1
|
Strandberg H, Hagströmer CJ, Werin B, Wendler M, Johanson U, Törnroth-Horsefield S. Structural Basis for the Interaction between the Ezrin FERM-Domain and Human Aquaporins. Int J Mol Sci 2024; 25:7672. [PMID: 39062914 PMCID: PMC11277499 DOI: 10.3390/ijms25147672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The Ezrin/Radixin/Moesin (ERM) family of proteins act as cross-linkers between the plasma membrane and the actin cytoskeleton. This mechanism plays an essential role in processes related to membrane remodeling and organization, such as cell polarization, morphogenesis and adhesion, as well as in membrane protein trafficking and signaling pathways. For several human aquaporin (AQP) isoforms, an interaction between the ezrin band Four-point-one, Ezrin, Radixin, Moesin (FERM)-domain and the AQP C-terminus has been demonstrated, and this is believed to be important for AQP localization in the plasma membrane. Here, we investigate the structural basis for the interaction between ezrin and two human AQPs: AQP2 and AQP5. Using microscale thermophoresis, we show that full-length AQP2 and AQP5 as well as peptides corresponding to their C-termini interact with the ezrin FERM-domain with affinities in the low micromolar range. Modelling of the AQP2 and AQP5 FERM complexes using ColabFold reveals a common mode of binding in which the proximal and distal parts of the AQP C-termini bind simultaneously to distinct binding sites of FERM. While the interaction at each site closely resembles other FERM-complexes, the concurrent interaction with both sites has only been observed in the complex between moesin and its C-terminus which causes auto-inhibition. The proposed interaction between AQP2/AQP5 and FERM thus represents a novel binding mode for extrinsic ERM-interacting partners.
Collapse
Affiliation(s)
| | | | | | | | | | - Susanna Törnroth-Horsefield
- Department of Biochemistry and Structural Biology, Lund University, 221 00 Lund, Sweden; (H.S.); (C.J.H.); (B.W.); (M.W.); (U.J.)
| |
Collapse
|
2
|
Cacho-Navas C, López-Pujante C, Reglero-Real N, Colás-Algora N, Cuervo A, Conesa JJ, Barroso S, de Rivas G, Ciordia S, Paradela A, D'Agostino G, Manzo C, Feito J, Andrés G, Molina-Jiménez F, Majano P, Correas I, Carazo JM, Nourshargh S, Huch M, Millán J. ICAM-1 nanoclusters regulate hepatic epithelial cell polarity by leukocyte adhesion-independent control of apical actomyosin. eLife 2024; 12:RP89261. [PMID: 38597186 PMCID: PMC11006420 DOI: 10.7554/elife.89261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Epithelial intercellular adhesion molecule (ICAM)-1 is apically polarized, interacts with, and guides leukocytes across epithelial barriers. Polarized hepatic epithelia organize their apical membrane domain into bile canaliculi and ducts, which are not accessible to circulating immune cells but that nevertheless confine most of ICAM-1. Here, by analyzing ICAM-1_KO human hepatic cells, liver organoids from ICAM-1_KO mice and rescue-of-function experiments, we show that ICAM-1 regulates epithelial apicobasal polarity in a leukocyte adhesion-independent manner. ICAM-1 signals to an actomyosin network at the base of canalicular microvilli, thereby controlling the dynamics and size of bile canalicular-like structures. We identified the scaffolding protein EBP50/NHERF1/SLC9A3R1, which connects membrane proteins with the underlying actin cytoskeleton, in the proximity interactome of ICAM-1. EBP50 and ICAM-1 form nano-scale domains that overlap in microvilli, from which ICAM-1 regulates EBP50 nano-organization. Indeed, EBP50 expression is required for ICAM-1-mediated control of BC morphogenesis and actomyosin. Our findings indicate that ICAM-1 regulates the dynamics of epithelial apical membrane domains beyond its role as a heterotypic cell-cell adhesion molecule and reveal potential therapeutic strategies for preserving epithelial architecture during inflammatory stress.
Collapse
Affiliation(s)
| | | | - Natalia Reglero-Real
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of LondonLondonUnited Kingdom
| | | | - Ana Cuervo
- Centro Nacional de Biotecnologia (CSIC)MadridSpain
| | | | - Susana Barroso
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAMMadridSpain
| | - Gema de Rivas
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAMMadridSpain
| | | | | | | | - Carlo Manzo
- Facultat de Ciències, Tecnologia i Enginyeries, Universitat de Vic – Universitat Central de Catalunya (UVic-UCC)VicSpain
| | - Jorge Feito
- Servicio de Anatomía Patológica, Hospital Universitario de SalamancaSalamancaSpain
| | - Germán Andrés
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAMMadridSpain
| | - Francisca Molina-Jiménez
- Molecular Biology Unit, Hospital Universitario de la PrincesaMadridSpain
- Instituto de Investigación Sanitaria Hospital Universitario de La Princesa (IIS-Princesa)MadridSpain
| | - Pedro Majano
- Molecular Biology Unit, Hospital Universitario de la PrincesaMadridSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)MadridSpain
- Department of Cellular Biology, Universidad Complutense de MadridMadridSpain
| | - Isabel Correas
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAMMadridSpain
| | | | - Sussan Nourshargh
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of LondonLondonUnited Kingdom
| | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Jaime Millán
- Centro de Biologia Molecular Severo Ochoa, CSIC-UAMMadridSpain
| |
Collapse
|
3
|
Ghosh R, Roy L, Mukherjee D, Sarker S, Mondal J, Pan N, Hasan MN, Ghosh S, Chattopadhyay A, Adhikary A, Bhattacharyya M, Mallick AK, Biswas R, Das R, Pal SK. Structurally Dynamic Monocyte-Liposome Hybrid Vesicles as an Anticancer Drug Delivery Vehicle: A Crucial Correlation of Microscopic Elasticity and Ultrafast Dynamics. J Phys Chem Lett 2024; 15:3078-3088. [PMID: 38467015 DOI: 10.1021/acs.jpclett.3c03192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
A biomimetic cell-based carrier system based on monocyte membranes and liposomes has been designed to create a hybrid "Monocyte-LP" which inherits the surface antigens of the monocytes along with the drug encapsulation property of the liposome. Förster resonance energy transfer (FRET) and polarization gated anisotropy measurements show the stiffness of the vesicles obtained from monocyte membranes (Mons), phosphatidylcholine membranes (LP), and Monocyte-LP to follow an increasing order of Mons > Monocyte-LP > LP. The dynamics of interface bound water molecules plays a key role in the elasticity of the vesicles, which in turn imparts higher delivery efficacy to the hybrid Monocyte-LP for a model anticancer drug doxorubicin than the other two vesicles, indicating a critical balance between flexibility and rigidity for an efficient cellular uptake. The present work provides insight on the influence of elasticity of delivery vehicles for enhanced drug delivery.
Collapse
Affiliation(s)
- Ria Ghosh
- Department of Biochemistry, University of Calcutta 35 Ballygunge Circular Road, Ballygunge, Kolkata 700019, India
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| | - Lopamudra Roy
- Department of Applied Optics and Photonics, University of Calcutta, Block-JD, Sector-III, Saltlake, Kolkata 700106, India
| | - Dipanjan Mukherjee
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| | - Sushmita Sarker
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, Salt Lake, Kolkata 700106, India
| | - Jayanta Mondal
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| | - Nivedita Pan
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| | - Md Nur Hasan
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| | - Subhajit Ghosh
- Department of Life Science & Biotechnology, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata, West Bengal 700032, India
| | - Arpita Chattopadhyay
- Department of Basic science and Humanities, Techno International New Town Block, DG 1/1, Action Area 1, New Town, Rajarhat, Kolkata 700156, India
| | - Arghya Adhikary
- Department of Life Science & Biotechnology, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata, West Bengal 700032, India
| | - Maitree Bhattacharyya
- Department of Biochemistry, University of Calcutta 35 Ballygunge Circular Road, Ballygunge, Kolkata 700019, India
| | - Asim Kumar Mallick
- Department of Paediatric Medicine, Nil RatanSircar Medical College & Hospital, 138, AJC Bose Road, Sealdah, Raja Bazar, Kolkata 700014, India
| | - Ranjit Biswas
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| | - Ranjan Das
- Department of Chemistry, West Bengal State University, Barasat, Kolkata 700126, India
| | - Samir Kumar Pal
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata, West Bengal 700106, India
| |
Collapse
|
4
|
Guerra-Espinosa C, Jiménez-Fernández M, Sánchez-Madrid F, Serrador JM. ICAMs in Immunity, Intercellular Adhesion and Communication. Cells 2024; 13:339. [PMID: 38391953 PMCID: PMC10886500 DOI: 10.3390/cells13040339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Interactions among leukocytes and leukocytes with immune-associated auxiliary cells represent an essential feature of the immune response that requires the involvement of cell adhesion molecules (CAMs). In the immune system, CAMs include a wide range of members pertaining to different structural and functional families involved in cell development, activation, differentiation and migration. Among them, β2 integrins (LFA-1, Mac-1, p150,95 and αDβ2) are predominantly involved in homotypic and heterotypic leukocyte adhesion. β2 integrins bind to intercellular (I)CAMs, actin cytoskeleton-linked receptors belonging to immunoglobulin superfamily (IgSF)-CAMs expressed by leukocytes and vascular endothelial cells, enabling leukocyte activation and transendothelial migration. β2 integrins have long been viewed as the most important ICAMs partners, propagating intracellular signalling from β2 integrin-ICAM adhesion receptor interaction. In this review, we present previous evidence from pioneering studies and more recent findings supporting an important role for ICAMs in signal transduction. We also discuss the contribution of immune ICAMs (ICAM-1, -2, and -3) to reciprocal cell signalling and function in processes in which β2 integrins supposedly take the lead, paying particular attention to T cell activation, differentiation and migration.
Collapse
Affiliation(s)
- Claudia Guerra-Espinosa
- Immune System Development and Function Unit, Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - María Jiménez-Fernández
- Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario La Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain; (M.J.-F.); (F.S.-M.)
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 29029 Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Department, Instituto de Investigación Sanitaria Hospital Universitario La Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain; (M.J.-F.); (F.S.-M.)
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 29029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan M. Serrador
- Immune System Development and Function Unit, Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
5
|
Merges GE, Arévalo L, Kovacevic A, Lohanadan K, de Rooij DG, Simon C, Jokwitz M, Witke W, Schorle H. Actl7b deficiency leads to mislocalization of LC8 type dynein light chains and disruption of murine spermatogenesis. Development 2023; 150:dev201593. [PMID: 37800308 PMCID: PMC10652042 DOI: 10.1242/dev.201593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
Actin-related proteins (Arps) are classified according to their similarity to actin and are involved in diverse cellular processes. ACTL7B is a testis-specific Arp, and is highly conserved in rodents and primates. ACTL7B is specifically expressed in round and elongating spermatids during spermiogenesis. Here, we have generated an Actl7b-null allele in mice to unravel the role of ACTL7B in sperm formation. Male mice homozygous for the Actl7b-null allele (Actl7b-/-) were infertile, whereas heterozygous males (Actl7b+/-) were fertile. Severe spermatid defects, such as detached acrosomes, disrupted membranes and flagella malformations start to appear after spermiogenesis step 9 in Actl7b-/- mice, finally resulting in spermatogenic arrest. Abnormal spermatids were degraded and levels of autophagy markers were increased. Co-immunoprecipitation with mass spectrometry experiments identified an interaction between ACTL7B and the LC8 dynein light chains DYNLL1 and DYNLL2, which are first detected in step 9 spermatids and mislocalized when ACTL7B is absent. Our data unequivocally establish that mutations in ACTL7B are directly related to male infertility, pressing for additional research in humans.
Collapse
Affiliation(s)
- Gina E. Merges
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Lena Arévalo
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Andjela Kovacevic
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany
| | - Keerthika Lohanadan
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Dirk G. de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Carla Simon
- Cell Migration Unit, Institute of Genetics, University of Bonn, 53115 Bonn, Germany
| | - Melanie Jokwitz
- Cell Migration Unit, Institute of Genetics, University of Bonn, 53115 Bonn, Germany
| | - Walter Witke
- Cell Migration Unit, Institute of Genetics, University of Bonn, 53115 Bonn, Germany
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
6
|
Ding H, Xia Q, Shen J, Zhu C, Zhang Y, Feng N. Advances and prospects of tumor immunotherapy mediated by immune cell-derived biomimetic metal-organic frameworks. Colloids Surf B Biointerfaces 2023; 232:113607. [PMID: 39491916 DOI: 10.1016/j.colsurfb.2023.113607] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
The clinical translational success of nanomedicine and immunotherapy has already proved the immense potential in the field of nanotechnology and immunization. However, the development of nanomedicine is confronted with challenges such as potential toxicity and unclear nano-bio interactions. The efficacy of immunotherapy is limited to only a few groups. Combining immunotherapy with nanomedicine for multi-modal treatment effectively compensates for the limitations of the above single therapy. Immune cell membrane camouflaged metal-organic frameworks (ICM-MOFs) have emerged as a simple yet promising multimodal treatment strategy that possess multifunctional nanoscale properties and exhibit immune cell-like behaviors of stealth, targeting and immunomodulation. Here, we comprehensively discuss the latest advancements in ICM-MOFs, with a focus on the challenges of mono-immunotherapy, the superiority of biomimetic coating for MOF functionalization, preparation methods, related action mechanisms and biomedical applications. Finally, we address the challenges and prospects for clinical translation.
