targeting, but has little effect on CA3 dendrites. In contrast, N-cadherin regulates mossy fiber fasciculation, but has little impact on axonal growth and targeting. However, N-cadherin is essential for CA3 dendrite arborization. Both cadherins are required for formation of proper numbers of presynaptic terminals. Mechanistically, such differential actions of these two cadherins could, in theory, reflect coupling to distinct intracellular binding partners. However, we find that both cadherins bind beta-catenin in dentate gyrus (DG). This suggests that cadherins may engage different intracellular signaling cascades downstream of beta-catenin, coopt different extracellular binding partners, or target distinct subcellular domains. Together our findings demonstrate that cadherin-8 and N-cadherin are critical for generating the mossy fiber pathway, but that each contributes differentially to afferent and target differentiation, thereby complementing one another in the assembly of a synaptic circuit.
Collapse
Affiliation(s)
- Iddil H Bekirov
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
24
|
Cytokines and Extracellular Matrix Remodeling in the Central Nervous System. CYTOKINES AND THE BRAIN 2008. [DOI: 10.1016/s1567-7443(07)10009-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
25
|
Rhee J, Buchan T, Zukerberg L, Lilien J, Balsamo J. Cables links Robo-bound Abl kinase to N-cadherin-bound beta-catenin to mediate Slit-induced modulation of adhesion and transcription. Nat Cell Biol 2007; 9:883-92. [PMID: 17618275 DOI: 10.1038/ncb1614] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 05/30/2007] [Indexed: 11/08/2022]
Abstract
Binding of the secreted axon guidance cue Slit to its Robo receptor results in inactivation of the neural, calcium-dependent cell-cell adhesion molecule N-cadherin, providing a rapid epigenetic mechanism for integrating guidance and adhesion information. This requires the formation of a multimolecular complex containing Robo, Abl tyrosine kinase and N-cadherin. Here we show that on binding of Slit to Robo, the adaptor protein Cables is recruited to Robo-associated Abl and forms a multimeric complex by binding directly to N-cadherin-associated beta-catenin. Complex formation results in Abl-mediated phosphorylation of beta-catenin on tyrosine 489, leading to a decrease in its affinity for N-cadherin, loss of N-cadherin function, and targeting of phospho-Y489-beta-catenin to the nucleus. Nuclear beta-catenin combines with the transcription factor Tcf/Lef and activates transcription. Thus, Slit-induced formation of the Robo-N-cadherin complex results in a rapid loss of cadherin-mediated adhesion and has more lasting effects on gene transcription.
Collapse
Affiliation(s)
- Jinseol Rhee
- Department of Biological Sciences, The University of Iowa, Iowa City, Iowa 52242-1324, USA
| | | | | | | | | |
Collapse
|
26
|
Wang W, Mullikin-Kilpatrick D, Crandall JE, Gronostajski RM, Litwack ED, Kilpatrick DL. Nuclear factor I coordinates multiple phases of cerebellar granule cell development via regulation of cell adhesion molecules. J Neurosci 2007; 27:6115-27. [PMID: 17553984 PMCID: PMC6672151 DOI: 10.1523/jneurosci.0180-07.2007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A central question is how various stages of neuronal development are integrated as a differentiation program. Here we show that the nuclear factor I (NFI) family of transcriptional regulators is expressed and functions throughout the postmitotic development of cerebellar granule neurons (CGNs). Expression of an NFI dominant repressor in CGN cultures blocked axon outgrowth and dendrite formation and decreased CGN migration. Inhibition of NFI transactivation also disrupted extension and fasciculation of parallel fibers as well as CGN migration to the internal granule cell layer in cerebellar slices. In postnatal day 17 Nfia-deficient mice, parallel fibers were greatly diminished and disoriented, CGN dendrite formation was dramatically impaired, and migration from the external germinal layer (EGL) was retarded. Axonal marker expression also was disrupted within the EGL of embryonic day 18 Nfib-null mice. NFI regulation of axon extension was observed under conditions of homotypic cell contact, implicating cell surface proteins as downstream mediators of its actions in CGNs. Consistent with this, the cell adhesion molecules ephrin B1 and N-cadherin were identified as NFI gene targets in CGNs using inhibitor and Nfi mutant analysis as well as chromatin immunoprecipitation. Functional inhibition of ephrin B1 or N-cadherin interfered with CGN axon extension and guidance, migration, and dendritogenesis in cell culture as well as in situ. These studies define NFI as a key regulator of postmitotic CGN development, in particular of axon formation, dendritogenesis, and migratory behavior. Furthermore, they reveal how a single transcription factor family can control and integrate multiple aspects of neuronal differentiation through the regulation of cell adhesion molecules.
Collapse
Affiliation(s)
- Wei Wang
- Department of Cellular and Molecular Physiology and Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | |
Collapse
|
27
|
Mariotti A, Perotti A, Sessa C, Rüegg C. N-cadherin as a therapeutic target in cancer. Expert Opin Investig Drugs 2007; 16:451-65. [PMID: 17371194 DOI: 10.1517/13543784.16.4.451] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
During tumor progression, cancer cells undergo dramatic changes in the expression profile of adhesion molecules resulting in detachment from original tissue and acquisition of a highly motile and invasive phenotype. A hallmark of this change, also referred to as the epithelial-mesenchymal transition, is the loss of E- (epithelial) cadherin and the de novo expression of N- (neural) cadherin adhesion molecules. N-cadherin promotes tumor cell survival, migration and invasion, and a high level of its expression is often associated with poor prognosis. N-cadherin is also expressed in endothelial cells and plays an essential role in the maturation and stabilization of normal vessels and tumor-associated angiogenic vessels. Increasing experimental evidence suggests that N-cadherin is a potential therapeutic target in cancer. A peptidic N-cadherin antagonist (ADH-1) has been developed and has entered clinical testing. In this review, the authors discuss the biochemical and functional features of N-cadherin, its potential role in cancer and angiogenesis, and summarize the preclinical and clinical results achieved with ADH-1.
