1
|
Zhang S, Zhang B, Wang Z, Zhong S, Zheng Y, Zhang Q, Liu X. Type I arginine methyltransferases play crucial roles in development and pathogenesis of Phytophthora capsici. Int J Biol Macromol 2024; 278:134671. [PMID: 39151856 DOI: 10.1016/j.ijbiomac.2024.134671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Phytophthora capsici, a pathogenic oomycete, poses a serious threat to global vegetable production. This study investigated the role of protein arginine methylation, a notable post-translational modification, in the epigenetic regulation of P. capsici. We identified and characterized five protein arginine methyltransferases (PRMTs) in P. capsici, with a focus on four putative type I PRMTs exhibiting similar functional domain. Deletion of PcPRMT3, a homolog of PRMT3, significantly affected mycelial growth, asexual spore development, pathogenicity, and stress responses in P. capsici. Transcriptome analyses indicated that absence of PcPRMT3 disrupted multiple biological pathways. The PcPRMT3 deletion mutant displayed heightened susceptibility to oxidative stress, correlated with the downregulation of genes involved in peroxidase and peroxisome activities. Additionally, PcPRMT3 acted as a negative regulator, modulating the transcription levels of specific elicitins, which in turn affects the defense response of host plant against P. capsici. Furthermore, PcPRMT3 was found to affect global arginine methylation levels in P. capsici, implying potential alterations in the functions of its substrate proteins.
Collapse
Affiliation(s)
- Sicong Zhang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Borui Zhang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhiwen Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Shan Zhong
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yang Zheng
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qinghua Zhang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xili Liu
- College of Plant Protection, China Agricultural University, Beijing 100193, China; State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
2
|
Roesmann F, Müller L, Klaassen K, Heß S, Widera M. Interferon-Regulated Expression of Cellular Splicing Factors Modulates Multiple Levels of HIV-1 Gene Expression and Replication. Viruses 2024; 16:938. [PMID: 38932230 PMCID: PMC11209495 DOI: 10.3390/v16060938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Type I interferons (IFN-Is) are pivotal in innate immunity against human immunodeficiency virus I (HIV-1) by eliciting the expression of IFN-stimulated genes (ISGs), which encompass potent host restriction factors. While ISGs restrict the viral replication within the host cell by targeting various stages of the viral life cycle, the lesser-known IFN-repressed genes (IRepGs), including RNA-binding proteins (RBPs), affect the viral replication by altering the expression of the host dependency factors that are essential for efficient HIV-1 gene expression. Both the host restriction and dependency factors determine the viral replication efficiency; however, the understanding of the IRepGs implicated in HIV-1 infection remains greatly limited at present. This review provides a comprehensive overview of the current understanding regarding the impact of the RNA-binding protein families, specifically the two families of splicing-associated proteins SRSF and hnRNP, on HIV-1 gene expression and viral replication. Since the recent findings show specifically that SRSF1 and hnRNP A0 are regulated by IFN-I in various cell lines and primary cells, including intestinal lamina propria mononuclear cells (LPMCs) and peripheral blood mononuclear cells (PBMCs), we particularly discuss their role in the context of the innate immunity affecting HIV-1 replication.
Collapse
Affiliation(s)
- Fabian Roesmann
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Katleen Klaassen
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Stefanie Heß
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| |
Collapse
|
3
|
López-Palacios TP, Andersen JL. Kinase regulation by liquid-liquid phase separation. Trends Cell Biol 2023; 33:649-666. [PMID: 36528418 PMCID: PMC10267292 DOI: 10.1016/j.tcb.2022.11.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
Liquid-liquid phase separation (LLPS) is emerging as a mechanism of spatiotemporal regulation that could answer long-standing questions about how order is achieved in biochemical signaling. In this review we discuss how LLPS orchestrates kinase signaling, either by creating condensate structures that are sensed by kinases or by direct LLPS of kinases, cofactors, and substrates - thereby acting as a mechanism to compartmentalize kinase-substrate relationships, and in some cases also sequestering the kinase away from inhibitory factors. We also examine the possibility that selective pressure promotes genomic rearrangements that fuse pro-growth kinases to LLPS-prone protein sequences, which in turn drives aberrant kinase activation through LLPS.
Collapse
Affiliation(s)
- Tania P López-Palacios
- Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Joshua L Andersen
- Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
4
|
Khalil MI, Ismail HM, Panasyuk G, Bdzhola A, Filonenko V, Gout I, Pardo OE. Asymmetric Dimethylation of Ribosomal S6 Kinase 2 Regulates Its Cellular Localisation and Pro-Survival Function. Int J Mol Sci 2023; 24:ijms24108806. [PMID: 37240151 DOI: 10.3390/ijms24108806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Ribosomal S6 kinases (S6Ks) are critical regulators of cell growth, homeostasis, and survival, with dysregulation of these kinases found to be associated with various malignancies. While S6K1 has been extensively studied, S6K2 has been neglected despite its clear involvement in cancer progression. Protein arginine methylation is a widespread post-translational modification regulating many biological processes in mammalian cells. Here, we report that p54-S6K2 is asymmetrically dimethylated at Arg-475 and Arg-477, two residues conserved amongst mammalian S6K2s and several AT-hook-containing proteins. We demonstrate that this methylation event results from the association of S6K2 with the methyltransferases PRMT1, PRMT3, and PRMT6 in vitro and in vivo and leads to nuclear the localisation of S6K2 that is essential to the pro-survival effects of this kinase to starvation-induced cell death. Taken together, our findings highlight a novel post-translational modification regulating the function of p54-S6K2 that may be particularly relevant to cancer progression where general Arg-methylation is often elevated.
Collapse
Affiliation(s)
- Mahmoud I Khalil
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon
| | - Heba M Ismail
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2TN, UK
- Healthy Lifespan Institute (HELSI), University of Sheffield, Sheffield S10 2TN, UK
| | - Ganna Panasyuk
- Institut Necker-Enfants Malades (INEM), 75015 Paris, France
- INSERM U1151/CNRS UMR 8253, Université de Paris Cité, 75015 Paris, France
| | - Anna Bdzhola
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Valeriy Filonenko
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
| | - Ivan Gout
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03143 Kyiv, Ukraine
- Department of Structural and Molecular Biology, University College London, London WC1E 6BT, UK
- Institute of Healthy Ageing, University College London, London WC1E 6BT, UK
| | - Olivier E Pardo
- Division of Cancer, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| |
Collapse
|
5
|
Sertznig H, Roesmann F, Wilhelm A, Heininger D, Bleekmann B, Elsner C, Santiago M, Schuhenn J, Karakoese Z, Benatzy Y, Snodgrass R, Esser S, Sutter K, Dittmer U, Widera M. SRSF1 acts as an IFN-I-regulated cellular dependency factor decisively affecting HIV-1 post-integration steps. Front Immunol 2022; 13:935800. [PMID: 36458014 PMCID: PMC9706209 DOI: 10.3389/fimmu.2022.935800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/19/2022] [Indexed: 08/24/2023] Open
Abstract
Efficient HIV-1 replication depends on balanced levels of host cell components including cellular splicing factors as the family of serine/arginine-rich splicing factors (SRSF, 1-10). Type I interferons (IFN-I) play a crucial role in the innate immunity against HIV-1 by inducing the expression of IFN-stimulated genes (ISGs) including potent host restriction factors. The less well known IFN-repressed genes (IRepGs) might additionally affect viral replication by downregulating host dependency factors that are essential for the viral life cycle; however, so far, the knowledge about IRepGs involved in HIV-1 infection is very limited. In this work, we could demonstrate that HIV-1 infection and the associated ISG induction correlated with low SRSF1 levels in intestinal lamina propria mononuclear cells (LPMCs) and peripheral blood mononuclear cells (PBMCs) during acute and chronic HIV-1 infection. In HIV-1-susceptible cell lines as well as primary monocyte-derived macrophages (MDMs), expression levels of SRSF1 were transiently repressed upon treatment with specific IFNα subtypes in vitro. Mechanically, 4sU labeling of newly transcribed mRNAs revealed that IFN-mediated SRSF1 repression is regulated on early RNA level. SRSF1 knockdown led to an increase in total viral RNA levels, but the relative proportion of the HIV-1 viral infectivity factor (Vif) coding transcripts, which is essential to counteract APOBEC3G-mediated host restriction, was significantly reduced. In the presence of high APOBEC3G levels, however, increased LTR activity upon SRSF1 knockdown facilitated the overall replication, despite decreased vif mRNA levels. In contrast, SRSF1 overexpression significantly impaired HIV-1 post-integration steps including LTR transcription, alternative splice site usage, and virus particle production. Since balanced SRSF1 levels are crucial for efficient viral replication, our data highlight the so far undescribed role of SRSF1 acting as an IFN-modulated cellular dependency factor decisively regulating HIV-1 post-integration steps.
Collapse
Affiliation(s)
- Helene Sertznig
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Fabian Roesmann
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Alexander Wilhelm
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Delia Heininger
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Barbara Bleekmann
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Carina Elsner
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mario Santiago
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Jonas Schuhenn
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Zehra Karakoese
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Yvonne Benatzy
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt am Main, Frankfurt, Germany
| | - Ryan Snodgrass
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt am Main, Frankfurt, Germany
| | - Stefan Esser
- Clinic of Dermatology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marek Widera
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Sun M, Jin Y, Zhang Y, Gregorich ZR, Ren J, Ge Y, Guo W. SR Protein Kinases Regulate the Splicing of Cardiomyopathy-Relevant Genes via Phosphorylation of the RSRSP Stretch in RBM20. Genes (Basel) 2022; 13:1526. [PMID: 36140694 PMCID: PMC9498672 DOI: 10.3390/genes13091526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: RNA binding motif 20 (RBM20) regulates mRNA splicing specifically in muscle tissues. Missense mutations in the arginine/serine (RS) domain of RBM20 lead to abnormal gene splicing and have been linked to severe dilated cardiomyopathy (DCM) in human patients and animal models. Interestingly, many of the reported DCM-linked missense mutations in RBM20 are in a highly conserved RSRSP stretch within the RS domain. Recently, it was found that the two Ser residues within this stretch are constitutively phosphorylated, yet the identity of the kinase(s) responsible for phosphorylating these residues, as well as the function of RSRSP phosphorylation, remains unknown. (2) Methods: The ability of three known SR protein kinases (SRPK1, CLK1, and AKT2) to phosphorylate the RBM20 RSRSP stretch and regulate target gene splicing was evaluated by using both in vitro and in vivo approaches. (3) Results: We found that all three kinases phosphorylated S638 and S640 in the RSRSP stretch and regulated RBM20 target gene splicing. While SRPK1 and CLK1 were both capable of directly phosphorylating the RS domain in RBM20, whether AKT2-mediated control of the RS domain phosphorylation is direct or indirect could not be determined. (4) Conclusions: Our results indicate that SR protein kinases regulate the splicing of a cardiomyopathy-relevant gene by modulating phosphorylation of the RSRSP stretch in RBM20. These findings suggest that SR protein kinases may be potential targets for the treatment of RBM20 cardiomyopathy.
