1
|
Chen J, Zhang A, Nie A, Zuo X, Zhang L, Jiao Y, Wang L, Yang Y, Liu K, Xue X, Zhuang Y, Meng Y, Yang JH. Multi-omics analysis to reveal the synergistic mechanism underlying the multiple ingredients of Stephania tetrandra extract on rheumatoid arthritis through the PI3K/Akt signaling pathway. Front Pharmacol 2024; 15:1447283. [PMID: 39221139 PMCID: PMC11361992 DOI: 10.3389/fphar.2024.1447283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Background: Stephania tetrandra has been used for treating rheumatic diseases for thousands of years in rural areas of China. Several studies have found that tetrandrine and fangchinoline can inactivate the PI3K/Akt signaling pathway by reducing the expression and phosphorylation of AKT. However, the mechanism underlying the therapeutic actions of S. tetrandra on RA is not well known. Methods: In this study, we determined the molecular mechanism of the therapeutic effects of the multiple ingredients of S. tetrandra extract (STE) on collagen-induced arthritic (CIA) rats by integrating pharmacometabolomics, proteomics, and PTMomics. Results: In the multi-omics joint analysis, first, the expression signatures of proteins, PTMs, metabolites, and STE ingredients were profiled in CIA rats PBMCs that underwent STE treatment. Bioinformatics analysis were subsequently probed that STE mainly regulated tryptophan metabolism, inflammatory response, and cell adhesion pathways in CIA rats. The interrelated pathways were further constructed, and the findings revealed that STE attenuated the inflammatory response and proliferation of PBMCs in CIA rats by mediating the key targets of the PI3K/Akt pathway, including Hint1, ACP1, FGR, HSP90@157W + dioxidation, and Prkca@220N + 845.4540 Da. The rheumatic functions of Hint1 and ACP1 were further confirmed by applying a transcriptomic data of RA patients who clinically received abatacept therapy. Furthermore, a cross-ome correlation analysis was performed and major in vivo ingredients of STE, including coclaurine-N-glucuronide, Me,coclaurine-O-glc, N-gluA-schefferine, corydamine, corypamine, tetrandrine, and fangchiniline, were found to act on these targerts to inactivate the PI3K/Akt pathway. Conclusion: These results elucidated the molecular mechanism by which the ingredients of STE mediate the expression of the key targets in the PI3K/Akt pathway, leading to anti-rheumatic functions. The findings of this study provided new insights into the synergistic effect of STE against arthritis in rats.
Collapse
Affiliation(s)
- Jinfeng Chen
- Research Center for Clinical Systems Biology, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - An Zhang
- Research Center for Clinical Systems Biology, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Anzheng Nie
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoxiao Zuo
- Radiotherapy Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lei Zhang
- Research Center for Clinical Systems Biology, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Yuxue Jiao
- Research Center for Clinical Systems Biology, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Lulu Wang
- Research Center for Clinical Systems Biology, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Yang Yang
- Research Center for Clinical Systems Biology, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Kun Liu
- Research Center for Clinical Systems Biology, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Xinli Xue
- Research Center for Clinical Systems Biology, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| | - Yuanyuan Zhuang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yansha Meng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing-Hua Yang
- Research Center for Clinical Systems Biology, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Zhang L, Xie F, Zhang F, Lu B. The potential roles of exosomes in pathological cardiomyocyte hypertrophy mechanisms and therapy: A review. Medicine (Baltimore) 2024; 103:e37994. [PMID: 38669371 PMCID: PMC11049793 DOI: 10.1097/md.0000000000037994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Pathological cardiac hypertrophy, characterized by the enlargement of cardiac muscle cells, leads to serious cardiac conditions and stands as a major global health issue. Exosomes, comprising small lipid bilayer vesicles, are produced by various cell types and found in numerous bodily fluids. They play a pivotal role in intercellular communication by transferring bioactive cargos to recipient cells or activating signaling pathways in target cells. Exosomes from cardiomyocytes, endothelial cells, fibroblasts, and stem cells are key in regulating processes like cardiac hypertrophy, cardiomyocyte survival, apoptosis, fibrosis, and angiogenesis within the context of cardiovascular diseases. This review delves into exosomes' roles in pathological cardiac hypertrophy, first elucidating their impact on cell communication and signaling pathways. It then advances to discuss how exosomes affect key hypertrophic processes, including metabolism, fibrosis, oxidative stress, and angiogenesis. The review culminates by evaluating the potential of exosomes as biomarkers and their significance in targeted therapeutic strategies, thus emphasizing their critical role in the pathophysiology and management of cardiac hypertrophy.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Xie
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fengmei Zhang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Beiyao Lu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Tang X, Shen Y, Lu Y, He W, Nie Y, Fang X, Cai J, Si X, Zhu Y. Identification and validation of pyroptosis-related genes as potential biomarkers for hypertrophic cardiomyopathy: A comprehensive bioinformatics analysis. Medicine (Baltimore) 2024; 103:e36799. [PMID: 38277535 PMCID: PMC10817039 DOI: 10.1097/md.0000000000036799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/06/2023] [Indexed: 01/28/2024] Open
Abstract
Pyroptosis plays a key role in the death of cells including cardiomyocytes, and it is associated with a variety of cardiovascular diseases. However, the role of pyroptosis-related genes (PRGs) in hypertrophic cardiomyopathy (HCM) is not well characterized. This study aimed to identify key biomarkers and explore the molecular mechanisms underlying the functions of the PRGs in HCM. The differentially expressed genes were identified by GEO2R, and the differentially expressed pyroptosis-related genes (DEPRGs) of HCM were identified by combining with PRGs. Enrichment analysis was performed using the "clusterProfiler" package of the R software. Protein-protein interactions (PPI) network analysis was performed using the STRING database, and hub genes were screened using cytoHubba. TF-miRNA coregulatory networks and protein-chemical interactions were analyzed using NetworkAnalyst. RT-PCR/WB was used for expression validation of HCM diagnostic markers. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western Blot (WB) were used to measure and compare the expression of the identified genes in the cardiac hypertrophy model and the control group. A total of 20 DEPRGs were identified, which primarily showed enrichment for the positive regulation of cytokine production, regulation of response to biotic stimulus, tumor necrosis factor production, and other biological processes. These processes primarily involved pathways related to Renin-angiotensin system, Adipocytokine signaling pathway and NF-kappa B signaling pathway. Then, a PPI network was constructed, and 8 hub genes were identified. After verification analysis, the finally identified HCM-related diagnostic markers were upregulated gene protein tyrosine phosphatase non-receptor type 11 (PTPN11), downregulated genes interleukin-1 receptor-associated kinase 3 (IRAK3), and annexin A2 (ANXA2). Further GSEA analysis revealed these 3 biomarkers primarily related to cardiac muscle contraction, hypertrophic cardiomyopathy, fatty acid degradation and ECM - receptor interaction. Moreover, we also elucidated the interaction network of these biomarkers with the miRNA network and known compounds, respectively. RT-PCR/WB results indicated that PTPN11 expression was significantly increased, and IRAK3 and ANXA2 expressions were significantly decreased in HCM. This study identified PTPN11, IRAK3, and ANXA2 as pyroptosis-associated biomarkers of HCM, with the potential to reveal the development and pathogenesis of HCM and could be potential therapeutic targets.
Collapse
Affiliation(s)
- Xin Tang
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Yi Shen
- Department of Cardiovascular Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yun Lu
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Wanya He
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Ying Nie
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Xue Fang
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Jinghui Cai
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Xiaoyun Si
- Department of Cardiovascular Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yan Zhu
- School of Public Health, Guizhou Medical University, Guiyang, China
| |
Collapse
|
4
|
Zheng L, Shi W, Liu B, Duan B, Sorgen P. Evaluation of Tyrosine Kinase Inhibitors Loaded Injectable Hydrogels for Improving Connexin43 Gap Junction Intercellular Communication. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1985-1998. [PMID: 38175743 PMCID: PMC11061860 DOI: 10.1021/acsami.3c10923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Myocardial infarction (MI) is one of the leading causes of death in the developed world, and the loss of cardiomyocytes plays a critical role in the pathogenesis of heart failure. Implicated in this process is a decrease in gap junction intercellular communication due to remodeling of Connexin43 (Cx43). We previously identified that intraperitoneal injection of the Pyk2 inhibitor PF4618433 reduced infarct size, maintained Cx43 at the intercalated disc in left ventricle hypertrophic myocytes, and improved cardiac function in an MI animal model of heart failure. With the emergence of injectable hydrogels as a therapeutic toward the regeneration of cardiac tissue after MI, here, we provide proof of concept that the release of tyrosine kinase inhibitors from hydrogels could have beneficial effects on cardiomyocytes. We developed an injectable hydrogel consisting of thiolated hyaluronic acid and P123-maleimide micelles that can incorporate PF4618433 as well as the Src inhibitor Saracatinib and achieved sustained release (of note, Src activates Pyk2). Using neonatal rat ventricular myocytes in the presence of a phorbol ester, endothelin-1, or phenylephrine to stimulate cardiac hypertrophy, the release of PF4618433 from the hydrogel had the same ability to decrease Cx43 tyrosine phosphorylation and maintain Cx43 localization at the plasma membrane as when directly added to the growth media. Additional beneficial effects included decreases in apoptosis, the hypertrophic marker atrial natriuretic peptide (ANP), and serine kinases upregulated in hypertrophy. Finally, the presence of both PF4618433 and Saracatinib further decreased the level of ANP and apoptosis than each inhibitor alone, suggesting that a combinatorial approach may be most beneficial. These findings provide the groundwork to test if tyrosine kinase inhibitor release from hydrogels will have a beneficial effect in an animal model of MI-induced heart failure.
Collapse
Affiliation(s)
- Li Zheng
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bo Liu
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Paul Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
5
|
Eggertsen TG, Saucerman JJ. Virtual drug screen reveals context-dependent inhibition of cardiomyocyte hypertrophy. Br J Pharmacol 2023; 180:2721-2735. [PMID: 37302817 PMCID: PMC10592153 DOI: 10.1111/bph.16163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/10/2023] [Accepted: 06/04/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Pathological cardiomyocyte hypertrophy is a response to cardiac stress that typically leads to heart failure. Despite being a primary contributor to pathological cardiac remodelling, the therapeutic space that targets hypertrophy is limited. Here, we apply a network model to virtually screen for FDA-approved drugs that induce or suppress cardiomyocyte hypertrophy. EXPERIMENTAL APPROACH A logic-based differential equation model of cardiomyocyte signalling was used to predict drugs that modulate hypertrophy. These predictions were validated against curated experiments from the prior literature. The actions of midostaurin were validated in new experiments using TGFβ- and noradrenaline (NE)-induced hypertrophy in neonatal rat cardiomyocytes. KEY RESULTS Model predictions were validated in 60 out of 70 independent experiments from the literature and identify 38 inhibitors of hypertrophy. We additionally predict that the efficacy of drugs that inhibit cardiomyocyte hypertrophy is often context dependent. We predicted that midostaurin inhibits cardiomyocyte hypertrophy induced by TGFβ, but not noradrenaline, exhibiting context dependence. We further validated this prediction by cellular experiments. Network analysis predicted critical roles for the PI3K and RAS pathways in the activity of celecoxib and midostaurin, respectively. We further investigated the polypharmacology and combinatorial pharmacology of drugs. Brigatinib and irbesartan in combination were predicted to synergistically inhibit cardiomyocyte hypertrophy. CONCLUSION AND IMPLICATIONS This study provides a well-validated platform for investigating the efficacy of drugs on cardiomyocyte hypertrophy and identifies midostaurin for consideration as an antihypertrophic drug.
Collapse
Affiliation(s)
- Taylor G. Eggertsen
- Department of Biomedical Engineering, University of Virginia
- Robert M. Berne Cardiovascular Research Center, University of Virginia
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia
- Robert M. Berne Cardiovascular Research Center, University of Virginia
| |
Collapse
|
6
|
Wen J, Liu G, Liu M, Wang H, Wan Y, Yao Z, Gao N, Sun Y, Zhu L. Transforming growth factor-β and bone morphogenetic protein signaling pathways in pathological cardiac hypertrophy. Cell Cycle 2023; 22:2467-2484. [PMID: 38179789 PMCID: PMC10802212 DOI: 10.1080/15384101.2023.2293595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 01/06/2024] Open
Abstract
Pathological cardiac hypertrophy (referred to as cardiac hypertrophy) is a maladaptive response of the heart to a variety of pathological stimuli, and cardiac hypertrophy is an independent risk factor for heart failure and sudden death. Currently, the treatments for cardiac hypertrophy are limited to improving symptoms and have little effect. Elucidation of the developmental process of cardiac hypertrophy at the molecular level and the identification of new targets for the treatment of cardiac hypertrophy are crucial. In this review, we summarize the research on multiple active substances related to the pathogenesis of cardiac hypertrophy and the signaling pathways involved and focus on the role of transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) signaling in the development of cardiac hypertrophy and the identification of potential targets for molecular intervention. We aim to identify important signaling molecules with clinical value and hope to help promote the precise treatment of cardiac hypertrophy and thus improve patient outcomes.