Collapse
Affiliation(s)
- Agnese Mariotti
- Centre Pluridisciplinaire d'Oncologie, Division of Experimental Oncology, Lausanne Cancer Center, and Swiss Institute for Experimental Cancer Research (ISREC), NCCR Molecular Oncology, Epalinges, Switzerland.
| | | | | | | |
Collapse
|
28
|
Blackmore M, Letourneau PC. L1, beta1 integrin, and cadherins mediate axonal regeneration in the embryonic spinal cord. ACTA ACUST UNITED AC 2007; 66:1564-83. [PMID: 17058193 DOI: 10.1002/neu.20311] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Embryonic birds and mammals are capable of axon regeneration after spinal cord injury, but this ability is lost during a discrete developmental transition. We recently showed that changes within maturing neurons, as opposed to changes solely in the spinal cord environment, significantly restrict axon regeneration during development. The developmental changes within neurons that limit axon regeneration remain unclear. One gap in knowledge is the identity of the adhesive receptors that embryonic neurons use to extend axons in the spinal cord. Here we test the roles of L1/NgCAM, beta1 integrin, and cadherins, using a coculture system in which embryonic chick brainstem neurons regenerate axons into an explant of embryonic spinal cord. By in vivo and in vitro methods, we found that brainstem neurons reduce axonal expression of L1 as they mature. Disrupting either L1 or beta1 integrin function individually in our coculture system partially inhibited growth of brainstem axons in spinal cords, while disrupting cadherin function alone had no effect. However, when all three adhesive receptors were blocked simultaneously, axon growth in the spinal cord was reduced by 90%. Using immunohistochemistry and in situ hybridization we show that during the period when neurons lose their regenerative capacity they reduce expression of mRNA for N-cadherin, and reduce axonal L1/NgCAM protein through a post-transcriptional mechanism. These data show that embryonic neurons use L1/NgCAM, beta1 integrin, and cadherin receptors for axon regeneration in the embryonic spinal cord, and raise the possibility that a reduced expression of these essential receptors may contribute to the low-regenerative capacity of older neurons.
Collapse
Affiliation(s)
- Murray Blackmore
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
29
|
Zacharias U, Rauch U. Competition and cooperation between tenascin-R, lecticans and contactin 1 regulate neurite growth and morphology. J Cell Sci 2006; 119:3456-66. [PMID: 16899820 DOI: 10.1242/jcs.03094] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extracellular matrix molecule tenascin-R (TN-R) and the proteoglycans of the lectican family show an overlapping distribution in the developing brain, have been implicated in similar cellular processes and form a complex network of interactions. Previously, we have demonstrated that TN-R induces microprocesses along neurites and enlarged growth cones of tectal cells by interacting with the cell adhesion molecule contactin 1. Here, we describe competition and cooperation between TN-R, lecticans and contactin 1, and their functional consequences for tectal cells. Aggrecan, brevican and neurocan inhibit the effects of TN-R on microprocess formation and growth cone size. This blocking effect is due to competition of lecticans with binding of TN-R to its neuronal receptor contactin 1, as shown by a sandwich-binding assay. Interaction of aggrecan with TN-R fibronectin type III domains 4-A is necessary for its inhibitory effect on both microprocess formation and TN-R binding to contactin 1. However, the chondroitin sulfate chains are not involved. Time-lapse video microscopy showed that aggrecan has no acute effect on motility and morphology of microprocesses and growth cones but induces long-term neurite retraction after pre-treatment with TN-R. In contrast to the competition described above, TN-R cooperates with brevican and neurocan to induce attachment of tectal cells and neurite outgrowth, probably by forming a bridge between the lectican substrate and contactin 1 as the neuronal receptor. Our findings suggest that a complex network of protein-protein interactions within the brain extracellular matrix, as shown here for TN-R and lecticans, is important for the fine-regulation of developmental processes such as microprocess formation along the neurite and neurite outgrowth.
Collapse
Affiliation(s)
- Ute Zacharias
- Max-Delbrück-Center for Molecular Medicine, R.-Rössle-Str.10, 13092 Berlin-Buch, Germany.
| | | |
Collapse
|
30
|
Wu H, Liang YL, Li Z, Jin J, Zhang W, Duan L, Zha X. Positive expression of E-cadherin suppresses cell adhesion to fibronectin via reduction of alpha5beta1 integrin in human breast carcinoma cells. J Cancer Res Clin Oncol 2006; 132:795-803. [PMID: 16821070 DOI: 10.1007/s00432-006-0128-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Accepted: 04/25/2006] [Indexed: 01/03/2023]
Abstract
E-cadherin mainly mediated the epithelial cell-cell adhesion, and integrin signaling can modulate the signaling pathway of E-cadherin in the different levels. Up to now, however, it is still unclear that whether E-cadherin could interfere with cell-matrix interaction, a typical adhesion through integrins. In this study we investigated the effects of E-cadherin on cell-matrix adhesion and alpha5beta1 integrin expression in human breast carcinoma cells. It was found that either mRNA or protein level of alpha5 and beta1 subunits of integrin decreased in E-cad-231 compared with Mock-231. Furthermore, the promoter activity of alpha5 gene was inhibited in E-cad-231 compared with Mock-231. Consistently, phosphorylated focal adhesion kinase, a closer key downstream protein kinase of integrin signaling, were also down-regulated in E-cad-231. Furthermore, distribution of beta-catenin was observed and data showed beta-catenin was accumulated in the nucleus in Mock-231, while disappeared from the nucleus and mainly accumulated near the cell surface membrane in E-cad-231. LiCl, a molecule that can inhibit the GSK-3beta activity and down-regulate beta-catenin degradation, could inversely stimulate expression of alpha5 and beta1 integrin. Taken together, these results indicated that positive expression of E-cadherin inhibits the cell adhesion to extracellular matrix mediated by alpha5beta1 integrin signaling.