Collapse
Affiliation(s)
- Mingming Sun
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | - Yutong Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yanghai Zhang
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zachery R Gregorich
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Wei Guo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
7
|
Ling Y, Mahfouz MM, Zhou S. Pre-mRNA alternative splicing as a modulator for heat stress response in plants. TRENDS IN PLANT SCIENCE 2021; 26:1153-1170. [PMID: 34334317 DOI: 10.1016/j.tplants.2021.07.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 05/11/2023]
Abstract
The molecular responses of plants to the important abiotic stress, heat stress (HS), have been extensively studied at the transcriptional level. Alternative splicing (AS) is a post-transcriptional regulatory process in which an intron-containing gene can generate more than one mRNA variant. The impact of HS on the pre-mRNA splicing process has been reported in various eukaryotes but seldom discussed in-depth, especially in plants. Here, we review AS regulation in response to HS in different plant species. We discuss potential molecular mechanisms controlling heat-inducible AS regulation in plants and hypothesize that AS regulation participates in heat-priming establishment and HS memory maintenance. We propose that the pre-mRNA splicing variation is an important regulator of plant HS responses (HSRs).
Collapse
Affiliation(s)
- Yu Ling
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China; Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; South China Branch of National Saline-Alkali Tolerant Rice Technology Innovation Center, Zhanjiang, 524088, PR China.
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
| | - Shuangxi Zhou
- New Zealand Institute for Plant and Food Research Limited, Hawke's Bay 4130, New Zealand
| |
Collapse
|
8
|
Lenard AJ, Hutten S, Zhou Q, Usluer S, Zhang F, Bourgeois BMR, Dormann D, Madl T. Phosphorylation Regulates CIRBP Arginine Methylation, Transportin-1 Binding and Liquid-Liquid Phase Separation. Front Mol Biosci 2021; 8:689687. [PMID: 34738012 PMCID: PMC8562343 DOI: 10.3389/fmolb.2021.689687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/01/2021] [Indexed: 12/20/2022] Open
Abstract
Arginine-glycine(-glycine) (RG/RGG) regions are highly abundant in RNA-binding proteins and involved in numerous physiological processes. Aberrant liquid-liquid phase separation (LLPS) and stress granule (SGs) association of RG/RGG regions in the cytoplasm have been implicated in several neurodegenerative disorders. LLPS and SG association of these proteins is regulated by the interaction with nuclear import receptors, such as transportin-1 (TNPO1), and by post-translational arginine methylation. Strikingly, many RG/RGG proteins harbour potential phosphorylation sites within or close to their arginine methylated regions, indicating a regulatory role. Here, we studied the role of phosphorylation within RG/RGG regions on arginine methylation, TNPO1-binding and LLPS using the cold-inducible RNA-binding protein (CIRBP) as a paradigm. We show that the RG/RGG region of CIRBP is in vitro phosphorylated by serine-arginine protein kinase 1 (SRPK1), and discovered two novel phosphorylation sites in CIRBP. SRPK1-mediated phosphorylation of the CIRBP RG/RGG region impairs LLPS and binding to TNPO1 in vitro and interferes with SG association in cells. Furthermore, we uncovered that arginine methylation of the CIRBP RG/RGG region regulates in vitro phosphorylation by SRPK1. In conclusion, our findings indicate that LLPS and TNPO1-mediated chaperoning of RG/RGG proteins is regulated through an intricate interplay of post-translational modifications.
Collapse
Affiliation(s)
- Aneta J. Lenard
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Saskia Hutten
- Johannes Gutenberg-Universität (JGU) Mainz, Faculty of Biology, Mainz, Germany
- BioMedical Center, Cell Biology, Ludwig-Maximilians-Universität (LMU) München, Martinsried, Germany
| | - Qishun Zhou
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Sinem Usluer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Fangrong Zhang
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Benjamin M. R. Bourgeois
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Dorothee Dormann
- Johannes Gutenberg-Universität (JGU) Mainz, Faculty of Biology, Mainz, Germany
- BioMedical Center, Cell Biology, Ludwig-Maximilians-Universität (LMU) München, Martinsried, Germany
- Institute of Molecular Biology (IMB), Mainz, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Tobias Madl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
9
|
Sandhu R, Sinha A, Montpetit B. The SR-protein Npl3 is an essential component of the meiotic splicing regulatory network in Saccharomyces cerevisiae. Nucleic Acids Res 2021; 49:2552-2568. [PMID: 33577675 PMCID: PMC7969001 DOI: 10.1093/nar/gkab071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 01/30/2023] Open
Abstract
The meiotic gene expression program in Saccharomyces cerevisiae involves regulated splicing of meiosis-specific genes via multiple splicing activators (e.g. Mer1, Nam8, Tgs1). Here, we show that the SR protein Npl3 is required for meiotic splicing regulation and is essential for proper execution of the meiotic cell cycle. The loss of Npl3, though not required for viability in mitosis, caused intron retention in meiosis-specific transcripts, inefficient meiotic double strand break processing and an arrest of the meiotic cell cycle. The targets of Npl3 overlapped in some cases with other splicing regulators, while also having unique target transcripts that were not shared. In the absence of Npl3, splicing defects for three transcripts (MER2, HOP2 and SAE3) were rescued by conversion of non-consensus splice sites to the consensus sequence. Methylation of Npl3 was further found to be required for splicing Mer1-dependent transcripts, indicating transcript-specific mechanisms by which Npl3 supports splicing. Together these data identify an essential function for the budding yeast SR protein Npl3 in meiosis as part of the meiotic splicing regulatory network.
Collapse
Affiliation(s)
- Rima Sandhu
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | - Aniketa Sinha
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | - Ben Montpetit
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| |
Collapse
|
10
|
Mole S, Faizo AAA, Hernandez-Lopez H, Griffiths M, Stevenson A, Roberts S, Graham SV. Human papillomavirus type 16 infection activates the host serine arginine protein kinase 1 (SRPK1) - splicing factor axis. J Gen Virol 2020; 101:523-532. [PMID: 32182205 PMCID: PMC7414453 DOI: 10.1099/jgv.0.001402] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/07/2020] [Indexed: 12/11/2022] Open
Abstract
The infectious life cycle of human papillomaviruses (HPVs) is tightly linked to keratinocyte differentiation. Evidence suggests a sophisticated interplay between host gene regulation and virus replication. Alternative splicing is an essential process for host and viral gene expression, and is generally upregulated by serine arginine-rich splicing factors (SRSFs). SRSF activity can be positively or negatively controlled by cycles of phosphorylation/dephosphorylation. Here we show that HPV16 infection leads to accumulation of the paradigm SRSF protein, SRSF1, in the cytoplasm in a keratinocyte differentiation-specific manner. Moreover, HPV16 infection leads to increased levels of cytoplasmic and nuclear phosphorylated SRSF1. SR protein kinase 1 (SRPK1) phosphorylates SRSF1. Similar to HPV upregulation of SRSF1, we demonstrate HPV upregulation of SRPK1 via the viral E2 protein. SRPK1 depletion or drug inhibition of SRPK1 kinase activity resulted in reduced levels of SRSF1, suggesting that phosphorylation stabilizes the protein in differentiated HPV-infected keratinocytes. Together, these data indicate HPV infection stimulates the SRPK1-SRSF axis in keratinocytes.
Collapse
Affiliation(s)
- Sarah Mole
- MRC – University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
- Present address: GlaxoSmithKline, Stevenage, UK
| | - Arwa Ali A. Faizo
- MRC – University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
- Present address: Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hegel Hernandez-Lopez
- MRC – University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
- Present address: Bristol-Myers Squibb, Mexico City, USA
| | - Megan Griffiths
- MRC – University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Andrew Stevenson
- MRC – University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| | - Sally Roberts
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research West, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Sheila V Graham
- MRC – University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Garscube Estate, Glasgow G61 1QH, UK
| |
Collapse
|
11
|
Shattuck JE, Cascarina SM, Paul KR, Ross ED. Sky1: at the intersection of prion-like proteins and stress granule regulation. Curr Genet 2019; 66:463-468. [PMID: 31745569 DOI: 10.1007/s00294-019-01044-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 02/03/2023]
Abstract
Serine-arginine (SR) protein kinases regulate diverse cellular activities, including various steps in RNA maturation and transport. The yeast Saccharomyces cerevisiae expresses a single SR kinase, Sky1. Sky1 has a bipartite kinase domain, separated by an aggregation-prone prion-like domain (PrLD). The assembly of PrLDs is involved in the formation of various membraneless organelles, including stress granules; stress granules are reversible ribonucleoprotein assemblies that form in response to a variety of stresses. Here, we review a recent study suggesting that Sky1's PrLD promotes Sky1 recruitment to stress granules, and that Sky1 regulates stress granule dissolution by phosphorylating the RNA-shuttling protein Npl3.
Collapse
Affiliation(s)
- Jenifer E Shattuck
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Sean M Cascarina
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Kacy R Paul
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Eric D Ross
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
12
|
Shattuck JE, Paul KR, Cascarina SM, Ross ED. The prion-like protein kinase Sky1 is required for efficient stress granule disassembly. Nat Commun 2019; 10:3614. [PMID: 31399582 PMCID: PMC6688984 DOI: 10.1038/s41467-019-11550-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/19/2019] [Indexed: 01/14/2023] Open
Abstract
Stress granules are membraneless protein- and mRNA-rich organelles that form in response to perturbations in environmental conditions. Stress granule formation is reversible, and persistent stress granules have been implicated in a variety of neurodegenerative disorders, including amyotrophic lateral sclerosis. However, characterization of the factors involved in dissolving stress granules is incomplete. Many stress granule proteins contain prion-like domains (PrLDs), some of which have been linked to stress granule formation. Here, we demonstrate that the PrLD-containing yeast protein kinase Sky1 is a stress granule component. Sky1 is recruited to stress granules in part via its PrLD, and Sky1's kinase activity regulates timely stress granule disassembly during stress recovery. This effect is mediated by phosphorylation of the stress granule component Npl3. Sky1 can compensate for defects in chaperone-mediated stress granule disassembly and vice-versa, demonstrating that cells have multiple overlapping mechanisms for re-solubilizing stress granule components.
