1
|
Balana AT, Mahul-Mellier AL, Nguyen BA, Horvath M, Javed A, Hard ER, Jasiqi Y, Singh P, Afrin S, Pedretti R, Singh V, Lee VMY, Luk KC, Saelices L, Lashuel HA, Pratt MR. O-GlcNAc forces an α-synuclein amyloid strain with notably diminished seeding and pathology. Nat Chem Biol 2024; 20:646-655. [PMID: 38347213 PMCID: PMC11062923 DOI: 10.1038/s41589-024-01551-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
Amyloid-forming proteins such α-synuclein and tau, which are implicated in Alzheimer's and Parkinson's disease, can form different fibril structures or strains with distinct toxic properties, seeding activities and pathology. Understanding the determinants contributing to the formation of different amyloid features could open new avenues for developing disease-specific diagnostics and therapies. Here we report that O-GlcNAc modification of α-synuclein monomers results in the formation of amyloid fibril with distinct core structure, as revealed by cryogenic electron microscopy, and diminished seeding activity in seeding-based neuronal and rodent models of Parkinson's disease. Although the mechanisms underpinning the seeding neutralization activity of the O-GlcNAc-modified fibrils remain unclear, our in vitro mechanistic studies indicate that heat shock proteins interactions with O-GlcNAc fibril inhibit their seeding activity, suggesting that the O-GlcNAc modification may alter the interactome of the α-synuclein fibrils in ways that lead to reduce seeding activity in vivo. Our results show that posttranslational modifications, such as O-GlcNAc modification, of α-synuclein are key determinants of α-synuclein amyloid strains and pathogenicity.
Collapse
Affiliation(s)
- Aaron T Balana
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Anne-Laure Mahul-Mellier
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Binh A Nguyen
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mian Horvath
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Afraah Javed
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Eldon R Hard
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Yllza Jasiqi
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Preeti Singh
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Shumaila Afrin
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rose Pedretti
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Virender Singh
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Virginia M-Y Lee
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelvin C Luk
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorena Saelices
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
- Department Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Altay MF, Kumar ST, Burtscher J, Jagannath S, Strand C, Miki Y, Parkkinen L, Holton JL, Lashuel HA. Development and validation of an expanded antibody toolset that captures alpha-synuclein pathological diversity in Lewy body diseases. NPJ Parkinsons Dis 2023; 9:161. [PMID: 38062007 PMCID: PMC10703845 DOI: 10.1038/s41531-023-00604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/14/2023] [Indexed: 01/13/2024] Open
Abstract
The abnormal aggregation and accumulation of alpha-synuclein (aSyn) in the brain is a defining hallmark of synucleinopathies. Various aSyn conformations and post-translationally modified forms accumulate in pathological inclusions and vary in abundance among these disorders. Relying on antibodies that have not been assessed for their ability to detect the diverse forms of aSyn may lead to inaccurate estimations of aSyn pathology in human brains or disease models. To address this challenge, we developed and characterized an expanded antibody panel that targets different sequences and post-translational modifications along the length of aSyn, and that recognizes all monomeric, oligomeric, and fibrillar aSyn conformations. Next, we profiled aSyn pathology across sporadic and familial Lewy body diseases (LBDs) and reveal heterogeneous forms of aSyn pathology, rich in Serine 129 phosphorylation, Tyrosine 39 nitration and N- and C-terminal tyrosine phosphorylations, scattered both to neurons and glia. In addition, we show that aSyn can become hyperphosphorylated during processes of aggregation and inclusion maturation in neuronal and animal models of aSyn seeding and spreading. The validation pipeline we describe for these antibodies paves the way for systematic investigations into aSyn pathological diversity in the human brain, peripheral tissues, as well as in cellular and animal models of synucleinopathies.