Collapse
Affiliation(s)
- Heng Wu
- Key Laboratory of Glycoconjugate Research, Ministry of Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
31
|
Marrs GS, Honda T, Fuller L, Thangavel R, Balsamo J, Lilien J, Dailey ME, Arregui C. Dendritic arbors of developing retinal ganglion cells are stabilized by beta 1-integrins. Mol Cell Neurosci 2006; 32:230-41. [PMID: 16757177 DOI: 10.1016/j.mcn.2006.04.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 04/13/2006] [Accepted: 04/24/2006] [Indexed: 12/01/2022] Open
Abstract
The architecture of dendritic arbors is a defining characteristic of neurons and is established through a sequential but overlapping series of events involving process outgrowth and branching, stabilization of the global pattern, and synapse formation. To investigate the roles of cadherins and beta1-integrins in maintaining the global architecture of the arbor, we used membrane permeable peptides and transfection with dominant-negative constructs to disrupt adhesion molecule function in intact chick neural retina at a stage when the architecture of the ganglion cell (RGC) arbor is established but synapse formation is just beginning. Inactivation of beta1-integrins induces rapid dendrite retraction, with loss of dynamic terminal filopodia followed by resorption of major branches. Disruption of N-cadherin-beta-catenin interactions has no effect; however, dendrites do retract following perturbation of the juxtamembrane region of N-cadherin, which disrupts N-cadherin-mediated adhesion and initiates a beta1-integrin inactivating signal. Thus, developing RGC dendritic arbors are stabilized by beta1-integrin-dependent processes.
Collapse
Affiliation(s)
- Glen S Marrs
- Department of Biological Sciences, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Yamagata M, Sanes JR. Versican in the developing brain: lamina-specific expression in interneuronal subsets and role in presynaptic maturation. J Neurosci 2006; 25:8457-67. [PMID: 16162928 PMCID: PMC6725682 DOI: 10.1523/jneurosci.1976-05.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) of the extracellular matrix help stabilize synaptic connections in the postnatal brain and impede regeneration after injury. Here, we show that a CSPG of the lectican family, versican, also promotes presynaptic maturation in the developing brain. In the embryonic chick optic tectum, versican is expressed selectively by subsets of interneurons confined to the retinorecipient laminae, in which retinal axons arborize and form synapses. It is a major receptor for the Vicia villosa B4 lectin (VVA), shown previously to inhibit invasion of the retinorecipient lamina by retinal axons (Inoue and Sanes, 1997). In vitro, versican promotes enlargement of presynaptic varicosities in retinal axons. Depletion of versican in ovo, by RNA interference, results in retinal arbors with smaller than normal varicosities. We propose that versican provides a lamina-specific cue for presynaptic maturation and discuss the related but distinct effects of versican depletion and VVA blockade.
Collapse
Affiliation(s)
- Masahito Yamagata
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
33
|
Lilien J, Balsamo J. The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin. Curr Opin Cell Biol 2005; 17:459-65. [PMID: 16099633 DOI: 10.1016/j.ceb.2005.08.009] [Citation(s) in RCA: 378] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Accepted: 08/03/2005] [Indexed: 11/18/2022]
Abstract
The formation of stable cell-cell adhesions by type I cadherins depends on the association of their cytoplasmic domain with beta-catenin, and of beta-catenin with alpha-catenin. The binding of beta-catenin to these partners is regulated by phosphorylation of at least three critical tyrosine residues. Each of these residues is targeted by one or more specific kinases: Y142 by Fyn, Fer and cMet; Y489 by Abl; and Y654 by Src and the epidermal growth factor receptor. Developmental and physiological signals have been identified that initiate the specific phosphorylation and dephosphorylation of these residues, regulating cadherin function during neurite outgrowth, permeability of airway epithelium and synapse remodeling, and possibly initiating epithelial cell migration during development and metastasis.
Collapse
Affiliation(s)
- Jack Lilien
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242, USA.
| | | |
Collapse
|
34
|
Qi W, Ebbert KVJ, Craig AWB, Greer PA, McCafferty DM. Absence of Fer protein tyrosine kinase exacerbates endotoxin induced intestinal epithelial barrier dysfunction in vivo. Gut 2005; 54:1091-7. [PMID: 16009680 PMCID: PMC1774871 DOI: 10.1136/gut.2004.061887] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Fer kinase is activated by a number of growth factors and cytokines, and phosphorylates cortactin during cell shape change induced cortical actin reorganisation. In addition, Fer participates in cytoskeletal interactions mediated by cadherins, platelet endothelial cell adhesion molecule 1 (PECAM-1), and integrins, and has recently been implicated in limiting the innate immune response. Here we examined the role of Fer in modulating leucocyte recruitment and epithelial barrier function in the gut in response to lipopolysaccharide (LPS). METHODS Mice targeted with a kinase inactivating mutation (FerDR) or strain matched wild-type (129Sv/J) mice were studied after intraperitoneal injection of LPS. Intravital microscopy was used to examine intestinal leucocyte kinetics, and leucocyte infiltration was assessed by fluorescence activated cell sorting. Systemic inflammation was assessed by measuring lung myeloperoxidase activity. Epithelial barrier function was assessed in vivo using blood to lumen 51Cr-EDTA clearance, with or without antibody based depletion of circulating neutrophils. RESULTS LPS induced a significant increase in leucocyte adhesion and neutrophil infiltration into the intestinal tissue, and increased blood to lumen 51Cr-EDTA clearance. Pretreatment with neutrophil depleting antibody completely abrogated this response in wild-type mice. In FerDR mice, LPS induced leucocyte adhesion within the intestinal venules was exacerbated and associated with a trend towards increased neutrophil transmigration relative to wild-type mice. Surprisingly, LPS induced epithelial barrier permeability was increased 2.5-fold in FerDR mice relative to wild-type mice, and this barrier defect was only partly attenuated by depleting circulating neutrophils by >93 %. CONCLUSIONS Fer plays a role in regulating LPS induced epithelial barrier dysfunction in vivo through both neutrophil dependent and neutrophil independent mechanisms.