Collapse
Affiliation(s)
- Jing Wen
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guixiang Liu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mingjie Liu
- Department of Lung Function, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huarui Wang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yunyan Wan
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhouhong Yao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Nannan Gao
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yuanyuan Sun
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ling Zhu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
7
|
Up-regulation of PKCα and δ during beating cardiomyocyte differentiation of P19CL6 cells with suppressed apoptotic cell populations. Mol Cell Toxicol 2023. [DOI: 10.1007/s13273-023-00338-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
8
|
Papanicolaou KN, Jung J, Ashok D, Zhang W, Modaressanavi A, Avila E, Foster DB, Zachara NE, O'Rourke B. Inhibiting O-GlcNAcylation impacts p38 and Erk1/2 signaling and perturbs cardiomyocyte hypertrophy. J Biol Chem 2023; 299:102907. [PMID: 36642184 PMCID: PMC9988579 DOI: 10.1016/j.jbc.2023.102907] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
The dynamic cycling of O-linked GlcNAc (O-GlcNAc) on and off Ser/Thr residues of intracellular proteins, termed O-GlcNAcylation, is mediated by the conserved enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase. O-GlcNAc cycling is important in homeostatic and stress responses, and its perturbation sensitizes the heart to ischemic and other injuries. Despite considerable progress, many molecular pathways impacted by O-GlcNAcylation in the heart remain unclear. The mitogen-activated protein kinase (MAPK) pathway is a central signaling cascade that coordinates developmental, physiological, and pathological responses in the heart. The developmental or adaptive arm of MAPK signaling is primarily mediated by Erk kinases, while the pathophysiologic arm is mediated by p38 and Jnk kinases. Here, we examine whether O-GlcNAcylation affects MAPK signaling in cardiac myocytes, focusing on Erk1/2 and p38 in basal and hypertrophic conditions induced by phenylephrine. Using metabolic labeling of glycans coupled with alkyne-azide "click" chemistry, we found that Erk1/2 and p38 are O-GlcNAcylated. Supporting the regulation of p38 by O-GlcNAcylation, the OGT inhibitor, OSMI-1, triggers the phosphorylation of p38, an event that involves the NOX2-Ask1-MKK3/6 signaling axis and also the noncanonical activator Tab1. Additionally, OGT inhibition blocks the phenylephrine-induced phosphorylation of Erk1/2. Consistent with perturbed MAPK signaling, OSMI-1-treated cardiomyocytes have a blunted hypertrophic response to phenylephrine, decreased expression of cTnT (key component of the contractile apparatus), and increased expression of maladaptive natriuretic factors Anp and Bnp. Collectively, these studies highlight new roles for O-GlcNAcylation in maintaining a balanced activity of Erk1/2 and p38 MAPKs during hypertrophic growth responses in cardiomyocytes.
Collapse
Affiliation(s)
- Kyriakos N Papanicolaou
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Jessica Jung
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Deepthi Ashok
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wenxi Zhang
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amir Modaressanavi
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eddie Avila
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - D Brian Foster
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Natasha E Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
9
|
Pun R, Kim MH, North BJ. Role of Connexin 43 phosphorylation on Serine-368 by PKC in cardiac function and disease. Front Cardiovasc Med 2023; 9:1080131. [PMID: 36712244 PMCID: PMC9877470 DOI: 10.3389/fcvm.2022.1080131] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Intercellular communication mediated by gap junction channels and hemichannels composed of Connexin 43 (Cx43) is vital for the propagation of electrical impulses through cardiomyocytes. The carboxyl terminal tail of Cx43 undergoes various post-translational modifications including phosphorylation of its Serine-368 (S368) residue. Protein Kinase C isozymes directly phosphorylate S368 to alter Cx43 function and stability through inducing conformational changes affecting channel permeability or promoting internalization and degradation to reduce intercellular communication between cardiomyocytes. Recent studies have implicated this PKC/Cx43-pS368 circuit in several cardiac-associated diseases. In this review, we describe the molecular and cellular basis of PKC-mediated Cx43 phosphorylation and discuss the implications of Cx43 S368 phosphorylation in the context of various cardiac diseases, such as cardiomyopathy, as well as the therapeutic potential of targeting this pathway.
Collapse
Affiliation(s)
- Renju Pun
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Michael H. Kim
- CHI Health Heart Institute, School of Medicine, Creighton University, Omaha, NE, United States
| | - Brian J. North
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States,*Correspondence: Brian J. North,
| |
Collapse
|
10
|
Muacevic A, Adler JR, Doutsini S, Adamidou F, Zafeiropoulos S, Koliastasis L, Manani C, Pliakos I, Papavramidis T. Effect of Parathyroidectomy on Left Ventricular Mass Index in Patients With Primary Hyperparathyroidism. Cureus 2023; 15:e33429. [PMID: 36751183 PMCID: PMC9899328 DOI: 10.7759/cureus.33429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Aim Primary hyperthyroidism (PHPT) is known to affect left ventricular structure and function and may contribute to increased cardiovascular morbidity and mortality. Whether parathyroidectomy (PTX) reverses left ventricular hypertrophy/remodeling among PHPT patients remains controversial. Method In this prospective, single-center study, we enrolled patients with the diagnosis of PHPT who were scheduled for PTX. Patients underwent a complete biochemical workup and an echocardiographic examination at baseline and a six-month follow-up. The primary objective was to compare the left ventricular mass index (LVMI) at baseline and six-month follow-up. Result Eighteen patients (15 female, three male, mean age 58.7 years) were enrolled. PTH and serum calcium returned to normal immediately post-PTX and remained normal at six months. LVMI at baseline was within normal limits and reduced further at the six-month follow-up. The left ventricular ejection fraction was in the normal range before the PTX and remained unchanged during follow-up. Conclusion Curative PTX reduced LVMI further within the normal range at six months in patients with asymptomatic hyperparathyroidism, providing evidence for benefit in an important non-traditional disease manifestation.
Collapse
|
11
|
Gao C, Gong J, Cao N, Wang Y, Steinberg SF. Lipid-independent activation of a muscle-specific PKCα splicing variant. Am J Physiol Heart Circ Physiol 2022; 323:H825-H832. [PMID: 36112502 PMCID: PMC9550568 DOI: 10.1152/ajpheart.00304.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/16/2022] [Accepted: 08/28/2022] [Indexed: 11/22/2022]
Abstract
Protein kinase C-α (PKCα) plays a major role in a diverse range of cellular processes. Studies to date have defined the regulatory controls and function of PKCα entirely based upon the previously annotated ubiquitously expressed prototypical isoform. From RNA-seq-based transcriptome analysis in murine heart, we identified a previously unannotated PKCα variant produced by alternative RNA splicing. This PKCα transcript variant, which we named PKCα-novel exon (PKCα-NE), contains an extra exon between exon 16 and exon 17, and is specifically detected in adult mouse cardiac and skeletal muscle, but not other tissues; it is also detected in human hearts. This transcript variant yields a PKCα isoform with additional 16 amino acids inserted in its COOH-terminal variable region. Although the canonical PKCα enzyme is a lipid-dependent kinase, in vitro kinase assays show that PKCα-NE displays a high level of basal lipid-independent catalytic activity. Our unbiased proteomic analysis identified a specific interaction between PKCα-NE and eukaryotic elongation factor-1α (eEF1A1). Studies in cardiomyocytes link PKCα-NE expression to an increase in eEF1A1 phosphorylation and elevated protein synthesis. In summary, we have identified a previously uncharacterized muscle-specific PKCα splicing variant, PKCα-NE, with distinct biochemical properties that plays a unique role in the control of the protein synthesis machinery in cardiomyocytes.NEW & NOTEWORTHY PKCα is an important signaling molecule extensively studied in many cellular processes. However, no isoforms have been reported for PKCα except one prototypic isoform. Alternative mRNA splicing of Prkca gene was detected for the first time in rodent and human cardiac tissue, which can produce a previously unknown PKCα-novel exon (NE) isoform. The biochemistry and molecular effects of PKCα-NE are markedly different from PKCα wild type, suggesting potential functional diversity of PKCα signaling in muscle.
Collapse
Affiliation(s)
- Chen Gao
- Department of Pharmacology and System Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Jianli Gong
- The Department of Pharmacology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Nancy Cao
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Yibin Wang
- Signature Research Program in Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, Singapore
| | - Susan F Steinberg
- The Department of Pharmacology, Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|
12
|
Thapa K, Khan H, Kanojia N, Singh TG, Kaur A, Kaur G. Therapeutic Insights on Ferroptosis in Parkinson's disease. Eur J Pharmacol 2022; 930:175133. [DOI: 10.1016/j.ejphar.2022.175133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/11/2022] [Accepted: 06/29/2022] [Indexed: 12/27/2022]
|
13
|
Wang H, Lin Y, Zhang R, Chen Y, Ji W, Li S, Wang L, Tan R, Yuan J. Programmed Exercise Attenuates Familial Hypertrophic Cardiomyopathy in Transgenic E22K Mice via Inhibition of PKC-α/NFAT Pathway. Front Cardiovasc Med 2022; 9:808163. [PMID: 35265680 PMCID: PMC8899095 DOI: 10.3389/fcvm.2022.808163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Familial hypertrophic cardiomyopathy (FHCM), an autosomal dominant disease, is caused by mutations in genes encoding cardiac sarcomeric proteins. E22K, a mutation in the myosin regulatory light chain sarcomere gene, is associated with the development of FHCM. However, the molecular mechanisms by which E22K mutation promotes septal hypertrophy are still elusive. The hypertrophic markers, including beta-myosin heavy chain, atrial natriuretic peptide and B-type natriuretic peptide, were upregulated, as detected by fluorescence quantitative PCR. The gene expression profiles were greatly altered in the left ventricle of E22K mutant mice. Among these genes, nuclear factor of activated T cells (NFAT) and protein kinase C-alpha (PKC-α) were upregulated, and their protein expression levels were also verified to be elevated. The fibrosis markers, such as phosphorylated Smad and transforming growth factor beta receptor, were also elevated in transgenic E22K mice. After receiving 6 weeks of procedural exercise training, the expression levels of PKC-α and NFAT were reversed in E22K mouse hearts. In addition, the expression levels of several fibrosis-related genes such as transforming growth factor beta receptor 1, Smad4, and alpha smooth muscle actin in E22K mouse hearts were also reversed. Genes that associated with cardiac remodeling such as myocyte enhancer factor 2C, extracellular matrix protein 2 and fibroblast growth factor 12 were reduced after exercising. Taken together, our results indicate that exercise can improve hypertrophy and fibrosis-related indices in transgenic E22K mice via PKC-α/NFAT pathway, which provide new insight into the prevention and treatment of familial hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Haiying Wang
- Department of Physiology, Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yuedong Lin
- Cardiac Emergency Department, Affiliated Hospital of Jining Medical University, Jining, China
| | - Ran Zhang
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Yafen Chen
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Wei Ji
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Shenwei Li
- Institute of Basic Medical College, Jining Medical University, Jining, China
| | - Li Wang
- School of Nursing, Medical College, Soochow University, Suzhou, China
- *Correspondence: Li Wang
| | - Rubin Tan
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, China
- Rubin Tan
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, China
- Jinxiang Yuan
| |
Collapse
|
14
|
Lin HJ, Mahendran R, Huang HY, Chiu PL, Chang YM, Day CH, Chen RJ, Padma VV, Liang-Yo Y, Kuo WW, Huang CY. Aqueous extract of Solanum nigrum attenuates Angiotensin-II induced cardiac hypertrophy and improves cardiac function by repressing protein kinase C-ζ to restore HSF2 deSUMOlyation and Mel-18-IGF-IIR signaling suppression. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114728. [PMID: 34634367 DOI: 10.1016/j.jep.2021.114728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Solanum nigrum, commonly known as Makoi or black shade has been traditionally used in Asian countries and other regions of world to treat liver disorders, diarrhoea, inflammatory conditions, chronic skin ailments (psoriasis and ringworm), fever, hydrophobia, painful periods, eye diseases, etc. It has been observed that S. nigrum contains substances, like steroidal saponins, total alkaloid, steroid alkaloid, and glycoprotein, which show anti-tumor activity. However; there is no scientific evidence of the efficacy of S. nigrum in the treatment of cardiac hypertrophy. AIM To investigate the ability of S. nigrum to attenuate Angiotensin II - induced cardiac hypertrophy and improve cardiac function through the suppression of protein kinase PKC-ζ and Mel-18-IGF-IIR signaling leading to the restoration of HSF2 desumolyation. MATERIALS AND METHODS Cardiomyoblast cells (H9c2) were challenged with 100 nM Angiotensin-II (AngII) for 24 h and were then treated with different concentration of S.nigrum or Calphostin C for 24 h. The hypertrophic effect in cardiomyoblast cells were determined by immunofluorescence staining and the modulations in hypertrophic protein marker along with Protein Kinase C-ζ, MEL18, HSF2, and Insulin like growth factor II (IGFIIR), markers were analyzed by western blotting. In vivo experiments were performed using 12 week old male Wistar Kyoto rats (WKY) and Spontaneously hypertensive rats (SHR) separated into five groups. [1]Control WKY, [2] WKY -100 mg/kg of S.nigrum treatment, [3] SHR, [4] SHR-100 mg/kg of S.nigrum treatment, [5] SHR-300 mg/kg of S.nigrum treatment. S. nigrum was administered intraperitoneally for 8 week time interval. RESULTS Western blotting results indicate that S. nigrum significantly attenuates AngII induced cardiac hypertrophy. Furthermore, actin staining confirmed the ability of S. nigrum to ameliorate AngII induced cardiac hypertrophy. Moreover, S. nigrum administration suppressed the hypertrophic signaling mediators like Protein Kinase C-ζ, Mel-18, and IGFIIR in a dose-dependent manner and HSF2 activation (restore deSUMOlyation) that leads to downregulation of IGF-IIR expression. Additionally in vivo experiments demonstrate the reduced heart sizes of S. nigrum treated SHRs rats when compared to control WKY rats. CONCLUSION Collectively, the data reveals the cardioprotective effect of S. nigrum inhibiting PKC-ζ with alleviated IGF IIR level in the heart that profoundly remits cardiac hypertrophy for hypertension-induced heart failure.