Collapse
Affiliation(s)
- Jenifer E Shattuck
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Kacy R Paul
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Sean M Cascarina
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Eric D Ross
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
13
|
Sánchez-Hernández N, Prieto-Sánchez S, Moreno-Castro C, Muñoz-Cobo JP, El Yousfi Y, Boyero-Corral S, Suñé-Pou M, Hernández-Munain C, Suñé C. Targeting proteins to RNA transcription and processing sites within the nucleus. Int J Biochem Cell Biol 2017; 91:194-202. [DOI: 10.1016/j.biocel.2017.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/26/2017] [Accepted: 06/01/2017] [Indexed: 12/26/2022]
|
14
|
Zhang Y, Gao X, Sun M, Liu H, Xu JR. The FgSRP1 SR-protein gene is important for plant infection and pre-mRNA processing in Fusarium graminearum. Environ Microbiol 2017; 19:4065-4079. [PMID: 28654215 DOI: 10.1111/1462-2920.13844] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022]
Abstract
The versatile functions of SR (serine/arginine-rich) proteins in pre-mRNA splicing and processing are modulated by reversible phosphorylation. Previous studies showed that FgPrp4, the only protein kinase among spliceosome components, is important for intron splicing and the FgSrp1 SR protein is phosphorylated at five conserved sites in Fusarium graminearum. In this study, we showed that the Fgsrp1 deletion mutant rarely produced conidia and caused only limited symptoms on wheat heads and corn silks. Deletion of FgSRP1 also reduced ascospore ejection and deoxynivalenol (DON) production. Interestingly, FgSRP1 had two transcript isoforms due to alternative splicing and both of them were required for its normal functions in growth and DON biosynthesis. FgSrp1 localized to the nucleus and interacted with FgPrp4 in vivo. Deletion of all four conserved phosphorylation sites but not individual ones affected the FgSRP1 function, suggesting their overlapping functions. RNA-seq analysis showed that the expression of over thousands of genes and splicing efficiency in over 140 introns were affected. Taken together, FgSRP1 is important for conidiation, and pathogenesis and alternative splicing is important for its normal functions. The FgSrp1 SR protein is likely important for pre-mRNA processing or splicing of various genes in different developmental and infection processes.
Collapse
Affiliation(s)
- Yimei Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuli Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Manli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Purdue-NWAFU Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.,Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
15
|
Jin S, Su H, Tran NT, Song J, Lu SS, Li Y, Huang S, Abdel-Wahab O, Liu Y, Zhao X. Splicing factor SF3B1K700E mutant dysregulates erythroid differentiation via aberrant alternative splicing of transcription factor TAL1. PLoS One 2017; 12:e0175523. [PMID: 28545085 PMCID: PMC5436638 DOI: 10.1371/journal.pone.0175523] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/27/2017] [Indexed: 11/18/2022] Open
Abstract
More than 60% of myeloid dysplasia syndrome (MDS) contains mutations in genes encoding for splicing factors such as SF3B1, U2AF, SRSF2 and ZRSR2. Mutations in SF3B1 are associated with 80% cases of refractory anemia with ring sideroblast (RARS), a subtype of MDS. SF3B1K700E is the most frequently mutated site among mutations on SF3B1. Yet the molecular mechanisms on how mutations of splicing factors lead to defective erythropoiesis are not clear. SF3B1K700E mutant binds to an RNA binding protein, RBM15, stronger than the wild type SF3B1 protein in co-immunoprecipitation assays. In addition, K700E mutant alters the RNA splicing of transcription factors TAL1 and GATA1. Via alternative RNA splicing, a novel short TAL1 transcript variant (TAL1s) is generated. Enhanced interaction between SF3B1 and RBM15 promotes the production of full-length TAL1 (TAL1fl) mRNA, while reduction of RBM15 protein level via PRMT1-mediated degradation pathway changes TAL1s/TAL1fl ratio in favor of TAL1s. TAL1s contains the helix-loop-helix DNA binding domain but not the N terminal region upstream of the DNA binding domain. The TAL1s protein loses its interaction with ETO2, which represses early erythropoiesis. In this vein, overexpression of TAL1s stimulates the transcription of β-hemoglobin in human leukemia K562 cells and promotes erythroid differentiation of human cord blood CD34+ cells cultured in erythropoietin-containing medium. Therefore, mutations of SF3B1 may block erythropoiesis via dysregulation of alternative RNA splicing of transcription factor TAL1, and targeting PRMT1 may alleviate the anemic symptoms in MDS patients.
Collapse
Affiliation(s)
- Shuiling Jin
- Department of Internal Medicine, Henan Cancer Hospital & Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Hairui Su
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ngoc-Tung Tran
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jing Song
- Department of Internal Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sydney S. Lu
- Human Oncology & Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Ying Li
- Macau Institute for Applied Research in Medicine and Health, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau. China
| | - Suming Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Omar Abdel-Wahab
- Human Oncology & Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Yanyan Liu
- Department of Internal Medicine, Henan Cancer Hospital & Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyang Zhao
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
16
|
Messenger RNA transport in the opportunistic fungal pathogen Candida albicans. Curr Genet 2017; 63:989-995. [PMID: 28512683 DOI: 10.1007/s00294-017-0707-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 01/12/2023]
Abstract
Candida albicans, a common commensal fungus, can cause disease in immunocompromised hosts ranging from mild mucosal infections to severe bloodstream infections with high mortality rates. The ability of C. albicans cells to switch between a budding yeast form and an elongated hyphal form is linked to pathogenicity in animal models. Hyphal-specific proteins such as cell-surface adhesins and secreted hydrolases facilitate tissue invasion and host cell damage, but the specific mechanisms leading to asymmetric protein localization in hyphae remain poorly understood. In many eukaryotes, directional cytoplasmic transport of messenger RNAs that encode asymmetrically localized proteins allows efficient local translation at the site of protein function. Over the past two decades, detailed mechanisms for polarized mRNA transport have been elucidated in the budding yeast Saccharomyces cerevisiae and the filamentous fungus Ustilago maydis. This review highlights recent studies of RNA-binding proteins in C. albicans that have revealed intriguing similarities to and differences from known fungal mRNA transport systems. I also discuss outstanding questions that will need to be answered to reach an in-depth understanding of C. albicans mRNA transport mechanisms and the roles of asymmetric mRNA localization in polarized growth, hyphal function, and virulence of this opportunistic pathogen.
Collapse
|
17
|
Ariyachet C, Beißel C, Li X, Lorrey S, Mackenzie O, Martin PM, O'Brien K, Pholcharee T, Sim S, Krebber H, McBride AE. Post-translational modification directs nuclear and hyphal tip localization of Candida albicans mRNA-binding protein Slr1. Mol Microbiol 2017; 104:499-519. [PMID: 28187496 PMCID: PMC5405739 DOI: 10.1111/mmi.13643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2017] [Indexed: 12/21/2022]
Abstract
The morphological transition of the opportunistic fungal pathogen Candida albicans from budding to hyphal growth has been implicated in its ability to cause disease in animal models. Absence of SR‐like RNA‐binding protein Slr1 slows hyphal formation and decreases virulence in a systemic candidiasis model, suggesting a role for post‐transcriptional regulation in these processes. SR (serine–arginine)‐rich proteins influence multiple steps in mRNA metabolism and their localization and function are frequently controlled by modification. We now demonstrate that Slr1 binds to polyadenylated RNA and that its intracellular localization is modulated by phosphorylation and methylation. Wildtype Slr1‐GFP is predominantly nuclear, but also co‐fractionates with translating ribosomes. The non‐phosphorylatable slr1‐6SA‐GFP protein, in which six serines in SR/RS clusters are substituted with alanines, primarily localizes to the cytoplasm in budding cells. Intriguingly, hyphal cells display a slr1‐6SA‐GFP focus at the tip near the Spitzenkörper, a vesicular structure involved in molecular trafficking to the tip. The presence of slr1‐6SA‐GFP hyphal tip foci is reduced in the absence of the mRNA‐transport protein She3, suggesting that unphosphorylated Slr1 associates with mRNA–protein complexes transported to the tip. The impact of SLR1 deletion on hyphal formation and function thus may be partially due to a role in hyphal mRNA transport.
Collapse
Affiliation(s)
| | - Christian Beißel
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August Universität Göttingen, Göttingen, Germany
| | - Xiang Li
- Biology Department, Bowdoin College, Brunswick, ME, 04011, USA
| | - Selena Lorrey
- Biology Department, Bowdoin College, Brunswick, ME, 04011, USA
| | | | | | | | | | - Sue Sim
- Biology Department, Bowdoin College, Brunswick, ME, 04011, USA
| | - Heike Krebber
- Abteilung für Molekulare Genetik, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August Universität Göttingen, Göttingen, Germany
| | - Anne E McBride
- Biology Department, Bowdoin College, Brunswick, ME, 04011, USA
| |
Collapse
|
18
|
Wall ML, Lewis SM. Methylarginines within the RGG-Motif Region of hnRNP A1 Affect Its IRES Trans-Acting Factor Activity and Are Required for hnRNP A1 Stress Granule Localization and Formation. J Mol Biol 2016; 429:295-307. [PMID: 27979648 DOI: 10.1016/j.jmb.2016.12.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/22/2016] [Accepted: 12/08/2016] [Indexed: 12/30/2022]
Abstract
Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a stress granule-associated RNA-binding protein that plays a role in apoptosis and cellular stress recovery. HnRNP A1 is a major non-histone target of protein arginine methyltransferase 1, which asymmetrically dimethylates hnRNP A1 at several key arginine residues within its arginine-glycine-glycine (RGG)-motif region. Although arginine methylation is known to regulate general RNA binding of hnRNP A1 in vitro, the functional role of arginine methylation in hnRNP A1 cytoplasmic activity is unknown. To test the impact of key methylarginine residues on hnRNP A1 cytoplasmic activity and stress granule association, cytoplasmically restricted Flag-tagged mutants of hnRNP A1 were generated in which key methylarginine residues within the RGG-motif region were changed to either lysine or alanine. Lysine substitution, which mimics unmethylated arginine, resulted in a 40% increase in internal ribosome entry site trans-acting factor (ITAF) activity and the protein readily associates with stress granules. Alanine substitution resulted in a loss of ITAF activity and reduced mRNA binding. The alanine mutant also displays reduced stress granule association and suppresses stress granule formation. Our data suggest that arginine residues within the RGG-motif region are critical for hnRNP A1 cytoplasmic activities and that endogenous asymmetric dimethylation of the RGG-motif region suppresses hnRNP A1 ITAF activity in cells. Our findings indicate that methylarginine residues within the RGG-motif region of hnRNP A1 are important for its cytoplasmic activities and that hypomethylation and/or mutation of the RGG-motif region may contribute to the role of hnRNP A1 in diseases such as cancer.