Collapse
Affiliation(s)
- W Qi
- Gastrointestinal Research Group, Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | |
Collapse
|
35
|
Akita K, Toda M, Hosoki Y, Inoue M, Fushiki S, Oohira A, Okayama M, Yamashina I, Nakada H. Heparan sulphate proteoglycans interact with neurocan and promote neurite outgrowth from cerebellar granule cells. Biochem J 2005; 383:129-38. [PMID: 15198637 PMCID: PMC1134051 DOI: 10.1042/bj20040585] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 06/03/2004] [Accepted: 06/15/2004] [Indexed: 12/28/2022]
Abstract
We found that neurocan, a major brain chondroitin sulphate proteoglycan, interacts with HSPGs (heparan sulphate proteoglycans) such as syndecan-3 and glypican-1. Binding of these HSPGs to neurocan was prevented by treatment of the HSPGs with heparitinases I and II, but not by treatment of neurocan with chondroitinase ABC. Scatchard plot analysis indicated that neurocan has two binding sites for these HSPGs with different affinities. It is known that neurocan in the rodent brain is proteolytically processed with aging into N- and C-terminal fragments. When a mixture of whole neurocan and N- and C-terminal fragments prepared from neonatal mouse brains or recombinant N- and C-terminal fragments was applied to a heparin column, the whole molecule and both the N- and C-terminal fragments bound to heparin. A centrifugation cell adhesion assay indicated that both the N- and C-terminal neurocan fragments could interact with these HSPGs expressed on the cell surface. To examine the biological significance of the HSPG-neurocan interaction, cerebellar granule cells expressing these HSPGs were cultured on the recombinant neurocan substrate. A significant increase in the rate of neurite outgrowth was observed on the wells coated with the C-terminal neurocan fragment, but not with the N-terminal one. Neurite outgrowth-promoting activity was inhibited by pretreatment of neurocan substrate with heparin or the addition of heparitinase I to culture medium. These results suggest that HSPGs such as syndecan-3 and glypican-1 serve as the cell-surface receptor of neurocan, and that the interaction of these HSPGs with neurocan through its C-terminal domain is involved in the promotion of neurite outgrowth.
Collapse
Affiliation(s)
- Kaoru Akita
- *Department of Biotechnology, Faculty of Engineering, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Munetoyo Toda
- *Department of Biotechnology, Faculty of Engineering, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Yuki Hosoki
- *Department of Biotechnology, Faculty of Engineering, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Mizue Inoue
- *Department of Biotechnology, Faculty of Engineering, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Shinji Fushiki
- †Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Atsuhiko Oohira
- ‡Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi 480-0392, Japan
| | - Minoru Okayama
- *Department of Biotechnology, Faculty of Engineering, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Ikuo Yamashina
- *Department of Biotechnology, Faculty of Engineering, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Hiroshi Nakada
- *Department of Biotechnology, Faculty of Engineering, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
36
|
Deguchi K, Takaishi M, Hayashi T, Oohira A, Nagotani S, Li F, Jin G, Nagano I, Shoji M, Miyazaki M, Abe K, Huh NH. Expression of neurocan after transient middle cerebral artery occlusion in adult rat brain. Brain Res 2005; 1037:194-9. [PMID: 15777769 DOI: 10.1016/j.brainres.2004.12.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 12/06/2004] [Accepted: 12/08/2004] [Indexed: 11/29/2022]
Abstract
Neurocan is one of the major chondroitin sulfate proteoglycans in the nervous tissues. The expression and proteolytic cleavage of neurocan are developmentally regulated in the normal rat brain, and the full-length neurocan is detected in juvenile brains but not in normal adult brains. Recently, some studies showed that the full-length neurocan was detectable even in the adult brain when it was exposed to mechanical incision or epileptic stimulation. In the present study, we demonstrated by Western blot analysis that the full-length neurocan transiently appeared in the peri-ischemic region of transient middle cerebral artery occlusion (tMCAO) in adult rat with a peak level at 4 days after tMCAO. Immunohistochemical analysis showed that a clear positive signal of neurocan was observed 4 days after tMCAO in the peri-ischemic region of cerebral cortex and caudate, where cells strongly positive in GFAP expression were also distributed. These results indicate that accumulation of the full-length neurocan produced by reactive astrocytes may be one of the processes for tissue repair and reconstruction of neural networks after focal brain ischemia as well.
Collapse
Affiliation(s)
- Kentaro Deguchi
- Department of Neurology, Graduate School of Medicine and Dentistry, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Xu G, Craig AWB, Greer P, Miller M, Anastasiadis PZ, Lilien J, Balsamo J. Continuous association of cadherin with beta-catenin requires the non-receptor tyrosine-kinase Fer. J Cell Sci 2005; 117:3207-19. [PMID: 15226396 DOI: 10.1242/jcs.01174] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The function of Type 1, classic cadherins depends on their association with the actin cytoskeleton, a connection mediated by alpha- and beta-catenin. The phosphorylation state of beta-catenin is crucial for its association with cadherin and thus the association of cadherin with the cytoskeleton. We now show that the phosphorylation of beta-catenin is regulated by the combined activities of the tyrosine kinase Fer and the tyrosine phosphatase PTP1B. Fer phosphorylates PTP1B at tyrosine 152, regulating its binding to cadherin and the continuous dephosphorylation of beta-catenin at tyrosine 654. Fer interacts with cadherin indirectly, through p120ctn. We have mapped the interaction domains of Fer and p120ctn and peptides corresponding to these sequences release Fer from p120ctn in vitro and in live cells, resulting in loss of cadherin-associated PTP1B, an increase in the pool of tyrosine phosphorylated beta-catenin and loss of cadherin adhesion function. The effect of the peptides is lost when a beta-catenin mutant with a substitution at tyrosine 654 is introduced into cells. Thus, Fer phosphorylates PTP1B at tyrosine 152 enabling it to bind to the cytoplasmic domain of cadherin, where it maintains beta-catenin in a dephosphorylated state. Cultured fibroblasts from mouse embryos targeted with a kinase-inactivating ferD743R mutation have lost cadherin-associated PTP1B and beta-catenin, as well as localization of cadherin and beta-catenin in areas of cell-cell contacts. Expression of wild-type Fer or culture in epidermal growth factor restores the cadherin complex and localization at cell-cell contacts.