Collapse
Affiliation(s)
- Hung-Jen Lin
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ramasamy Mahendran
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Hsiang-Yen Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung City, 40402, Taiwan, ROC
| | - Ping-Ling Chiu
- Ept Douliu Chinese Medical Clinic, Douliu, Taiwan; 1PT Biotechnology Co., Ltd., Taichung, Taiwan
| | - Yung-Ming Chang
- 1PT Biotechnology Co., Ltd., Taichung, Taiwan; The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Cecilia Hsuan Day
- Department of Nursing, Mei Ho University, Pingguang Road, Pingtung, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Yang Liang-Yo
- Department of Physiology, School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan; Laboratory for Neural Repair, China Medical University Hospital, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichuang, 406, Taiwan; Ph.D. Program for Biotechnology Industry, China Medical University, Taichuang, 406, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan; Department of Biological Science and Technology, College of Life Sciences, China Medical University, Taichuang, 406, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, 970, Taiwan.
| |
Collapse
|
15
|
Bourque K, Hawey C, Jiang A, Mazarura GR, Hébert TE. Biosensor-based profiling to track cellular signalling in patient-derived models of dilated cardiomyopathy. Cell Signal 2022; 91:110239. [PMID: 34990783 DOI: 10.1016/j.cellsig.2021.110239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/06/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022]
Abstract
Dilated cardiomyopathies (DCM) represent a diverse group of cardiovascular diseases impacting the structure and function of the myocardium. To better treat these diseases, we need to understand the impact of such cardiomyopathies on critical signalling pathways that drive disease progression downstream of receptors we often target therapeutically. Our understanding of cellular signalling events has progressed substantially in the last few years, in large part due to the design, validation and use of biosensor-based approaches to studying such events in cells, tissues and in some cases, living animals. Another transformative development has been the use of human induced pluripotent stem cells (hiPSCs) to generate disease-relevant models from individual patients. We highlight the importance of going beyond monocellular cultures to incorporate the influence of paracrine signalling mediators. Finally, we discuss the recent coalition of these approaches in the context of DCM. We discuss recent work in generating patient-derived models of cardiomyopathies and the utility of using signalling biosensors to track disease progression and test potential therapeutic strategies that can be later used to inform treatment options in patients.
Collapse
Affiliation(s)
- Kyla Bourque
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Cara Hawey
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Alyson Jiang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Grace R Mazarura
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada.
| |
Collapse
|
16
|
The Potential of Hsp90 in Targeting Pathological Pathways in Cardiac Diseases. J Pers Med 2021; 11:jpm11121373. [PMID: 34945845 PMCID: PMC8709342 DOI: 10.3390/jpm11121373] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/26/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is a molecular chaperone that interacts with up to 10% of the proteome. The extensive involvement in protein folding and regulation of protein stability within cells makes Hsp90 an attractive therapeutic target to correct multiple dysfunctions. Many of the clients of Hsp90 are found in pathways known to be pathogenic in the heart, ranging from transforming growth factor β (TGF-β) and mitogen activated kinase (MAPK) signaling to tumor necrosis factor α (TNFα), Gs and Gq g-protein coupled receptor (GPCR) and calcium (Ca2+) signaling. These pathways can therefore be targeted through modulation of Hsp90 activity. The activity of Hsp90 can be targeted through small-molecule inhibition. Small-molecule inhibitors of Hsp90 have been found to be cardiotoxic in some cases however. In this regard, specific targeting of Hsp90 by modulation of post-translational modifications (PTMs) emerges as an attractive strategy. In this review, we aim to address how Hsp90 functions, where Hsp90 interacts within pathological pathways, and current knowledge of small molecules and PTMs known to modulate Hsp90 activity and their potential as therapeutics in cardiac diseases.
Collapse
|
17
|
Wang X, Ma J, Zhang S, Li Z, Hong Z, Jiang L, Duan W, Liu J. G Protein-Coupled Estrogen Receptor 30 Reduces Transverse Aortic Constriction-Induced Myocardial Fibrosis in Aged Female Mice by Inhibiting the ERK1/2 -MMP-9 Signaling Pathway. Front Pharmacol 2021; 12:731609. [PMID: 34803680 PMCID: PMC8603421 DOI: 10.3389/fphar.2021.731609] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
The incidence of cardiovascular diseases was significantly increased in postmenopausal women. The protection of estrogen in the cardiovascular system has been further reported for decades. Although menopausal hormone therapy has been used in many clinical trials, the debatable results indicate that the studies for elucidating the precise molecular mechanism are urgently required. G protein-coupled estrogen receptor 30 (GPR30) is a membrane receptor of estrogen and displays protective roles in diverse cardiovascular diseases. Previous studies have revealed that ERK1/2-mediated MMP-9 signaling was involved in ischemic heart diseases. However, the role of ERK1/2-mediated MMP-9 signaling in the protection of GPR30 against cardiac hypertrophy in aged female mice has not been investigated. Our present study demonstrated that GPR30 overexpression and its agonist G1 co-administration reduced transverse aortic constriction-induced myocardial fibrosis and preserved cardiac function in aged female mice. MMP-9 expression was markedly increased via ERK1/2 phosphorylation in transverse aortic constriction-injured myocardium of aged female mice. Further results showed that GPR30/G1 activation decreased MMP-9 expression via ERK1/2 inhibition, which further reduced TGF-β1 expression. Inhibition of the ERK1/2 signaling pathway by its inhibitor PD98059 suppressed the induction of the cardiomyocyte MMP-9 level caused by the GRP30 antagonist G15 and inhibited TGF-β1 expression in cardiac fibroblast in vitro. In summary, our results from in vivo and in vitro studies indicated that GPR30 activation inhibited myocardial fibrosis and preserved cardiac function via inhibiting ERK-mediated MMP-9 expression. Thus, the present study may provide the novel drug targets for prevention and treatment of cardiac pathological hypertrophy in postmenopausal women.
Collapse
Affiliation(s)
- Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuaishuai Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zilin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ziwei Hong
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liqing Jiang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
18
|
Nicolas HA, Hua K, Quigley H, Ivare J, Tesson F, Akimenko MA. A CRISPR/Cas9 zebrafish lamin A/C mutant model of muscular laminopathy. Dev Dyn 2021; 251:645-661. [PMID: 34599606 DOI: 10.1002/dvdy.427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/13/2021] [Accepted: 09/16/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Lamin A/C gene (LMNA) mutations frequently cause cardiac and/or skeletal muscle diseases called striated muscle laminopathies. We created a zebrafish muscular laminopathy model using CRISPR/Cas9 technology to target the zebrafish lmna gene. RESULTS Heterozygous and homozygous lmna mutants present skeletal muscle damage at 1 day post-fertilization (dpf), and mobility impairment at 4 to 7 dpf. Cardiac structure and function analyses between 1 and 7 dpf show mild and transient defects in the lmna mutants compared to wild type (WT). Quantitative RT-PCR analysis of genes implicated in striated muscle laminopathies show a decrease in jun and nfκb2 expression in 7 dpf homozygous lmna mutants compared to WT. Homozygous lmna mutants have a 1.26-fold protein increase in activated Erk 1/2, kinases associated with striated muscle laminopathies, compared to WT at 7 dpf. Activated Protein Kinase C alpha (Pkc α), a kinase that interacts with lamin A/C and Erk 1/2, is also upregulated in 7 dpf homozygous lmna mutants compared to WT. CONCLUSIONS This study presents an animal model of skeletal muscle laminopathy where heterozygous and homozygous lmna mutants exhibit prominent skeletal muscle abnormalities during the first week of development. Furthermore, this is the first animal model that potentially implicates Pkc α in muscular laminopathies.
Collapse
Affiliation(s)
- Hannah A Nicolas
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Khang Hua
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Hailey Quigley
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Joshua Ivare
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Frédérique Tesson
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Marie-Andrée Akimenko
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
19
|
Bai L, Kee HJ, Han X, Zhao T, Kee SJ, Jeong MH. Protocatechuic acid attenuates isoproterenol-induced cardiac hypertrophy via downregulation of ROCK1-Sp1-PKCγ axis. Sci Rep 2021; 11:17343. [PMID: 34462460 PMCID: PMC8405624 DOI: 10.1038/s41598-021-96761-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
Cardiac hypertrophy is an adaptive response of the myocardium to pressure overload or adrenergic agonists. Here, we investigated the protective effects and the regulatory mechanism of protocatechuic acid, a phenolic compound, using a mouse model of isoproterenol-induced cardiac hypertrophy. Our results demonstrated that protocatechuic acid treatment significantly downregulated the expression of cardiac hypertrophic markers (Nppa, Nppb, and Myh7), cardiomyocyte size, heart weight to body weight ratio, cross-sectional area, and thickness of left ventricular septum and posterior wall. This treatment also reduced the expression of isoproterenol-induced ROCK1, Sp1, and PKCγ both in vivo and in vitro. To investigate the mechanism, we performed knockdown and overexpression experiments. The knockdown of ROCK1, Sp1, or PKCγ decreased the isoproterenol-induced cell area and the expression of hypertrophic markers, while the overexpression of Sp1 or PKCγ increased the levels of hypertrophic markers. Protocatechuic acid treatment reversed these effects. Interestingly, the overexpression of Sp1 increased cell area and induced PKCγ expression. Furthermore, experiments using transcription inhibitor actinomycin D showed that ROCK1 and Sp1 suppression by protocatechuic acid was not regulated at the transcriptional level. Our results indicate that protocatechuic acid acts via the ROCK1/Sp1/PKCγ axis and therefore has promising therapeutic potential as a treatment for cardiac hypertrophy.
Collapse
Affiliation(s)
- Liyan Bai
- Heart Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 61469, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Hae Jin Kee
- Heart Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 61469, Republic of Korea.
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea.
| | - Xiongyi Han
- Heart Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 61469, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Tingwei Zhao
- Heart Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 61469, Republic of Korea
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University, Medical School and Hospital, Gwangju, 61469, Republic of Korea
| | - Myung Ho Jeong
- Heart Research Center, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju, 61469, Republic of Korea.
- Hypertension Heart Failure Research Center, Chonnam National University Hospital, Gwangju, 61469, Republic of Korea.