Collapse
Affiliation(s)
- Michael L Wall
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Stephen M Lewis
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada; Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada; Department of Chemistry & Biochemistry, Université de Moncton, Moncton, New Brunswick, Canada.
| |
Collapse
|
19
|
Chipps E, Protzman A, Muhi MZ, Ando S, Calvet JP, Islam MR. Nuclear Localization Signal and p53 Binding Site in MAP/ERK Kinase Kinase 1 (MEKK1). J Cell Biochem 2016; 116:2903-14. [PMID: 26018553 DOI: 10.1002/jcb.25238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 05/19/2015] [Indexed: 12/18/2022]
Abstract
Previously, we showed that Mekk1 translocates to the nucleus, interacts with tumor suppressor protein p53, and co-represses PKD1 transcription via an atypical p53 binding site on the minimal PKD1 promoter (JBC 285:38,818-38,831, 2010). In this study, we report the mechanisms of Mekk1 nuclear transport and p53 binding. Using GFP-linked constitutively active-Mekk1 (CA-Mekk1) and a deletion strategy, we identified a nuclear localization signal (HRDVK) located at amino acid (aa) residues 1,349-1,353 in the C-terminal Mekk1 catalytic domain. Deletion of this sequence in CA-Mekk1 and full-length Mekk1 significantly reduced their nuclear translocation in both HEK293T and COS-1 cells. Using co-immunoprecipitation, we identified an adjacent sequence (GANLID, aa 1,354-1,360) in Mekk1 responsible for p53 binding. Deletion of this sequence markedly reduced the interaction of Mekk1 with p53. Mekk1 does not appear to affect phosphorylation of Ser15, located in the Mdm2 interaction site, or other Ser residues in p53. However, Mekk1 mediates p53 protein stability in the presence of Mdm2 and reduces p53 ubiquitination, suggesting an interference with Mdm2-mediated degradation of p53 by the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Elizabeth Chipps
- Laboratory of Biochemistry, Garrett-Strong Science Building 3100, 800 University Drive, Northwest Missouri State University, Maryville, Missouri, 64468
| | - April Protzman
- Laboratory of Biochemistry, Garrett-Strong Science Building 3100, 800 University Drive, Northwest Missouri State University, Maryville, Missouri, 64468
| | - M Zubayed Muhi
- Laboratory of Biochemistry, Garrett-Strong Science Building 3100, 800 University Drive, Northwest Missouri State University, Maryville, Missouri, 64468
| | - Shoko Ando
- Laboratory of Biochemistry, Garrett-Strong Science Building 3100, 800 University Drive, Northwest Missouri State University, Maryville, Missouri, 64468
| | - James P Calvet
- Department of Biochemistry and Molecular Biology and the Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, 66160
| | - M Rafiq Islam
- Laboratory of Biochemistry, Garrett-Strong Science Building 3100, 800 University Drive, Northwest Missouri State University, Maryville, Missouri, 64468
| |
Collapse
|
20
|
Negative autoregulation of BMP dependent transcription by SIN3B splicing reveals a role for RBM39. Sci Rep 2016; 6:28210. [PMID: 27324164 PMCID: PMC4914931 DOI: 10.1038/srep28210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/23/2016] [Indexed: 12/01/2022] Open
Abstract
BMP signalling is negatively autoregulated by several genes including SMAD6, Noggin and Gremlin, and autoregulators are possible targets for enhancing BMP signalling in disorders such as fibrosis and pulmonary hypertension. To identify novel negative regulators of BMP signalling, we used siRNA screening in mouse C2C12 cells with a BMP-responsive luciferase reporter. Knockdown of several splicing factors increased BMP4-dependent transcription and target gene expression. Knockdown of RBM39 produced the greatest enhancement in BMP activity. Transcriptome-wide RNA sequencing identified a change in Sin3b exon usage after RBM39 knockdown. SIN3B targets histone deacetylases to chromatin to repress transcription. In mouse, Sin3b produces long and short isoforms, with the short isoform lacking the ability to recruit HDACs. BMP4 induced a shift in SIN3B expression to the long isoform, and this change in isoform ratio was prevented by RBM39 knockdown. Knockdown of long isoform SIN3B enhanced BMP4-dependent transcription, whereas knockdown of the short isoform did not. We propose that BMP4-dependent transcription is negatively autoregulated in part by SIN3B alternative splicing, and that RBM39 plays a role in this process.
Collapse
|
21
|
Goyal M, Banerjee C, Nag S, Bandyopadhyay U. The Alba protein family: Structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:570-83. [PMID: 26900088 DOI: 10.1016/j.bbapap.2016.02.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/06/2016] [Accepted: 02/16/2016] [Indexed: 01/05/2023]
Abstract
Alba family proteins are small, basic, dimeric nucleic acid-binding proteins, which are widely distributed in archaea and a number of eukaryotes. This family of proteins bears the distinct features of regulation through acetylation/deacetylation, hence named as acetylation lowers binding affinity (Alba). Alba family proteins bind DNA cooperatively with no apparent sequence specificity. Besides DNA, Alba proteins also interact with diverse RNA species and associate with ribonucleo-protein complexes. Initially, Alba proteins were recognized as chromosomal proteins and supposed to be involved in the maintenance of chromatin architecture and transcription repression. However, recent studies have shown increasing evidence of functional plasticity among Alba family of proteins that widely range from genome packaging and organization, transcriptional and translational regulation, RNA metabolism, and development and differentiation processes. In recent years, Alba family proteins have attracted growing interest due to their widespread occurrence in large number of organisms. Presence in multiple copies, functional crosstalk, differential binding affinity, and posttranslational modifications are some of the key factors that might regulate the biological functions of Alba family proteins. In this review article, we present an overview of the Alba family proteins, their salient features and emphasize their functional role in different organisms reported so far.
Collapse
Affiliation(s)
- Manish Goyal
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India.
| |
Collapse
|
22
|
Differential Subcellular Localization of Leishmania Alba-Domain Proteins throughout the Parasite Development. PLoS One 2015; 10:e0137243. [PMID: 26334886 PMCID: PMC4559404 DOI: 10.1371/journal.pone.0137243] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/14/2015] [Indexed: 12/15/2022] Open
Abstract
Alba-domain proteins are RNA-binding proteins found in archaea and eukaryotes and recently studied in protozoan parasites where they play a role in the regulation of virulence factors and stage-specific proteins. This work describes in silico structural characterization, cellular localization and biochemical analyses of Alba-domain proteins in Leishmania infantum. We show that in contrast to other protozoa, Leishmania have two Alba-domain proteins, LiAlba1 and LiAlba3, representative of the Rpp20- and the Rpp25-like eukaryotic subfamilies, respectively, which share several sequence and structural similarities but also important differences with orthologs in other protozoa, especially in sequences targeted for post-translational modifications. LiAlba1 and LiAlba3 proteins form a complex interacting with other RNA-binding proteins, ribosomal subunits, and translation factors as supported by co-immunoprecipitation and sucrose gradient sedimentation analysis. A higher co-sedimentation of Alba proteins with ribosomal subunits was seen upon conditions of decreased translation, suggesting a role of these proteins in translational repression. The Leishmania Alba-domain proteins display differential cellular localization throughout the parasite development. In the insect promastigote stage, Alba proteins co-localize predominantly to the cytoplasm but they translocate to the nucleolus and the flagellum upon amastigote differentiation in the mammalian host and are found back to the cytoplasm once amastigote differentiation is completed. Heat-shock, a major signal of amastigote differentiation, triggers Alba translocation to the nucleolus and the flagellum. Purification of the Leishmania flagellum confirmed LiAlba3 enrichment in this organelle during amastigote differentiation. Moreover, partial characterization of the Leishmania flagellum proteome of promastigotes and differentiating amastigotes revealed the presence of other RNA-binding proteins, as well as differences in the flagellum composition between these two parasite lifestages. Shuttling of Alba-domain proteins between the cytoplasm and the nucleolus or the flagellum throughout the parasite life cycle suggests that these RNA-binding proteins participate in several distinct regulatory pathways controlling developmental gene expression in Leishmania.
Collapse
|
23
|
pUL69 of Human Cytomegalovirus Recruits the Cellular Protein Arginine Methyltransferase 6 via a Domain That Is Crucial for mRNA Export and Efficient Viral Replication. J Virol 2015; 89:9601-15. [PMID: 26178996 DOI: 10.1128/jvi.01399-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/02/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED The regulatory protein pUL69 of human cytomegalovirus acts as a viral mRNA export factor, facilitating the cytoplasmic accumulation of unspliced RNA via interaction with the cellular mRNA export factor UAP56. Here we provide evidence for a posttranslational modification of pUL69 via arginine methylation within the functionally important N terminus. First, we demonstrated a specific immunoprecipitation of full-length pUL69 as well as pUL69aa1-146 by a mono/dimethylarginine-specific antibody. Second, we observed a specific electrophoretic mobility shift upon overexpression of the catalytically active protein arginine methyltransferase 6 (PRMT6). Third, a direct interaction of pUL69 and PRMT6 was confirmed by yeast two-hybrid and coimmunoprecipitation analyses. We mapped the PRMT6 interaction motif to the pUL69 N terminus and identified critical amino acids within the arginine-rich R1 box of pUL69 that were crucial for PRMT6 and/or UAP56 recruitment. In order to test the impact of putative methylation substrates on the functions of pUL69, we constructed various pUL69 derivatives harboring arginine-to-alanine substitutions and tested them for RNA export activity. Thus, we were able to discriminate between arginines within the R1 box of pUL69 that were crucial for UAP56/PRMT6-interaction and/or mRNA export activity. Remarkably, nuclear magnetic resonance (NMR) analyses revealed the same α-helical structures for pUL69 sequences encoding either the wild type R1/R2 boxes or a UAP56/PRMT6 binding-deficient derivative, thereby excluding the possibility that R/A amino acid substitutions within R1 affected the secondary structure of pUL69. We therefore conclude that the pUL69 N terminus is methylated by PRMT6 and that this critically affects the functions of pUL69 for efficient mRNA export and replication of human cytomegalovirus. IMPORTANCE The UL69 protein of human cytomegalovirus is a multifunctional regulatory protein that acts as a viral RNA export factor with a critical role for efficient replication. Here, we demonstrate that pUL69 is posttranslationally modified via arginine methylation and that the protein methyltransferase PRMT6 mediates this modification. Furthermore, arginine residues with a crucial function for RNA export and for binding of the cellular RNA export factor UAP56 as well as PRMT6 were mapped within the arginine-rich R1 motif of pUL69. Importantly, we demonstrated that mutation of those arginines did not alter the secondary structure of R1, suggesting that they may serve as critical methylation substrates. In summary, our study reveals a novel posttranslational modification of pUL69 which has a significant impact on the function of this important viral regulatory protein. Since PRMTs appear to be amenable to selective inhibition by small molecules, this may constitute a novel target for antiviral therapy.
Collapse
|
24
|
Winter DL, Erce MA, Wilkins MR. A Web of Possibilities: Network-Based Discovery of Protein Interaction Codes. J Proteome Res 2014; 13:5333-8. [DOI: 10.1021/pr500585p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Daniel L. Winter
- Systems Biology Initiative,
School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Melissa A. Erce
- Systems Biology Initiative,
School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Marc R. Wilkins
- Systems Biology Initiative,
School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
25
|
Rodríguez-Lombardero S, Rodríguez-Belmonte ME, González-Siso MI, Vizoso-Vázquez Á, Valdiglesias V, Laffón B, Cerdán ME. Proteomic analyses reveal that Sky1 modulates apoptosis and mitophagy in Saccharomyces cerevisiae cells exposed to cisplatin. Int J Mol Sci 2014; 15:12573-90. [PMID: 25029545 PMCID: PMC4139861 DOI: 10.3390/ijms150712573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/02/2014] [Accepted: 07/02/2014] [Indexed: 12/11/2022] Open
Abstract
Sky1 is the only member of the SR (Serine–Arginine) protein kinase family in Saccharomyces cerevisiae. When yeast cells are treated with the anti-cancer drug cisplatin, Sky1 kinase activity is necessary to produce the cytotoxic effect. In this study, proteome changes in response to this drug and/or SKY1 deletion have been evaluated in order to understand the role of Sky1 in the response of yeast cells to cisplatin. Results reveal differential expression of proteins previously related to the oxidative stress response, DNA damage, apoptosis and mitophagy. With these precedents, the role of Sky1 in apoptosis, necrosis and mitophagy has been evaluated by flow-cytometry, fluorescence microscopy, biosensors and fluorescence techniques. After cisplatin treatment, an apoptotic-like process diminishes in the ∆sky1 strain in comparison to the wild-type. The treatment does not affect mitophagy in the wild-type strain, while an increase is observed in the ∆sky1 strain. The increased resistance to cisplatin observed in the ∆sky1 strain may be attributable to a decrease of apoptosis and an increase of mitophagy.