Collapse
Affiliation(s)
- Gang Xu
- Department of Biological Sciences, The University of Iowa, Iowa City 52242, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Heck N, Garwood J, Loeffler JP, Larmet Y, Faissner A. Differential upregulation of extracellular matrix molecules associated with the appearance of granule cell dispersion and mossy fiber sprouting during epileptogenesis in a murine model of temporal lobe epilepsy. Neuroscience 2005; 129:309-24. [PMID: 15501589 DOI: 10.1016/j.neuroscience.2004.06.078] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2004] [Indexed: 01/06/2023]
Abstract
We have investigated changes in the extracellular matrix of the hippocampus associated with the early progression of epileptogenesis in a murine model of temporal lobe epilepsy using immunohistochemistry. In the first week following intrahippocampal injection of the glutamate agonist, domoate, there is a latent period at the end of which begins a sequential upregulation of extracellular matrix (ECM) molecules in the granule cell layer of the dentate gyrus, beginning with neurocan and tenascin-C. This expression precedes the characteristic dispersion of the granule cell layer which is evident at 14 days post-injection when the first recurrent seizures can be recorded. At this stage, an upregulation of the chondroitin sulfate proteoglycan, phosphacan, the DSD-1 chondroitin sulfate motif, and the HNK-1 oligosaccharide are also observed. The expression of these molecules is localized differentially in the epileptogenic dentate gyrus, especially in the sprouting molecular layer, where a strong upregulation of phosphacan, tenascin-C, and HNK-1 is observed but there is no expression of the proteoglycan, neurocan, nor of the DSD-1 chondroitin sulfate motif. Hence, it appears that granule cell layer dispersion is accompanied by a general increase in the ECM, while mossy fiber sprouting in the molecular layer is associated with a more restricted repertoire. In contrast to these changes, the expression of the ECM glycoproteins, laminin and fibronectin, both of which are frequently implicated in tissue remodelling events, showed no changes associated with either granule cell dispersion or mossy fiber sprouting, indicating that the epileptogenic plasticity of the hippocampus is accompanied by ECM interactions that are characteristic of the CNS.
Collapse
Affiliation(s)
- N Heck
- LNDR, Centre de Neurochimie du CNRS, 5, rue Blaise Pascal, 67084 Strasbourg, France
| | | | | | | | | |
Collapse
|
39
|
Sandvig A, Berry M, Barrett LB, Butt A, Logan A. Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors: expression, receptor signaling, and correlation with axon regeneration. Glia 2004; 46:225-51. [PMID: 15048847 DOI: 10.1002/glia.10315] [Citation(s) in RCA: 285] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Axon regeneration is arrested in the injured central nervous system (CNS) by axon growth-inhibitory ligands expressed in oligodendrocytes/myelin, NG2-glia, and reactive astrocytes in the lesion and degenerating tracts, and by fibroblasts in scar tissue. Growth cone receptors (Rc) bind inhibitory ligands, activating a Rho-family GTPase intracellular signaling pathway that disrupts the actin cytoskeleton inducing growth cone collapse/repulsion. The known inhibitory ligands include the chondroitin sulfate proteoglycans (CSPG) Neurocan, Brevican, Phosphacan, Tenascin, and NG2, as either membrane-bound or secreted molecules; Ephrins expressed on astrocyte/fibroblast membranes; the myelin/oligodendrocyte-derived growth inhibitors Nogo, MAG, and OMgp; and membrane-bound semaphorins (Sema) produced by meningeal fibroblasts invading the scar. No definitive CSPG Rc have been identified, although intracellular signaling through the Rho family of G-proteins is probably common to all the inhibitory ligands. Ephrins bind to signalling Ephs. The ligand-binding Rc for all the myelin inhibitors is NgR and requires p75(NTR) for transmembrane signaling. The neuropilin (NP)/plexin (Plex) Rc complex binds Sema. Strategies for promoting axon growth after CNS injury are thwarted by the plethora of inhibitory ligands and the ligand promiscuity of some of their Rc. There is also paradoxical reciprocal expression of many of the inhibitory ligands/Rc in normal and damaged neurons, and NgR expression is restricted to a limited number of neuronal populations. All these factors, together with an incomplete understanding of the normal functions of many of these molecules in the intact CNS, presently confound interpretive acumen in regenerative studies.
Collapse
Affiliation(s)
- Axel Sandvig
- Laboratory of Regenerative Neurobiology, Institute for Experimental Medical Research, Ullevål University Hospital, Oslo, Norway.
| | | | | | | | | |
Collapse
|
40
|
Masuda T, Fukamauchi F, Takeda Y, Fujisawa H, Watanabe K, Okado N, Shiga T. Developmental regulation of notochord-derived repulsion for dorsal root ganglion axons. Mol Cell Neurosci 2004; 25:217-27. [PMID: 15019939 DOI: 10.1016/j.mcn.2003.10.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2003] [Revised: 10/07/2003] [Accepted: 10/07/2003] [Indexed: 11/15/2022] Open
Abstract
During the initial stages of development, the notochord provides repulsive signals for dorsal root ganglion (DRG) axons via semaphorin 3A/neuropilin-1, axonin-1/SC2, and other unknown repulsive molecules. The notochord is known to produce aggrecan, one of the chondroitin sulfate proteoglycans (CSPGs). We report here that adding aggrecan to the culture medium cannot only induce DRG growth cone collapse, but also inhibit DRG axonal growth. Using cocultures composed of tissues derived from chick embryos or neuropilin-1-deficient mice treated with chondroitinase ABC, we show the direct evidence that CSPGs are involved in notochord-derived repulsion for DRG axons. At later developmental stages, CSPGs are involved in perinotochordal sheath-derived axon repulsion, but not in notochord core-derived repulsion. We further demonstrate that TAG-1/axonin-1/SC2 is not involved in mediating repulsive activities by CSPGs, but is required for notochord core-derived axon repulsion. Thus, notochord-derived multiple axon repulsions act in a spatiotemporal-specific manner to shape the initial trajectories of DRG axons.