Collapse
Affiliation(s)
- Huining Ding
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Xia
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiaqi Shen
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chunyun Zhu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
7
|
Chen J, Zhang S. The Role of Inflammation in Cholestatic Liver Injury. J Inflamm Res 2023; 16:4527-4540. [PMID: 37854312 PMCID: PMC10581020 DOI: 10.2147/jir.s430730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
Cholestasis is a common clinical event in which bile formation and excretion are blocked, leading to retention of bile acids or bile salts; whether it occurs intra- or extrahepatically, primary or secondary, its pathogenesis is still unclear and is influenced by a combination of factors. In a variety of inflammatory and immune cells such as neutrophils, macrophages (intrahepatic macrophages are also known as Kupffer cells), mast cells, NK cells, and even T cells in humoral immunity and B cells in cellular immunity, inflammation can be a "second strike" against cholestatic liver injury. These cells, stimulated by a variety of factors such as bile acids, inflammatory chemokines, and complement, can be activated and accumulate in the cholestatic liver, and with the involvement of inflammatory mediators and modulation by cytokines, can lead to destruction of hepatocytes and bile duct epithelial cells and exacerbate (and occasionally retard) the progression of cholestatic liver disease. In this paper, we summarized the new research advances proposed so far regarding the relationship between inflammation and cholestasis, aiming to provide reference for researchers and clinicians in the field of cholestatic liver injury research.
Collapse
Affiliation(s)
- Jie Chen
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Shujun Zhang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
8
|
Chen Q, Chen J, Li J, Cheng Y, Zhang R, Liu Z. Recent advances of oxidative stress in thromboangiitis obliterans: biomolecular mechanisms, biomarkers, sources and clinical applications. Thromb Res 2023; 230:64-73. [PMID: 37639784 DOI: 10.1016/j.thromres.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/29/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Oxidative stress (OS) has been identified as a key factor in the development of Thromboangiitis Obliterans (TAO). The detection of OS levels in clinical and scientific research practice is mainly based on the measurement of oxidative stress such as reactive oxygen species (ROS), reactive nitrogen species (RNS) and lipid peroxides. These markers are typically assessed through a combination of physical and chemical methods. Smoking is known to the state of OS in TAO, and OS levels are significantly increased in smokers due to inadequate antioxidant protection, which leads to the expression of apoptotic proteins and subsequent cell injury, thrombosis and limb ischemia. There, understanding the role of OS in the pathogenesis of TAO may provide insights into the etiology of TAO and a basis for its prevention and treatment.
Collapse
Affiliation(s)
- Qi Chen
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Jing Chen
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Jiahua Li
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yuanyuan Cheng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Rong Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhongqiu Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
9
|
Grönloh MLB, Arts JJG, Mahlandt EK, Nolte MA, Goedhart J, van Buul JD. Primary adhered neutrophils increase JNK1-MARCKSL1-mediated filopodia to promote secondary neutrophil transmigration. iScience 2023; 26:107406. [PMID: 37559902 PMCID: PMC10407253 DOI: 10.1016/j.isci.2023.107406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 08/11/2023] Open
Abstract
During inflammation, leukocytes extravasate the vasculature to areas of inflammation in a process termed transendothelial migration. Previous research has shown that transendothelial migration hotspots exist, areas in the vasculature that are preferred by leukocytes to cross. Several factors that contribute to hotspot-mediated transmigration have been proposed already, but whether one leukocyte transmigration hotspot can be used subsequently by a second wave of leukocytes and thereby can increase the efficiency of leukocyte transmigration is not well understood. Here, we show that primary neutrophil adhesion to the endothelium triggers endothelial transmigration hotspots, allowing secondary neutrophils to cross the endothelium more efficiently. Mechanistically, we show that primary neutrophil adhesion increases the number of endothelial apical filopodia, resulting in an increase in the number of adherent secondary neutrophils. Using fluorescence resonance energy transfer (FRET)-based biosensors, we found that neutrophil adhesion did not trigger the activity of the small GTPase Cdc42. We used kinase translocation reporters to study the activity of mitogen-activated protein (MAP) kinases and Akt in endothelial cells on a single-cell level with a high temporal resolution during the process of leukocyte transmigration and found that c-Jun N-terminal kinase (JNK) is rapidly activated upon neutrophil adhesion, whereas extracellular regulated kinase (ERK), p38, and Akt are not. Additionally, we show that short-term chemical inhibition of endothelial JNK successfully prevents the adhesion of neutrophils to the endothelium. Furthermore, we show that neutrophil-induced endothelial JNK1 but not JNK2 increases the formation of filopodia and thereby the adhesion of secondary neutrophils. JNK1 needs its downstream substrate MARCKSL1 to trigger additional apical filopodia and consequently neutrophil adhesion. Overall, our data show that primary neutrophils can trigger the endothelial transmigration hotspot by activating JNK1 and MARCKSL1 to induce filopodia that trigger more neutrophils to transmigrate at the endothelial hotspot area.
Collapse
Affiliation(s)
- Max Laurens Bastiaan Grönloh
- Vascular Biology Lab, Medical Biochemistry Department at Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Leeuwenhoek Centre for Advanced Microscopy, section Molecular Cytology at Swammerdam Institute for Life Sciences at the University of Amsterdam, Amsterdam, the Netherlands
- Molecular Cell Biology Lab at Department Molecular Hematology, Sanquin Research, and Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Janine Johanna Geertruida Arts
- Leeuwenhoek Centre for Advanced Microscopy, section Molecular Cytology at Swammerdam Institute for Life Sciences at the University of Amsterdam, Amsterdam, the Netherlands
- Molecular Cell Biology Lab at Department Molecular Hematology, Sanquin Research, and Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Eike Karin Mahlandt
- Vascular Biology Lab, Medical Biochemistry Department at Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Leeuwenhoek Centre for Advanced Microscopy, section Molecular Cytology at Swammerdam Institute for Life Sciences at the University of Amsterdam, Amsterdam, the Netherlands
| | - Martijn A. Nolte
- Molecular Cell Biology Lab at Department Molecular Hematology, Sanquin Research, and Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Joachim Goedhart
- Leeuwenhoek Centre for Advanced Microscopy, section Molecular Cytology at Swammerdam Institute for Life Sciences at the University of Amsterdam, Amsterdam, the Netherlands
| | - Jaap Diederik van Buul
- Vascular Biology Lab, Medical Biochemistry Department at Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Leeuwenhoek Centre for Advanced Microscopy, section Molecular Cytology at Swammerdam Institute for Life Sciences at the University of Amsterdam, Amsterdam, the Netherlands
- Molecular Cell Biology Lab at Department Molecular Hematology, Sanquin Research, and Landsteiner Laboratory, Amsterdam, the Netherlands
| |
Collapse
|
10
|
Hermans D, Rodriguez-Mogeda C, Kemps H, Bronckaers A, de Vries HE, Broux B. Nectins and Nectin-like molecules drive vascular development and barrier function. Angiogenesis 2023; 26:349-362. [PMID: 36867287 DOI: 10.1007/s10456-023-09871-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/10/2023] [Indexed: 03/04/2023]
Abstract
Angiogenesis, barriergenesis, and immune cell migration are all key physiological events that are dependent on the functional characteristics of the vascular endothelium. The protein family of Nectins and Nectin-like molecules (Necls) is a group of cell adhesion molecules that are widely expressed by different endothelial cell types. The family includes four Nectins (Nectin-1 to -4) and five Necls (Necl-1 to -5) that either interact with each other by forming homo- and heterotypical interactions or bind to ligands expressed within the immune system. Nectin and Necl proteins are mainly described to play a role in cancer immunology and in the development of the nervous system. However, Nectins and Necls are underestimated players in the formation of blood vessels, their barrier properties, and in guiding transendothelial migration of leukocytes. This review summarizes their role in supporting the endothelial barrier through their function in angiogenesis, cell-cell junction formation, and immune cell migration. In addition, this review provides a detailed overview of the expression patterns of Nectins and Necls in the vascular endothelium.
Collapse
Affiliation(s)
- Doryssa Hermans
- Department of Immunology and Infection, UHasselt, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
| | - Carla Rodriguez-Mogeda
- Molecular Cell Biology and Immunology, MS Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Hannelore Kemps
- Department of Cardio & Organ Systems, UHasselt, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
- KU Leuven, Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, Leuven, Belgium
| | - Annelies Bronckaers
- Department of Cardio & Organ Systems, UHasselt, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium
| | - Helga E de Vries
- Molecular Cell Biology and Immunology, MS Center Amsterdam, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Bieke Broux
- Department of Immunology and Infection, UHasselt, Biomedical Research Institute (BIOMED), Diepenbeek, Belgium.
| |
Collapse
|
11
|
Buenaventura RGM, Merlino G, Yu Y. Ez-Metastasizing: The Crucial Roles of Ezrin in Metastasis. Cells 2023; 12:1620. [PMID: 37371090 DOI: 10.3390/cells12121620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Ezrin is the cytoskeletal organizer and functions in the modulation of membrane-cytoskeleton interaction, maintenance of cell shape and structure, and regulation of cell-cell adhesion and movement, as well as cell survival. Ezrin plays a critical role in regulating tumor metastasis through interaction with other binding proteins. Notably, Ezrin has been reported to interact with immune cells, allowing tumor cells to escape immune attack in metastasis. Here, we review the main functions of Ezrin, the mechanisms through which it acts, its role in tumor metastasis, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rand Gabriel M Buenaventura
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yanlin Yu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Haydinger CD, Ashander LM, Tan ACR, Smith JR. Intercellular Adhesion Molecule 1: More than a Leukocyte Adhesion Molecule. BIOLOGY 2023; 12:biology12050743. [PMID: 37237555 DOI: 10.3390/biology12050743] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Intercellular adhesion molecule 1 (ICAM-1) is a transmembrane protein in the immunoglobulin superfamily expressed on the surface of multiple cell populations and upregulated by inflammatory stimuli. It mediates cellular adhesive interactions by binding to the β2 integrins macrophage antigen 1 and leukocyte function-associated antigen 1, as well as other ligands. It has important roles in the immune system, including in leukocyte adhesion to the endothelium and transendothelial migration, and at the immunological synapse formed between lymphocytes and antigen-presenting cells. ICAM-1 has also been implicated in the pathophysiology of diverse diseases from cardiovascular diseases to autoimmune disorders, certain infections, and cancer. In this review, we summarize the current understanding of the structure and regulation of the ICAM1 gene and the ICAM-1 protein. We discuss the roles of ICAM-1 in the normal immune system and a selection of diseases to highlight the breadth and often double-edged nature of its functions. Finally, we discuss current therapeutics and opportunities for advancements.
Collapse
Affiliation(s)
- Cameron D Haydinger
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Liam M Ashander
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Alwin Chun Rong Tan
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Justine R Smith
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
13
|
Modvig S, Jeyakumar J, Marquart HV, Christensen C. Integrins and the Metastasis-like Dissemination of Acute Lymphoblastic Leukemia to the Central Nervous System. Cancers (Basel) 2023; 15:cancers15092504. [PMID: 37173970 PMCID: PMC10177281 DOI: 10.3390/cancers15092504] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) disseminates with high prevalence to the central nervous system (CNS) in a process resembling aspects of the CNS surveillance of normal immune cells as well as aspects of brain metastasis from solid cancers. Importantly, inside the CNS, the ALL blasts are typically confined within the cerebrospinal fluid (CSF)-filled cavities of the subarachnoid space, which they use as a sanctuary protected from both chemotherapy and immune cells. At present, high cumulative doses of intrathecal chemotherapy are administered to patients, but this is associated with neurotoxicity and CNS relapse still occurs. Thus, it is imperative to identify markers and novel therapy targets specific to CNS ALL. Integrins represent a family of adhesion molecules involved in cell-cell and cell-matrix interactions, implicated in the adhesion and migration of metastatic cancer cells, normal immune cells, and leukemic blasts. The ability of integrins to also facilitate cell-adhesion mediated drug resistance, combined with recent discoveries of integrin-dependent routes of leukemic cells into the CNS, have sparked a renewed interest in integrins as markers and therapeutic targets in CNS leukemia. Here, we review the roles of integrins in CNS surveillance by normal lymphocytes, dissemination to the CNS by ALL cells, and brain metastasis from solid cancers. Furthermore, we discuss whether ALL dissemination to the CNS abides by known hallmarks of metastasis, and the potential roles of integrins in this context.
Collapse
Affiliation(s)
- Signe Modvig
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jenani Jeyakumar
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - Hanne Vibeke Marquart
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Claus Christensen
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| |
Collapse
|
14
|
Stevens AJ, Harris AR, Gerdts J, Kim KH, Trentesaux C, Ramirez JT, McKeithan WL, Fattahi F, Klein OD, Fletcher DA, Lim WA. Programming multicellular assembly with synthetic cell adhesion molecules. Nature 2023; 614:144-152. [PMID: 36509107 PMCID: PMC9892004 DOI: 10.1038/s41586-022-05622-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/02/2022] [Indexed: 12/14/2022]
Abstract
Cell adhesion molecules are ubiquitous in multicellular organisms, specifying precise cell-cell interactions in processes as diverse as tissue development, immune cell trafficking and the wiring of the nervous system1-4. Here we show that a wide array of synthetic cell adhesion molecules can be generated by combining orthogonal extracellular interactions with intracellular domains from native adhesion molecules, such as cadherins and integrins. The resulting molecules yield customized cell-cell interactions with adhesion properties that are similar to native interactions. The identity of the intracellular domain of the synthetic cell adhesion molecules specifies interface morphology and mechanics, whereas diverse homotypic or heterotypic extracellular interaction domains independently specify the connectivity between cells. This toolkit of orthogonal adhesion molecules enables the rationally programmed assembly of multicellular architectures, as well as systematic remodelling of native tissues. The modularity of synthetic cell adhesion molecules provides fundamental insights into how distinct classes of cell-cell interfaces may have evolved. Overall, these tools offer powerful abilities for cell and tissue engineering and for systematically studying multicellular organization.