Collapse
Affiliation(s)
- Silvia Rodríguez-Lombardero
- EXPRELA Group, Department of Cellular and Molecular Biology, University of A Coruña, Campus A Coruña, A Coruña E15071, Spain.
| | - M Esther Rodríguez-Belmonte
- EXPRELA Group, Department of Cellular and Molecular Biology, University of A Coruña, Campus A Coruña, A Coruña E15071, Spain.
| | - M Isabel González-Siso
- EXPRELA Group, Department of Cellular and Molecular Biology, University of A Coruña, Campus A Coruña, A Coruña E15071, Spain.
| | - Ángel Vizoso-Vázquez
- EXPRELA Group, Department of Cellular and Molecular Biology, University of A Coruña, Campus A Coruña, A Coruña E15071, Spain.
| | - Vanessa Valdiglesias
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, University of A Coruña, Campus A Coruña, A Coruña E15071, Spain.
| | - Blanca Laffón
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, University of A Coruña, Campus A Coruña, A Coruña E15071, Spain.
| | - M Esperanza Cerdán
- EXPRELA Group, Department of Cellular and Molecular Biology, University of A Coruña, Campus A Coruña, A Coruña E15071, Spain.
| |
Collapse
|
26
|
Suchánková J, Legartová S, Sehnalová P, Kozubek S, Valente S, Labella D, Mai A, Eckerich C, Fackelmayer FO, Sorokin DV, Bartova E. PRMT1 arginine methyltransferase accumulates in cytoplasmic bodies that respond to selective inhibition and DNA damage. Eur J Histochem 2014; 58:2389. [PMID: 24998928 PMCID: PMC4083328 DOI: 10.4081/ejh.2014.2389] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 12/18/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) are responsible for symmetric and asymmetric methylation of arginine residues of nuclear and cytoplasmic proteins. In the nucleus, PRMTs belong to important chromatin modifying enzymes of immense functional significance that affect gene expression, splicing and DNA repair. By time-lapse microscopy we have studied the sub-cellular localization and kinetics of PRMT1 after inhibition of PRMT1 and after irradiation. Both transiently expressed and endogenous PRMT1 accumulated in cytoplasmic bodies that were located in the proximity of the cell nucleus. The shape and number of these bodies were stable in untreated cells. However, when cell nuclei were microirradiated by UV-A, the mobility of PRMT1 cytoplasmic bodies increased their, size was reduced, and they disappeared within approximately 20 min. The same response occurred after γ-irradiation of the whole cell population, but with delayed kinetics. Treatment with PRMT1 inhibitors induced disintegration of these PRMT1 cytoplasmic bodies and prevented formation of 53BP1 nuclear bodies (NBs) that play a role during DNA damage repair. The formation of 53BP1 NBs was not influenced by PRMT1 over-expression. Taken together, we show that PRMT1 concentrates in cytoplasmic bodies, which respond to DNA injury in the cell nucleus, and to treatment with various PRMT1 inhibitors.
Collapse
|
27
|
Lott K, Li J, Fisk JC, Wang H, Aletta JM, Qu J, Read LK. Global proteomic analysis in trypanosomes reveals unique proteins and conserved cellular processes impacted by arginine methylation. J Proteomics 2013; 91:210-25. [PMID: 23872088 PMCID: PMC3935770 DOI: 10.1016/j.jprot.2013.07.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/26/2013] [Accepted: 07/07/2013] [Indexed: 12/14/2022]
Abstract
Arginine methylation is a common posttranslational modification with reported functions in transcription, RNA processing and translation, and DNA repair. Trypanosomes encode five protein arginine methyltransferases, suggesting that arginine methylation exerts widespread impacts on the biology of these organisms. Here, we performed a global proteomic analysis of Trypanosoma brucei to identify arginine methylated proteins and their sites of modification. Using an approach entailing two-dimensional chromatographic separation and alternating electron transfer dissociation and collision induced dissociation, we identified 1332 methylarginines in 676 proteins. The resulting data set represents the largest compilation of arginine methylated proteins in any organism to date. Functional classification revealed numerous arginine methylated proteins involved in flagellar function, RNA metabolism, DNA replication and repair, and intracellular protein trafficking. Thus, arginine methylation has the potential to impact aspects of T. brucei gene expression, cell biology, and pathogenesis. Interestingly, pathways with known methylated proteins in higher eukaryotes were identified in this study, but often different components of the pathway were methylated in trypanosomes. Methylarginines were often identified in glycine rich contexts, although exceptions to this rule were detected. Collectively, these data inform on a multitude of aspects of trypanosome biology and serve as a guide for the identification of homologous arginine methylated proteins in higher eukaryotes. BIOLOGICAL SIGNIFICANCE T. brucei is a protozoan parasite that causes lethal African sleeping sickness in humans and nagana in livestock, thereby imposing a significant medical and economic burden on sub-Saharan Africa. The parasite encounters very different environments as it cycles between mammalian and insect hosts, and must exert cellular responses to these varying milieus. One mechanism by which all cells respond to changing environments is through posttranslational modification of proteins. Arginine methylation is one such modification that can dramatically impact protein-protein and protein-nucleic acid interactions and subcellular localization of proteins. To define the breadth of arginine methylation in trypanosomes and identify target proteins, we performed a global proteomic analysis of arginine methylated proteins in insect stage T. brucei. We identified 1332 methylarginines in 676 proteins, generating the largest compilation of methylarginine containing proteins in any organism to date. Numerous arginine methylated proteins function in RNA and DNA related processes, suggesting this modification can impact T. brucei genome integrity and gene regulation at numerous points. Other processes that appear to be strongly influenced by arginine methylation are intracellular protein trafficking, signaling, protein folding and degradation, and flagellar function. The widespread nature of arginine methylation in trypanosomes highlights its potential to greatly affect parasite biology and pathogenesis.
Collapse
Affiliation(s)
- Kaylen Lott
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Jun Li
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, United States of America
| | - John C. Fisk
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Hao Wang
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, United States of America
| | - John M. Aletta
- CH3 BioSystems, New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, United States of America
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, United States of America
| | - Laurie K. Read
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| |
Collapse
|
28
|
Naro C, Sette C. Phosphorylation-mediated regulation of alternative splicing in cancer. Int J Cell Biol 2013; 2013:151839. [PMID: 24069033 PMCID: PMC3771450 DOI: 10.1155/2013/151839] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/26/2013] [Indexed: 12/12/2022] Open
Abstract
Alternative splicing (AS) is one of the key processes involved in the regulation of gene expression in eukaryotic cells. AS catalyzes the removal of intronic sequences and the joining of selected exons, thus ensuring the correct processing of the primary transcript into the mature mRNA. The combinatorial nature of AS allows a great expansion of the genome coding potential, as multiple splice-variants encoding for different proteins may arise from a single gene. Splicing is mediated by a large macromolecular complex, the spliceosome, whose activity needs a fine regulation exerted by cis-acting RNA sequence elements and trans-acting RNA binding proteins (RBP). The activity of both core spliceosomal components and accessory splicing factors is modulated by their reversible phosphorylation. The kinases and phosphatases involved in these posttranslational modifications significantly contribute to AS regulation and to its integration in the complex regulative network that controls gene expression in eukaryotic cells. Herein, we will review the major canonical and noncanonical splicing factor kinases and phosphatases, focusing on those whose activity has been implicated in the aberrant splicing events that characterize neoplastic transformation.
Collapse
Affiliation(s)
- Chiara Naro
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Laboratories of Neuroembryology and of Cellular and Molecular Neurobiology, Fondazione Santa Lucia IRCCS, 00143 Rome, Italy
| | - Claudio Sette
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Laboratories of Neuroembryology and of Cellular and Molecular Neurobiology, Fondazione Santa Lucia IRCCS, 00143 Rome, Italy
| |
Collapse
|
29
|
Affiliation(s)
- C A Niño
- Institut Jacques Monod, Paris Diderot University , Sorbonne Paris Cité, CNRS UMR7592, Equipe labellisée Ligue contre le cancer, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | | | | | | |
Collapse
|
30
|
Regulation of splicing by SR proteins and SR protein-specific kinases. Chromosoma 2013; 122:191-207. [PMID: 23525660 DOI: 10.1007/s00412-013-0407-z] [Citation(s) in RCA: 331] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 12/21/2022]
Abstract
Genomic sequencing reveals similar but limited numbers of protein-coding genes in different genomes, which begs the question of how organismal diversities are generated. Alternative pre-mRNA splicing, a widespread phenomenon in higher eukaryotic genomes, is thought to provide a mechanism to increase the complexity of the proteome and introduce additional layers for regulating gene expression in different cell types and during development. Among a large number of factors implicated in the splicing regulation are the SR protein family of splicing factors and SR protein-specific kinases. Here, we summarize the rules for SR proteins to function as splicing regulators, which depend on where they bind in exons versus intronic regions, on alternative exons versus flanking competing exons, and on cooperative as well as competitive binding between different SR protein family members on many of those locations. We review the importance of cycles of SR protein phosphorylation/dephosphorylation in the splicing reaction with emphasis on the recent molecular insight into the role of SR protein phosphorylation in early steps of spliceosome assembly. Finally, we highlight recent discoveries of SR protein-specific kinases in transducing growth signals to regulate alternative splicing in the nucleus and the connection of both SR proteins and SR protein kinases to human diseases, particularly cancer.