- Department of Cardiology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
| |
Collapse
|
20
|
Wang L, Liu L, Sun S, Xiao L, Jiang Q, Ding H. Effects of Parathyroid Hormone on Osteoporotic Fracture Healing in Mice via Non-Phospholipases C-Dependent Protein Kinase C Signaling Pathway. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objectives: This study was aimed to explore the effects of parathyroid hormone (PTH) on osteoporotic fracture healing in mice and the underlying mechanisms. Methods: Microarray analysis was conducted to analyze the gene expression level in MC3T3-E1 cells. Carboxyfluorescein
succinimidyl ester (CFSE) staining and flow cytometry was adopted to analyze the proliferation and apopto-sis of MC3T3-E1 cells. qRT-PCR was used to analyze the mRNA expression level. Fluorescence resonance energy transfer (FRET) assay was conducted to detect PKC activity. The bone mineral
density (BMD) and bone volume (BV)/total volume (TV) were determined via enzyme-linked immunosorbent assay (ELISA) and microscopic computed tomography (micro-CT). Results: ERK1/2 was abnormally expressed in MC3T3-E1 cells after GlylArg19hPTH (1-34) + KT5720 treatment. GlylArg19hPTH
(1-34)+ KT5720 treatment promoted cell proliferation, inhibited cell apoptosis, and upregulatedthe expression of osteogenesis-related genes (ALP, OPN, Runx2 and OPG) in MC3T3-E1 cells, which were due to the activation of the non-PLC-dependent PKC signaling pathway and can be blocked by PKC
inhibitor Go6983 or ERK1/2 inhibitor BVD-523. Moreover, the activity of PKC in MC3T3-E1 cells treated with GlylArg19hPTH (1-34) + KT5720 + Go6983 was alleviated by ERK1/2 inhibitor BVD-523. In vivo, specific activation of the non-PLC-dependent PKC signaling pathway increased the serum
levels of APL and OPG in mice with osteoporotic fracture, which were reversed by PKC inhibitor Go6983 and ERK1/2 inhibitor BVD-523. Moreover, PKC inhibitor Go6983 and ERK1/2 inhibitor BVD-523 suppressed the elevation of BV/TV and BMD induced by specific activation of the non-PKC-dependent
signaling pathway. Conclusions: Taken together, PTH stimulates osteoporotic fracture healing in mice through the non-PLC-dependent PKC signaling pathway in which ERK1/2 exerts a vital role.
Collapse
Affiliation(s)
- Lei Wang
- Department of Orthopaedics, The Zhenjiang First People’s Hospital, Dianli Road 8, Zhenjiang, 212001, Jiangsu Province, China
| | - Linjuan Liu
- Department of Stomatology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, 310000, China
| | - Sixin Sun
- Department of Orthopaedics, The Taixing People’s Hospital, ChangZheng Road 1, Taixing, 225400, Jiangsu Province, China
| | - Li Xiao
- Department of Orthopaedics, The Zhenjiang First People’s Hospital, Dianli Road 8, Zhenjiang, 212001, Jiangsu Province, China
| | - Qinyi Jiang
- Department of Orthopaedics, The Zhenjiang First People’s Hospital, Dianli Road 8, Zhenjiang, 212001, Jiangsu Province, China
| | - Hua Ding
- Department of Orthopaedics, The Zhenjiang First People’s Hospital, Dianli Road 8, Zhenjiang, 212001, Jiangsu Province, China
| |
Collapse
|
21
|
Kilian LS, Voran J, Frank D, Rangrez AY. RhoA: a dubious molecule in cardiac pathophysiology. J Biomed Sci 2021; 28:33. [PMID: 33906663 PMCID: PMC8080415 DOI: 10.1186/s12929-021-00730-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/23/2021] [Indexed: 02/08/2023] Open
Abstract
The Ras homolog gene family member A (RhoA) is the founding member of Rho GTPase superfamily originally studied in cancer cells where it was found to stimulate cell cycle progression and migration. RhoA acts as a master switch control of actin dynamics essential for maintaining cytoarchitecture of a cell. In the last two decades, however, RhoA has been coined and increasingly investigated as an essential molecule involved in signal transduction and regulation of gene transcription thereby affecting physiological functions such as cell division, survival, proliferation and migration. RhoA has been shown to play an important role in cardiac remodeling and cardiomyopathies; underlying mechanisms are however still poorly understood since the results derived from in vitro and in vivo experiments are still inconclusive. Interestingly its role in the development of cardiomyopathies or heart failure remains largely unclear due to anomalies in the current data available that indicate both cardioprotective and deleterious effects. In this review, we aimed to outline the molecular mechanisms of RhoA activation, to give an overview of its regulators, and the probable mechanisms of signal transduction leading to RhoA activation and induction of downstream effector pathways and corresponding cellular responses in cardiac (patho)physiology. Furthermore, we discuss the existing studies assessing the presented results and shedding light on the often-ambiguous data. Overall, we provide an update of the molecular, physiological and pathological functions of RhoA in the heart and its potential in cardiac therapeutics.
Collapse
Affiliation(s)
- Lucia Sophie Kilian
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany
| | - Jakob Voran
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany
| | - Derk Frank
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany. .,Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| |
Collapse
|
22
|
Tirronen A, Downes NL, Huusko J, Laakkonen JP, Tuomainen T, Tavi P, Hedman M, Ylä-Herttuala S. The Ablation of VEGFR-1 Signaling Promotes Pressure Overload-Induced Cardiac Dysfunction and Sudden Death. Biomolecules 2021; 11:452. [PMID: 33802976 PMCID: PMC8002705 DOI: 10.3390/biom11030452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/28/2022] Open
Abstract
Molecular mechanisms involved in cardiac remodelling are not fully understood. To study the role of vascular endothelial growth factor receptor 1 (VEGFR-1) signaling in left ventricular hypertrophy (LVH) and heart failure, we used a mouse model lacking the intracellular VEGFR-1 tyrosine kinase domain (VEGFR-1 TK-/-) and induced pressure overload with angiotensin II infusion. Using echocardiography (ECG) and immunohistochemistry, we evaluated pathological changes in the heart during pressure overload and measured the corresponding alterations in expression level and phosphorylation of interesting targets by deep RNA sequencing and Western blot, respectively. By day 6 of pressure overload, control mice developed significant LVH whereas VEGFR-1 TK-/- mice displayed a complete absence of LVH, which correlated with significantly increased mortality. At a later time point, the cardiac dysfunction led to increased ANP and BNP levels, atrial dilatation and prolongation of the QRSp duration as well as increased cardiomyocyte area. Immunohistochemical analyses showed no alterations in fibrosis or angiogenesis in VEGFR-1 TK-/- mice. Mechanistically, the ablation of VEGFR-1 signaling led to significantly upregulated mTOR and downregulated PKCα phosphorylation in the myocardium. Our results show that VEGFR-1 signaling regulates the early cardiac remodelling during the compensatory phase of pressure overload and increases the risk of sudden death.
Collapse
Affiliation(s)
- Annakaisa Tirronen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (A.T.); (N.L.D.); (J.H.); (J.P.L.); (T.T.); (P.T.)
| | - Nicholas L. Downes
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (A.T.); (N.L.D.); (J.H.); (J.P.L.); (T.T.); (P.T.)
| | - Jenni Huusko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (A.T.); (N.L.D.); (J.H.); (J.P.L.); (T.T.); (P.T.)
| | - Johanna P. Laakkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (A.T.); (N.L.D.); (J.H.); (J.P.L.); (T.T.); (P.T.)
| | - Tomi Tuomainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (A.T.); (N.L.D.); (J.H.); (J.P.L.); (T.T.); (P.T.)
| | - Pasi Tavi
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (A.T.); (N.L.D.); (J.H.); (J.P.L.); (T.T.); (P.T.)
| | - Marja Hedman
- Institute of Clinical Medicine, University of Eastern Finland, 70029 Kuopio, Finland;
- Heart Center and Cardiothoracic Surgery, Kuopio University Hospital, 70029 Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland; (A.T.); (N.L.D.); (J.H.); (J.P.L.); (T.T.); (P.T.)
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, 70029 Kuopio, Finland
| |
Collapse
|
23
|
Pohjolainen L, Easton J, Solanki R, Ruskoaho H, Talman V. Pharmacological Protein Kinase C Modulators Reveal a Pro-hypertrophic Role for Novel Protein Kinase C Isoforms in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Front Pharmacol 2021; 11:553852. [PMID: 33584253 PMCID: PMC7874215 DOI: 10.3389/fphar.2020.553852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Hypertrophy of cardiomyocytes (CMs) is initially a compensatory mechanism to cardiac overload, but when prolonged, it leads to maladaptive myocardial remodeling, impairing cardiac function and causing heart failure. A key signaling molecule involved in cardiac hypertrophy is protein kinase C (PKC). However, the role of different PKC isoforms in mediating the hypertrophic response remains controversial. Both classical (cPKC) and novel (nPKC) isoforms have been suggested to play a critical role in rodents, whereas the role of PKC in hypertrophy of human CMs remains to be determined. Here, we aimed to investigate the effects of two different types of PKC activators, the isophthalate derivative HMI-1b11 and bryostatin-1, on CM hypertrophy and to elucidate the role of cPKCs and nPKCs in endothelin-1 (ET-1)-induced hypertrophy in vitro. Methods and Results: We used neonatal rat ventricular myocytes (NRVMs) and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to study the effects of pharmacological PKC modulators and ET-1. We used quantitative reverse transcription PCR to quantify hypertrophic gene expression and high-content analysis (HCA) to investigate CM morphology. In both cell types, ET-1, PKC activation (bryostatin-1 and HMI-1b11) and inhibition of cPKCs (Gö6976) increased hypertrophic gene expression. In NRVMs, these treatments also induced a hypertrophic phenotype as measured by increased recognition, intensity and area of α-actinin and F-actin fibers. Inhibition of all PKC isoforms with Gö6983 inhibited PKC agonist-induced hypertrophy, but could not fully block ET-1-induced hypertrophy. The mitogen-activated kinase kinase 1/2 inhibitor U0126 inhibited PKC agonist-induced hypertrophy fully and ET-1-induced hypertrophy partially. While ET-1 induced a clear increase in the percentage of pro-B-type natriuretic peptide-positive hiPSC-CMs, none of the phenotypic parameters used in HCA directly correlated with gene expression changes or with phenotypic changes observed in NRVMs. Conclusion: This work shows similar hypertrophic responses to PKC modulators in NRVMs and hiPSC-CMs. Pharmacological PKC activation induces CM hypertrophy via activation of novel PKC isoforms. This pro-hypertrophic effect of PKC activators should be considered when developing PKC-targeted compounds for e.g. cancer or Alzheimer’s disease. Furthermore, this study provides further evidence on distinct PKC-independent mechanisms of ET-1-induced hypertrophy both in NRVMs and hiPSC-CMs.
Collapse
Affiliation(s)
- Lotta Pohjolainen
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Julia Easton
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Reesha Solanki
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Heikki Ruskoaho
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Virpi Talman
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
24
|
Nicolas HA, Bertrand AT, Labib S, Mohamed-Uvaize M, Bolongo PM, Wu WY, Bilińska ZT, Bonne G, Akimenko MA, Tesson F. Protein Kinase C Alpha Cellular Distribution, Activity, and Proximity with Lamin A/C in Striated Muscle Laminopathies. Cells 2020; 9:cells9112388. [PMID: 33142761 PMCID: PMC7693451 DOI: 10.3390/cells9112388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/19/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022] Open
Abstract
Striated muscle laminopathies are cardiac and skeletal muscle conditions caused by mutations in the lamin A/C gene (LMNA). LMNA codes for the A-type lamins, which are nuclear intermediate filaments that maintain the nuclear structure and nuclear processes such as gene expression. Protein kinase C alpha (PKC-α) interacts with lamin A/C and with several lamin A/C partners involved in striated muscle laminopathies. To determine PKC-α’s involvement in muscular laminopathies, PKC-α’s localization, activation, and interactions with the A-type lamins were examined in various cell types expressing pathogenic lamin A/C mutations. The results showed aberrant nuclear PKC-α cellular distribution in mutant cells compared to WT. PKC-α activation (phos-PKC-α) was decreased or unchanged in the studied cells expressing LMNA mutations, and the activation of its downstream targets, ERK 1/2, paralleled PKC-α activation alteration. Furthermore, the phos-PKC-α-lamin A/C proximity was altered. Overall, the data showed that PKC-α localization, activation, and proximity with lamin A/C were affected by certain pathogenic LMNA mutations, suggesting PKC-α involvement in striated muscle laminopathies.