Collapse
Affiliation(s)
- Adam J Stevens
- UCSF Cell Design Institute, University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Center for Cellular Construction, University of California, San Francisco, CA, USA
| | - Andrew R Harris
- Center for Cellular Construction, University of California, San Francisco, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Ontario, Canada
| | - Josiah Gerdts
- UCSF Cell Design Institute, University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Center for Cellular Construction, University of California, San Francisco, CA, USA
- Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco, CA, USA
| | - Ki H Kim
- UCSF Cell Design Institute, University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Center for Cellular Construction, University of California, San Francisco, CA, USA
| | - Coralie Trentesaux
- Program in Craniofacial Biology, University of California, San Francisco, CA, USA
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Jonathan T Ramirez
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Wesley L McKeithan
- UCSF Cell Design Institute, University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Center for Cellular Construction, University of California, San Francisco, CA, USA
- Maze Therapeutics, San Francisco, CA, USA
| | - Faranak Fattahi
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Ophir D Klein
- Program in Craniofacial Biology, University of California, San Francisco, CA, USA
- Department of Orofacial Sciences, University of California, San Francisco, CA, USA
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel A Fletcher
- Center for Cellular Construction, University of California, San Francisco, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Wendell A Lim
- UCSF Cell Design Institute, University of California, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
- Center for Cellular Construction, University of California, San Francisco, CA, USA.
| |
Collapse
|
15
|
Non-invasive diagnosis of endometriosis: Immunologic and genetic markers. Clin Chim Acta 2023; 538:70-86. [PMID: 36375526 DOI: 10.1016/j.cca.2022.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Endometriosis, a benign gynecologic and chronic inflammatory disease, is defined by the presence of endometrial tissue outside the uterus characterized mainly by pelvic pain and infertility. Because endometriosis affects approximately 10% of females, it represents a significant socioeconomic burden worldwide having tremendous impact on daily quality of life. Accurate and prompt diagnosis is crucial for the management of this debilitating disorder. Unfortunately, diagnosis is typically delayed to lack of specific symptoms and readily accessible biomarkers. Although histopathologic examination remains the current gold standard, this approach is highly invasive and not applicable for early screening. Recent work has focused on the identification of reliable biomarkers including immunologic, ie, immune cells, antibodies and cytokines, as well as genetic and biochemical markers, ie, microRNAs, lncRNAs, circulating and mitochondrial nucleic acids, along with some hormones, glycoproteins and signaling molecules. Confirmatory research studies are, however, needed to more fully establish these markers in the diagnosis, progression and staging of these endometrial lesions.
Collapse
|
16
|
Abi Rached NM, Gbotosho OT, Archer DR, Jones JA, Sterling MS, Hyacinth HI. Adhesion molecules and cerebral microvascular hemodynamic abnormalities in sickle cell disease. Front Neurol 2022; 13:976063. [PMID: 36570439 PMCID: PMC9767957 DOI: 10.3389/fneur.2022.976063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Cerebrovascular abnormalities are a common feature of sickle cell disease that may be associated with risk of vaso-occlusive pain crises, microinfarcts, and cognitive impairment. An activated endothelium and adhesion factors, VCAM-1 and P-selectin, are implicated in sickle cell vasculopathy, including abnormal hemodynamics and leukocyte adherence. This study examined the association between cerebral expression of these adhesion factors and cortical microvascular blood flow dynamics by using in-vivo two-photon microscopy. We also examined the impact of blood transfusion treatment on these markers of vasculopathy. Results showed that sickle cell mice had significantly higher maximum red blood cell (RBC) velocity (6.80 ± 0.25 mm/sec, p ≤ 0.01 vs. 5.35 ± 0.35 mm/sec) and more frequent blood flow reversals (18.04 ± 0.95 /min, p ≤ 0.01 vs. 13.59 ± 1.40 /min) in the cortical microvasculature compared to controls. In addition, sickle cell mice had a 2.6-fold (RFU/mm2) increase in expression of VCAM-1 and 17-fold (RFU/mm2) increase in expression of P-selectin compared to controls. This was accompanied by an increased frequency in leukocyte adherence (4.83 ± 0.57 /100 μm/min vs. 2.26 ± 0.37 /100 μm/min, p ≤ 0.001). We also found that microinfarcts identified in sickle cell mice were 50% larger than in controls. After blood transfusion, many of these parameters improved, as results demonstrated that sickle cell mice had a lower post-transfusion maximum RBC velocity (8.30 ± 0.98 mm/sec vs. 11.29 ± 0.95 mm/sec), lower frequency of blood flow reversals (12.80 ± 2.76 /min vs. 27.75 ± 2.09 /min), and fewer instances of leukocyte adherence compared to their pre-transfusion imaging time point (1.35 ± 0.32 /100 μm/min vs. 3.46 ± 0.58 /100 μm/min). Additionally, we found that blood transfusion was associated with lower expression of adhesion factors. Our results suggest that blood transfusion and adhesion factors, VCAM-1 and P-selectin, are potential therapeutic targets for addressing cerebrovascular pathology, such as vaso-occlusion, in sickle cell disease.
Collapse
Affiliation(s)
- Noor Mary Abi Rached
- Neuroscience and Behavioral Biology Undergraduate Program, Emory University, Atlanta, GA, United States
| | - Oluwabukola T. Gbotosho
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David R. Archer
- Aflac Cancer and Blood Disorders Center, Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Jayre A. Jones
- Aflac Cancer and Blood Disorders Center, Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Morgan S. Sterling
- Aflac Cancer and Blood Disorders Center, Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Hyacinth I. Hyacinth
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
17
|
Xie T, Dong J, Zhou X, Tang D, Li D, Chen J, Chen Y, Xu H, Xue W, Liu D, Hong X, Tang F, Yin L, Dai Y. Proteomics analysis of lysine crotonylation and 2-hydroxyisobutyrylation reveals significant features of systemic lupus erythematosus. Clin Rheumatol 2022; 41:3851-3858. [PMID: 35941338 PMCID: PMC9652266 DOI: 10.1007/s10067-022-06254-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/14/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION/OBJECTIVES To seek significant features of systemic lupus erythematosus (SLE) by utilizing bioinformatics analysis. METHOD Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to quantify lysine crotonylation (Kcr) and lysine 2-hydroxyisobutyrylation (Khib) in peripheral blood mononuclear cells (PBMCs) of systemic lupus erythematosus (SLE) patients and normal controls. RESULTS Seventy-six differentially modified proteins (DMPs) dually modified by Kcr and Khib were identified between SLE patients and healthy people. GO enrichment analysis prompted significant enrichment of seventy-six DMPs in MHC class II protein complex binding and leukocyte migration. KEGG pathways were enriched in antigen processing and presentation pathway and leukocyte transendothelial migration pathway. Six DMPs (CLTC, HSPA1B, HSPA8, HSP90AB1, HSPD1, and PDIA3) were identified in antigen processing and presentation pathway, of which HSPA8 was the core protein. Significant changes of Kcr and Khib in HSPA8 may increase ATP hydrolysis and promote antigen binding to MHC II molecule. In leukocyte transendothelial migration pathway, 7 DMPs (ACTN1, ACTN4, EZR, MSN, RAC1, RHOA, and VCL) were identified. MSN was the protein with the most modification sites in this pathway. In amino terminal ferm region of MSN, Kcr and Khib expression change may lead to the adhesion between leukocytes and endothelial cells, which was an important step of leukocyte migration. CONCLUSION Kcr and Khib may promote the antigen presentation and jointly regulate the tissue damage mediated by leukocyte migration in SLE patients, which may play key roles in the pathogenesis of SLE probably. Key Points • Antigen processing and presentation and leukocyte transendothelial migration may play key roles in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Ting Xie
- Institute of Nephrology and Blood Purification, the First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jingjing Dong
- Institute of Nephrology and Blood Purification, the First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
- Clinical Medical Research Center, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Xianqing Zhou
- Department of Pathology, Guangxi Key Laboratory of Metabolic Diseases Research, No.924 Hospital of PLA Joint Logistic Support Force, Guilin, 541002, Guangxi, China
| | - Donge Tang
- Clinical Medical Research Center, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Dandan Li
- Institute of Nephrology and Blood Purification, the First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jiejing Chen
- Department of Pathology, Guangxi Key Laboratory of Metabolic Diseases Research, No.924 Hospital of PLA Joint Logistic Support Force, Guilin, 541002, Guangxi, China
| | - Yumei Chen
- Clinical Medical Research Center, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Huixuan Xu
- Clinical Medical Research Center, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Wen Xue
- Department of Pathology, Guangxi Key Laboratory of Metabolic Diseases Research, No.924 Hospital of PLA Joint Logistic Support Force, Guilin, 541002, Guangxi, China
| | - Dongzhou Liu
- Clinical Medical Research Center, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Xiaoping Hong
- Clinical Medical Research Center, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Fang Tang
- Department of Pathology, Guangxi Key Laboratory of Metabolic Diseases Research, No.924 Hospital of PLA Joint Logistic Support Force, Guilin, 541002, Guangxi, China.
| | - Lianghong Yin
- Institute of Nephrology and Blood Purification, the First Affiliated Hospital of Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Yong Dai
- Clinical Medical Research Center, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
18
|
Charlie-Silva I, Feitosa NM, Pontes LG, Fernandes BH, Nóbrega RH, Gomes JMM, Prata MNL, Ferraris FK, Melo DC, Conde G, Rodrigues LF, Aracati MF, Corrêa-Junior JD, Manrique WG, Superio J, Garcez AS, Conceição K, Yoshimura TM, Núñez SC, Eto SF, Fernandes DC, Freitas AZ, Ribeiro MS, Nedoluzhko A, Lopes-Ferreira M, Borra RC, Barcellos LJG, Perez AC, Malafaia G, Cunha TM, Belo MAA, Galindo-Villegas J. Plasma proteome responses in zebrafish following λ-carrageenan-Induced inflammation are mediated by PMN leukocytes and correlate highly with their human counterparts. Front Immunol 2022; 13:1019201. [PMID: 36248846 PMCID: PMC9559376 DOI: 10.3389/fimmu.2022.1019201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/09/2022] [Indexed: 11/23/2022] Open
Abstract
Regulation of inflammation is a critical process for maintaining physiological homeostasis. The λ-carrageenan (λ-CGN) is a mucopolysaccharide extracted from the cell wall of red algae (Chondrus crispus) capable of inducing acute intestinal inflammation, which is translated into the production of acute phase reactants secreted into the blood circulation. However, the associated mechanisms in vertebrates are not well understood. Here, we investigated the crucial factors behind the inflammatory milieu of λ-CGN-mediated inflammation administered at 0, 1.75, and 3.5% (v/w) by i.p. injection into the peritoneal cavity of adult zebrafish (ZF) (Danio rerio). We found that polymorphonuclear leukocytes (neutrophils) and lymphocytes infiltrating the ZF peritoneal cavity had short-term persistence. Nevertheless, they generate a strong pattern of inflammation that affects systemically and is enough to produce edema in the cavity. Consistent with these findings, cell infiltration, which causes notable tissue changes, resulted in the overexpression of several acute inflammatory markers at the protein level. Using reversed-phase high-performance liquid chromatography followed by a hybrid linear ion-trap mass spectrometry shotgun proteomic approach, we identified 2938 plasma proteins among the animals injected with PBS and 3.5% λ-CGN. First, the bioinformatic analysis revealed the composition of the plasma proteome. Interestingly, 72 commonly expressed proteins were recorded among the treated and control groups, but, surprisingly, 2830 novel proteins were differentially expressed exclusively in the λ-CGN-induced group. Furthermore, from the commonly expressed proteins, compared to the control group 62 proteins got a significant (p < 0.05) upregulation in the λ-CGN-treated group, while the remaining ten proteins were downregulated. Next, we obtained the major protein-protein interaction networks between hub protein clusters in the blood plasma of the λ-CGN induced group. Moreover, to understand the molecular underpinnings of these effects based on the unveiled protein sets, we performed a bioinformatic structural similarity analysis and generated overlapping 3D reconstructions between ZF and humans during acute inflammation. Biological pathway analysis pointed to the activation and abundance of diverse classical immune and acute phase reactants, several catalytic enzymes, and varied proteins supporting the immune response. Together, this information can be used for testing and finding novel pharmacological targets to treat human intestinal inflammatory diseases.