Collapse
|
31
|
SR-like RNA-binding protein Slr1 affects Candida albicans filamentation and virulence. Infect Immun 2013; 81:1267-76. [PMID: 23381995 DOI: 10.1128/iai.00864-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Candida albicans causes both mucosal and disseminated infections, and its capacity to grow as both yeast and hyphae is a key virulence factor. Hyphal formation is a type of polarized growth, and members of the SR (serine-arginine) family of RNA-binding proteins influence polarized growth of both Saccharomyces cerevisiae and Aspergillus nidulans. Therefore, we investigated whether SR-like proteins affect filamentous growth and virulence of C. albicans. BLAST searches with S. cerevisiae SR-like protein Npl3 (ScNpl3) identified two C. albicans proteins: CaNpl3, an apparent ScNpl3 ortholog, and Slr1, another SR-like RNA-binding protein with no close S. cerevisiae ortholog. Whereas ScNpl3 was critical for growth, deletion of NPL3 in C. albicans resulted in few phenotypic changes. In contrast, the slr1Δ/Δ mutant had a reduced growth rate in vitro, decreased filamentation, and impaired capacity to damage epithelial and endothelial cells in vitro. Mice infected intravenously with the slr1Δ/Δ mutant strain had significantly prolonged survival compared to that of mice infected with the wild-type or slr1Δ/Δ mutant complemented with SLR1 (slr1Δ/Δ+SLR1) strain, without a concomitant decrease in kidney fungal burden. Histopathology, however, revealed differential localization of slr1Δ/Δ hyphal and yeast morphologies within the kidney. Mice infected with slr1Δ/Δ cells also had an increased brain fungal burden, which correlated with increased invasion of brain, but not umbilical vein, endothelial cells in vitro. The enhanced brain endothelial cell invasion was likely due to the increased surface exposure of the Als3 adhesin on slr1Δ/Δ cells. Our results indicate that Slr1 is an SR-like protein that influences C. albicans growth, filamentation, host cell interactions, and virulence.
Collapse
|
32
|
Low JKK, Wilkins MR. Protein arginine methylation in Saccharomyces cerevisiae. FEBS J 2012; 279:4423-43. [PMID: 23094907 DOI: 10.1111/febs.12039] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/10/2012] [Accepted: 10/19/2012] [Indexed: 11/27/2022]
Abstract
Recent research has implicated arginine methylation as a major regulator of cellular processes, including transcription, translation, nucleocytoplasmic transport, signalling, DNA repair, RNA processing and splicing. Arginine methylation is evolutionarily conserved, and it is now thought that it may rival other post-translational modifications such as phosphorylation in terms of its occurrence in the proteome. In addition, multiple recent examples demonstrate an exciting new theme: the interplay between methylation and other post-translational modifications such as phosphorylation. In this review, we summarize our current understanding of arginine methylation and the recent advances made, with a focus on the lower eukaryote Saccharomyces cerevisiae. We cover the types of methylated proteins, their responsible methyltransferases, where and how the effects of arginine methylation are seen in the cell, and, finally, discuss the conservation of the biological function of methylarginines between S. cerevisiae and mammals.
Collapse
Affiliation(s)
- Jason K K Low
- Systems Biology Laboratory, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | | |
Collapse
|
33
|
Tang Z, Luca M, Taggart-Murphy L, Portillio J, Chang C, Guven A, Lin RJ, Murray J, Carr A. Interacting factors and cellular localization of SR protein-specific kinase Dsk1. Exp Cell Res 2012; 318:2071-84. [PMID: 22683458 DOI: 10.1016/j.yexcr.2012.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/06/2012] [Accepted: 05/23/2012] [Indexed: 01/10/2023]
Abstract
Schizosaccharomyces pombe Dsk1 is an SR protein-specific kinase (SRPK), whose homologs have been identified in every eukaryotic organism examined. Although discovered as a mitotic regulator with protein kinase activity toward SR splicing factors, it remains largely unknown about what and how Dsk1 contributes to cell cycle and pre-mRNA splicing. In this study, we investigated the Dsk1 function by determining interacting factors and cellular localization of the kinase. Consistent with its reported functions, we found that pre-mRNA processing and cell cycle factors are prominent among the proteins co-purified with Dsk1. The identification of these factors led us to find Rsd1 as a novel Dsk1 substrate, as well as the involvement of Dsk1 in cellular distribution of poly(A)(+) RNA. In agreement with its role in nuclear events, we also found that Dsk1 is mainly localized in the nucleus during G(2) phase and at mitosis. Furthermore, we revealed the oscillation of Dsk1 protein in a cell cycle-dependent manner. This paper marks the first comprehensive analysis of in vivo Dsk1-associated proteins in fission yeast. Our results reflect the conserved role of SRPK family in eukaryotic organisms, and provide information about how Dsk1 functions in pre-mRNA processing and cell-division cycle.
Collapse
Affiliation(s)
- Zhaohua Tang
- W.M. Keck Science Center, The Claremont Colleges, Claremont, CA 91711, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang G, Wang C, Hou R, Zhou X, Li G, Zhang S, Xu JR. The AMT1 arginine methyltransferase gene is important for plant infection and normal hyphal growth in Fusarium graminearum. PLoS One 2012; 7:e38324. [PMID: 22693618 PMCID: PMC3365026 DOI: 10.1371/journal.pone.0038324] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 05/03/2012] [Indexed: 01/11/2023] Open
Abstract
Arginine methylation of non-histone proteins by protein arginine methyltransferase (PRMT) has been shown to be important for various biological processes from yeast to human. Although PRMT genes are well conserved in fungi, none of them have been functionally characterized in plant pathogenic ascomycetes. In this study, we identified and characterized all of the four predicted PRMT genes in Fusarium graminearum, the causal agent of Fusarium head blight of wheat and barley. Whereas deletion of the other three PRMT genes had no obvious phenotypes, the Δamt1 mutant had pleiotropic defects. AMT1 is a predicted type I PRMT gene that is orthologous to HMT1 in Saccharomyces cerevisiae. The Δamt1 mutant was slightly reduced in vegetative growth but normal in asexual and sexual reproduction. It had increased sensitivities to oxidative and membrane stresses. DON mycotoxin production and virulence on flowering wheat heads also were reduced in the Δamt1 mutant. The introduction of the wild-type AMT1 allele fully complemented the defects of the Δamt1 mutant and Amt1-GFP fusion proteins mainly localized to the nucleus. Hrp1 and Nab2 are two hnRNPs in yeast that are methylated by Hmt1 for nuclear export. In F. graminearum, AMT1 is required for the nuclear export of FgHrp1 but not FgNab2, indicating that yeast and F. graminearum differ in the methylation and nucleo-cytoplasmic transport of hnRNP components. Because AMT2 also is a predicted type I PRMT with limited homology to yeast HMT1, we generated the Δamt1 Δamt2 double mutants. The Δamt1 single and Δamt1 Δamt2 double mutants had similar defects in all the phenotypes assayed, including reduced vegetative growth and virulence. Overall, data from this systematic analysis of PRMT genes suggest that AMT1, like its ortholog in yeast, is the predominant PRMT gene in F. graminearum and plays a role in hyphal growth, stress responses, and plant infection.
Collapse
Affiliation(s)
- Guanghui Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Chenfang Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Rui Hou
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoying Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Guotian Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Shijie Zhang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
35
|
Torabi N, Kruglyak L. Genetic basis of hidden phenotypic variation revealed by increased translational readthrough in yeast. PLoS Genet 2012; 8:e1002546. [PMID: 22396662 PMCID: PMC3291563 DOI: 10.1371/journal.pgen.1002546] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/28/2011] [Indexed: 01/07/2023] Open
Abstract
Eukaryotic release factors 1 and 3, encoded by SUP45 and SUP35, respectively, in Saccharomyces cerevisiae, are required for translation termination. Recent studies have shown that, besides these two key factors, several genetic and epigenetic mechanisms modulate the efficiency of translation termination. These mechanisms, through modifying translation termination fidelity, were shown to affect various cellular processes, such as mRNA degradation, and in some cases could confer a beneficial phenotype to the cell. The most studied example of such a mechanism is [PSI+], the prion conformation of Sup35p, which can have pleiotropic effects on growth that vary among different yeast strains. However, genetic loci underlying such readthrough-dependent, background-specific phenotypes have yet to be identified. Here, we used sup35C653R, a partial loss-of-function allele of the SUP35 previously shown to increase readthrough of stop codons and recapitulate some [PSI+]-dependent phenotypes, to study the genetic basis of phenotypes revealed by increased translational readthrough in two divergent yeast strains: BY4724 (a laboratory strain) and RM11_1a (a wine strain). We first identified growth conditions in which increased readthrough of stop codons by sup35C653R resulted in different growth responses between these two strains. We then used a recently developed linkage mapping technique, extreme QTL mapping (X-QTL), to identify readthrough-dependent loci for the observed growth differences. We further showed that variation in SKY1, an SR protein kinase, underlies a readthrough-dependent locus observed for growth on diamide and hydrogen peroxide. We found that the allelic state of SKY1 interacts with readthrough level and the genetic background to determine growth rate in these two conditions. Proper termination is an important step in a successful mRNA translation event. Many factors, employing genetic and epigenetic mechanisms, are involved in modifying translation termination efficiency in the budding yeast, Saccharomyces cerevisiae. [PSI+], the prion conformation of Sup35p, one of the translation termination factors in yeast, provides an example of such mechanisms. [PSI+] increases readthrough of stop codons. This has the potential to unveil hidden genetic variation that may enhance growth in some yeast strains in certain environments. The specific details of readthrough-dependent phenotypes, however, have remained poorly understood. Here, we used a partial loss-of-function allele of SUP35, which increases readthrough of stop codons, and a recently developed linkage mapping technique, X-QTL, to map loci underlying readthrough-dependent growth phenotypes in two divergent yeast strains, BY (a laboratory strain) and RM (a wine strain). We found that readthrough-dependent growth phenotypes are often complex, with multiple loci influencing growth. We also showed that variants in the gene SKY1 underlie one of the loci detected for readthrough-dependent growth phenotypes in the presence of two chemicals that induce oxidative stress.
Collapse
Affiliation(s)
- Noorossadat Torabi
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Leonid Kruglyak
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Howard Hughes Medical Institute, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
36
|
Dastidar EG, Dayer G, Holland ZM, Dorin-Semblat D, Claes A, Chêne A, Sharma A, Hamelin R, Moniatte M, Lopez-Rubio JJ, Scherf A, Doerig C. Involvement of Plasmodium falciparum protein kinase CK2 in the chromatin assembly pathway. BMC Biol 2012; 10:5. [PMID: 22293287 PMCID: PMC3296614 DOI: 10.1186/1741-7007-10-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 01/31/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protein kinase CK2 is a pleiotropic serine/threonine protein kinase with hundreds of reported substrates, and plays an important role in a number of cellular processes. The cellular functions of Plasmodium falciparum CK2 (PfCK2) are unknown. The parasite's genome encodes one catalytic subunit, PfCK2α, which we have previously shown to be essential for completion of the asexual erythrocytic cycle, and two putative regulatory subunits, PfCK2β1 and PfCK2β2. RESULTS We now show that the genes encoding both regulatory PfCK2 subunits (PfCK2β1 and PfCK2β2) cannot be disrupted. Using immunofluorescence and electron microscopy, we examined the intra-erythrocytic stages of transgenic parasite lines expressing hemagglutinin (HA)-tagged catalytic and regulatory subunits (HA-CK2α, HA-PfCK2β1 or HA-PfCK2β2), and localized all three subunits to both cytoplasmic and nuclear compartments of the parasite. The same transgenic parasite lines were used to purify PfCK2β1- and PfCK2β2-containing complexes, which were analyzed by mass spectrometry. The recovered proteins were unevenly distributed between various pathways, with a large proportion of components of the chromatin assembly pathway being present in both PfCK2β1 and PfCK2β2 precipitates, implicating PfCK2 in chromatin dynamics. We also found that chromatin-related substrates such as nucleosome assembly proteins (Naps), histones, and two members of the Alba family are phosphorylated by PfCK2α in vitro. CONCLUSIONS Our reverse-genetics data show that each of the two regulatory PfCK2 subunits is required for completion of the asexual erythrocytic cycle. Our interactome study points to an implication of PfCK2 in many cellular pathways, with chromatin dynamics being identified as a major process regulated by PfCK2. This study paves the way for a kinome-wide interactomics-based approach to elucidate protein kinase function in malaria parasites.