Collapse
Affiliation(s)
- Melek Firat Altay
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Senthil T Kumar
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Johannes Burtscher
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Somanath Jagannath
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Catherine Strand
- Queen Square Brain Bank for Neurological Disorders, University College London Queen Square Institute of Neurology, London, England
| | - Yasuo Miki
- Queen Square Brain Bank for Neurological Disorders, University College London Queen Square Institute of Neurology, London, England
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Laura Parkkinen
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Janice L Holton
- Queen Square Brain Bank for Neurological Disorders, University College London Queen Square Institute of Neurology, London, England
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Lausanne, Switzerland.
| |
Collapse
|
3
|
Overby M, Serrano-Rodriguez A, Dadras S, Christiansen AK, Ozcelik G, Lichtenthaler SF, Weick JP, Müller HK. Neuron-specific gene NSG1 binds to and positively regulates sortilin ectodomain shedding via a metalloproteinase-dependent mechanism. J Biol Chem 2023; 299:105446. [PMID: 37949230 PMCID: PMC10704435 DOI: 10.1016/j.jbc.2023.105446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/15/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
Increasing evidence suggests that aberrant regulation of sortilin ectodomain shedding can contribute to amyloid-β pathology and frontotemporal dementia, although the mechanism by which this occurs has not been elucidated. Here, we probed for novel binding partners of sortilin using multiple and complementary approaches and identified two proteins of the neuron-specific gene (NSG) family, NSG1 and NSG2, that physically interact and colocalize with sortilin. We show both NSG1 and NSG2 induce subcellular redistribution of sortilin to NSG1- and NSG2-enriched compartments. However, using cell surface biotinylation, we found only NSG1 reduced sortilin cell surface expression, which caused significant reductions in uptake of progranulin, a molecular determinant for frontotemporal dementia. In contrast, we demonstrate NSG2 has no effect on sortilin cell surface abundance or progranulin uptake, suggesting specificity for NSG1 in the regulation of sortilin cell surface expression. Using metalloproteinase inhibitors and A disintegrin and metalloproteinase 10 KO cells, we further show that NSG1-dependent reduction of cell surface sortilin occurred via proteolytic processing by A disintegrin and metalloproteinase 10 with a concomitant increase in shedding of sortilin ectodomain to the extracellular space. This represents a novel regulatory mechanism for sortilin ectodomain shedding that is regulated in a neuron-specific manner. Furthermore, this finding has implications for the development of strategies for brain-specific regulation of sortilin and possibly sortilin-driven pathologies.
Collapse
Affiliation(s)
- Malene Overby
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Antonio Serrano-Rodriguez
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Somayeh Dadras
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Ann Kathrine Christiansen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Gözde Ozcelik
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine, Klinikum Rechts der lsar, Technical University of Munich, Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Neuroproteomics, School of Medicine, Klinikum Rechts der lsar, Technical University of Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jason Porter Weick
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
4
|
Romshin AM, Zeeb V, Glushkov E, Radenovic A, Sinogeikin AG, Vlasov II. Nanoscale thermal control of a single living cell enabled by diamond heater-thermometer. Sci Rep 2023; 13:8546. [PMID: 37236978 DOI: 10.1038/s41598-023-35141-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
We report a new approach to controllable thermal stimulation of a single living cell and its compartments. The technique is based on the use of a single polycrystalline diamond particle containing silicon-vacancy (SiV) color centers. Due to the presence of amorphous carbon at its intercrystalline boundaries, such a particle is an efficient light absorber and becomes a local heat source when illuminated by a laser. Furthermore, the temperature of such a local heater is tracked by the spectral shift of the zero-phonon line of SiV centers. Thus, the diamond particle acts simultaneously as a heater and a thermometer. In the current work, we demonstrate the ability of such a Diamond Heater-Thermometer (DHT) to locally alter the temperature, one of the numerous parameters that play a decisive role for the living organisms at the nanoscale. In particular, we show that the local heating of 11-12 °C relative to the ambient temperature (22 °C) next to individual HeLa cells and neurons, isolated from the mouse hippocampus, leads to a change in the intracellular distribution of the concentration of free calcium ions. For individual HeLa cells, a long-term (about 30 s) increase in the integral intensity of Fluo-4 NW fluorescence by about three times is observed, which characterizes an increase in the [Ca2+]cyt concentration of free calcium in the cytoplasm. Heating near mouse hippocampal neurons also caused a calcium surge-an increase in the intensity of Fluo-4 NW fluorescence by 30% and a duration of ~ 0.4 ms.