Collapse
Affiliation(s)
| | - Natália M. Feitosa
- Integrated Laboratory of Translational Bioscience, Institute of Biodiversity and Sustainability, Federal University of Rio de Janeiro, Macaé, Brazil
| | | | - Bianca H. Fernandes
- Laboratório de Controle Genético e Sanitário, Faculdade de Medicina Universidade de São Paulo, São Paulo, Brazil
| | - Rafael H. Nóbrega
- Reproductive and Molecular Biology Group, Department of Morphology, Institute of Biosciences, São Paulo State University, São Paulo, Brazil
| | - Juliana M. M. Gomes
- Transplantation Immunobiology Lab, Department of Immunology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Mariana N. L. Prata
- Department of Pharmacology, Instituto de CiênciasBiomédicas-Universidade Federal de Minas Gerais (ICB-UFMG), Belo Horizonte, Brazil
| | - Fausto K. Ferraris
- Department of Pharmacology and Toxicology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Daniela C. Melo
- Laboratory of Zebrafish from Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Gabriel Conde
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - Letícia F. Rodrigues
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - Mayumi F. Aracati
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - José D. Corrêa-Junior
- Department of Morphology, Instituto de CiênciasBiomédicas-Universidade Federal de Minas Gerais (ICB-UFMG), Belo Horizonte, Brazil
| | - Wilson G. Manrique
- Veterinary College, Federal University of Rondonia, Rolim de Moura, Brazil
| | - Joshua Superio
- Department of Aquaculture, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Katia Conceição
- Peptide Biochemistry Laboratory, Universidade Federal de São Paulo (UNIFESP), Sao Jose Dos Campos, Brazil
| | - Tania M. Yoshimura
- Center for Lasers and Applications, Instituto de PesquisasEnergéticas e Nucleares (IPEN-CNEN), Sao Paulo, Brazil
| | - Silvia C. Núñez
- University Brazil, São Paulo, Brazil
- University Brazil, Descalvado, Brazil
| | - Silas F. Eto
- Development and Innovation Laboratory, Center of Innovation and Development, Butantan Institute, São Paulo, Brazil
| | - Dayanne C. Fernandes
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - Anderson Z. Freitas
- Center for Lasers and Applications, Instituto de PesquisasEnergéticas e Nucleares (IPEN-CNEN), Sao Paulo, Brazil
| | - Martha S. Ribeiro
- Center for Lasers and Applications, Instituto de PesquisasEnergéticas e Nucleares (IPEN-CNEN), Sao Paulo, Brazil
| | - Artem Nedoluzhko
- Paleogenomics Laboratory, European University at Saint Petersburg, Saint Petersburg, Russia
| | | | - Ricardo C. Borra
- Department of Genetics and Evolution, Federal University of São Carlos, São Paulo, Brazil
| | - Leonardo J. G. Barcellos
- Postgraduate Program in Pharmacology, Federal University of Santa Maria, Rio Grande do Sul, Brazil
- Postgraduate Program in Bioexperimentation. University of Passo Fundo, Rio Grande do Sul, Brazil
| | - Andrea C. Perez
- Department of Pharmacology and Toxicology, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Guilheme Malafaia
- Biological Research Laboratory, Goiano Federal Institute, Urutaí, Brazil
| | - Thiago M. Cunha
- Center of Research in Inflammatory Diseases, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Marco A. A. Belo
- Department of Preventive Veterinary Medicine, São Paulo State University, São Paulo, Brazil
- University Brazil, São Paulo, Brazil
- University Brazil, Descalvado, Brazil
| | - Jorge Galindo-Villegas
- Department of Genomics, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
19
|
Guo Q, Furuta K, Islam S, Caporarello N, Kostallari E, Dielis K, Tschumperlin DJ, Hirsova P, Ibrahim SH. Liver sinusoidal endothelial cell expressed vascular cell adhesion molecule 1 promotes liver fibrosis. Front Immunol 2022; 13:983255. [PMID: 36091042 PMCID: PMC9453231 DOI: 10.3389/fimmu.2022.983255] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/05/2022] [Indexed: 12/04/2022] Open
Abstract
Background During liver injury, liver sinusoidal endothelial cells (LSECs) dysfunction and capillarization promote liver fibrosis. We have previously reported that the LSEC vascular cell adhesion molecule 1 (VCAM1) plays a key role in liver inflammation in nonalcoholic steatohepatitis (NASH) and we now aim to uncover its role in LSEC capillarization and liver fibrosis. Methods Wild-type C57BL/6J mice were fed either chow or high fat, fructose and cholesterol diet to induce NASH and treated with either anti-VCAM1 neutralizing antibody or control isotype antibody. Inducible endothelial cell-specific Vcam1 deleted mice (Vcam1Δend ) and control mice (Vcam1fl/fl ) were fed choline-deficient high-fat diet (CD-HFD) to induce NASH or injected with carbon tetrachloride to induce liver fibrosis. LSECs isolated from Vcam1fl/fl or Vcam1Δend and hepatic stellate cells (HSCs) isolated from wild-type mice were cocultured in a 3-D system or a μ-Slide 2 well co-culture system. Results Immunostaining for Lyve1 (marker of differentiated LSECs) was reduced in Vcam1fl/fl mice and restored in Vcam1Δend mice in both NASH and liver fibrosis models. Co-immunostaining showed increased α-smooth muscle actin in the livers of Vcam1fl/fl mice in areas lacking Lyve1. Furthermore, scanning electron microscopy showed reduced LSEC fenestrae in the Vcam1fl/fl mice but not Vcam1Δend mice in both injury models, suggesting that VCAM1 promotes LSEC capillarization during liver injury. HSCs profibrogenic markers were reduced when cocultured with LSECs from CD-HFD fed Vcam1Δend mice compared to Vcam1fl/fl mice. Furthermore, recombinant VCAM1 activated the Yes-associated protein 1 pathway and induced a fibrogenic phenotype in HSCs in vitro, supporting the profibrogenic role of LSEC VCAM1. Conclusion VCAM1 is not just a scaffold for leukocyte adhesion during liver injury, but also a modulator of LSEC capillarization and liver fibrosis.
Collapse
Affiliation(s)
- Qianqian Guo
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Kunimaro Furuta
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shahidul Islam
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Nunzia Caporarello
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Kobe Dielis
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Samar H Ibrahim
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States.,Division of Pediatric Gastroenterology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
20
|
Ma X, Su M, He Q, Zhang Z, Zhang F, Liu Z, Sun L, Weng J, Xu S. PHACTR1, a coronary artery disease risk gene, mediates endothelial dysfunction. Front Immunol 2022; 13:958677. [PMID: 36091033 PMCID: PMC9457086 DOI: 10.3389/fimmu.2022.958677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/01/2022] [Indexed: 01/13/2023] Open
Abstract
Genome-wide association studies (GWAS) have recently identified phosphatase and actin regulator-1 (PHACTR1) as a critical risk gene associated with polyvascular diseases. However, it remains largely unclear how PHACTR1 is involved in endothelial dysfunction. Here, by mining published datasets of human stable and vulnerable/ruptured plaque tissues, we observed upregulated expression of PHACTR1 in vulnerable/ruptured plaques. Congruent with these data, we demonstrated increased Phactr1 gene expression in aortic endothelium from ApoE-/- mice fed a western type diet compared with that in normal C57BL/6J mice. Relevantly, PHACTR1 gene expression was upregulated by pro-inflammatory and pro-atherogenic stimuli, including TNF-α, IL-1β and oxidized LDL (oxLDL). By employing next-generation RNA sequencing, we demonstrate that PHACTR1 overexpression disrupts pathways associated with endothelial homeostasis. Cell biological studies unravel that PHACTR1 mediates endothelial inflammation and monocyte adhesion by activating NF-κB dependent intercellular adhesion molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1) expression. In addition, overexpression of PHACTR1 also reduces the generation of nitric oxide (NO) by inhibiting Akt/eNOS activation. In-house compound screening of vasoprotective drugs identifies several drugs, including lipid-lowering statins, decreases PHACTR1 gene expression. However, PHACTR1 gene expression was not affected by another lipid-lowering drug-fenofibrate. We also performed a proteomic study to reveal PHACTR1 interacting proteins and validated that PHACTR1 can interact with heat shock protein A8 (HSPA8) which was reported to be associated with coronary artery disease and eNOS degradation. Further studies are warranted to confirm the precise mechanism of PHACTR1 in driving endothelial dysfunction. In conclusion, by using systems biology approach and molecular validation, we disclose the deleterious effects of PHACTR1 on endothelial function by inducing endothelial inflammation and reducing NO production, highlighting the potential to prevent endothelial dysfunction and atherosclerosis by targeting PHACTR1 expression. The precise role of endothelial cell PHACTR1 in polyvascular diseases remains to be validated in diseased conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Suowen Xu
- *Correspondence: Suowen Xu, ; Jianping Weng,
| |
Collapse
|
21
|
Ahangar P, Strudwick XL, Cowin AJ. Wound Healing from an Actin Cytoskeletal Perspective. Cold Spring Harb Perspect Biol 2022; 14:a041235. [PMID: 35074864 PMCID: PMC9341468 DOI: 10.1101/cshperspect.a041235] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Wound healing requires a complex cascade of highly controlled and conserved cellular and molecular processes. These involve numerous cell types and extracellular matrix molecules regulated by the actin cytoskeleton. This microscopic network of filaments is present within the cytoplasm of all cells and provides the shape and mechanical support required for cell movement and proliferation. Here, an overview of the processes of wound healing are described from the perspective of the cell in relation to the actin cytoskeleton. Key points of discussion include the role of actin, its binding proteins, signaling pathways, and events that play significant roles in the phases of wound healing. The identification of cytoskeletal targets that can be used to manipulate and improve wound healing is included as an emerging area of focus that may inform future therapeutic approaches to improve healing of complex wounds.
Collapse
Affiliation(s)
- Parinaz Ahangar
- Future Industries Institute, UniSA STEM, University of South Australia, South Australia, Adelaide 5000, Australia
| | - Xanthe L Strudwick
- Future Industries Institute, UniSA STEM, University of South Australia, South Australia, Adelaide 5000, Australia
| | - Allison J Cowin
- Future Industries Institute, UniSA STEM, University of South Australia, South Australia, Adelaide 5000, Australia
| |
Collapse
|
22
|
Cho I, Lee KN, Joo E, Kim YM, Kim TE, Park KH. Plasma E-selectin and kallistatin as predictive markers of histologic chorioamnionitis in women with preterm premature rupture of membranes. Am J Reprod Immunol 2022; 88:e13584. [PMID: 35772987 DOI: 10.1111/aji.13584] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/23/2022] [Accepted: 06/13/2022] [Indexed: 12/01/2022] Open
Abstract
PROBLEM We aimed to assess the predictive potential of 12 plasma biomarkers to predict acute histologic chorioamnionitis (HCA) in women with preterm premature rupture of membranes (PPROM) and to develop multi-biomarker panels based on these biomarkers in combination with widely used conventional laboratory markers. METHOD OF STUDY This was a retrospective cohort study involving 81 singleton pregnant women (24-34 weeks of gestation) who delivered within 96 h of blood sampling. White blood cell (WBC) count, differential counts, and C-reactive protein (CRP) levels were measured at admission. The levels of DKK-3, Fas, haptoglobin, IGFBP-2, kallistatin, MIP-1α, MMP-2, MMP-8, pentraxin 3, progranulin, E-selectin, and P-selectin were evaluated by ELISA using stored plasma samples. The primary outcome measure was acute HCA. RESULTS Multivariate analyses showed that low plasma E-selectin and kallistatin levels were independently associated with HCA occurrence after adjusting for gestational age. Using a stepwise regression analysis, a multi-biomarker panel comprising plasma E-selectin, serum CRP, and WBC was developed, which provided a good prediction of acute HCA in women with PPROM (area under the curve [AUC], 0.899), with a significantly higher AUC than that of any single variable included in the panel (P<0.05). The plasma levels of DKK-3, Fas, haptoglobin, IGFBP-2, MIP-1α, MMP-2, MMP-8, pentraxin 3, and P-selectin were not significantly associated with HCA occurrence. CONCLUSIONS This study identified E-selectin and kallistatin as potential plasma biomarkers associated with acute HCA in women with PPROM. Their combined analysis with serum CRP and WBC counts significantly improved acute HCA diagnosis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Iseop Cho
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kyong-No Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eunwook Joo
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yu Mi Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Tae Eun Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kyo Hoon Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
23
|
Motloch LJ, Jirak P, Gareeva D, Davtyan P, Gumerov R, Lakman I, Tataurov A, Zulkarneev R, Kabirov I, Cai B, Valeev B, Pavlov V, Kopp K, Hoppe UC, Lichtenauer M, Fiedler L, Pistulli R, Zagidullin N. Cardiovascular Biomarkers for Prediction of in-hospital and 1-Year Post-discharge Mortality in Patients With COVID-19 Pneumonia. Front Med (Lausanne) 2022; 9:906665. [PMID: 35836945 PMCID: PMC9273888 DOI: 10.3389/fmed.2022.906665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/30/2022] [Indexed: 01/08/2023] Open
Abstract
Aims While COVID-19 affects the cardiovascular system, the potential clinical impact of cardiovascular biomarkers on predicting outcomes in COVID-19 patients is still unknown. Therefore, to investigate this issue we analyzed the prognostic potential of cardiac biomarkers on in-hospital and long-term post-discharge mortality of patients with COVID-19 pneumonia. Methods Serum soluble ST2, VCAM-1, and hs-TnI were evaluated upon admission in 280 consecutive patients hospitalized with COVID-19-associated pneumonia in a single, tertiary care center. Patient clinical and laboratory characteristics and the concentration of biomarkers were correlated with in-hospital [Hospital stay: 11 days (10; 14)] and post-discharge all-cause mortality at 1 year follow-up [FU: 354 days (342; 361)]. Results 11 patients died while hospitalized for COVID-19 (3.9%), and 11 patients died during the 1-year post-discharge follow-up period (n = 11, 4.1%). Using multivariate analysis, VCAM-1 was shown to predict mortality during the hospital period (HR 1.081, CI 95% 1.035;1.129, p = 0.017), but not ST2 or hs-TnI. In contrast, during one-year FU post hospital discharge, ST2 (HR 1.006, 95% CI 1.002;1.009, p < 0.001) and hs-TnI (HR 1.362, 95% CI 1.050;1.766, p = 0.024) predicted mortality, although not VCAM-1. Conclusion In patients hospitalized with Covid-19 pneumonia, elevated levels of VCAM-1 at admission were associated with in-hospital mortality, while ST2 and hs-TnI might predict post-discharge mortality in long term follow-up.