Collapse
Affiliation(s)
- Hannah A. Nicolas
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (H.A.N.); (W.Y.W.); (M.-A.A.)
| | - Anne T. Bertrand
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, UMRS 974, G.H. Pitié-Salpêtrière, 75013 Paris, France; (A.T.B.); (G.B.)
| | - Sarah Labib
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.L.); (M.M.-U.); (P.M.B.)
| | - Musfira Mohamed-Uvaize
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.L.); (M.M.-U.); (P.M.B.)
| | - Pierrette M. Bolongo
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.L.); (M.M.-U.); (P.M.B.)
| | - Wen Yu Wu
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (H.A.N.); (W.Y.W.); (M.-A.A.)
| | - Zofia T. Bilińska
- Unit for Screening Studies in Inherited Cardiovascular Diseases, National Institute of Cardiology, 04-628 Warsaw, Poland;
| | - Gisèle Bonne
- Sorbonne Université, Inserm, Centre de Recherche en Myologie, UMRS 974, G.H. Pitié-Salpêtrière, 75013 Paris, France; (A.T.B.); (G.B.)
| | - Marie-Andrée Akimenko
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (H.A.N.); (W.Y.W.); (M.-A.A.)
| | - Frédérique Tesson
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (S.L.); (M.M.-U.); (P.M.B.)
- Correspondence: ; Tel.: +1-613-562-5800 (ext. 7370)
| |
Collapse
|
25
|
Wu G, Wang Z, Shan P, Huang S, Lin S, Huang W, Huang Z. Suppression of Netrin-1 attenuates angiotension II-induced cardiac remodeling through the PKC/MAPK signaling pathway. Biomed Pharmacother 2020; 130:110495. [PMID: 32688140 DOI: 10.1016/j.biopha.2020.110495] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Myocardial remodeling caused by angiotensin II (Ang II) is essential for the pathological process of heart failure. Netrin-1, which is an axonal guidance cue, has been shown to be involved in the inflammatory response, tumorigenesis, and angiogenesis in non-neuronal tissues. However, the role of Netrin-1 in cardiac remodeling has not been fully elucidated. METHODS The rat cardiomyocyte cell line H9c2 and primary neonatal rat cardiomyocytes were treated with Ang II. Cells were transfected with siRNA to silence Netrin-1 expression. Real-time polymerase chain reaction and Western blot analysis were used to detect the markers for fibrosis, apoptosis, and hypertrophy in cardiomyocytes. An Annexin V-EGFP/PI cell apoptosis detection kit was used to measure the level of apoptosis caused by angiotensin II. RESULTS We found that Netrin-1 expression was upregulated in the H9c2 cells and the neonatal rat cardiomyocytes stimulated by Ang II. The increased Netrin-1 expression was decreased by valsartan to block AT1R. Importantly, the application of Netrin-1 siRNA significantly alleviated the degrees of myocardial hypertrophy, fibrosis (reflected by Myhc, collagen I, and TGF-β) and apoptosis (reflected by the level of Caspase 3, Bax, and Bcl-2) induced by Ang II. In addition, the silencing of Netrin-1 substantially decreased the phosphorylation of PKCα, JNK, and P38. We treated H9c2 cells with LY317615, SP600125, and SB203580, inhibitors of PKCα, JNK, and P38, respectively, thereby resulting in a substantial decrease in hypertrophy, fibrosis, and apoptosis. CONCLUSIONS Ang II produces cardiac hypertrophy, fibrosis, and apoptosis through the upregulation of Netrin-1 and the activation of the AT1R/PKCα/MAPK (JNK, P38) pathway. Suppression of Netrin-1 can relieve Ang II-induced cardiac remodeling via inhibition of the PKCα/MAPK (JNK and P38) signaling pathway. Thus, Netrin-1 may be a novel therapeutic target for Ang II-mediated cardiac remodeling.
Collapse
Affiliation(s)
- Gaojun Wu
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China.
| | - Zhengxian Wang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China.
| | - Peiren Shan
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China.
| | - Shanjun Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China.
| | - Shuang Lin
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China.
| | - Weijian Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China.
| | - Zhouqing Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, WenZhou, ZheJiang, China.
| |
Collapse
|
26
|
Neshati Z, Schalij MJ, de Vries AAF. The proarrhythmic features of pathological cardiac hypertrophy in neonatal rat ventricular cardiomyocyte cultures. J Appl Physiol (1985) 2020; 128:545-553. [PMID: 31999526 DOI: 10.1152/japplphysiol.00420.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Different factors may trigger arrhythmias in diseased hearts, including fibrosis, cardiomyocyte hypertrophy, hypoxia, and inflammation. This makes it difficult to establish the relative contribution of each of them to the occurrence of arrhythmias. Accordingly, in this study, we used an in vitro model of pathological cardiac hypertrophy (PCH) to investigate its proarrhythmic features and the underlying mechanisms independent of fibrosis or other PCH-related processes. Neonatal rat ventricular cardiomyocyte (nr-vCMC) monolayers were treated with phorbol 12-myristate 13-acetate (PMA) to create an in vitro model of PCH. The electrophysiological properties of PMA-treated and control monolayers were analyzed by optical mapping at day 9 of culture. PMA treatment led to a significant increase in cell size and total protein content. It also caused a reduction in sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 level (32%) and an increase in natriuretic peptide A (42%) and α1-skeletal muscle actin (34%) levels, indicating that the hypertrophic response induced by PMA was, indeed, pathological in nature. PMA-treated monolayers showed increases in action potential duration (APD) and APD dispersion, and a decrease in conduction velocity (CV; APD30 of 306 ± 39 vs. 148 ± 18 ms, APD30 dispersion of 85 ± 19 vs. 22 ± 7 and CV of 10 ± 4 vs. 21 ± 2 cm/s in controls). Upon local 1-Hz stimulation, 53.6% of the PMA-treated cultures showed focal tachyarrhythmias based on triggered activity (n = 82), while the control group showed 4.3% tachyarrhythmias (n = 70). PMA-treated nr-vCMC cultures may, thus, represent a well-controllable in vitro model for testing new therapeutic interventions targeting specific aspects of hypertrophy-associated arrhythmias.NEW & NOTEWORTHY Phorbol 12-myristate 13-acetate (PMA) treatment of neonatal rat ventricular cardiomyocytes (nr-vCMCs) led to induction of many significant features of pathological cardiac hypertrophy (PCH), including action potential duration prolongation and dispersion, which provided enough time and depolarizing force for formation of early afterdepolarization (EAD)-induced focal tachyarrhythmias. PMA-treated nr-vCMCs represent a well-controllable in vitro model, which mostly resembles to moderate left ventricular hypertrophy (LVH) rather than severe LVH, in which generation of a reentry is the putative mechanism of its arrhythmias.
Collapse
Affiliation(s)
- Zeinab Neshati
- Zeinab Neshati, Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin J Schalij
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, Leiden, The Netherlands
| | - Antoine A F de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Heart Lung Center Leiden, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
27
|
Yu Y, Sun J, Wang R, Liu J, Wang P, Wang C. Curcumin Management of Myocardial Fibrosis and its Mechanisms of Action: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1675-1710. [PMID: 31786946 DOI: 10.1142/s0192415x19500861] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myocardial fibrosis is implicated as a leading risk factor for heart failure, arrhythmia, and sudden death after cardiac injury, as the excessive interstitial extracellular matrix impedes heart contraction and electrical conduction. Complicated mechanisms involving oxidative stress, pro-inflammatory cytokines, chemokine families, NLRP3 inflammasomes, growth factors, and non-coding RNAs participate in cardiac fibrogenesis and make it difficult to designate specific and effective therapies. Oriental herbs have been popular for thousands of years in the health care of Asian residents, due to their multi-targeted, multi-faceted approaches and their multi-functional effects in fighting difficult and complicated diseases, including cardiovascular disorders such as myocardial fibrosis. Curcumin, a natural polyphenol and yellow pigment obtained from the spice turmeric, was found to have strong anti-oxidant and anti-inflammatory properties. Increasing evidence has shown that curcumin can be used to prevent and treat myocardial fibrosis, when the myocardium suffers pathological pro-fibrotic changes in vivo and in vitro. The present review focuses on recent studies elucidating the mechanisms of curcumin in treating different pathologic conditions, including ischemia, hypoxia/reoxygenation, pressure or volume overload, and hyperglycemia or high-fat-induced cardiac fibrosis. Novel analogs such as C66, B2BrBC, Y20, and J17 have been designed to maximize the therapeutic potentials of curcumin. These optimized curcumin analogs with improved bioavailability and pharmacokinetic profiles need to be clinically verified before curcumin could be recommended for the treatment of myocardial fibrosis.
Collapse
Affiliation(s)
- Yonghui Yu
- Department of Traditional Chinese Medicine, China-Japan Friendship Hospital, Beijing 100029, P. R. China
| | - Jinghui Sun
- Graduate School of China Academy of Chinese Medical Science, Beijing 100700, P. R. China
| | - Ru Wang
- Graduate School of China Academy of Chinese Medical Science, Beijing 100700, P. R. China
| | - Jiangang Liu
- Center for Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing 100091, P. R. China
| | - Peili Wang
- Center for Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing 100091, P. R. China
| | - Chenglong Wang
- Center for Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing 100091, P. R. China
| |
Collapse
|
28
|
Ronzier E, Parks XX, Qudsi H, Lopes CM. Statin-specific inhibition of Rab-GTPase regulates cPKC-mediated IKs internalization. Sci Rep 2019; 9:17747. [PMID: 31780674 PMCID: PMC6882895 DOI: 10.1038/s41598-019-53700-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
Statins are prescribed for prevention and treatment of coronary artery disease. Statins have different cholesterol lowering abilities, with rosuvastatin and atorvastatin being the most effective, while statins like simvastatin and fluvastatin having lower effectiveness. Statins, in addition to their cholesterol lowering effects, can prevent isoprenylation of Rab-GTPase proteins, a protein family important for the regulation of membrane-bound protein trafficking. Here we show that endosomal localization of Rab-GTPases (Rab5, Rab7 and Rab11) was inhibited in a statin-specific manner, with stronger effects by fluvastatin, followed by simvastatin and atorvastatin, and with a limited effect by rosuvastatin. Fluvastatin inhibition of Rab5 has been shown to mediate cPKC-dependent trafficking regulation of the cardiac delayed rectifier KCNQ1/KCNE1 channels. We observed statin-specific inhibition of channel regulation consistent with statin-specific Rab-GTPase inhibition both in heterologous systems and cardiomyocytes. Our results uncover a non-cholesterol-reducing statin-specific effect of statins. Because Rab-GTPases are important regulators of membrane trafficking they may underlie statin specific pleiotropic effects. Therefore, statin-specificity may allow better treatment tailoring.
Collapse
Affiliation(s)
- Elsa Ronzier
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Xiaorong Xu Parks
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Haani Qudsi
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Coeli M Lopes
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
29
|
PKCβII specifically regulates KCNQ1/KCNE1 channel membrane localization. J Mol Cell Cardiol 2019; 138:283-290. [PMID: 31785237 DOI: 10.1016/j.yjmcc.2019.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/06/2019] [Accepted: 10/09/2019] [Indexed: 01/15/2023]
Abstract
The slow voltage-gated potassium channel (IKs) is composed of the KCNQ1 and KCNE1 subunits and is one of the major repolarizing currents in the heart. Activation of protein kinase C (PKC) has been linked to cardiac arrhythmias. Although PKC has been shown to be a regulator of a number of cardiac channels, including IKs, little is known about regulation of the channel by specific isoforms of PKC. Here we studied the role of different PKC isoforms on IKs channel membrane localization and function. Our studies focused on PKC isoforms that translocate to the plasma membrane in response to Gq-coupled receptor (GqPCR) stimulation: PKCα, PKCβI, PKCβII and PKCε. Prolonged stimulation of GqPCRs has been shown to decrease IKs membrane expression, but the specific role of each PKC isoform is unclear. Here we show that stimulation of calcium-dependent isoforms of PKC (cPKC) but not PKCε mimic receptor activation. In addition, we show that general PKCβ (LY-333531) and PKCβII inhibitors but not PKCα or PKCβI inhibitors blocked the effect of cPKC on the KCNQ1/KCNE1 channel. PKCβ inhibitors also blocked GqPCR-mediated decrease in channel membrane expression in cardiomyocytes. Direct activation of PKCβII using constitutively active PKCβII construct mimicked agonist-induced decrease in membrane expression and channel function, while dominant negative PKCβII showed no effect. This suggests that the KCNQ1/KCNE1 channel was not regulated by basal levels of PKCβII activity. Our results indicate that PKCβII is a specific regulator of IKs membrane localization. PKCβII expression and activation are strongly increased in many disease states, including heart disease and diabetes. Thus, our results suggest that PKCβII inhibition may protect against acquired QT prolongation associated with heart disease.