Collapse
Affiliation(s)
- Eeshita G Dastidar
- Biology of Host-Parasite Interactions Unit, Institut Pasteur, 25 rue du Dr. Roux, F-75724 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Erce MA, Pang CNI, Hart-Smith G, Wilkins MR. The methylproteome and the intracellular methylation network. Proteomics 2012; 12:564-86. [DOI: 10.1002/pmic.201100397] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/23/2011] [Accepted: 10/17/2011] [Indexed: 12/30/2022]
|
38
|
Chêne A, Vembar SS, Rivière L, Lopez-Rubio JJ, Claes A, Siegel TN, Sakamoto H, Scheidig-Benatar C, Hernandez-Rivas R, Scherf A. PfAlbas constitute a new eukaryotic DNA/RNA-binding protein family in malaria parasites. Nucleic Acids Res 2011; 40:3066-77. [PMID: 22167473 PMCID: PMC3326326 DOI: 10.1093/nar/gkr1215] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In Plasmodium falciparum, perinuclear subtelomeric chromatin conveys monoallelic expression of virulence genes. However, proteins that directly bind to chromosome ends are poorly described. Here we identify a novel DNA/RNA-binding protein family that bears homology to the archaeal protein Alba (Acetylation lowers binding affinity). We isolated three of the four PfAlba paralogs as part of a molecular complex that is associated with the P. falciparum-specific TARE6 (Telomere-Associated Repetitive Elements 6) subtelomeric region and showed in electromobility shift assays (EMSAs) that the PfAlbas bind to TARE6 repeats. In early blood stages, the PfAlba proteins were enriched at the nuclear periphery and partially co-localized with PfSir2, a TARE6-associated histone deacetylase linked to the process of antigenic variation. The nuclear location changed at the onset of parasite proliferation (trophozoite-schizont), where the PfAlba proteins were also detectable in the cytoplasm in a punctate pattern. Using single-stranded RNA (ssRNA) probes in EMSAs, we found that PfAlbas bind to ssRNA, albeit with different binding preferences. We demonstrate for the first time in eukaryotes that Alba-like proteins bind to both DNA and RNA and that their intracellular location is developmentally regulated. Discovery of the PfAlbas may provide a link between the previously described subtelomeric non-coding RNA and the regulation of antigenic variation.
Collapse
Affiliation(s)
- Arnaud Chêne
- Institut Pasteur, Unité de Biologie des Interactions Hôte-Parasite, URA 2581, F-75015 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fronz K, Güttinger S, Burkert K, Kühn U, Stöhr N, Schierhorn A, Wahle E. Arginine methylation of the nuclear poly(a) binding protein weakens the interaction with its nuclear import receptor, transportin. J Biol Chem 2011; 286:32986-94. [PMID: 21808065 PMCID: PMC3190935 DOI: 10.1074/jbc.m111.273912] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/28/2011] [Indexed: 11/06/2022] Open
Abstract
The nuclear poly(A) binding protein, PABPN1, promotes mRNA polyadenylation in the cell nucleus by increasing the processivity of poly(A) polymerase and contributing to poly(A) tail length control. In its C-terminal domain, the protein carries 13 arginine residues that are all asymmetrically dimethylated. The function of this modification in PABPN1 has been unknown. Part of the methylated domain serves as nuclear localization signal, binding the import receptor transportin. Here we report that arginine methylation weakens the affinity of PABPN1 for transportin. Recombinant, unmethylated PABPN1 binds more strongly to transportin than its methylated counterpart from mammalian tissue, and in vitro methylation reduces the affinity. Transportin and RNA compete for binding to PABPN1. Methylation favors RNA binding. Transportin also inhibits in vitro methylation of the protein. Finally, a peptide corresponding to the nuclear localization signal of PABPN1 competes with transportin-dependent nuclear import of the protein in a permeabilized cell assay and does so less efficiently when it is methylated. We hypothesize that transportin binding might delay methylation of PABPN1 until after nuclear import. In the nucleus, arginine methylation may favor the transition of PABPN1 to the competing ligand RNA and serve to reduce the risk of the protein being reexported to the cytoplasm by transportin.
Collapse
Affiliation(s)
- Katharina Fronz
- From the Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Stefan Güttinger
- the Institute of Biochemistry, Swiss Federal Institute of Technology (ETH Zürich), Schafmattstrasse 18, 8093 Zürich, Switzerland, and
| | - Kerstin Burkert
- From the Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Uwe Kühn
- From the Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Nadine Stöhr
- the Section for Molecular Cell Biology, Department of Medicine, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany
| | - Angelika Schierhorn
- From the Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Elmar Wahle
- From the Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| |
Collapse
|
40
|
Aubol BE, Adams JA. Applying the brakes to multisite SR protein phosphorylation: substrate-induced effects on the splicing kinase SRPK1. Biochemistry 2011; 50:6888-900. [PMID: 21728354 DOI: 10.1021/bi2007993] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To investigate how a protein kinase interacts with its protein substrate during extended, multisite phosphorylation, the kinetic mechanism of a protein kinase involved in mRNA splicing control was investigated using rapid quench flow techniques. The protein kinase SRPK1 phosphorylates ~10 serines in the arginine--serine-rich domain (RS domain) of the SR protein SRSF1 in a C- to N-terminal direction, a modification that directs this essential splicing factor from the cytoplasm to the nucleus. Transient-state kinetic experiments illustrate that the first phosphate is added rapidly onto the RS domain of SRSF1 (t(1/2) = 0.1 s) followed by slower, multisite phosphorylation at the remaining serines (t(1/2) = 15 s). Mutagenesis experiments suggest that efficient phosphorylation rates are maintained by an extensive hydrogen bonding and electrostatic network between the RS domain of the SR protein and the active site and docking groove of the kinase. Catalytic trapping and viscosometric experiments demonstrate that while the phosphoryl transfer step is fast, ADP release limits multisite phosphorylation. By studying phosphate incorporation into selectively pre-phosphorylated forms of the enzyme-substrate complex, the kinetic mechanism for site-specific phosphorylation along the reaction coordinate was assessed. The binding affinity of the SR protein, the phosphoryl transfer rate, and ADP exchange rate were found to decline significantly as a function of progressive phosphorylation in the RS domain. These findings indicate that the protein substrate actively modulates initiation, extension, and termination events associated with prolonged, multisite phosphorylation.
Collapse
Affiliation(s)
- Brandon E Aubol
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0636, United States
| | | |
Collapse
|
41
|
Arginine methylation of the RGG box does not appear to regulate ICP27 import during herpes simplex virus infection. J Virol 2011; 85:6809-13. [PMID: 21543499 DOI: 10.1128/jvi.00679-11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arginine methylation can regulate protein import and export and can modulate protein interactions. Herpes simplex virus 1 (HSV-1) ICP27 is a shuttling protein involved in viral mRNA export. We previously reported that ICP27 is methylated on three arginines within its RGG box and that arginine methylation regulates ICP27 export and its interaction with SRPK1 and Aly/REF. Here, we report that ICP27 was efficiently imported into the nucleus when hypomethylated as determined by Fluorescence Recovery After Photobleaching (FRAP). Furthermore, coimmunoprecipitation of ICP27 with β-importin was not significantly affected by ICP27 hypomethylation. Thus, ICP27 import does not appear to be regulated by arginine methylation.
Collapse
|
42
|
Yu MC. The Role of Protein Arginine Methylation in mRNP Dynamics. Mol Biol Int 2011; 2011:163827. [PMID: 22091396 PMCID: PMC3195771 DOI: 10.4061/2011/163827] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 02/12/2011] [Indexed: 12/13/2022] Open
Abstract
In eukaryotes, messenger RNA biogenesis depends on the ordered and precise assembly of a nuclear messenger ribonucleoprotein particle (mRNP) during transcription. This process requires a well-orchestrated and dynamic sequence of molecular recognition events by specific RNA-binding proteins. Arginine methylation is a posttranslational modification found in a plethora of RNA-binding proteins responsible for mRNP biogenesis. These RNA-binding proteins include both heterogeneous nuclear ribonucleoproteins (hnRNPs) and serine/arginine-rich (SR) proteins. In this paper, I discuss the mechanisms of action by which arginine methylation modulates various facets of mRNP biogenesis, and how the collective consequences of this modification impart the specificity required to generate a mature, translational- and export-competent mRNP.
Collapse
Affiliation(s)
- Michael C Yu
- Department of Biological Sciences, State University of New York at Buffalo, 109 Cooke Hall, Buffalo, NY 14260, USA
| |
Collapse
|
43
|
Giannakouros T, Nikolakaki E, Mylonis I, Georgatsou E. Serine-arginine protein kinases: a small protein kinase family with a large cellular presence. FEBS J 2011; 278:570-86. [DOI: 10.1111/j.1742-4658.2010.07987.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
44
|
Hong Y, Jang SW, Ye K. The N-terminal fragment from caspase-cleaved serine/arginine protein-specific kinase2 (SRPK2) translocates into the nucleus and promotes apoptosis. J Biol Chem 2010; 286:777-86. [PMID: 21056976 DOI: 10.1074/jbc.m110.193441] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
SRPK2 belongs to a family of serine/arginine (SR) protein-specific kinases (SRPKs), which phosphorylate SR domain-containing proteins in the nuclear speckles and mediate the pre-mRNA splicing. Previous studies have shown that SRPK2 plays a pivotal role in cell proliferation and apoptosis. However, how SRPK2 is regulated during the apoptosis is unclear. Here, we show that SRPK2 is cleaved by caspases at Asp-139 and -403 residues. Its N terminus cleaved product translocates into the nucleus and promotes VP16-induced apoptosis. Akt phosphorylation of SRPK2 prevents its apoptotic cleavage by caspases. 14-3-3β, the binding partner of Akt-phosphorylated SRPK2, further protects it from degradation. Hence, our results suggest that the N-terminal domain of SRPK2 cleaved by caspases translocates into the nucleus, where it promotes chromatin condensation and apoptotic cell death.