Collapse
Affiliation(s)
- Lukas J. Motloch
- University Clinic for Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
- *Correspondence: Lukas J. Motloch
| | - Peter Jirak
- University Clinic for Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Diana Gareeva
- Cardiovascular Disease in COVID-19, International Research Network, Ufa, Russia
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
| | - Paruir Davtyan
- Cardiovascular Disease in COVID-19, International Research Network, Ufa, Russia
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
| | - Ruslan Gumerov
- Cardiovascular Disease in COVID-19, International Research Network, Ufa, Russia
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
| | - Irina Lakman
- Cardiovascular Disease in COVID-19, International Research Network, Ufa, Russia
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
- Department of Biomedical Engineering, Ufa State Aviation Technical University, Ufa, Russia
- Scientific Laboratory for the Socio-Economic Region Problems Investigation, Bashkir State University, Ufa, Russia
| | - Aleksandr Tataurov
- Scientific Laboratory for the Socio-Economic Region Problems Investigation, Bashkir State University, Ufa, Russia
| | - Rustem Zulkarneev
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
| | - Ildar Kabirov
- Department of Urology, Bashkir State Medical University, Ufa, Russia
| | - Benzhi Cai
- Cardiovascular Disease in COVID-19, International Research Network, Ufa, Russia
- The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy, Harbin Medical University, Harbin, China
| | - Bairas Valeev
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
| | - Valentin Pavlov
- Cardiovascular Disease in COVID-19, International Research Network, Ufa, Russia
- Department of Urology, Bashkir State Medical University, Ufa, Russia
| | - Kristen Kopp
- University Clinic for Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Uta C. Hoppe
- University Clinic for Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Michael Lichtenauer
- University Clinic for Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Lukas Fiedler
- University Clinic for Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
- Department of Internal Medicine, Cardiology, Nephrology and Intensive Care Medicine, Hospital Wiener Neustadt, Wiener Neustadt, Austria
| | - Rudin Pistulli
- Department of Cardiology I, Coronary and Peripheral Vascular Disease, Heart Failure, University Hospital Munster, Munster, Germany
| | - Naufal Zagidullin
- Cardiovascular Disease in COVID-19, International Research Network, Ufa, Russia
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
- Department of Biomedical Engineering, Ufa State Aviation Technical University, Ufa, Russia
| |
Collapse
|
24
|
Mesenchymal Stem Cells in Embryo-Maternal Communication under Healthy Conditions or Viral Infections: Lessons from a Bovine Model. Cells 2022; 11:cells11121858. [PMID: 35740987 PMCID: PMC9221285 DOI: 10.3390/cells11121858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Bovine mesenchymal stem cells are a relevant cell population found in the maternal reproductive tract that exhibits the immunomodulation capacity required to prevent embryo rejection. The phenotypic plasticity showed by both endometrial mesenchymal stem cells (eMSC) and embryonic trophoblast through mesenchymal to epithelial transition and epithelial to mesenchymal transition, respectively, is essential for embryo implantation. Embryonic trophoblast maintains active crosstalk via EVs and soluble proteins with eMSC and peripheral blood MSC (pbMSC) to ensure the retention of eMSC in case of pregnancy and induce the chemotaxis of pbMSC, critical for successful implantation. Early pregnancy-related proteins and angiogenic markers are detected as cargo in EVs and the soluble fraction of the embryonic trophectoderm secretome. The pattern of protein secretion in trophectoderm-EVs changes depending on their epithelial or mesenchymal phenotype and due to the uptake of MSC EVs. However, the changes in this EV-mediated communication between maternal and embryonic MSC populations infected by viruses that cause abortions in cattle are poorly understood. They are critical in the investigation of reproductive viral pathologies.
Collapse
|
25
|
The endothelial diapedesis synapse regulates transcellular migration of human T lymphocytes in a CX3CL1- and SNAP23-dependent manner. Cell Rep 2022; 38:110243. [PMID: 35045291 DOI: 10.1016/j.celrep.2021.110243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/22/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Understanding how cytotoxic T lymphocytes (CTLs) efficiently leave the circulation to target cancer cells or contribute to inflammation is of high medical interest. Here, we demonstrate that human central memory CTLs cross the endothelium in a predominantly paracellular fashion, whereas effector and effector memory CTLs cross the endothelium preferably in a transcellular fashion. We find that effector CTLs show a round morphology upon adhesion and induce a synapse-like interaction with the endothelium where ICAM-1 is distributed at the periphery. Moreover, the interaction of ICAM-1:β2integrin and endothelial-derived CX3CL1:CX3CR1 enables transcellular migration. Mechanistically, we find that ICAM-1 clustering recruits the SNARE-family protein SNAP23, as well as syntaxin-3 and -4, for the local release of endothelial-derived chemokines like CXCL1/8/10. In line, silencing of endothelial SNAP23 drives CTLs across the endothelium in a paracellular fashion. In conclusion, our data suggest that CTLs trigger local chemokine release from the endothelium through ICAM-1-driven signals driving transcellular migration.
Collapse
|
26
|
Mauersberger C, Hinterdobler J, Schunkert H, Kessler T, Sager HB. Where the Action Is-Leukocyte Recruitment in Atherosclerosis. Front Cardiovasc Med 2022; 8:813984. [PMID: 35087886 PMCID: PMC8787128 DOI: 10.3389/fcvm.2021.813984] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is the leading cause of death worldwide and leukocyte recruitment is a key element of this phenomenon, thus allowing immune cells to enter the arterial wall. There, in concert with accumulating lipids, the invading leukocytes trigger a plethora of inflammatory responses which promote the influx of additional leukocytes and lead to the continued growth of atherosclerotic plaques. The recruitment process follows a precise scheme of tethering, rolling, firm arrest, crawling and transmigration and involves multiple cellular and subcellular players. This review aims to provide a comprehensive up-to-date insight into the process of leukocyte recruitment relevant to atherosclerosis, each from the perspective of endothelial cells, monocytes and macrophages, neutrophils, T lymphocytes and platelets. In addition, therapeutic options targeting leukocyte recruitment into atherosclerotic lesions-or potentially arising from the growing body of insights into its precise mechanisms-are highlighted.
Collapse
Affiliation(s)
- Carina Mauersberger
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Julia Hinterdobler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
27
|
Aguilar G, Córdova F, Koning T, Sarmiento J, Boric MP, Birukov K, Cancino J, Varas-Godoy M, Soza A, Alves NG, Mujica PE, Durán WN, Ehrenfeld P, Sánchez FA. TNF-α-activated eNOS signaling increases leukocyte adhesion through the S-nitrosylation pathway. Am J Physiol Heart Circ Physiol 2021; 321:H1083-H1095. [PMID: 34652985 PMCID: PMC8782658 DOI: 10.1152/ajpheart.00065.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/21/2022]
Abstract
Nitric oxide (NO) is a key factor in inflammation. Endothelial nitric oxide synthase (eNOS), whose activity increases after stimulation with proinflammatory cytokines, produces NO in endothelium. NO activates two pathways: 1) soluble guanylate cyclase-protein kinase G and 2) S-nitrosylation (NO-induced modification of free-thiol cysteines in proteins). S-nitrosylation affects phosphorylation, localization, and protein interactions. NO is classically described as a negative regulator of leukocyte adhesion to endothelial cells. However, agonists activating NO production induce a fast leukocyte adhesion, which suggests that NO might positively regulate leukocyte adhesion. We tested the hypothesis that eNOS-induced NO promotes leukocyte adhesion through the S-nitrosylation pathway. We stimulated leukocyte adhesion to endothelium in vitro and in vivo using tumor necrosis factor-α (TNF-α) as proinflammatory agonist. ICAM-1 changes were evaluated by immunofluorescence, subcellular fractionation, immunoprecipitation, and fluorescence recovery after photobleaching (FRAP). Protein kinase Cζ (PKCζ) activity and S-nitrosylation were evaluated by Western blot analysis and biotin switch method, respectively. TNF-α, at short times of stimulation, activated the eNOS S-nitrosylation pathway and caused leukocyte adhesion to endothelial cells in vivo and in vitro. TNF-α-induced NO led to changes in ICAM-1 at the cell surface, which are characteristic of clustering. TNF-α-induced NO also produced S-nitrosylation and phosphorylation of PKCζ, association of PKCζ with ICAM-1, and ICAM-1 phosphorylation. The inhibition of PKCζ blocked leukocyte adhesion induced by TNF-α. Mass spectrometry analysis of purified PKCζ identified cysteine 503 as the only S-nitrosylated residue in the kinase domain of the protein. Our results reveal a new eNOS S-nitrosylation-dependent mechanism that induces leukocyte adhesion and suggests that S-nitrosylation of PKCζ may be an important regulatory step in early leukocyte adhesion in inflammation.NEW & NOTEWORTHY Contrary to the well-established inhibitory role of NO in leukocyte adhesion, we demonstrate a positive role of nitric oxide in this process. We demonstrate that NO induced by eNOS after TNF-α treatment induces early leukocyte adhesion activating the S-nitrosylation pathway. Our data suggest that PKCζ S-nitrosylation may be a key step in this process.
Collapse
Affiliation(s)
- Gaynor Aguilar
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco Córdova
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Tania Koning
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - José Sarmiento
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Mauricio P Boric
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Konstantin Birukov
- Department of Anesthesiology, University of Maryland Baltimore School of Medicine, Baltimore, Maryland
| | - Jorge Cancino
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Manuel Varas-Godoy
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Natascha G Alves
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, New Jersey
| | - Patricio E Mujica
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, New Jersey
- Department of Natural Sciences, School of Health and Natural Sciences, Mercy College, Dobbs Ferry, New York
| | - Walter N Durán
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, New Jersey
| | - Pamela Ehrenfeld
- Facultad de Medicina, Instituto de Anatomía, Histología y Patología, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
| | - Fabiola A Sánchez
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
28
|
Holl HM, Armstrong C, Galantino-Homer H, Brooks SA. Transcriptome diversity and differential expression in supporting limb laminitis. Vet Immunol Immunopathol 2021; 243:110353. [PMID: 34839133 DOI: 10.1016/j.vetimm.2021.110353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 10/19/2022]
Abstract
Laminitis results in impaired tissue integrity and Inflammation of the epidermal and dermal lamellae connecting the hoof capsule to the underlying distal phalanx and causes loss-of-use, poor quality of life and euthanasia in horses. Historically, studies to better understand the etiology of laminitis by documenting changes in gene expression were hampered by the paucity of gene annotation specific to hoof tissues. Next-generation sequencing enables improvements to annotation by incorporating equine- and hoof-specific transcripts. Here we characterize the hoof lamellar tissue transcriptome of naturally occurring supporting limb laminitis (SLL) using archived lamellar tissue from Thoroughbred racehorses consisting of 13 SLL hospital cases and seven age-matched control horses. This was achieved using: 1) Applied transcriptome annotation by long-read sequencing to document transcript diversity and 2) short-read RNA sequencing to document changes in gene expression correlating to the developmental and acute stages of naturally occurring SLL. 1.99Gbp of long-read transcriptome sequencing deeply documented 5067 unique loci, while short read RNA-seq under very stringent quality filters described 66 differentially expressed loci. Functional analysis of these loci revealed alterations in cell replication and growth, stress response and leukocyte recruitment and activation pathways. Differential expression of the Ezrin and TIMP3 genes suggests they may have utility as biomarkers for laminitis disease, while NR1D1 and genes relevant to the inflammasome are promising targets for novel pharmacological treatments.
Collapse
Affiliation(s)
- Heather M Holl
- Department of Animal Sciences, UF Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Caitlin Armstrong
- Department of Clinical Studies/New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States
| | - Hannah Galantino-Homer
- Department of Clinical Studies/New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States
| | - Samantha A Brooks
- Department of Animal Sciences, UF Genetics Institute, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
29
|
Morrison KA, Heesom KJ, Edler KJ, Doutch J, Price GJ, Koumanov F, Whitley P. Development of Methodology to Investigate the Surface SMALPome of Mammalian Cells. Front Mol Biosci 2021; 8:780033. [PMID: 34869600 PMCID: PMC8637157 DOI: 10.3389/fmolb.2021.780033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
Extraction of membrane proteins from biological membranes has traditionally involved detergents. In the past decade, a new technique has been developed, which uses styrene maleic acid (SMA) copolymers to extract membrane proteins into nanodiscs without the requirement of detergents. SMA nanodiscs are compatible with analytical techniques, such as small-angle scattering, NMR spectroscopy, and DLS, and are therefore an attractive medium for membrane protein characterization. While mass spectrometry has also been reported as a technique compatible with copolymer extraction, most studies have focused on lipidomics, which involves solvent extraction of lipids from nanodiscs prior to mass-spectrometry analysis. In this study, mass spectrometry proteomics was used to investigate whether there are qualitative or quantitative differences in the mammalian plasma membrane proteins extracted with SMA compared to a detergent control. For this, cell surface proteins of 3T3L1 fibroblasts were biotinylated and extracted using either SMA or detergent. Following affinity pull-down of biotinylated proteins with NeutrAvidin beads, samples were analyzed by nanoLC-MS. Here, we report for the first time, a global proteomics protocol for detection of a mammalian cell "SMALPome", membrane proteins incorporated into SMA nanodiscs. Removal of SMA from samples prior to processing of samples for mass spectrometry was a crucial step in the protocol. The reported surface SMALPome of 3T3L1 fibroblasts consists of 205 integral membrane proteins. It is apparent that the detergent extraction method used is, in general, quantitatively more efficient at extracting proteins from the plasma membrane than SMA extraction. However, samples prepared following detergent extraction contained a greater proportion of proteins that were considered to be "non-specific" than in samples prepared from SMA extracts. Tantalizingly, it was also observed that proteins detected uniquely or highly preferentially in pull-downs from SMA extracts were primarily multi-spanning membrane proteins. These observations hint at qualitative differences between SMA and detergent extraction that are worthy of further investigation.