Collapse
Affiliation(s)
- Tomoyuki Masuda
- Department of Anatomy, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Okamoto M, Sakiyama J, Mori S, Kurazono S, Usui S, Hasegawa M, Oohira A. Kainic acid-induced convulsions cause prolonged changes in the chondroitin sulfate proteoglycans neurocan and phosphacan in the limbic structures. Exp Neurol 2004; 184:179-95. [PMID: 14637091 DOI: 10.1016/s0014-4886(03)00251-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Systemic administration of kainic acid induces repeated convulsive seizures (KA convulsions) that result in neuropathological changes similar to temporal lobe epilepsy and the appearance of spontaneous recurrent seizures (SRS). The appearance of SRS is considered a result of the remodeling of neuronal networks following neuronal degeneration. We investigated the changes in chondroitin sulfate proteoglycans (CSPGs) in the limbic structures after KA convulsions in the rat using monoclonal antibodies 1G2, which recognizes full-length neurocan and the C-terminal half of neurocan, neurocan C, and 6B4, which recognize phosphacan and protein tyrosine phosphatase zeta. After KA convulsions, full-length neurocan appeared by 24 h and reached a peak by 48 to 72 h, whereas phosphacan decreased within 24 h in the hippocampus. In immunohistochemistry, neurocan increased in the limbic structures coincident with the appearance of reactive astrocytes. Phosphacan decreased coincident with pyramidal cell loss in the hippocampus, and the number of phosphacan-positive perineuronal nets around parvalbumin neurons decreased, whereas parvalbumin neurons were relatively conserved. In contrast, phosphacan increased in the entorhinal and piriform cortices in correlation with the severity of neuronal loss. Both neurocan and phosphacan recovered to the control level by 8 weeks after KA convulsions in some rats, but the changes in neurocan and phosphacan described above still persisted in more than half the rats. The results indicate that KA convulsions induce prolonged changes in neurocan and phosphacan similar to those in the developing rat brain and suggest a role of these CSPGs in the remodeling of neuronal networks related to the establishment or enhancement of epileptogenesis.
Collapse
Affiliation(s)
- Motoi Okamoto
- Faculty of Health Sciences, Okayama University Medical School, Okayama, Japan.
| | | | | | | | | | | | | |
Collapse
|
42
|
Legg J, Jensen UB, Broad S, Leigh I, Watt FM. Role of melanoma chondroitin sulphate proteoglycan in patterning stem cells in human interfollicular epidermis. Development 2003; 130:6049-63. [PMID: 14573520 DOI: 10.1242/dev.00837] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Human interfollicular epidermis is renewed by stem cells that are clustered in the basal layer in a patterned, non-random distribution. Stem cells can be distinguished from other keratinocytes by high expression of β1 integrins and lack of expression of terminal differentiation markers; they divide infrequently in vivo but form actively growing colonies in culture. In a search for additional stem cell markers, we observed heterogeneous epidermal expression of melanoma chondroitin sulphate proteoglycan (MCSP). MCSP was expressed by those keratinocytes with the highest β1 integrin levels. In interfollicular epidermis, expression was confined to non-cycling cells and,in culture, to self-renewing clones. However, fluorescence-activated cell sorting on the basis of MCSP and β1 integrin expression gave no more enrichment for clonogenic keratinocytes than sorting for β1 integrins alone. To interfere with endogenous MCSP, we retrovirally infected keratinocytes with a chimera of the CD8 extracellular domain and the MCSP cytoplasmic domain. CD8/MCSP did not affect keratinocyte proliferation or differentiation but the cohesiveness of keratinocytes in isolated clones or reconstituted epidermal sheets was greatly reduced. CD8/MCSP caused stem cell progeny to scatter without differentiating. CD8/MCSP did not alter keratinocyte motility but disturbed cadherin-mediated cell-cell adhesion and the cortical actin cytoskeleton, effects that could be mimicked by inhibiting Rho. We conclude that MCSP is a novel marker for epidermal stem cells that contributes to their patterned distribution by promoting stem cell clustering.
Collapse
Affiliation(s)
- James Legg
- Keratinocyte Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
| | | | | | | | | |
Collapse
|
43
|
Senis YA, Craig AWB, Greer PA. Fps/Fes and Fer protein-tyrosinekinases play redundant roles in regulating hematopoiesis. Exp Hematol 2003; 31:673-81. [PMID: 12901971 DOI: 10.1016/s0301-472x(03)00107-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE The highly related protein-tyrosine kinases Fps (also called Fes) and Fer are sole members of a subfamily of kinases. In this study, knock-in mice harboring kinase-inactivating mutations in both fps and fer alleles were used to assess functional redundancy between Fps and Fer kinases in regulating hematopoiesis. METHODS Mice harboring kinase-inactivating mutations in fps and fer alleles were generated previously. Compound homozygous mice were bred that lack both Fps and Fer kinase activities and progeny were analyzed for potential defects in viability and fertility. Potential differences in hematopoiesis were analyzed by lineage analysis of bone marrow cells, peripheral blood counts, and hematopoietic progenitor cell colony-forming assays. RESULTS Mice devoid of both Fps and Fer kinase activities were viable and displayed reduced fertility. Circulating levels of neutrophils, erythrocytes, and platelets were elevated in compound mutant mice compared to wild-type controls, suggesting that hematopoiesis is deregulated in the absence of Fps and Fer kinases. Compound mutant mice also showed reduced overall bone marrow cellularity, and lineage analysis revealed elevated CD11b(hi)Ly-6G(lo) myeloid cells, which may reflect increased granulocyte progenitors. Although no differences in the overall number of granulocyte/monocyte colony-forming progenitors were observed, qualitative differences in myeloid colonies from compound mutant mice suggested a role for Fps and Fer kinases in regulating cell-cell adhesion or a skewing in cellularity of colonies. CONCLUSIONS Mice lacking both Fps and Fer kinase activities develop normally, show reduced fertility, and display defects in hematopoiesis, thus providing evidence for functional redundancy between Fps and Fer kinases in regulating hematopoiesis.