Collapse
|
30
|
Luzum JA, Ting C, Peterson EL, Gui H, Shugg T, Williams LK, Li L, Sadee W, Wang D, Lanfear DE. Association of Regulatory Genetic Variants for Protein Kinase Cα with Mortality and Drug Efficacy in Patients with Heart Failure. Cardiovasc Drugs Ther 2019; 33:693-700. [PMID: 31728800 DOI: 10.1007/s10557-019-06909-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE Protein kinase C alpha (gene: PRKCA) is a key regulator of cardiac contractility. Two genetic variants have recently been discovered to regulate PRKCA expression in failing human heart tissue (rs9909004 [T → C] and rs9303504 [C → G]). The association of those variants with clinical outcomes in patients with heart failure (HF), and their interaction with HF drug efficacy, is unknown. METHODS Patients with HF in a prospective registry starting in 2007 were genotyped by whole genome array (n = 951). The primary outcome was all-cause mortality. Cox proportional hazards models adjusted for established clinical risk factors and genomic ancestry tested the independent association of rs9909004 or rs9303504 and the variant interactions with cornerstone HF pharmacotherapies (beta-blockers or angiotensin-converting enzyme inhibitors/angiotensin receptor blockers) in additive genetic models. RESULTS The minor allele of rs9909004, but not of rs9303504, was independently associated with a decreased risk for all-cause mortality: adjusted HR = 0.81 (95% CI = 0.67-0.98), p = 0.032. The variants did not significantly interact with mortality benefit associated with cornerstone HF pharmacotherapies (p > 0.1 for all). CONCLUSIONS A recently discovered cardiac-specific regulatory variant for PRKCA (rs9909004) was independently associated with a decreased risk for all-cause mortality in patients with HF. The variant did not interact with mortality benefit associated with cornerstone HF pharmacotherapies.
Collapse
Affiliation(s)
- Jasmine A Luzum
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA. .,Center for Individualized and Genomic Medicine Research (CIGMA), Henry Ford Health System, Detroit, MI, USA.
| | - Christopher Ting
- Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Edward L Peterson
- Department of Public Health Sciences, Henry Ford Health System, Detroit, MI, USA
| | - Hongsheng Gui
- Center for Individualized and Genomic Medicine Research (CIGMA), Henry Ford Health System, Detroit, MI, USA
| | - Tyler Shugg
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - L Keoki Williams
- Center for Individualized and Genomic Medicine Research (CIGMA), Henry Ford Health System, Detroit, MI, USA
| | - Liang Li
- Department of Medical Genetics, Southern Medical University, Guangzhou, China
| | - Wolfgang Sadee
- Center for Pharmacogenomics and Department of Cancer Biology and Genetics, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Danxin Wang
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - David E Lanfear
- Center for Individualized and Genomic Medicine Research (CIGMA), Henry Ford Health System, Detroit, MI, USA.,Heart and Vascular Institute, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
31
|
Ju S, Park S, Lim L, Choi DH, Song H. Low density lipoprotein receptor-related protein 1 regulates cardiac hypertrophy induced by pressure overload. Int J Cardiol 2019; 299:235-242. [PMID: 31350035 DOI: 10.1016/j.ijcard.2019.07.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/05/2019] [Accepted: 07/15/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Cardiac hypertrophy is associated with functional changes in cardiomyocytes, which often results in heart failure. The low-density lipoprotein receptor-related protein 1 (LRP1) is a large multifunctional endocytic receptor involved in many physiological and pathological processes. However, its function in the development of cardiac hypertrophy remains largely unclear. METHODS Adenoviral constructs were used for either overexpression or silencing of LRP1 in both in vitro and in vivo experiments. Cardiac function was measured using the Millar catheter. RESULTS LRP1 expression was upregulated in both transverse aortic constriction (TAC)-induced hypertrophic myocardium and catecholamine (phenylephrine (PE) and norepinephrine (NE))- and angiotensin II (AngII)-induced hypertrophic cardiomyocytes. In addition, cell surface area, protein/DNA ratio, and the mRNA levels of hypertrophic markers were significantly increased in LRP1-overexpressing cardiomyocytes without catecholamine stimulation. Conversely, LRP1 inhibition by LRP1-specific siRNA or a specific ligand-binding antagonist (RAP) significantly rescued hypertrophic effects in PE, NE, or AngII-induced cardiomyocytes. LRP1 overexpression induced PKCα, then activated ERK, resulting in cardiac hypertrophy with the downregulation of SERCA2a and calcium accumulation, which was successfully restored in both LRP1-silenced cardiomyocytes and TAC-induced hearts. CONCLUSIONS LRP1 regulates cardiac hypertrophy via the PKCα-ERK dependent signaling pathway resulting in the alteration of intracellular calcium levels, demonstrating that LRP1 might be a potential therapeutic target for cardiac hypertrophy.
Collapse
Affiliation(s)
- Sujin Ju
- Department of Medical of Sciences, Chosun University Graduate School, Gwangju 61452, Republic of Korea
| | - Seulki Park
- Department of Medical of Sciences, Chosun University Graduate School, Gwangju 61452, Republic of Korea
| | - Leejin Lim
- Department of Medical of Sciences, Chosun University Graduate School, Gwangju 61452, Republic of Korea; Cancer Mutation Research Center, Chosun University, Gwangju 61452, Republic of Korea
| | - Dong-Hyun Choi
- Department of Internal Medicine, Chosun University School of Medicine, Gwangju 61452, Republic of Korea
| | - Heesang Song
- Department of Medical of Sciences, Chosun University Graduate School, Gwangju 61452, Republic of Korea; Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwangju 61452, Republic of Korea.
| |
Collapse
|
32
|
Brain signalling systems: A target for treating type I diabetes mellitus. Brain Res Bull 2019; 152:191-201. [PMID: 31325597 DOI: 10.1016/j.brainresbull.2019.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/08/2019] [Accepted: 07/15/2019] [Indexed: 01/26/2023]
Abstract
From early to later stages of Type I Diabetes Mellitus (TIDM), signalling molecules including brain indolamines and protein kinases are altered significantly, and that has been implicated in the Metabolic Disorders (MD) as well as impairment of retinal, renal, neuronal and cardiovascular systems. Considerable attention has been focused to the effects of diabetes on these signalling systems. However, the exact pathophysiological mechanisms of these signals are not completely understood in TIDM, but it is likely that hyperglycemia, acidosis, and insulin resistance play significant roles. Insulin maintains normal glycemic levels and it acts by binding to its receptor, so that it activates the receptor's tyrosine kinase activity, resulting in phosphorylation of several substrates. Those substrates provide binding/interaction sites for signalling molecules, including serine/threonine kinases and indolamines. For more than two decades, our research has been focused on the mechanisms of protein kinases, CaM Kinase and Serotonin transporter mediated alterations of indolamines in TIDM. In this review, we have also discussed how discrete areas of brain respond to insulin or some of the pharmacological agents that triggers or restores these signalling molecules, and it may be useful for the treatment of specific region wise changes/disorders of diabetic brain.
Collapse
|
33
|
Abstract
AIM Protein kinase Cα (PKCα) is a critical regulator of multiple cell signaling pathways including gene transcription, posttranslation modifications and activation/inhibition of many signaling kinases. In regards to the control of blood pressure, PKCα causes increased vascular smooth muscle contractility, while reducing cardiac contractility. In addition, PKCα has been shown to modulate nephron ion transport. However, the role of PKCα in modulating mean arterial pressure (MAP) has not been investigated. In this study, we used a whole animal PKCα knock out (PKC KO) to test the hypothesis that global PKCα deficiency would reduce MAP, by a reduction in vascular contractility. METHODS Radiotelemetry measurements of ambulatory blood pressure (day/night) were obtained for 18 h/day during both normal chow and high-salt (4%) diet feedings. PKCα mice had a reduced MAP, as compared with control, which was not normalized with high-salt diet (14 days). Metabolic cage studies were performed to determine urinary sodium excretion. RESULTS PKC KO mice had a significantly lower diastolic, systolic and MAP as compared with control. No significant differences in urinary sodium excretion were observed between the PKC KO and control mice, whether fed normal chow or high-salt diet. Western blot analysis showed a compensatory increase in renal sodium chloride cotransporter expression. Both aorta and mesenteric vessels were removed for vascular reactivity studies. Aorta and mesenteric arteries from PKC KO mice had a reduced receptor-independent relaxation response, as compared with vessels from control. Vessels from PKC KO mice exhibited a decrease in maximal contraction, compared with controls. CONCLUSION Together, these data suggest that global deletion of PKCα results in reduced MAP due to decreased vascular contractility.
Collapse
|
34
|
Yin-Yang 1 transcription factor modulates ST2 expression during adverse cardiac remodeling post-myocardial infarction. J Mol Cell Cardiol 2019; 130:216-233. [PMID: 30998979 DOI: 10.1016/j.yjmcc.2019.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 03/19/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND The cardioprotective effects of metformin remain poorly defined. Interleukin (IL)-33/ST2L signaling is a novel cardioprotective pathway, which is antagonized by the soluble isoform sST2. No data exist about the regulation of ST2 expression. This study aimed to evaluate the pathophysiological implication of Yin-Yang 1 (Yy1) transcription factor in cardiac remodeling and the expression of the soluble ST2 isoform. METHODS AND RESULTS Myocardial infarction (MI) was induced in Wistar rats randomly receiving metformin or saline solution by permanent ligation of the left anterior coronary artery. In addition, a model of cardiomyocyte "biochemical strain" was used. Metformin administration improved post-MI cardiac remodeling, an effect that was associated with increased IL-33 and reduced sST2 levels in the myocardium. The anti-remodeling effects of metformin were also associated with a decrease in the transcription factor Yy1 intranuclear level and lower levels of phosphorylated HDAC4 within the cytoplasmic space. These effects were also observed in a cardiomyocyte biochemical strain model, where Yy1 silencing or HDAC4 inhibition blocked sST2 production in cardiomyocytes. Metformin blocked the HDAC4 phosphorylation induced by MI, preventing its export from the nucleus to the cytosol. The presence of dephosphorylated HDAC4 in the nucleus acted as a co-repressor of Yy1, repressing sST2 expression. CONCLUSION The transcription factor Yy1 regulates sST2 expression, and repression of Yy1 by metformin results in lower levels of sST2 that are associated with favorable myocardial remodeling. The manipulation of YY1 or its co-repressor HDAC4 emerge as new targets to modulate ST2/IL33 signaling and prevent adverse cardiac remodeling.
Collapse
|
35
|
Luo M, Chen PP, Yang L, Wang P, Lu YL, Shi FG, Gao Y, Xu SF, Gong QH, Xu RX, Deng J. Sodium ferulate inhibits myocardial hypertrophy induced by abdominal coarctation in rats: Involvement of cardiac PKC and MAPK signaling pathways. Biomed Pharmacother 2019; 112:108735. [PMID: 30970525 DOI: 10.1016/j.biopha.2019.108735] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/11/2019] [Accepted: 02/23/2019] [Indexed: 11/25/2022] Open
Abstract
Sodium ferulate (SF) is the sodium salt of ferulic acid which is an active ingredient of Radix Angelica Sinensis and Ligusticum chuanxiong hort. Here, we investigated SF inhibition in a rat model of myocardial hypertrophy induced by coarctation of the abdominal aorta. Following coarctation, rats were given SF (20, 40, and 80 mg/kg/day) for 25 consecutive days. We characterized myocardial hypertrophy using myocardial hypertrophic parameters, histopathology, and gene expression of atrial natriuretic factor (ANF) -a gene related to myocardial hypertrophy. We detected the levels of angiotensin II (Ang II) and endothelin-1 (ET-1), protein kinase C beta (PKC-β), Raf-1, extracellular regulated protein kinase 1/2 (ERK1/2), and mitogen-activated protein kinase phosphatase-1 (MKP-1) in myocardium. Notably, coarctation of the abdominal aorta increases myocardial hypertrophic parameters, cardiac myocyte diameter, the concentration of Ang II and ET-1 in myocardium, and gene expression of ANF. SF significantly ameliorates myocardial hypertrophy caused by coarctation of the abdominal aorta; reduces concentrations of Ang II and ET-1; suppresses the overexpression of ANF, PKC-β, Raf-1, and ERK1/2; and increases the expression of MKP-1. These results indicate that SF alleviates myocardial hypertrophy induced by coarctation of the abdominal aorta, and these protective effects could be related to the inhibition of PKC and mitogen-activated protein kinase (MAPK) signaling pathways.