Collapse
Affiliation(s)
- Alexey M Romshin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov str. 38, Moscow, 119991, Russia.
| | - Vadim Zeeb
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Moscow Region, 142292, Russia.
| | - Evgenii Glushkov
- Laboratory of Nanoscale Biology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Andrey G Sinogeikin
- NanThermix SA, Ecole Polytechnique Federale de Lausanne (EPFL) Innovation Park, 1015, Lausanne, Switzerland
| | - Igor I Vlasov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov str. 38, Moscow, 119991, Russia
| |
Collapse
|
5
|
Qi L, Sun C, Sun S, Li A, Hu Q, Liu Y, Zhang Y. Phosphatidylinositol (3,5)-bisphosphate machinery regulates neurite thickness through neuron-specific endosomal protein NSG1/NEEP21. J Biol Chem 2022; 299:102775. [PMID: 36493904 PMCID: PMC9823133 DOI: 10.1016/j.jbc.2022.102775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 10/31/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Phosphatidylinositol (3,5)-bisphosphate [PtdIns(3,5)P2] is a critical signaling phospholipid involved in endolysosome homeostasis. It is synthesized by a protein complex composed of PIKfyve, Vac14, and Fig4. Defects in PtdIns(3,5)P2 synthesis underlie a number of human neurological disorders, including Charcot-Marie-Tooth disease, child onset progressive dystonia, and others. However, neuron-specific functions of PtdIns(3,5)P2 remain less understood. Here, we show that PtdIns(3,5)P2 pathway is required to maintain neurite thickness. Suppression of PIKfyve activities using either pharmacological inhibitors or RNA silencing resulted in decreased neurite thickness. We further find that the regulation of neurite thickness by PtdIns(3,5)P2 is mediated by NSG1/NEEP21, a neuron-specific endosomal protein. Knockdown of NSG1 expression also led to thinner neurites. mCherry-tagged NSG1 colocalized and interacted with proteins in the PtdIns(3,5)P2 machinery. Perturbation of PtdIns(3,5)P2 dynamics by overexpressing Fig4 or a PtdIns(3,5)P2-binding domain resulted in mislocalization of NSG1 to nonendosomal locations, and suppressing PtdIns(3,5)P2 synthesis resulted in an accumulation of NSG1 in EEA1-positive early endosomes. Importantly, overexpression of NSG1 rescued neurite thinning in PtdIns(3,5)P2-deficient CAD neurons and primary cortical neurons. Our study uncovered the role of PtdIns(3,5)P2 in the morphogenesis of neurons, which revealed a novel aspect of the pathogenesis of PtdIns(3,5)P2-related neuropathies. We also identified NSG1 as an important downstream protein of PtdIns(3,5)P2, which may provide a novel therapeutic target in neurological diseases.
Collapse
Affiliation(s)
- Lijuan Qi
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, China,National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chen Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Shenqing Sun
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Aiqing Li
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Qiuming Hu
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, China
| | - Yaobo Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Yanling Zhang
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, Jiangsu, China,For correspondence: Yanling Zhang
| |
Collapse
|
6
|
Lin X, Tu M, Zhang Y, Zhuang W, Cai L, Zhang L, Yu L, Zhang Z, Huang Y. Aberrant NSG1 Expression Promotes Esophageal Squamous Cell Carcinoma Cell EMT by the Activation of ERK Signaling Pathway. Dig Dis Sci 2022; 68:1847-1857. [PMID: 36396779 DOI: 10.1007/s10620-022-07748-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Neuron-specific gene family member 1 (NSG1) is a 21 kDa endosomal protein that is specifically expressed in neurons. AIMS This study was to explore the expression of NSG1 and possible mechanism in Esophageal Squamous Cell Carcinoma (ESCC). METHODS The Cancer Genome Atlas (TCGA) database was consulted to analyze the expression of NSG1 in ESCC. Immunohistochemistry (IHC) staining was used to evaluate NSG1 expression in ESCC cancerous tissues and matched paracancerous tissues. The CCK-8 assay, wound-healing assay, and transwell assay were used to detect the cell viability, migration, and invasion of ESCC cells. Western blot was used to assay epithelial-mesenchymal transition (EMT)-related proteins and ERK signaling pathway protein expression. RESULTS The results showed that the expression of NSG1 in ESCC cancerous tissues was higher than noncancerous tissues. Compared with negative control (NC) group, cell viability, migration. and invasion significantly increased, the expression of p-ERK in ERK signaling pathway was significantly upregulated, the expressions of mesenchymal marker Vimentin and EMT-related transcription factors including snail and slug were significantly upregulated, and the expression of epithelial marker E-cadherin was significantly downregulated in KYSE-150 cells with NSG1 overexpression. However, these effects were reversed by the ERK signaling pathway inhibitor U0126. On the other hand, TE-1 cells with NSG1 knockdown had the changes contrary to that in KYSE-150 cells with NSG1 overexpression. CONCLUSION NSG1 plays a potential carcinogenic role on the occurrence and progression of ESCC, and aberrant NSG1 expression might promote ESCC cell EMT by the activation of ERK signaling pathway.