Collapse
Affiliation(s)
- Yotis A Senis
- Department of Pathology, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
44
|
Chen YM, Lee NPY, Mruk DD, Lee WM, Cheng CY. Fer kinase/FerT and adherens junction dynamics in the testis: an in vitro and in vivo study. Biol Reprod 2003; 69:656-72. [PMID: 12700184 DOI: 10.1095/biolreprod.103.016881] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Fer kinase is a 94-kDa cytoplasmic cell-cell actin-based adherens junction (AJ)-associated nonreceptor protein tyrosine kinase (PTK) found in multiple epithelia including the testis, whereas FerT kinase (51 kDa) is the truncated testis-specific form of Fer kinase, lacking the Fps/Fes/Fer/CIP4 (products of oncogenes identified in avian and feline sarcoma, encoding tyrosine protein kinases) and the three coiled-coil domains versus Fer kinase. Yet the role(s) of Fer kinase in AJ dynamics in the testis remains largely unexplored. We have used an in vitro model of AJ assembly with Sertoli-germ cell cocultures and an in vivo model of AJ disassembly in which adult rats were treated with 1-(2,4-dichlorobenzyl)-indazole-3-carbohydrazide (AF-2364) to study changes in the expression and/or localization of Fer kinase during AJ restructuring. Fer kinase/FerT was expressed by Sertoli and germ cells when cultured in vitro. Using an antibody prepared against a synthetic peptide, NH2-SAPQNCPEEIFTIMMKCWDYK-COOH, corresponding to residues 779-799 of Fer kinase in the rat, which failed to cross-react with FerT kinase, for immunohistochemistry, Fer kinase was detected in the seminiferous epithelium in virtually all stages of the epithelial cycle. At stages XIII-VI, Fer kinase was associated largely with round and elongating spermatids. At stages VII-VIII, Fer kinase associated almost exclusively with round spermatids with very weak staining associated with elongated spermatids. This stage-specific localization of Fer kinase in the epithelium was confirmed by using staged tubules for semiquantitative reverse transcription-polymerase chain reaction. Studies by immunoprecipitation revealed that Fer kinase associated with N-cadherin, gamma-catenin, p120ctn, c-Src (a putative PTK and the product of the transforming, sarcoma-inducing gene of Rous sarcoma virus), Rab 8 (a GTPase), actin, vimentin, but not E-cadherin, afadin, nectin-3, and integrin beta1, suggesting Fer kinase associates not only with the actin-based cell-cell AJ structures, such as the N-cadherin/catenin complex (but not the alpha6beta1 integrin/laminin and the afadin/nectin complex), but also with intermediate filament-based cell-cell desmosomes. An induction in Fer kinase expression was detected during Sertoli-germ cell AJ assembly in vitro but not during AF-2364-induced AJ disruption in vivo. Yet this AF-2364-induced Fer kinase plummeting associated with an induction in N-cadherin, beta-catenin, and p120ctn, particularly at the base of the seminiferous epithelium. In summary, Fer kinase structurally associates with the N-cadherin/catenin protein complex in the testis and can possibly be used to mediate signaling function via the cadherin/catenin protein complex.
Collapse
|
45
|
Sango K, Oohira A, Ajiki K, Tokashiki A, Horie M, Kawano H. Phosphacan and neurocan are repulsive substrata for adhesion and neurite extension of adult rat dorsal root ganglion neurons in vitro. Exp Neurol 2003; 182:1-11. [PMID: 12821372 DOI: 10.1016/s0014-4886(03)00090-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Phosphacan (PC) and neurocan (NC) are major chondroitin sulfate proteoglycans (CS-PGs) in nervous tissue and are involved in the modulation of cell adhesion and neurite outgrowth during neural development and regeneration. In the present study, we examined the effects of PC and NC on the attachment and neurite extension of adult rat dorsal root ganglion (DRG) neurons in vitro. Treatment with PC and NC on poly-L-lysine (PL) significantly impaired both neuronal attachment and neurite extension in a concentration-dependent manner (10 microg/ml > 1 microg/ml >> 0.1 microg/ml), and they were partially suppressed by chondroitinase ABC (ChABC) digestion. The CS-PGs applied to culture medium (1 microg/ml) also displayed inhibitory effects on neurite extension, which were not altered by ChABC treatment. These results show that PC and NC are repulsive substrata for adhesion and neurite regeneration of adult DRG neurons in vitro and suggest that both chondroitin sulfate moieties and core proteins are responsible for the inhibitory actions of the CS-PGs. We also conducted immunohistochemical analyses with the monoclonal antibodies to core proteins of PC (mAb 6B4) and NC (mAb 1G2), which revealed that only a few neurons in the DRG section were stained with these antibodies. In contrast, most DRG neurons at different stages (12 h, 1 day, 2 days, and 4 days) in culture were immunoreactive to mAb 6B4 and mAb 1G2. Taking these findings together, it is plausible that both CS-PGs expressed in the cultured neurons may play a role in the modulation of attachment, survival, and neurite regeneration.
Collapse
Affiliation(s)
- Kazunori Sango
- Department of Developmental Morphology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu-shi, Tokyo 183-8526, Japan.
| | | | | | | | | | | |
Collapse
|
46
|
Mishima N, Hoffman S. Neurocan in the embryonic avian heart and vasculature. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2003; 272:556-62. [PMID: 12740950 DOI: 10.1002/ar.a.10067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The chondroitin sulfate proteoglycan (CSPG) neurocan was previously considered to be nervous-system specific. However, we have found neurocan in the embryonic heart and vasculature. In stage 11 quail embryos, neurocan was prominently expressed in the myocardium, dorsal mesocardium, heart-forming fields, splanchnic mesoderm, and vicinity of the extraembryonic vaculature, and at lower levels in the endocardium. A comparison of neurocan staining with QH1 staining of vascular endothelial cells demonstrates that neurocan is frequently expressed by cells adjacent to endothelial cells, rather than by endothelial cells themselves. In some cases, a dispersed subset of cells are neurocan-positive in a field of cells that otherwise appear uniform in morphology. Later in development, neurocan expression becomes relatively limited to the nervous system. However, even in 10-day embryos, neurocan is expressed in the chorio-allantoic membrane in the tissue that separates closely packed, small-diameter blood vessels. In summary, our results suggest that neurocan may function as a barrier that regulates vascular patterning during development.