Collapse
Affiliation(s)
- Min Luo
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China; The First People's Hospital of Zunyi, Zunyi, Guizhou, 563006, China
| | - Pan-Pan Chen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Lu Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Peng Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Yan-Liu Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Fu-Guo Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Yang Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Shang-Fu Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Qi-Hai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Rui-Xia Xu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Jiang Deng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| |
Collapse
|
36
|
Lieu M, Koch WJ. GRK2 and GRK5 as therapeutic targets and their role in maladaptive and pathological cardiac hypertrophy. Expert Opin Ther Targets 2019; 23:201-214. [PMID: 30701991 DOI: 10.1080/14728222.2019.1575363] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION One in every four deaths in the United States is attributed to cardiovascular disease, hence the development and employment of novel and effective therapeutics are necessary to improve the quality of life and survival of affected patient. Pathological hypertrophy is a maladaptive response by the heart to relieve wall stress that could result from cardiovascular disease. Maladaptive hypertrophy can lead to further disease progression and complications such as heart failure; hence, efforts to target hypertrophy to prevent and treat further morbidity and mortality are necessary. Areas covered: This review summarizes the compelling literature that describes the mechanistic role of GRK2 and GRK5 in maladaptive cardiac hypertrophy; it examines the approaches to inhibit these kinases in hypertrophic animal models and furthermore, it assesses the potential of GRK2 and GRK5 as therapeutic targets for hypertrophy. Expert opinion: GRK2 and GRK5 are novel therapeutic targets for pathological hypertrophy and may have added benefits of ameliorating morbidity and mortality. Despite the lesser researched role of GRK2 in cardiac hypertrophy, it may be the advantageous strategy for treating cardiac hypertrophy because of its role in other maladaptive pathways. Anti-GRK2 therapy optimization and the discovery and development of specific GRK2 and GRK5 small-molecule inhibitors is necessary for the eventual application of successful, effective therapeutics.
Collapse
Affiliation(s)
- Melissa Lieu
- a Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA
| | - Walter J Koch
- a Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine , Temple University , Philadelphia , PA , USA
| |
Collapse
|
37
|
Zhong X, Qian X, Chen G, Song X. The role of galectin-3 in heart failure and cardiovascular disease. Clin Exp Pharmacol Physiol 2019; 46:197-203. [PMID: 30372548 DOI: 10.1111/1440-1681.13048] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Xiao Zhong
- Cardiovascular Center; The Fourth Affiliated Hospital; Harbin Medical University; Harbin China
| | - Xiaoqian Qian
- Department of Nephrology; Xin Hua Hospital Affiliated; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Guangping Chen
- Department of Physiology; Emory University School of Medicine; Atlanta Georgia
| | - Xiang Song
- Cardiovascular Center; The Fourth Affiliated Hospital; Harbin Medical University; Harbin China
| |
Collapse
|
38
|
Inhibition of TRPC1 prevents cardiac hypertrophy via NF-κB signaling pathway in human pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol 2019; 126:143-154. [DOI: 10.1016/j.yjmcc.2018.10.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/08/2018] [Accepted: 10/22/2018] [Indexed: 11/19/2022]
|
39
|
Wang X, Du W, Li M, Zhang Y, Li H, Sun K, Liu J, Dong P, Meng X, Yi W, Yang L, Zhao R, Hu J. The β subunit of soluble guanylyl cyclase GUCY1B3 exerts cardioprotective effects against ischemic injury via the PKCε/Akt pathway. J Cell Biochem 2018; 120:3071-3081. [PMID: 30485489 DOI: 10.1002/jcb.27479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 07/18/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Xiaomin Wang
- Translational Medicine Center, Baotou Central Hospital Baotou China
| | - Wei Du
- Department of Cardiology Baotou Central Hospital Baotou China
| | - Meng Li
- Department of Cardiology Baotou Central Hospital Baotou China
| | - Yong Zhang
- Department of Cardiology Baotou Central Hospital Baotou China
| | - Hongyu Li
- Department of Cardiology Baotou Central Hospital Baotou China
| | - Kai Sun
- Translational Medicine Center, Baotou Central Hospital Baotou China
| | - Jianping Liu
- Department of Cardiology Baotou Central Hospital Baotou China
| | - Pengxia Dong
- Department of Cardiology Baotou Central Hospital Baotou China
| | - Xianda Meng
- Department of Cardiology Dalian (Municipal) Friendship Hospital Dalian China
| | - Wensi Yi
- Department of Institution of Interventional and Vascular Surgery Tongji University Shanghai China
| | - Liu Yang
- Department of Institution of Interventional and Vascular Surgery Tongji University Shanghai China
| | - Ruiping Zhao
- Translational Medicine Center, Baotou Central Hospital Baotou China
- Department of Cardiology Baotou Central Hospital Baotou China
| | - Jiang Hu
- Translational Medicine Center, Baotou Central Hospital Baotou China
| |
Collapse
|
40
|
Yu C, Wang W, Jin X. Hirudin Protects Ang II-Induced Myocardial Fibroblasts Fibrosis by Inhibiting the Extracellular Signal-Regulated Kinase1/2 (ERK1/2) Pathway. Med Sci Monit 2018; 24:6264-6272. [PMID: 30194718 PMCID: PMC6140377 DOI: 10.12659/msm.909044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Myocardial fibrosis is closely related to all types of cardiovascular diseases. Hirudin is widely used in the prevention and treatment of cardiovascular diseases and cancers. In this study, we examined the potential role(s) and mechanism of hirudin in angiotensin II (Ang II)-induced myocardial fibrosis. MATERIAL AND METHODS The viability of myocardial fibroblasts, and reactive oxygen species (ROS) rates were measured respectively using cell counting kit-8 (CCK-8) and flow cytometry. Malondialdehyde (MDA) content, the activities of lactate dehydrogenase (LDH), and superoxide dismutase (SOD) were detected by the respective kits. The mRNA and protein levels of fibrosis-related factors were separately assessed by qRT-PCR and western blot. RESULTS Our data revealed that hirudin suppressed the viability of myocardial fibroblasts, and that it relieved the proliferation induced by Ang II in a dose-dependent manner. We also found that hirudin reduced ROS production, LDH activity, and MDA content; however, it enhanced SOD activity. Moreover, while hirudin significantly downregulated the levels of matrix metalloproteinase-2 (MMP-2), MMP-9, fibronectin (FN), transforming growth factor beta 1 (TGF-β1), collagen-I (COL-I), and COL-III, it upregulated the expression level of tissue inhibitor of metalloproteinases-2 (TIMP-2). Furthermore, phosphorylated extracellular signal-regulated kinase1/2 (p-ERK1/2) was decreased by hirudin, compared to the Ang-II group. CONCLUSIONS Hirudin depressed Ang II-induced myocardial fibroblasts via inhibiting oxidative stress, regulating fibrosis-related factors, and repressing the ERK1/2 pathway.
Collapse
Affiliation(s)
- Chunxia Yu
- Department of Cardiology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China (mainland)
| | - Weimin Wang
- Department of Electrocardiogram, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China (mainland)
| | - Xin Jin
- Department of Cardiology, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China (mainland)
| |
Collapse
|
41
|
Abstract
Heart failure (HF) is a physiological state in which cardiac output is insufficient to meet the needs of the body. It is a clinical syndrome characterized by impaired ability of the left ventricle to either fill or eject blood efficiently. HF is a disease of multiple aetiologies leading to progressive cardiac dysfunction and it is the leading cause of deaths in both developed and developing countries. HF is responsible for about 73,000 deaths in the UK each year. In the USA, HF affects 5.8 million people and 550,000 new cases are diagnosed annually. Cardiac remodelling (CD), which plays an important role in pathogenesis of HF, is viewed as stress response to an index event such as myocardial ischaemia or imposition of mechanical load leading to a series of structural and functional changes in the viable myocardium. Protein kinase C (PKC) isozymes are a family of serine/threonine kinases. PKC is a central enzyme in the regulation of growth, hypertrophy, and mediators of signal transduction pathways. In response to circulating hormones, activation of PKC triggers a multitude of intracellular events influencing multiple physiological processes in the heart, including heart rate, contraction, and relaxation. Recent research implicates PKC activation in the pathophysiology of a number of cardiovascular disease states. Few reports are available that examine PKC in normal and diseased human hearts. This review describes the structure, functions, and distribution of PKCs in the healthy and diseased heart with emphasis on the human heart and, also importantly, their regulation in heart failure.
Collapse
Affiliation(s)
- Raphael M Singh
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston, England, PR1 2HE, UK.
- Faculty of Medicine and Health Sciences, University of Guyana, Turkeyen, Georgetown, Guyana.
| | - Emanuel Cummings
- Faculty of Medicine and Health Sciences, University of Guyana, Turkeyen, Georgetown, Guyana
| | - Constantinos Pantos
- Department of Pharmacology, School of Medicine, University of Athens, Athens, Greece
| | - Jaipaul Singh
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston, England, PR1 2HE, UK
| |
Collapse
|
42
|
Jefferies JL. Targeting protein kinase C: A novel paradigm for heart failure therapy. PROGRESS IN PEDIATRIC CARDIOLOGY 2018. [DOI: 10.1016/j.ppedcard.2018.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
43
|
Gergs U, Rothkirch D, Hofmann B, Treede H, Robaye B, Simm A, Müller CE, Neumann J. Mechanism underlying the contractile activity of UTP in the mammalian heart. Eur J Pharmacol 2018; 830:47-58. [PMID: 29673908 DOI: 10.1016/j.ejphar.2018.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 12/19/2022]
Abstract
We previously reported that uridine 5'-triphosphate (UTP), a pyrimidine nucleoside triphosphate produced a concentration- and time-dependent increase in the contraction force in isolated right atrial preparations from patients undergoing cardiac bypass surgery due to angina pectoris. The stimulation of the force of contraction was sustained rather than transient. In the present study, we tried to elucidate the underlying receptor and signal transduction for this effect of UTP. Therefore, we measured the effect of UTP on force of contraction, phosphorylation of p38 and ERK1/2, in human atrial preparations, atrial preparations from genetically modified mice, cardiomyocytes from adult mice and cardiomyocytes from neonatal rats. UTP exerted a positive inotropic effect in isolated electrically driven left atrial preparations from wild-type (WT) mice and P2Y2-, P2Y4- and P2Y6-receptor knockout mice. Therefore, we concluded that these P2Y receptors did not mediate the inotropic effects of UTP in atrial preparations from mice. However, UTP (like ATP) increased the phosphorylation states of p38 and ERK1/2 in neonatal rat cardiomyocytes, adult mouse cardiomyocytes and human atrial tissue in vitro. U0126, a MEK 1/2- signal cascade inhibitor, attenuated this phosphorylation and the positive inotropic effects of UTP in murine and human atrial preparations. We suggest that presently unknown receptors mediate the positive inotropic effect of UTP in murine and human atria. We hypothesize that UTP stimulates inotropy via p38 or ERK1/2 phosphorylation. We speculate that UTP may be a valuable target in the development of new drugs aimed at treating human systolic heart failure.
Collapse
Affiliation(s)
- Ulrich Gergs
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany
| | - Daniel Rothkirch
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany
| | - Britt Hofmann
- Cardiac Surgery, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany
| | - Hendrik Treede
- Cardiac Surgery, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany
| | - Bernard Robaye
- Institute of Interdisciplinary Research, IRIBHM, Université Libre de Bruxelles, Gosselies, Belgium
| | - Andreas Simm
- Cardiac Surgery, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn (PSB), University of Bonn, Germany
| | - Joachim Neumann
- Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, 06097 Halle (Saale), Germany.
| |
Collapse
|
44
|
Olgar Y, Ozdemir S, Turan B. Induction of endoplasmic reticulum stress and changes in expression levels of Zn 2+-transporters in hypertrophic rat heart. Mol Cell Biochem 2018; 440:209-219. [PMID: 28849306 DOI: 10.1007/s11010-017-3168-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/16/2017] [Indexed: 12/15/2022]
Abstract
Clinical and experimental studies have shown an association between intracellular free Zn2+ ([Zn2+]i)-dyshomeostasis and cardiac dysfunction besides [Ca2+]i-dyshomeostasis. Since [Zn2+]i-homeostasis is regulated through Zn2+-transporters depending on their subcellular distributions, one can hypothesize that any imbalance in Zn2+-homeostasis via alteration in Zn2+-transporters may be associated with the induction of ER stress and apoptosis in hypertrophic heart. We used a transverse aortic constriction (TAC) model to induce hypertrophy in young male rat heart. We confirmed the development of hypertrophy with a high ratio of heart to body weight and cardiomyocyte capacitance. The expression levels of ER stress markers GRP78, CHOP/Gadd153, and calnexin are significantly high in TAC-group in comparison to those of controls (SHAM-group). Additionally, we detected high expression levels of apoptotic status marker proteins such as the serine kinase GSK-3β, Bax-to-Bcl-2 ratio, and PUMA in TAC-group in comparison to SHAM-group. The ratios of phospho-Akt to Akt and phospho-NFκB to the NFκB are significantly higher in TAC-group than in SHAM-group. Furthermore, we observed markedly increased phospho-PKCα and PKCα levels in TAC-group. We, also for the first time, determined significantly increased ZIP7, ZIP14, and ZnT8 expressions along with decreased ZIP8 and ZnT7 levels in the heart tissue from TAC-group in comparison to SHAM-group. Furthermore, a roughly calculated total expression level of ZIPs responsible for Zn2+-influx into the cytosol (increased about twofold) can be also responsible for the markedly increased [Zn2+]i detected in hypertrophic cardiomyocytes. Taking into consideration the role of increased [Zn2+]i via decreased ER-[Zn2+] in the induction of ER stress in cardiomyocytes, our present data suggest that differential changes in the expression levels of Zn2+-transporters can underlie mechanical dysfunction, in part due to the induction of ER stress and apoptosis in hypertrophic heart via increased [Zn2+]i- besides [Ca2+]i-dyshomeostasis.