Collapse
Affiliation(s)
- Xiaoqing Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China.,Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Mingshu Tu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China.,Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Yi Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China.,Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Wanzhen Zhuang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China.,Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Liqing Cai
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China.,Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Liangming Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China.,Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Lili Yu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China.,Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Zhenlong Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China.,Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Yi Huang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, Fujian, China. .,Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China. .,Central Laboratory, Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
7
|
Yap CC, Winckler B. Spatial regulation of endosomes in growing dendrites. Dev Biol 2022; 486:5-14. [PMID: 35306006 PMCID: PMC10646839 DOI: 10.1016/j.ydbio.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/21/2022] [Accepted: 03/13/2022] [Indexed: 01/19/2023]
Abstract
Many membrane proteins are highly enriched in either dendrites or axons. This non-uniform distribution is a critical feature of neuronal polarity and underlies neuronal function. The molecular mechanisms responsible for polarized distribution of membrane proteins has been studied for some time and many answers have emerged. A less well studied feature of neurons is that organelles are also frequently non-uniformly distributed. For instance, EEA1-positive early endosomes are somatodendritic whereas synaptic vesicles are axonal. In addition, some organelles are present in both axons and dendrites, but not distributed uniformly along the processes. One well known example are lysosomes which are abundant in the soma and proximal dendrite, but sparse in the distal dendrite and the distal axon. The mechanisms that determine the spatial distribution of organelles along dendrites are only starting to be studied. In this review, we will discuss the cell biological mechanisms of how the distribution of diverse sets of endosomes along the proximal-distal axis of dendrites might be regulated. In particular, we will focus on the regulation of bulk homeostatic mechanisms as opposed to local regulation. We posit that immature dendrites regulate organelle motility differently from mature dendrites in order to spatially organize dendrite growth, branching and sculpting.
Collapse
|
8
|
Nuclear and cytoplasmic huntingtin inclusions exhibit distinct biochemical composition, interactome and ultrastructural properties. Nat Commun 2021; 12:6579. [PMID: 34772920 PMCID: PMC8589980 DOI: 10.1038/s41467-021-26684-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/11/2021] [Indexed: 12/20/2022] Open
Abstract
Despite the strong evidence linking the aggregation of the Huntingtin protein (Htt) to the pathogenesis of Huntington's disease (HD), the mechanisms underlying Htt aggregation and neurodegeneration remain poorly understood. Herein, we investigated the ultrastructural properties and protein composition of Htt cytoplasmic and nuclear inclusions in mammalian cells and primary neurons overexpressing mutant exon1 of the Htt protein. Our findings provide unique insight into the ultrastructural properties of cytoplasmic and nuclear Htt inclusions and their mechanisms of formation. We show that Htt inclusion formation and maturation are complex processes that, although initially driven by polyQ-dependent Htt aggregation, also involve the polyQ and PRD domain-dependent sequestration of lipids and cytoplasmic and cytoskeletal proteins related to HD dysregulated pathways; the recruitment and accumulation of remodeled or dysfunctional membranous organelles, and the impairment of the protein quality control and degradation machinery. We also show that nuclear and cytoplasmic Htt inclusions exhibit distinct biochemical compositions and ultrastructural properties, suggesting different mechanisms of aggregation and toxicity.