Collapse
Affiliation(s)
- Noboru Mishima
- Division of Rheumatology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | |
Collapse
|
47
|
Walker HA, Whitelock JM, Garl PJ, Nemenoff RA, Stenmark KR, Weiser-Evans MCM. Perlecan up-regulation of FRNK suppresses smooth muscle cell proliferation via inhibition of FAK signaling. Mol Biol Cell 2003; 14:1941-52. [PMID: 12802066 PMCID: PMC165088 DOI: 10.1091/mbc.e02-08-0508] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2002] [Revised: 12/17/2002] [Accepted: 12/27/2002] [Indexed: 12/25/2022] Open
Abstract
We previously reported that fully assembled basement membranes are nonpermissive to smooth muscle cell (SMC) replication and that perlecan (PN), a basement membrane heparan sulfate proteoglycan, is a dominant effector of this response. We report here that SMC adhesion to basement membranes, and perlecan in particular, up-regulate the expression of focal adhesion kinase-related nonkinase (FRNK), a SMC-specific endogenous inhibitor of FAK, which subsequently suppresses FAK-mediated, ERK1/2-dependent growth signals. Up-regulation of FRNK by perlecan is actively and continuously regulated. Relative to the matrix proteins studied, the effects are unique to perlecan, because plating of SMCs on several other basement membrane proteins is associated with low levels of FRNK and corresponding high levels of FAK and ERK1/2 phosphorylation and SMC growth. Perlecan supports SMC adhesion, although there is reduced cell spreading compared with fibronectin (FN), laminin (LN), or collagen type IV (IV). Despite the reduction in cell spreading, we report that perlecan-induced up-regulation of FRNK is independent of cell shape changes. Growth inhibition by perlecan was rescued by overexpressing a constitutively active FAK construct, but overexpressing kinase-inactivated mutant FAK or FRNK attenuated fibronectin-stimulated growth. These data indicate that perlecan functions as an endogenously produced inhibitor of SMC growth at least in part through the active regulation of FRNK expression. FRNK, in turn, may control SMC growth by downregulating FAK-dependent signaling events.
Collapse
Affiliation(s)
- Heather A Walker
- Department of Pediatrics, Renal Division, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Thalamocortical axons are precisely targeted to cortical layer IV, but the identity of specific molecules that govern the establishment of laminar specificity in the thalamocortical projection has been elusive. In this study, we test the role of N-cadherin, a homophilic cell adhesion molecule, in laminar targeting of thalamocortical axons using cocultured thalamic and cortical slice explants exposed to N-cadherin function-blocking antibodies or inhibitory peptides. In untreated cocultures, labeled thalamocortical axons normally grow to and stop in layer IV, forming terminal-like arbors. In the N-cadherin-blocked cocultures, thalamic axons reach layer IV by growing through deep layers at the same rate as those in the untreated cocultures, but instead of terminating in layer IV, they continue growing uninterruptedly through layer IV and extend into supragranular layers to reach the outermost cortical edge, where some form terminal-like arbors in this aberrant laminar position. In cocultures in which the cortical slice is taken at an earlier maturational stage, one that corresponds to a time when thalamic axons are normally growing through deep layers before the emergence of layer IV from the cortical plate, thalamic axon ingrowth through deep layers is significantly attenuated by N-cadherin blocking reagents. These data indicate that N-cadherin has multifaceted roles in establishing the thalamocortical projection, governing aspects of both thalamic axon ingrowth and laminar targeting by acting as a layer IV stop signal, which progressively change in parallel with the maturational state of the cortex.
Collapse
|
49
|
Poskanzer K, Needleman LA, Bozdagi O, Huntley GW. N-cadherin regulates ingrowth and laminar targeting of thalamocortical axons. J Neurosci 2003; 23:2294-305. [PMID: 12657688 PMCID: PMC4415263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Thalamocortical axons are precisely targeted to cortical layer IV, but the identity of specific molecules that govern the establishment of laminar specificity in the thalamocortical projection has been elusive. In this study, we test the role of N-cadherin, a homophilic cell adhesion molecule, in laminar targeting of thalamocortical axons using cocultured thalamic and cortical slice explants exposed to N-cadherin function-blocking antibodies or inhibitory peptides. In untreated cocultures, labeled thalamocortical axons normally grow to and stop in layer IV, forming terminal-like arbors. In the N-cadherin-blocked cocultures, thalamic axons reach layer IV by growing through deep layers at the same rate as those in the untreated cocultures, but instead of terminating in layer IV, they continue growing uninterruptedly through layer IV and extend into supragranular layers to reach the outermost cortical edge, where some form terminal-like arbors in this aberrant laminar position. In cocultures in which the cortical slice is taken at an earlier maturational stage, one that corresponds to a time when thalamic axons are normally growing through deep layers before the emergence of layer IV from the cortical plate, thalamic axon ingrowth through deep layers is significantly attenuated by N-cadherin blocking reagents. These data indicate that N-cadherin has multifaceted roles in establishing the thalamocortical projection, governing aspects of both thalamic axon ingrowth and laminar targeting by acting as a layer IV stop signal, which progressively change in parallel with the maturational state of the cortex.
Collapse
Affiliation(s)
- Kira Poskanzer
- Fishberg Research Center for Neurobiology, The Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
50
|
Abstract
Neuritogenesis and its inhibition are opposite and balancing processes during development as well as pathological states of adult neuron. In particular, the inability of adult central nervous system (CNS) neurons to regenerate upon injury has been attributed to both a lack of neuritogenic ability and the presence of neuronal growth inhibitors in the CNS environment. I review here recent progress in our understanding of neuritogenic inhibitors, with particular emphasis on those with a role in the inhibition of neuronal regeneration in the CNS, their signaling cascades and signal mediators. Neurotrophines acting through the tropomyosin-related kinase (Trk) family and p75 receptors promote neuritogenesis, which appears to require sustained activation of the mitogen activated protein (MAP) kinase pathway, and/or the activation of phosphotidylinositol 3-kinase (PI3 kinase). During development, a plethora of guidance factors and their receptors navigate the growing axon. However, much remained to be learned about the signaling receptors and pathways that mediate the activity of inhibitors of CNS regeneration. There is growing evidence that neuronal guidance molecules, particularly semaphorins, may also have a role as inhibitors of CNS regeneration. Although direct links have not yet been established in many cases, signals from these agents may ultimately converge upon the modulators and effectors of the Rho-family GTPases. Rho-family GTPases and their effectors modulate the activities of actin modifying molecules such as cofilin and profilin, resulting in cytoskeletal changes associated with growth cone extension or retraction.
Collapse
Affiliation(s)
- Bor Luen Tang
- NCA Laboratory, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Singapore.
| |
Collapse
|