Collapse
Affiliation(s)
- Yusuf Olgar
- Ankara University Faculty of Medicine, Ankara, Turkey
| | - Semir Ozdemir
- Department of Biophysics, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Belma Turan
- Ankara University Faculty of Medicine, Ankara, Turkey.
| |
Collapse
|
45
|
Cardiomyocytes Sense Matrix Rigidity through a Combination of Muscle and Non-muscle Myosin Contractions. Dev Cell 2018; 44:326-336.e3. [PMID: 29396114 PMCID: PMC5807060 DOI: 10.1016/j.devcel.2017.12.024] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/09/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022]
Abstract
Mechanical properties are cues for many biological processes in health or disease. In the heart, changes to the extracellular matrix composition and cross-linking result in stiffening of the cellular microenvironment during development. Moreover, myocardial infarction and cardiomyopathies lead to fibrosis and a stiffer environment, affecting cardiomyocyte behavior. Here, we identify that single cardiomyocyte adhesions sense simultaneous (fast oscillating) cardiac and (slow) non-muscle myosin contractions. Together, these lead to oscillating tension on the mechanosensitive adaptor protein talin on substrates with a stiffness of healthy adult heart tissue, compared with no tension on embryonic heart stiffness and continuous stretching on fibrotic stiffness. Moreover, we show that activation of PKC leads to the induction of cardiomyocyte hypertrophy in a stiffness-dependent way, through activation of non-muscle myosin. Finally, PKC and non-muscle myosin are upregulated at the costameres in heart disease, indicating aberrant mechanosensing as a contributing factor to long-term remodeling and heart failure. Talin in cardiomyocytes is unstretched, cyclically stretched, or continuously stretched Talin stretching depends on stiffness, myofibrillar tension, and non-myofibrillar tension Non-myofibrillar contractility requires PKC, Src, FHOD1, and non-muscle myosin PKC and non-muscle myosin activity are enhanced in cardiac disease
Collapse
|
46
|
Olgar Y, Durak A, Tuncay E, Bitirim CV, Ozcinar E, Inan MB, Tokcaer-Keskin Z, Akcali KC, Akar AR, Turan B. Increased free Zn 2+ correlates induction of sarco(endo)plasmic reticulum stress via altered expression levels of Zn 2+ -transporters in heart failure. J Cell Mol Med 2018; 22:1944-1956. [PMID: 29333637 PMCID: PMC5824399 DOI: 10.1111/jcmm.13480] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/29/2017] [Indexed: 12/14/2022] Open
Abstract
Zn2+ -homoeostasis including free Zn2+ ([Zn2+ ]i ) is regulated through Zn2+ -transporters and their comprehensive understanding may be important due to their contributions to cardiac dysfunction. Herein, we aimed to examine a possible role of Zn2+ -transporters in the development of heart failure (HF) via induction of ER stress. We first showed localizations of ZIP8, ZIP14 and ZnT8 to both sarcolemma and S(E)R in ventricular cardiomyocytes (H9c2 cells) using confocal together with calculated Pearson's coefficients. The expressions of ZIP14 and ZnT8 were significantly increased with decreased ZIP8 level in HF. Moreover, [Zn2+ ]i was significantly high in doxorubicin-treated H9c2 cells compared to their controls. We found elevated levels of ER stress markers, GRP78 and CHOP/Gadd153, confirming the existence of ER stress. Furthermore, we measured markedly increased total PKC and PKCα expression and PKCα-phosphorylation in HF. A PKC inhibition induced significant decrease in expressions of these ER stress markers compared to controls. Interestingly, direct increase in [Zn2+ ]i using zinc-ionophore induced significant increase in these markers. On the other hand, when we induced ER stress directly with tunicamycin, we could not observe any effect on expression levels of these Zn2+ transporters. Additionally, increased [Zn2+ ]i could induce marked activation of PKCα. Moreover, we observed marked decrease in [Zn2+ ]i under PKC inhibition in H9c2 cells. Overall, our present data suggest possible role of Zn2+ transporters on an intersection pathway with increased [Zn2+ ]i and PKCα activation and induction of HF, most probably via development of ER stress. Therefore, our present data provide novel information how a well-controlled [Zn2+ ]i via Zn2+ transporters and PKCα can be important therapeutic approach in prevention/treatment of HF.
Collapse
Affiliation(s)
- Yusuf Olgar
- Department of Biophysics, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Aysegul Durak
- Department of Biophysics, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Erkan Tuncay
- Department of Biophysics, Ankara University Faculty of Medicine, Ankara, Turkey
| | | | - Evren Ozcinar
- Department of Cardiovascular Surgery, Heart Center, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Mustafa Bahadir Inan
- Department of Cardiovascular Surgery, Heart Center, Ankara University Faculty of Medicine, Ankara, Turkey
| | | | - Kamil Can Akcali
- Department of Biophysics, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Ahmet Ruchan Akar
- Department of Cardiovascular Surgery, Heart Center, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Ankara University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
47
|
Feng CC, Pandey S, Lin CY, Shen CY, Chang RL, Chang TT, Chen RJ, Viswanadha VP, Lin YM, Huang CY. Cardiac apoptosis induced under high glucose condition involves activation of IGF2R signaling in H9c2 cardiomyoblasts and streptozotocin-induced diabetic rat hearts. Biomed Pharmacother 2018; 97:880-885. [DOI: 10.1016/j.biopha.2017.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/29/2017] [Accepted: 11/03/2017] [Indexed: 11/30/2022] Open
|
48
|
Protein Kinase C Inhibition With Ruboxistaurin Increases Contractility and Reduces Heart Size in a Swine Model of Heart Failure With Reduced Ejection Fraction. JACC Basic Transl Sci 2017; 2:669-683. [PMID: 30062182 PMCID: PMC6058945 DOI: 10.1016/j.jacbts.2017.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/10/2017] [Accepted: 06/20/2017] [Indexed: 01/15/2023]
Abstract
Inotropic support is often required to stabilize the hemodynamics of patients with acute decompensated heart failure; while efficacious, it has a history of leading to lethal arrhythmias and/or exacerbating contractile and energetic insufficiencies. Novel therapeutics that can improve contractility independent of beta-adrenergic and protein kinase A-regulated signaling, should be therapeutically beneficial. This study demonstrates that acute protein kinase C-α/β inhibition, with ruboxistaurin at 3 months' post-myocardial infarction, significantly increases contractility and reduces the end-diastolic/end-systolic volumes, documenting beneficial remodeling. These data suggest that ruboxistaurin represents a potential novel therapeutic for heart failure patients, as a moderate inotrope or therapeutic, which leads to beneficial ventricular remodeling.
Collapse
Key Words
- ADHF, acute decompensated heart failure
- DIG, digitalis
- DOB, dobutamine
- ECG, electrocardiogram
- EDPVR, end-diastolic pressure-volume relationship
- EDV, end-diastolic volume
- ESPVR, end-systolic pressure-volume relationship
- ESV, end-systolic volume
- Ees, elastance end-systole
- HF, heart failure
- HFrEF, heart failure with reduced ejection fraction
- IR, ischemia–reperfusion
- LAD, left anterior descending coronary artery
- LV, left ventricle/ventricular
- LVEDV, left ventricular end-diastolic volume
- LVEF, left ventricular ejection fraction
- LVVPed10, left ventricular end-diastolic volume at a pressure of 10 mm Hg
- LVVPes80, left ventricular end- systolic volume at a pressure of 80 mm Hg
- MI, myocardial infarction
- PKA, protein kinase A
- PKC, protein kinase C
- PKCα/β inhibitor
- PLN, phospholamban
- PRSW, pre-load recruitable stroke work
- RBX, ruboxistaurin
- acute myocardial infarction
- heart failure with reduced ejection fraction
- invasive hemodynamics
- positive inotropy
Collapse
|
49
|
Protein kinase C mechanisms that contribute to cardiac remodelling. Clin Sci (Lond) 2017; 130:1499-510. [PMID: 27433023 DOI: 10.1042/cs20160036] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/18/2016] [Indexed: 12/12/2022]
Abstract
Protein phosphorylation is a highly-regulated and reversible process that is precisely controlled by the actions of protein kinases and protein phosphatases. Factors that tip the balance of protein phosphorylation lead to changes in a wide range of cellular responses, including cell proliferation, differentiation and survival. The protein kinase C (PKC) family of serine/threonine kinases sits at nodal points in many signal transduction pathways; PKC enzymes have been the focus of considerable attention since they contribute to both normal physiological responses as well as maladaptive pathological responses that drive a wide range of clinical disorders. This review provides a background on the mechanisms that regulate individual PKC isoenzymes followed by a discussion of recent insights into their role in the pathogenesis of diseases such as cancer. We then provide an overview on the role of individual PKC isoenzymes in the regulation of cardiac contractility and pathophysiological growth responses, with a focus on the PKC-dependent mechanisms that regulate pump function and/or contribute to the pathogenesis of heart failure.
Collapse
|
50
|
Archer CR, Robinson EL, Drawnel FM, Roderick HL. Endothelin-1 promotes hypertrophic remodelling of cardiac myocytes by activating sustained signalling and transcription downstream of endothelin type A receptors. Cell Signal 2017; 36:240-254. [PMID: 28412414 PMCID: PMC5486433 DOI: 10.1016/j.cellsig.2017.04.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/21/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023]
Abstract
G-protein coupled receptor (GPCR) mediated activation of the MAPK signalling cascade is a key pathway in the induction of hypertrophic remodelling of the heart – a response to pathological cues including hypertension and myocardial infarction. While levels of pro-hypertrophic hormone agonists of GPCRs increase during periods of greater workload to enhance cardiac output, hypertrophy does not necessarily result. Here we investigated the relationship between the duration of exposure to the pro-hypertrophic GPCR agonist endothelin-1 (ET-1) and the induction of hypertrophic remodelling in neonatal rat ventricular myocytes (NRVM) and in the adult rat heart in vivo. Notably, a 15 min pulse of ET-1 was sufficient to induce markers of hypertrophy that were present when measured at 24 h in vivo and 48 h in vitro. The persistence of ET-1 action was insensitive to ET type A receptor (ETA receptor) antagonism with BQ123. The extended effects of ET-1 were dependent upon sustained MAPK signalling and involved persistent transcription. Inhibitors of endocytosis however conferred sensitivity upon the hypertrophic response to BQ123, suggesting that endocytosis of ETA receptors following ligand binding preserves their active state by protection against antagonist. Contrastingly, α1 adrenergic-induced hypertrophic responses required the continued presence of agonist and were sensitive to antagonist. These studies shed new light on strategies to pharmacologically intervene in the action of different pro-hypertrophic mediators. Acute ET-1 exposure elicits a long-lasting cardiac myocyte hypertrophic response. ET-1 effects depend on persistent MAPK signalling and active transcription. ET-1 elicited hypertrophy is insensitive to subsequent ETA receptor antagonism. Endocytosis inhibition potentiates ET-1-induction of hypertrophy markers. Endocytosis inhibition sensitises effects of ET-1 to ETA receptor antagonist.
Collapse
Affiliation(s)
| | - Emma L Robinson
- Laboratory of Experimental Cardiology, Dept. of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg, Herestraat 49, B-3000, Leuven, Belgium
| | - Faye M Drawnel
- The Babraham Institute, Babraham, Cambridge, CB22 3AT, UK
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Dept. of Cardiovascular Sciences, KU Leuven, Campus Gasthuisberg, Herestraat 49, B-3000, Leuven, Belgium.
| |
Collapse
|