Collapse
Affiliation(s)
- Kerrie A. Morrison
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- Department of Chemistry, University of Bath, Bath, United Kingdom
- Centre for Sustainable Circular Technologies, University of Bath, Bath, United Kingdom
| | - Kate J. Heesom
- University of Bristol, Proteomics Facility, Bristol, United Kingdom
| | - Karen J. Edler
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - James Doutch
- Rutherford Appleton Laboratory, ISIS Pulsed Neutron and Muon Source, Harwell Oxford, United Kingdom
| | - Gareth J. Price
- Department of Chemistry, University of Bath, Bath, United Kingdom
- Department of Chemistry, Khalifa University, Abu Dhabi, United Arab Emirates
| | | | - Paul Whitley
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| |
Collapse
|
30
|
Rodenburg WS, van Buul JD. Rho GTPase signalling networks in cancer cell transendothelial migration. VASCULAR BIOLOGY 2021; 3:R77-R95. [PMID: 34738075 PMCID: PMC8558887 DOI: 10.1530/vb-21-0008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/21/2023]
Abstract
Rho GTPases are small signalling G-proteins that are central regulators of cytoskeleton dynamics, and thereby regulate many cellular processes, including the shape, adhesion and migration of cells. As such, Rho GTPases are also essential for the invasive behaviour of cancer cells, and thus involved in several steps of the metastatic cascade, including the extravasation of cancer cells. Extravasation, the process by which cancer cells leave the circulation by transmigrating through the endothelium that lines capillary walls, is an essential step for metastasis towards distant organs. During extravasation, Rho GTPase signalling networks not only regulate the transmigration of cancer cells but also regulate the interactions between cancer and endothelial cells and are involved in the disruption of the endothelial barrier function, ultimately allowing cancer cells to extravasate into the underlying tissue and potentially form metastases. Thus, targeting Rho GTPase signalling networks in cancer may be an effective approach to inhibit extravasation and metastasis. In this review, the complex process of cancer cell extravasation will be discussed in detail. Additionally, the roles and regulation of Rho GTPase signalling networks during cancer cell extravasation will be discussed, both from a cancer cell and endothelial cell point of view.
Collapse
Affiliation(s)
- Wessel S Rodenburg
- Molecular Cell Biology Lab at Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands
| | - Jaap D van Buul
- Molecular Cell Biology Lab at Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, the Netherlands.,Leeuwenhoek Centre for Advanced Microscopy, Section Molecular Cytology at Swammerdam Institute for Life Sciences at University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
31
|
Moreno-Cañadas R, Luque-Martín L, Arroyo AG. Intravascular Crawling of Patrolling Monocytes: A Lèvy-Like Motility for Unique Search Functions? Front Immunol 2021; 12:730835. [PMID: 34603307 PMCID: PMC8485030 DOI: 10.3389/fimmu.2021.730835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Patrolling monocytes (PMo) are the organism’s preeminent intravascular guardians by their continuous search of damaged endothelial cells and harmful microparticles for their removal and to restore homeostasis. This surveillance is accomplished by PMo crawling on the apical side of the endothelium through regulated interactions of integrins and chemokine receptors with their endothelial ligands. We propose that the search mode governs the intravascular motility of PMo in vivo in a similar way to T cells looking for antigen in tissues. Signs of damage to the luminal side of the endothelium (local death, oxidized LDL, amyloid deposits, tumor cells, pathogens, abnormal red cells, etc.) will change the diffusive random towards a Lèvy-like crawling enhancing their recognition and clearance by PMo damage receptors as the integrin αMβ2 and CD36. This new perspective can help identify new actors to promote unique PMo intravascular actions aimed at maintaining endothelial fitness and combating harmful microparticles involved in diseases as lung metastasis, Alzheimer’s angiopathy, vaso-occlusive disorders, and sepsis.
Collapse
Affiliation(s)
- Rocío Moreno-Cañadas
- Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Laura Luque-Martín
- Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Alicia G Arroyo
- Molecular Biomedicine Department, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| |
Collapse
|
32
|
Mishchenko EL, Mishchenko AM, Ivanisenko VA. Mechanosensitive molecular interactions in atherogenic regions of the arteries: development of atherosclerosis. Vavilovskii Zhurnal Genet Selektsii 2021; 25:552-561. [PMID: 34595377 PMCID: PMC8453358 DOI: 10.18699/vj21.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 11/30/2022] Open
Abstract
A terrible disease of the cardiovascular system, atherosclerosis, develops in the areas of bends and
branches of arteries, where the direction and modulus of the blood flow velocity vector change, and consequently
so does the mechanical effect on endothelial cells in contact with the blood flow. The review focuses on topical
research studies on the development of atherosclerosis – mechanobiochemical events that transform the proatherogenic
mechanical stimulus of blood flow – low and low/oscillatory arterial wall shear stress in the chains of biochemical
reactions in endothelial cells, leading to the expression of specific proteins that cause the progression
of the pathological process. The stages of atherogenesis, systemic risk factors for atherogenesis and its important
hemodynamic factor, low and low/oscillatory wall shear stress exerted by blood flow on the endothelial cells lining
the arterial walls, have been described. The interactions of cell adhesion molecules responsible for the development
of atherosclerosis under low and low/oscillating shear stress conditions have been demonstrated. The activation
of the regulator of the expression of cell adhesion molecules, the transcription factor NF-κB, and the factors
regulating its activation under these conditions have been described. Mechanosensitive signaling pathways leading
to the expression of NF-κB in endothelial cells have been described. Studies of the mechanobiochemical signaling
pathways and interactions involved in the progression of atherosclerosis provide valuable information for the
development of approaches that delay or block the development of this disease.
Key words: atherogenesis; shear stress; transcription factor NF-κB; RelA expression; mechanosensitive receptors;
cell adhesion molecules; signaling pathways; mechanotransduction.
Collapse
Affiliation(s)
- E L Mishchenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | - V A Ivanisenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
33
|
Arts JJG, Mahlandt EK, Grönloh MLB, Schimmel L, Noordstra I, Gordon E, van Steen ACI, Tol S, Walzog B, van Rijssel J, Nolte MA, Postma M, Khuon S, Heddleston JM, Wait E, Chew TL, Winter M, Montanez E, Goedhart J, van Buul JD. Endothelial junctional membrane protrusions serve as hotspots for neutrophil transmigration. eLife 2021; 10:66074. [PMID: 34431475 PMCID: PMC8437435 DOI: 10.7554/elife.66074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/22/2021] [Indexed: 12/27/2022] Open
Abstract
Upon inflammation, leukocytes rapidly transmigrate across the endothelium to enter the inflamed tissue. Evidence accumulates that leukocytes use preferred exit sites, alhough it is not yet clear how these hotspots in the endothelium are defined and how they are recognized by the leukocyte. Using lattice light sheet microscopy, we discovered that leukocytes prefer endothelial membrane protrusions at cell junctions for transmigration. Phenotypically, these junctional membrane protrusions are present in an asymmetric manner, meaning that one endothelial cell shows the protrusion and the adjacent one does not. Consequently, leukocytes cross the junction by migrating underneath the protruding endothelial cell. These protrusions depend on Rac1 activity and by using a photo-activatable Rac1 probe, we could artificially generate local exit-sites for leukocytes. Overall, we have discovered a new mechanism that uses local induced junctional membrane protrusions to facilitate/steer the leukocyte escape/exit from inflamed vessel walls.
Collapse
Affiliation(s)
- Janine JG Arts
- Molecular Cell Biology Lab at Dept. Molecular Hematology, Sanquin Research and Landsteiner LaboratoryAmsterdamNetherlands
- Leeuwenhoek Centre for Advanced Microscopy (LCAM), section Molecular Cytology at Swammerdam Institute for Life Sciences (SILS) at University of AmsterdamAmsterdamNetherlands
| | - Eike K Mahlandt
- Leeuwenhoek Centre for Advanced Microscopy (LCAM), section Molecular Cytology at Swammerdam Institute for Life Sciences (SILS) at University of AmsterdamAmsterdamNetherlands
| | - Max LB Grönloh
- Molecular Cell Biology Lab at Dept. Molecular Hematology, Sanquin Research and Landsteiner LaboratoryAmsterdamNetherlands
- Leeuwenhoek Centre for Advanced Microscopy (LCAM), section Molecular Cytology at Swammerdam Institute for Life Sciences (SILS) at University of AmsterdamAmsterdamNetherlands
| | - Lilian Schimmel
- Molecular Cell Biology Lab at Dept. Molecular Hematology, Sanquin Research and Landsteiner LaboratoryAmsterdamNetherlands
- Leeuwenhoek Centre for Advanced Microscopy (LCAM), section Molecular Cytology at Swammerdam Institute for Life Sciences (SILS) at University of AmsterdamAmsterdamNetherlands
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of QueenslandBrisbaneQLDAustralia
| | - Ivar Noordstra
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of QueenslandBrisbaneQLDAustralia
| | - Emma Gordon
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of QueenslandBrisbaneQLDAustralia
| | - Abraham CI van Steen
- Molecular Cell Biology Lab at Dept. Molecular Hematology, Sanquin Research and Landsteiner LaboratoryAmsterdamNetherlands
| | - Simon Tol
- Molecular Cell Biology Lab at Dept. Molecular Hematology, Sanquin Research and Landsteiner LaboratoryAmsterdamNetherlands
| | - Barbara Walzog
- Department of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Biomedical Center, Ludwig-Maximilians-Universität MünchenPlanegg-MartinsriedGermany
| | - Jos van Rijssel
- Molecular Cell Biology Lab at Dept. Molecular Hematology, Sanquin Research and Landsteiner LaboratoryAmsterdamNetherlands
| | - Martijn A Nolte
- Molecular Cell Biology Lab at Dept. Molecular Hematology, Sanquin Research and Landsteiner LaboratoryAmsterdamNetherlands
| | - Marten Postma
- Leeuwenhoek Centre for Advanced Microscopy (LCAM), section Molecular Cytology at Swammerdam Institute for Life Sciences (SILS) at University of AmsterdamAmsterdamNetherlands
| | - Satya Khuon
- Advanced Imaging Center at Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - John M Heddleston
- Advanced Imaging Center at Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Microscopy Facility at the Cleveland Clinic Florida Research and Innovation CenterPort St. LucieUnited States
| | - Eric Wait
- Advanced Imaging Center at Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Teng Leong Chew
- Advanced Imaging Center at Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Mark Winter
- Zuckerman Postdoctoral Fellow, Department of Marine Sciences, University of HaifaHaifaIsrael
| | - Eloi Montanez
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of BarcelonaBarcelonaSpain
| | - Joachim Goedhart
- Leeuwenhoek Centre for Advanced Microscopy (LCAM), section Molecular Cytology at Swammerdam Institute for Life Sciences (SILS) at University of AmsterdamAmsterdamNetherlands
| | - Jaap D van Buul
- Molecular Cell Biology Lab at Dept. Molecular Hematology, Sanquin Research and Landsteiner LaboratoryAmsterdamNetherlands
- Leeuwenhoek Centre for Advanced Microscopy (LCAM), section Molecular Cytology at Swammerdam Institute for Life Sciences (SILS) at University of AmsterdamAmsterdamNetherlands
| |
Collapse
|
34
|
Eskandari M, Mellati AA. Liver X Receptor as a Possible Drug Target for Blood-Brain Barrier Integrity. Adv Pharm Bull 2021; 12:466-475. [PMID: 35935038 PMCID: PMC9348539 DOI: 10.34172/apb.2022.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 12/04/2022] Open
Abstract
Purpose: blood-brain barrier (BBB) is made of specialized cells that are responsible for the selective passage of substances directed to the brain. The integrated BBB is essential for precise controlling of the different substances passage as well as protecting the brain from various damages. In this article, we attempted to explain the role of liver X receptor (LXR) in maintaining BBB integrity as a possible drug target.
Methods: In this study, various databases, including PubMed, Google Scholar, and Scopus were searched using the following keywords: blood-brain barrier, BBB, liver X receptor, and LXR until July, 2020. Additionally, contents close to the subject of our study were surveyed.
Results: LXR is a receptor the roles of which in various diseases have been investigated. LXR can affect maintaining BBB by affecting various ways such as ATP-binding cassette transporter A1 (ABCA1), matrix metalloproteinase-9 (MMP9), insulin-like growth factor 1 (IGF1), nuclear factor-kappa B (NF-κB) signaling, mitogen-activated protein kinase (MAPK), tight junction molecules, both signal transducer and activator of transcription 1 (STAT1), Wnt/β-catenin Signaling, transforming growth factor beta (TGF-β) signaling, and expressions of Smad 2/3 and Snail.
Conclusion: LXR could possibly be used either as a target for drug delivery to brain tissue or as a target for maintaining the BBB integrity in different diseases; thereby the drug will be conducted to tissues, other than the brain. If it is verified that only LXRα is necessary for protecting BBB, some specific LXRα ligands must be found and then used in medication.