Collapse
Affiliation(s)
- Yi Hong
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
45
|
Guendel I, Carpio L, Pedati C, Schwartz A, Teal C, Kashanchi F, Kehn-Hall K. Methylation of the tumor suppressor protein, BRCA1, influences its transcriptional cofactor function. PLoS One 2010; 5:e11379. [PMID: 20614009 PMCID: PMC2894074 DOI: 10.1371/journal.pone.0011379] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 06/08/2010] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Approximately half of hereditary breast cancers have mutations in either BRCA1 or BRCA2. BRCA1 is a multifaceted tumor suppressor protein that has implications in processes such as cell cycle, transcription, DNA damage response and chromatin remodeling. This multifunctional nature of BRCA1 is achieved by exerting its many effects through modulation of transcription. Many cellular events are dictated by covalent modification of proteins, an important mechanism in regulating protein and genome function; of which protein methylation is an important posttranslational modification with activating or repressive effects. METHODS/PRINCIPAL FINDINGS Here we demonstrate for the first time that BRCA1 is methylated both in breast cancer cell lines and breast cancer tumor samples at arginine and lysine residues through immunoprecipitation and western blot analysis. Arginine methylation by PRMT1 was observed in vitro and the region of BRCA1 504-802 shown to be highly methylated. PRMT1 was detected in complex with BRCA1 504-802 through in vitro binding assays and co-immunoprecipitated with BRCA1. Inhibition of methylation resulted in decreased BRCA1 methylation and alteration of BRCA1 binding to promoters in vivo as shown through chromatin immunoprecipitation assays. Knockdown of PRMT1 also resulted in increased BRCA1 binding to particular promoters in vivo. Finally, following methylation inhibition, Sp1 was found to preferentially associate with hypo-methylated BRCA1 and STAT1 was found to preferentially associate with hyper-methylated BRCA1. CONCLUSIONS/SIGNIFICANCE These results suggest that methylation may influence either the ability of BRCA1 to bind to specific promoters or protein-protein interactions which alters the recruitment of BRCA1 to these promoters. Thus, given the importance of BRCA1 to genomic stability, methylation of BRCA1 may ultimately affect the tumor suppressor ability of BRCA1.
Collapse
Affiliation(s)
- Irene Guendel
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University Medical Center, Washington, D. C., United States of America
- Department of Molecular and Microbiology, National Center for Biodefense & Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Lawrence Carpio
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University Medical Center, Washington, D. C., United States of America
- Department of Molecular and Microbiology, National Center for Biodefense & Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Caitlin Pedati
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University Medical Center, Washington, D. C., United States of America
| | - Arnold Schwartz
- Department of Pathology, The George Washington University Medical Center, Washington, D. C., United States of America
| | - Christine Teal
- Breast Care Center, The George Washington University Medical Center, Washington, D. C., United States of America
| | - Fatah Kashanchi
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University Medical Center, Washington, D. C., United States of America
- Department of Molecular and Microbiology, National Center for Biodefense & Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
| | - Kylene Kehn-Hall
- Department of Molecular and Microbiology, National Center for Biodefense & Infectious Diseases, George Mason University, Manassas, Virginia, United States of America
- * E-mail:
| |
Collapse
|
46
|
Arginine methylation controls the subcellular localization and functions of the oncoprotein splicing factor SF2/ASF. Mol Cell Biol 2010; 30:2762-74. [PMID: 20308322 DOI: 10.1128/mcb.01270-09] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alternative splicing and posttranslational modifications (PTMs) are major sources of protein diversity in eukaryotic proteomes. The SR protein SF2/ASF is an oncoprotein that functions in pre-mRNA splicing, with additional roles in other posttranscriptional and translational events. Functional studies of SR protein PTMs have focused exclusively on the reversible phosphorylation of Ser residues in the C-terminal RS domain. We confirmed that human SF2/ASF is methylated at residues R93, R97, and R109, which were identified in a global proteomic analysis of Arg methylation, and further investigated whether these methylated residues regulate the properties of SF2/ASF. We show that the three arginines additively control the subcellular localization of SF2/ASF and that both the positive charge and the methylation state are important. Mutations that block methylation and remove the positive charge result in the cytoplasmic accumulation of SF2/ASF. The consequent decrease in nuclear SF2/ASF levels prevents it from modulating the alternative splicing of target genes, results in higher translation stimulation, and abrogates the enhancement of nonsense-mediated mRNA decay. This study addresses the mechanisms by which Arg methylation and the associated positive charge regulate the activities of SF2/ASF and emphasizes the significance of localization control for an oncoprotein with multiple functions in different cellular compartments.
Collapse
|
47
|
Npr2, yeast homolog of the human tumor suppressor NPRL2, is a target of Grr1 required for adaptation to growth on diverse nitrogen sources. EUKARYOTIC CELL 2010; 9:592-601. [PMID: 20154027 DOI: 10.1128/ec.00192-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Npr2, a putative "nitrogen permease regulator" and homolog of the human tumor suppressor NPRL2, was found to interact with Grr1, the F-box component of the SCF(Grr1) (Skp1-cullin-F-box protein complex containing Grr1) E3 ubiquitin ligase, by mass spectrometry-based multidimensional protein identification technology. Npr2 has two PEST sequences and has been previously identified among ubiquitinated proteins. Like other Grr1 targets, Npr2 is a phosphoprotein. Phosphorylated Npr2 accumulates in grr1Delta mutants, and Npr2 is stabilized in cells with inactivated proteasomes. Phosphorylation and instability depend upon the type I casein kinases (CK1) Yck1 and Yck2. Overexpression of Npr2 is detrimental to cells and is lethal in grr1Delta mutants. Npr2 is required for robust growth in defined medium containing ammonium or urea as a nitrogen source but not for growth on rich medium. npr2Delta mutants also fail to efficiently complete meiosis. Together, these data indicate that Npr2 is a phosphorylation-dependent target of the SCF(Grr1) E3 ubiquitin ligase that plays a role in cell growth on some nitrogen sources.
Collapse
|
48
|
Pang CNI, Gasteiger E, Wilkins MR. Identification of arginine- and lysine-methylation in the proteome of Saccharomyces cerevisiae and its functional implications. BMC Genomics 2010; 11:92. [PMID: 20137074 PMCID: PMC2830191 DOI: 10.1186/1471-2164-11-92] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 02/05/2010] [Indexed: 02/07/2023] Open
Abstract
Background The methylation of eukaryotic proteins has been proposed to be widespread, but this has not been conclusively shown to date. In this study, we examined 36,854 previously generated peptide mass spectra from 2,607 Saccharomyces cerevisiae proteins for the presence of arginine and lysine methylation. This was done using the FindMod tool and 5 filters that took advantage of the high number of replicate analysis per protein and the presence of overlapping peptides. Results A total of 83 high-confidence lysine and arginine methylation sites were found in 66 proteins. Motif analysis revealed many methylated sites were associated with MK, RGG/RXG/RGX or WXXXR motifs. Functionally, methylated proteins were significantly enriched for protein translation, ribosomal biogenesis and assembly and organellar organisation and were predominantly found in the cytoplasm and ribosome. Intriguingly, methylated proteins were seen to have significantly longer half-life than proteins for which no methylation was found. Some 43% of methylated lysine sites were predicted to be amenable to ubiquitination, suggesting methyl-lysine might block the action of ubiquitin ligase. Conclusions This study suggests protein methylation to be quite widespread, albeit associated with specific functions. Large-scale tandem mass spectroscopy analyses will help to further confirm the modifications reported here.
Collapse
Affiliation(s)
- Chi Nam Ignatius Pang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
49
|
Xu Y, Yu W, Xiong Y, Xie H, Ren Z, Xu D, Lei M, Zuo B, Feng X. Molecular characterization and expression patterns of serine/arginine-rich specific kinase 3 (SPRK3) in porcine skeletal muscle. Mol Biol Rep 2010; 38:2903-9. [PMID: 20127522 DOI: 10.1007/s11033-010-9952-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 01/15/2010] [Indexed: 11/26/2022]
Abstract
SRPK3 is a protein kinase belonging to serine/arginine protein kinases (SRPK) family, which phosphorylates serine/arginine repeat-containing proteins, and is controlled by a muscle-specific enhancer directly regulated by MEF2. In this study, a full-length cDNA of the porcine SRPK3 gene encoding a 566 amino acid protein was isolated. It contains 14 exons over approximately 4.3 kb. The deduced amino acid sequence of porcine SRPK3 contains a bipartite kinase domain, and shows high similarities to their corresponding human and cattle homologues. Tissue distribution analysis indicated that porcine SRPK3 mRNAs are highly expressed in heart and skeletal muscle especially in uterus and parorchis, but at low level in brain, stomach, small intestine, and ovary. Expression pattern of SRPK3 was similar in Large White and Chinese Meishan breeds. Both the two breeds had the highest expression levels at fetal 65 days (P < 0.01), and decreased while the age increased until 60 days old, then increased at 120 days (P < 0.01) and decreased at 180 days (P < 0.05). However, at fetal 65 days, the mRNA abundance of SRPK3 in Large White was 12.5-fold higher than in Meishan pigs (P < 0.01), whereas at 180 days, the abundance in Meishan was 3.4-fold higher than in Large White pigs (P < 0.01). These results suggest that the SRPK3 gene might be an important gene of skeletal muscle development and also provides basic molecular information useful for further studies on its roles in porcine skeletal muscle.
Collapse
Affiliation(s)
- Yongjie Xu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, 1 Shizishan Street, 430070 Wuhan, Hubei, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wong CM, Tang HMV, Kong KYE, Wong GWO, Qiu H, Jin DY, Hinnebusch AG. Yeast arginine methyltransferase Hmt1p regulates transcription elongation and termination by methylating Npl3p. Nucleic Acids Res 2010; 38:2217-28. [PMID: 20053728 PMCID: PMC2853106 DOI: 10.1093/nar/gkp1133] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The heterogeneous nuclear ribonucleoprotein Npl3p of budding yeast is a substrate of arginine methyltransferase Hmt1p, but the role of Hmt1p in regulating Npl3p's functions in transcription antitermination and elongation were unknown. We found that mutants lacking Hmt1p methyltransferase activity exhibit reduced recruitment of Npl3p, but elevated recruitment of a component of mRNA cleavage/termination factor CFI, to the activated GAL10-GAL7 locus. Consistent with this, hmt1 mutants displayed increased termination at the defective gal10-Delta56 terminator. Remarkably, hmt1Delta cells also exhibit diminished recruitment of elongation factor Tho2p and a reduced rate of transcription elongation in vivo. Importantly, the defects in Npl3p and Tho2p recruitment, antitermination and elongation in hmt1Delta cells all were mitigated by substitutions in Npl3p RGG repeats that functionally mimic arginine methylation by Hmt1p. Thus, Hmt1p promotes elongation and suppresses termination at cryptic terminators by methylating RGG repeats in Npl3p. As Hmt1p stimulates dissociation of Tho2p from an Npl3p-mRNP complex, it could act to recycle these elongation and antitermination factors back to sites of ongoing transcription.
Collapse
Affiliation(s)
- Chi-Ming Wong
- Department of Biochemistry, The University of Hong Kong, Hong Kong.
| | | | | | | | | | | | | |
Collapse
|