Collapse
|
9
|
Plooster M, Rossi G, Farrell MS, McAfee JC, Bell JL, Ye M, Diering GH, Won H, Gupton SL, Brennwald P. Schizophrenia-Linked Protein tSNARE1 Regulates Endosomal Trafficking in Cortical Neurons. J Neurosci 2021; 41:9466-9481. [PMID: 34642214 PMCID: PMC8580139 DOI: 10.1523/jneurosci.0556-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
TSNARE1, which encodes the protein tSNARE1, is a high-confidence gene candidate for schizophrenia risk, but nothing is known about its cellular or physiological function. We identified the major gene products of TSNARE1 and their cytoplasmic localization and function in endosomal trafficking in cortical neurons. We validated three primary isoforms of TSNARE1 expressed in human brain, all of which encode a syntaxin-like Qa SNARE domain. RNA-sequencing data from adult and fetal human brain suggested that the majority of tSNARE1 lacks a transmembrane domain that is thought to be necessary for membrane fusion. Biochemical data demonstrate that tSNARE1 can compete with Stx12 for incorporation into an endosomal SNARE complex, supporting its possible role as an inhibitory SNARE. Live-cell imaging in cortical neurons from mice of both sexes demonstrated that brain tSNARE1 isoforms localized to the endosomal network. The most abundant brain isoform, tSNARE1c, localized most frequently to Rab7+ late endosomes, and endogenous tSNARE1 displayed a similar localization in human neural progenitor cells and neuroblastoma cells. In mature rat neurons from both sexes, tSNARE1 localized to the dendritic shaft and dendritic spines, supporting a role for tSNARE1 at the postsynapse. Expression of either tSNARE1b or tSNARE1c, which differ only in their inclusion or exclusion of an Myb-like domain, delayed the trafficking of the dendritic endosomal cargo Nsg1 into late endosomal and lysosomal compartments. These data suggest that tSNARE1 regulates endosomal trafficking in cortical neurons, likely by negatively regulating early endosomal to late endosomal trafficking.SIGNIFICANCE STATEMENT Schizophrenia is a severe and polygenic neuropsychiatric disorder. Understanding the functions of high-confidence candidate genes is critical toward understanding how their dysfunction contributes to schizophrenia pathogenesis. TSNARE1 is one of the high-confidence candidate genes for schizophrenia risk, yet nothing was known about its cellular or physiological function. Here we describe the major isoforms of TSNARE1 and their cytoplasmic localization and function in the endosomal network in cortical neurons. Our results are consistent with the hypothesis that the majority of brain tSNARE1 acts as a negative regulator to endolysosomal trafficking.
Collapse
Affiliation(s)
- Melissa Plooster
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Guendalina Rossi
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Martilias S Farrell
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jessica C McAfee
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jessica L Bell
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Michael Ye
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Graham H Diering
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Hyejung Won
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Stephanie L Gupton
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599
- Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Patrick Brennwald
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
10
|
Vieweg S, Mahul-Mellier AL, Ruggeri FS, Riguet N, DeGuire SM, Chiki A, Cendrowska U, Dietler G, Lashuel HA. The Nt17 Domain and its Helical Conformation Regulate the Aggregation, Cellular Properties and Neurotoxicity of Mutant Huntingtin Exon 1. J Mol Biol 2021; 433:167222. [PMID: 34492254 DOI: 10.1016/j.jmb.2021.167222] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/29/2022]
Abstract
Converging evidence points to the N-terminal domain comprising the first 17 amino acids of the Huntingtin protein (Nt17) as a key regulator of its aggregation, cellular properties and toxicity. In this study, we further investigated the interplay between Nt17 and the polyQ domain repeat length in regulating the aggregation and inclusion formation of exon 1 of the Huntingtin protein (Httex1). In addition, we investigated the effect of removing Nt17 or modulating its local structure on the membrane interactions, neuronal uptake, and toxicity of monomeric or fibrillar Httex1. Our results show that the polyQ and Nt17 domains synergistically modulate the aggregation propensity of Httex1 and that the Nt17 domain plays important roles in shaping the surface properties of mutant Httex1 fibrils and regulating their poly-Q-dependent growth, lateral association and neuronal uptake. Removal of Nt17 or disruption of its transient helical conformations slowed the aggregation of monomeric Httex1 in vitro, reduced inclusion formation in cells, enhanced the neuronal uptake and nuclear accumulation of monomeric Httex1 proteins, and was sufficient to prevent cell death induced by Httex1 72Q overexpression. Finally, we demonstrate that the uptake of Httex1 fibrils into primary neurons and the resulting toxicity are strongly influenced by mutations and phosphorylation events that influence the local helical propensity of Nt17. Altogether, our results demonstrate that the Nt17 domain serves as one of the key master regulators of Htt aggregation, internalization, and toxicity and represents an attractive target for inhibiting Htt aggregate formation, inclusion formation, and neuronal toxicity.