Collapse
Affiliation(s)
- Mahsa Eskandari
- Medical school, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Awsat Mellati
- Zanjan Metabolic Disease Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
35
|
Farhang S, Soleimani M, Ostadsharif M, Ghasemi N. Neurogenic induction of human dental pulp derived stem cells by hanging drop technique, basic fibroblast growth factor, and SHH factors. Dent Res J (Isfahan) 2021; 18:57. [PMID: 34497692 PMCID: PMC8404565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/07/2020] [Accepted: 01/23/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The progressive destruction of nerve cells in nervous system will induce neurodegenerative diseases. Recently, cell-based therapies have attracted the attention of researchers in the treatment of these abnormal conditions. Thus, the aim of this study was to provide a simple and efficient way to differentiate human dental pulp stem cells into neural cell-like to achieve a homogeneous population of these cells for transplantation in neurodegenerative diseases. MATERIALS AND METHODS In this basic research, human dental pulp stem cells were isolated and characterized by immunocytochemistry and flow cytometry techniques. In the following, the cells were cultured using hanging drop as three-dimensional (3D) and tissue culture plate as 2D techniques. Subsequently, cultured cells were differentiated into neuron cell-like in the presence of FGF and Sonic hedgehog (SHH) factors. Finally, the percentage of cells expressing Neu N and β tubulin III markers was determined using immunocytochemistry technique. Finally, all data were analyzed using the SPSS software. RESULTS Flow cytometry and immunocytochemistry results indicated that human dental pulp-derived stem cells were CD90, CD106-positive, but were negative for CD34, CD45 markers (P ≤ 0.001). In addition, the mean percentage of β tubulin positive cells in different groups did not differ significantly from each other (P ≥ 0.05). Nevertheless, the mean percentage of Neu N-positive cells was significantly higher in differentiated cells with embryoid bodies' source, especially in the presence of SHH than other groups (P ≤ 0.05). CONCLUSION It is concluded that due to the wide range of SHH functions and the facilitation of intercellular connections in the hanging droop method, it is recommended that the use of hanging drop method and SHH factor can be effective in increasing the efficiency of cell differentiation.
Collapse
Affiliation(s)
- Safa Farhang
- Department of Medical Basic Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Mitra Soleimani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Ostadsharif
- Department of Medical Basic Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Nazem Ghasemi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,Address for correspondence: Dr. Nazem Ghasemi, Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. E-mail:
| |
Collapse
|
36
|
Mateos-Olivares M, García-Onrubia L, Valentín-Bravo FJ, González-Sarmiento R, Lopez-Galvez M, Pastor JC, Usategui-Martín R, Pastor-Idoate S. Rho-Kinase Inhibitors for the Treatment of Refractory Diabetic Macular Oedema. Cells 2021; 10:cells10071683. [PMID: 34359853 PMCID: PMC8307715 DOI: 10.3390/cells10071683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetic macular oedema (DMO) is one of the leading causes of vision loss associated with diabetic retinopathy (DR). New insights in managing this condition have changed the paradigm in its treatment, with intravitreal injections of antivascular endothelial growth factor (anti-VEGF) having become the standard therapy for DMO worldwide. However, there is no single standard therapy for all patients DMO refractory to anti-VEGF treatment; thus, further investigation is still needed. The key obstacles in developing suitable therapeutics for refractory DMO lie in its complex pathophysiology; therefore, there is an opportunity for further improvements in the progress and applications of new drugs. Previous studies have indicated that Rho-associated kinase (Rho-kinase/ROCK) is an essential molecule in the pathogenesis of DMO. This is why the Rho/ROCK signalling pathway has been proposed as a possible target for new treatments. The present review focuses on the recent progress on the possible role of ROCK and its therapeutic potential in DMO. A systematic literature search was performed, covering the years 1991 to 2021, using the following keywords: "rho-Associated Kinas-es", "Diabetic Retinopathy", "Macular Edema", "Ripasudil", "Fasudil" and "Netarsudil". Better insight into the pathological role of Rho-kinase/ROCK may lead to the development of new strategies for refractory DMO treatment and prevention.
Collapse
Affiliation(s)
- Milagros Mateos-Olivares
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
| | - Luis García-Onrubia
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
- Department of Ophthalmology, St Thomas’ Hospital, London SE1 7EH, UK
| | - Fco. Javier Valentín-Bravo
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
| | - Rogelio González-Sarmiento
- Area of Infectious, Inflammatory and Metabolic Disease, Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain;
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007 Salamanca, Spain
| | - Maribel Lopez-Galvez
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
- Retina Group, IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, 47002 Valladolid, Spain
- Cooperative Network for Research in Ophthalmology Oftared, National Institute of Health Carlos III, 28220 Madrid, Spain
| | - J. Carlos Pastor
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
- Retina Group, IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, 47002 Valladolid, Spain
- Cooperative Network for Research in Ophthalmology Oftared, National Institute of Health Carlos III, 28220 Madrid, Spain
| | - Ricardo Usategui-Martín
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-CSIC, 37007 Salamanca, Spain
- Retina Group, IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, 47002 Valladolid, Spain
- Correspondence: (R.U.-M.); (S.P.-I.); Tel.: +34-983-423-559
| | - Salvador Pastor-Idoate
- Department of Ophthalmology, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; (M.M.-O.); (L.G.-O.); (F.J.V.-B.); (M.L.-G.); (J.C.P.)
- Retina Group, IOBA (Institute of Applied Ophthalmobiology), University of Valladolid, 47002 Valladolid, Spain
- Cooperative Network for Research in Ophthalmology Oftared, National Institute of Health Carlos III, 28220 Madrid, Spain
- Correspondence: (R.U.-M.); (S.P.-I.); Tel.: +34-983-423-559
| |
Collapse
|
37
|
Abstract
In contrast to solid cancers, which often require genetic modifications and complex cellular reprogramming for effective metastatic dissemination, leukaemic cells uniquely possess the innate ability for migration and invasion. Dedifferentiated, malignant leukocytes retain the benign leukocytes' capacity for cell motility and survival in the circulation, while acquiring the potential for rapid and uncontrolled cell division. For these reasons, leukaemias, although not traditionally considered as metastatic diseases, are in fact models of highly efficient metastatic spread. Accordingly, they are often aggressive and challenging diseases to treat. In this Perspective, we discuss the key molecular processes that facilitate metastasis in a variety of leukaemic subtypes, the clinical significance of leukaemic invasion into specific tissues and the current pipeline of treatments targeting leukaemia metastasis.
Collapse
Affiliation(s)
- Andrew E Whiteley
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Trevor T Price
- Department of Medicine, Duke University, Durham, NC, USA
| | - Gaia Cantelli
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Dorothy A Sipkins
- Department of Medicine, Duke University, Durham, NC, USA.
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
38
|
Gholizadeh M, Saeedy SAG, Roodi PB, Saedisomeolia A. The association between zinc and endothelial adhesion molecules ICAMs and VCAM-1 and nuclear receptors PPAR-ɑ and PPAR-γ: A systematic review on cell culture, animal and human studies. Microvasc Res 2021; 138:104217. [PMID: 34197877 DOI: 10.1016/j.mvr.2021.104217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/12/2021] [Accepted: 06/24/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Cardiovascular health is strongly influenced by diet. The levels of inflammatory factors like ICAM-1 and VCAM-1 are high in patients with atherosclerosis or predisposing factor for heart disease. Antioxidant and anti-inflammatory functions are attributed to zinc. We systematically reviewed cell culture, human or animal studies for determining the relationship between zinc status and ICAMs or VCAM-1 levels. METHODS PubMed, Google Scholar, Scopus, and Cochrane databases from database inception till 30th August 2020 were systematically searched to obtain any possible article for inclusion. RESULTS After screening and removing unrelated or duplicate articles by the title and abstract by two independent reviewers, 15 articles were included. Results indicating an inverse relationship between zinc status with ICAM-1 or VCAM-1 levels and the development of endothelial inflammation, plaque formation, or atherosclerosis. A direct relationship between zinc status and PPAR-α or γ levels was also observed. Zinc oxide (ZnO), zinc nanoparticles, or ions can cause endothelial activation and increased levels of ICAM-1 and VCAM-1. CONCLUSION Normal function of the endothelium is linked with zinc level. Zinc deficiency causes atherosclerosis, most probably via increased production of ICAM-1 and VCAM-1; and decreased expression of PPAR-ɑ and PPAR-γ receptors. Contrarily, endothelial activation and increased ICAM-1 and VCAM-1 levels can be caused by ZnO, zinc nanoparticles, or zinc ions.
Collapse
Affiliation(s)
- Mohammad Gholizadeh
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Poorya Basafay Roodi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Saedisomeolia
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Embryonic Trophectoderm Secretomics Reveals Chemotactic Migration and Intercellular Communication of Endometrial and Circulating MSCs in Embryonic Implantation. Int J Mol Sci 2021; 22:ijms22115638. [PMID: 34073234 PMCID: PMC8199457 DOI: 10.3390/ijms22115638] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/28/2022] Open
Abstract
Embryonic implantation is a key step in the establishment of pregnancy. In the present work, we have carried out an in-depth proteomic analysis of the secretome (extracellular vesicles and soluble proteins) of two bovine blastocysts embryonic trophectoderm primary cultures (BBT), confirming different epithelial–mesenchymal transition stages in these cells. BBT-secretomes contain early pregnancy-related proteins and angiogenic proteins both as cargo in EVs and the soluble fraction. We have demonstrated the functional transfer of protein-containing secretome between embryonic trophectoderm and maternal MSC in vitro using two BBT primary cultures eight endometrial MSC (eMSC) and five peripheral blood MSC (pbMSC) lines. We observed that eMSC and pbMSC chemotax to both the soluble fraction and EVs of the BBT secretome. In addition, in a complementary direction, we found that the pattern of expression of implantation proteins in BBT-EVs changes depending on: (i) their epithelial–mesenchymal phenotype; (ii) as a result of the uptake of eMSC- or pbMSC-EV previously stimulated or not with embryonic signals (IFN-τ); (iii) because of the stimulation with the endometrial cytokines present in the uterine fluid in the peri-implantation period.
Collapse
|
40
|
Troncoso MF, Ortiz-Quintero J, Garrido-Moreno V, Sanhueza-Olivares F, Guerrero-Moncayo A, Chiong M, Castro PF, García L, Gabrielli L, Corbalán R, Garrido-Olivares L, Lavandero S. VCAM-1 as a predictor biomarker in cardiovascular disease. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166170. [PMID: 34000374 DOI: 10.1016/j.bbadis.2021.166170] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022]
Abstract
The vascular cellular adhesion molecule-1 (VCAM-1) is a protein that canonically participates in the adhesion and transmigration of leukocytes to the interstitium during inflammation. VCAM-1 expression, together with soluble VCAM-1 (sVCAM-1) induced by the shedding of VCAM-1 by metalloproteinases, have been proposed as biomarkers in immunological diseases, cancer, autoimmune myocarditis, and as predictors of mortality and morbidity in patients with chronic heart failure (HF), endothelial injury in patients with coronary artery disease, and arrhythmias. This revision aims to discuss the role of sVCAM-1 as a biomarker to predict the occurrence, development, and preservation of cardiovascular disease.
Collapse
Affiliation(s)
- Mayarling Francisca Troncoso
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jafet Ortiz-Quintero
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile; Department of Bioanalysis & Immunology, Faculty of Sciences, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Valeria Garrido-Moreno
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Fernanda Sanhueza-Olivares
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alejandra Guerrero-Moncayo
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo F Castro
- Division of Cardiovascular Diseases, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lorena García
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luigi Gabrielli
- Division of Cardiovascular Diseases, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ramón Corbalán
- Division of Cardiovascular Diseases, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Garrido-Olivares
- Division of Surgery, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Sergio Lavandero
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile; Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
41
|
Pogorzelska-Dyrbus J, Szepietowski JC. Adhesion Molecules in Non-melanoma Skin Cancers: A Comprehensive Review. In Vivo 2021; 35:1327-1336. [PMID: 33910810 DOI: 10.21873/invivo.12385] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/05/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022]
Abstract
Basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the most frequently diagnosed cancers, generating significant medical and financial problems. Cutaneous carcinogenesis is a very complex process characterized by genetic and molecular alterations, and mediated by various proteins and pathways. Cell adhesion molecules (CAMs) are transmembrane proteins responsible for cell-to-cell and cell-to-extracellular matrix adhesion, engaged in all steps of tumor progression. Based on their structures they are divided into five major groups: cadherins, integrins, selectins, immunoglobulins and CD44 family. Cadherins, integrins and CD44 are the most studied in the context of non-melanoma skin cancers. The differences in expression of adhesion molecules may be related to the invasiveness of these tumors, through the loss of tissue integrity, neovascularization and alterations in intercellular signaling processes. In this article, each group of CAMs is briefly described and the present knowledge on their role in the development of non-melanoma skin cancers is summarized.
Collapse
Affiliation(s)
| | - Jacek C Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
42
|
Mylvaganam S, Riedl M, Vega A, Collins RF, Jaqaman K, Grinstein S, Freeman SA. Stabilization of Endothelial Receptor Arrays by a Polarized Spectrin Cytoskeleton Facilitates Rolling and Adhesion of Leukocytes. Cell Rep 2021; 31:107798. [PMID: 32579925 PMCID: PMC7548125 DOI: 10.1016/j.celrep.2020.107798] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/15/2020] [Accepted: 06/01/2020] [Indexed: 12/15/2022] Open
Abstract
Multivalent complexes of endothelial adhesion receptors (e.g., selectins) engage leukocytes to orchestrate their migration to inflamed tissues. Proper anchorage and sufficient density (clustering) of endothelial receptors are required for efficient leukocyte capture and rolling. We demonstrate that a polarized spectrin network dictates the stability of the endothelial cytoskeleton, which is attached to the apical membrane, at least in part, by the abundant transmembrane protein CD44. Single-particle tracking revealed that CD44 undergoes prolonged periods of immobilization as it tethers to the cytoskeleton. The CD44-spectrin "picket fence" alters the behavior of bystander molecules-notably, selectins-curtailing their mobility, inducing their apical accumulation, and favoring their clustering within caveolae. Accordingly, depletion of either spectrin or CD44 virtually eliminated leukocyte rolling and adhesion to the endothelium. Our results indicate that a unique spectrin-based apical cytoskeleton tethered to transmembrane pickets-notably, CD44-is essential for proper extravasation of leukocytes in response to inflammation.
Collapse
Affiliation(s)
- Sivakami Mylvaganam
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Magdalena Riedl
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada
| | - Anthony Vega
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Richard F Collins
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada
| | - Khuloud Jaqaman
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
| | - Spencer A Freeman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, 686 Bay Street, 19-9800, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
43
|
Grönloh MLB, Arts JJG, van Buul JD. Neutrophil transendothelial migration hotspots - mechanisms and implications. J Cell Sci 2021; 134:134/7/jcs255653. [PMID: 33795378 DOI: 10.1242/jcs.255653] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
During inflammation, leukocytes circulating in the blood stream exit the vasculature in a process called leukocyte transendothelial migration (TEM). The current paradigm of this process comprises several well-established steps, including rolling, adhesion, crawling, diapedesis and sub-endothelial crawling. Nowadays, the role of the endothelium in transmigration is increasingly appreciated. It has been established that leukocyte exit sites on the endothelium and in the pericyte layer are in fact not random but instead may be specifically recognized by migrating leukocytes. Here, we review the concept of transmigration hotspots, specific sites in the endothelial and pericyte layer where most transmigration events take place. Chemokine cues, adhesion molecules and membrane protrusions as well as physical factors, such as endothelial junction stability, substrate stiffness, the presence of pericytes and basement membrane composition, may all contribute to local hotspot formation to facilitate leukocytes exiting the vasculature. In this Review, we discuss the biological relevance of such hotspots and put forward multiple mechanisms and factors that determine a functional TEM hotspot.
Collapse
Affiliation(s)
- Max L B Grönloh
- Molecular Cell Biology Lab, Dept. Plasma proteins, Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam 1066CX, The Netherlands.,Leeuwenhoek Centre for Advanced Microscopy (LCAM), Molecular Cytology section at Swammerdam Institute for Life Sciences (SILS) at University of Amsterdam, Amsterdam 1066CX, The Netherlands
| | - Janine J G Arts
- Molecular Cell Biology Lab, Dept. Plasma proteins, Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam 1066CX, The Netherlands.,Leeuwenhoek Centre for Advanced Microscopy (LCAM), Molecular Cytology section at Swammerdam Institute for Life Sciences (SILS) at University of Amsterdam, Amsterdam 1066CX, The Netherlands
| | - Jaap D van Buul
- Molecular Cell Biology Lab, Dept. Plasma proteins, Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam 1066CX, The Netherlands .,Leeuwenhoek Centre for Advanced Microscopy (LCAM), Molecular Cytology section at Swammerdam Institute for Life Sciences (SILS) at University of Amsterdam, Amsterdam 1066CX, The Netherlands
| |
Collapse
|
44
|
Schwartz AB, Campos OA, Criado-Hidalgo E, Chien S, del Álamo JC, Lasheras JC, Yeh YT. Elucidating the Biomechanics of Leukocyte Transendothelial Migration by Quantitative Imaging. Front Cell Dev Biol 2021; 9:635263. [PMID: 33855018 PMCID: PMC8039384 DOI: 10.3389/fcell.2021.635263] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/09/2021] [Indexed: 01/13/2023] Open
Abstract
Leukocyte transendothelial migration is crucial for innate immunity and inflammation. Upon tissue damage or infection, leukocytes exit blood vessels by adhering to and probing vascular endothelial cells (VECs), breaching endothelial cell-cell junctions, and transmigrating across the endothelium. Transendothelial migration is a critical rate-limiting step in this process. Thus, leukocytes must quickly identify the most efficient route through VEC monolayers to facilitate a prompt innate immune response. Biomechanics play a decisive role in transendothelial migration, which involves intimate physical contact and force transmission between the leukocytes and the VECs. While quantifying these forces is still challenging, recent advances in imaging, microfabrication, and computation now make it possible to study how cellular forces regulate VEC monolayer integrity, enable efficient pathfinding, and drive leukocyte transmigration. Here we review these recent advances, paying particular attention to leukocyte adhesion to the VEC monolayer, leukocyte probing of endothelial barrier gaps, and transmigration itself. To offer a practical perspective, we will discuss the current views on how biomechanics govern these processes and the force microscopy technologies that have enabled their quantitative analysis, thus contributing to an improved understanding of leukocyte migration in inflammatory diseases.
Collapse
Affiliation(s)
- Amy B. Schwartz
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, United States
| | - Obed A. Campos
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, United States
| | - Ernesto Criado-Hidalgo
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, United States
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Juan C. del Álamo
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, United States
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, United States
| | - Juan C. Lasheras
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Yi-Ting Yeh
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
45
|
Sluiter TJ, van Buul JD, Huveneers S, Quax PHA, de Vries MR. Endothelial Barrier Function and Leukocyte Transmigration in Atherosclerosis. Biomedicines 2021; 9:328. [PMID: 33804952 PMCID: PMC8063931 DOI: 10.3390/biomedicines9040328] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/24/2022] Open
Abstract
The vascular endothelium is a highly specialized barrier that controls passage of fluids and migration of cells from the lumen into the vessel wall. Endothelial cells assist leukocytes to extravasate and despite the variety in the specific mechanisms utilized by different leukocytes to cross different vascular beds, there is a general principle of capture, rolling, slow rolling, arrest, crawling, and ultimately diapedesis via a paracellular or transcellular route. In atherosclerosis, the barrier function of the endothelium is impaired leading to uncontrolled leukocyte extravasation and vascular leakage. This is also observed in the neovessels that grow into the atherosclerotic plaque leading to intraplaque hemorrhage and plaque destabilization. This review focuses on the vascular endothelial barrier function and the interaction between endothelial cells and leukocytes during transmigration. We will discuss the role of endothelial dysfunction, transendothelial migration of leukocytes and plaque angiogenesis in atherosclerosis.
Collapse
Affiliation(s)
- Thijs J. Sluiter
- Department of Vascular Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (T.J.S.); (P.H.A.Q.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jaap D. van Buul
- Sanquin Research and Landsteiner Laboratory, Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, 1066 CX Amsterdam, The Netherlands;
| | - Stephan Huveneers
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Paul H. A. Quax
- Department of Vascular Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (T.J.S.); (P.H.A.Q.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Margreet R. de Vries
- Department of Vascular Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (T.J.S.); (P.H.A.Q.)
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
46
|
Screening of Hub Genes Associated with Pulmonary Arterial Hypertension by Integrated Bioinformatic Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6626094. [PMID: 33816621 PMCID: PMC8010527 DOI: 10.1155/2021/6626094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022]
Abstract
Background Pulmonary arterial hypertension (PAH) is a disease or pathophysiological syndrome which has a low survival rate with abnormally elevated pulmonary artery pressure caused by known or unknown reasons. In addition, the pathogenesis of PAH is not fully understood. Therefore, it has become an urgent matter to search for clinical molecular markers of PAH, study the pathogenesis of PAH, and contribute to the development of new science-based PAH diagnosis and targeted treatment methods. Methods In this study, the Gene Expression Omnibus (GEO) database was used to downloaded a microarray dataset about PAH, and the differentially expressed genes (DEGs) between PAH and normal control were screened out. Moreover, we performed the functional enrichment analyses and protein-protein interaction (PPI) network analyses of the DEGs. In addition, the prediction of miRNA and transcriptional factor (TF) of hub genes and construction miRNA-TF-hub gene network were performed. Besides, the ROC curve was used to evaluate the diagnostic value of hub genes. Finally, the potential drug targets for the 5 identified hub genes were screened out. Results 69 DEGs were identified between PAH samples and normal samples. GO and KEGG pathway analyses revealed that these DEGs were mostly enriched in the inflammatory response and cytokine-cytokine receptor interaction, respectively. The miRNA-hub genes network was conducted subsequently with 131 miRNAs, 7 TFs, and 5 hub genes (CCL5, CXCL12, VCAM1, CXCR1, and SPP1) which screened out via constructing the PPI network. 17 drugs interacted with 5 hub genes were identified. Conclusions Through bioinformatic analysis of microarray data sets, 5 hub genes (CCL5, CXCL12, VCAM1, CXCR1, and SPP1) were identified from DEGs between control samples and PAH samples. Studies showed that the five hub genes might play an important role in the development of PAH. These 5 hub genes might be potential biomarkers for diagnosis or targets for the treatment of PAH. In addition, our work also indicated that paying more attention on studies based on these 5 hub genes might help to understand the molecular mechanism of the development of PAH.
Collapse
|
47
|
Jiang Q, Zhao Y, Shui Y, Zhou X, Cheng L, Ren B, Chen Z, Li M. Interactions Between Neutrophils and Periodontal Pathogens in Late-Onset Periodontitis. Front Cell Infect Microbiol 2021; 11:627328. [PMID: 33777839 PMCID: PMC7994856 DOI: 10.3389/fcimb.2021.627328] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/03/2021] [Indexed: 02/05/2023] Open
Abstract
Late-onset periodontitis is associated with a series of inflammatory reactions induced by periodontal pathogens, such as Porphyromonas gingivalis, a keystone pathogen involved in periodontitis. Neutrophils are the most abundant leukocytes in the periodontal pocket/gingival crevice and inflamed periodontal tissues. They form a “wall” between the dental plaque and the junctional epithelium, preventing microbial invasion. The balance between neutrophils and the microbial community is essential to periodontal homeostasis. Excessive activation of neutrophils in response to periodontal pathogens can induce tissue damage and lead to periodontitis persistence. Therefore, illuminating the interactions between neutrophils and periodontal pathogens is critical for progress in the field of periodontitis. The present review aimed to summarize the interactions between neutrophils and periodontal pathogens in late-onset periodontitis, including neutrophil recruitment, neutrophil mechanisms to clear the pathogens, and pathogen strategies to evade neutrophil-mediated elimination of bacteria. The recruitment is a multi-step process, including tethering and rolling, adhesion, crawling, and transmigration. Neutrophils clear the pathogens mainly by phagocytosis, respiratory burst responses, degranulation, and neutrophil extracellular trap (NET) formation. The mechanisms that pathogens activate to evade neutrophil-mediated killing include impairing neutrophil recruitment, preventing phagocytosis, uncoupling killing from inflammation, and resistance to ROS, degranulation products, and NETs.
Collapse
Affiliation(s)
- Qingsong Jiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yuxi Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yusen Shui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Zhu Chen
- Department of Conservative Dentistry and Endodontics, Guiyang Hospital of Stomatology, Guiyang, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Schoppmeyer R, van Buul JD. The diapedesis synapse: dynamic leukocyte-endothelium interactions. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2020.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Hao Y, Lu C, Zhang B, Xu Z, Guo H, Zhang G. Identifying the Potential Differentially Expressed miRNAs and mRNAs in Osteonecrosis of the Femoral Head Based on Integrated Analysis. Clin Interv Aging 2021; 16:187-202. [PMID: 33542623 PMCID: PMC7851582 DOI: 10.2147/cia.s289479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose Osteonecrosis of the femoral head is a common disease of the hip that leads to severe pain or joint disability. We aimed to identify potential differentially expressed miRNAs and mRNAs in osteonecrosis of the femoral head. Methods The data of miRNA and mRNA were firstly downloaded from the database. Secondly, the regulatory network of miRNAs-mRNAs was constructed, followed by function annotation of mRNAs. Thirdly, an in vitro experiment was applied to validate the expression of miRNAs and targeted mRNAs. Finally, GSE123568 dataset was used for electronic validation and diagnostic analysis of targeted mRNAs. Results Several regulatory interaction pairs between miRNA and mRNAs were identified, such as hsa-miR-378c-WNT3A/DACT1/CSF1, hsa-let-7a-5p-RCAN2/IL9R, hsa-miR-28-5p-RELA, hsa-miR-3200-5p-RELN, and hsa-miR-532-5p-CLDN18/CLDN10. Interestingly, CLDN10, CLDN18, CSF1, DACT1, IL9R, RCAN2, RELN, and WNT3A had the diagnostic value for osteonecrosis of the femoral head. Wnt signaling pathway (involved WNT3A), chemokine signaling pathway (involved RELA), focal adhesion and ECM-receptor interaction (involved RELN), cell adhesion molecules (CAMs) (involved CLDN18 and CLDN10), cytokine-cytokine receptor interaction, and hematopoietic cell lineage (involved CSF1 and IL9R) were identified. Conclusion The identified differentially expressed miRNAs and mRNAs may be involved in the pathology of osteonecrosis of the femoral head.
Collapse
Affiliation(s)
- Yangquan Hao
- Department of Osteonecrosis and Joint Reconstruction, Honghui Hospital Xian Jiao Tong University Health Science Center, Xian, Shaanxi 710068, People's Republic of China
| | - Chao Lu
- Department of Osteonecrosis and Joint Reconstruction, Honghui Hospital Xian Jiao Tong University Health Science Center, Xian, Shaanxi 710068, People's Republic of China
| | - Baogang Zhang
- Department of Osteonecrosis and Joint Reconstruction, Honghui Hospital Xian Jiao Tong University Health Science Center, Xian, Shaanxi 710068, People's Republic of China
| | - Zhaochen Xu
- Department of Osteonecrosis and Joint Reconstruction, Honghui Hospital Xian Jiao Tong University Health Science Center, Xian, Shaanxi 710068, People's Republic of China
| | - Hao Guo
- Department of Osteonecrosis and Joint Reconstruction, Honghui Hospital Xian Jiao Tong University Health Science Center, Xian, Shaanxi 710068, People's Republic of China
| | - Gaokui Zhang
- Department of Osteonecrosis and Joint Reconstruction, Honghui Hospital Xian Jiao Tong University Health Science Center, Xian, Shaanxi 710068, People's Republic of China
| |
Collapse
|
50
|
Ghasemi N, Farhang S, Soleimani M, Ostadsharif M. Neurogenic induction of human dental pulp derived stem cells by hanging drop technique, basic fibroblast growth factor, and SHH factors. Dent Res J (Isfahan) 2021. [DOI: 10.4103/1735-3327.321868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|