Collapse
Affiliation(s)
- Sophie Vieweg
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Anne-Laure Mahul-Mellier
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Francesco S Ruggeri
- Laboratory of the Physics of Living Matter, EPFL, 1015 Lausanne, Switzerland
| | - Nathan Riguet
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Sean M DeGuire
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Anass Chiki
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Urszula Cendrowska
- Laboratory of the Physics of Living Matter, EPFL, 1015 Lausanne, Switzerland
| | - Giovanni Dietler
- Laboratory of the Physics of Living Matter, EPFL, 1015 Lausanne, Switzerland
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
11
|
Zheng Q, Zhang L, Tu M, Yin X, Cai L, Zhang S, Yu L, Pan X, Huang Y. Development of a panel of autoantibody against NSG1 with CEA, CYFRA21-1, and SCC-Ag for the diagnosis of esophageal squamous cell carcinoma. Clin Chim Acta 2021; 520:126-132. [PMID: 34119530 DOI: 10.1016/j.cca.2021.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Development of a panel of serum autoantibody against Neuron specific gene family member 1 (NSG1) with traditional tumor biomarkers of esophageal squamous cell carcinoma (ESCC) to further improve the diagnostic efficiency for ESCC patients. METHODS Immunohistochemistry (IHC) staining was used to detect the expression of NSG1 protein in 40 pairs of ESCC tissues and matched paracancerous tissues. Serum anti-NSG1 levels of 203 patients with early ESCC, 103 patients with advanced ESCC, 135 patients with esophageal benign lesion (EBL), and 155 healthy controls (HCs) were detected by ELISA. The diagnostic performances of all possible combinations of serum anti-NSG1with CEA, CYFRA21-1 and SCC-Ag were assessed to develop an optimal panel for ESCC diagnosis. RESULTS NSG1 protein expression in ESCC tissues was significantly higher than that in matched paracancerous tissues (p < 0.001). Serum anti-NSG1 expression in ESCC group was significantly higher than that in EBL group and HC group (p < 0.001). The AUC of serum anti-NSG1 for ESCC was 0.706, with 49.7% sensitivity at 93.5% specificity, superior to that of CEA, CYFRA21-1 and SCC-Ag. Of all possible combinations, serum anti-NSG1 combined with CEA, CYFRA21-1 and SCC-Ag showed the highest AUC of 0.758 and 67.3% sensitivity at 88.3% specificity for ESCC, with the highest NPV of 71.9% and the lowest NLR of 0.37. CONCLUSION Aberrant NSG1 protein expression in ESCC tissues might be responsible for massive releases of autoantibody anginst NSG1 in sera of ESCC. A panel of anti-NSG1 with CEA, CYFRA21-1 and SCC-Ag contributes to further improving the diagnostic efficiency for ESCC.
Collapse
Affiliation(s)
- Qingzhu Zheng
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Liangming Zhang
- Provincial Clinical College, Fujian Medical University, Fuzhou, Fujian 350001, China; Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Mingshu Tu
- Provincial Clinical College, Fujian Medical University, Fuzhou, Fujian 350001, China; Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Xiaoqing Yin
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China; Integrated Chinese and Western Medicine College, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350000, China
| | - Liqing Cai
- Provincial Clinical College, Fujian Medical University, Fuzhou, Fujian 350001, China; Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Songgao Zhang
- Provincial Clinical College, Fujian Medical University, Fuzhou, Fujian 350001, China; Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Lili Yu
- Provincial Clinical College, Fujian Medical University, Fuzhou, Fujian 350001, China; Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Xiaojie Pan
- Provincial Clinical College, Fujian Medical University, Fuzhou, Fujian 350001, China; Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Yi Huang
- Provincial Clinical College, Fujian Medical University, Fuzhou, Fujian 350001, China; Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China; Central laboratory, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China; Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China
| |
Collapse
|
12
|
Radler MR, Suber A, Spiliotis ET. Spatial control of membrane traffic in neuronal dendrites. Mol Cell Neurosci 2020; 105:103492. [PMID: 32294508 PMCID: PMC7317674 DOI: 10.1016/j.mcn.2020.103492] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Neuronal dendrites are highly branched and specialized compartments with distinct structures and secretory organelles (e.g., spines, Golgi outposts), and a unique cytoskeletal organization that includes microtubules of mixed polarity. Dendritic membranes are enriched with proteins, which specialize in the formation and function of the post-synaptic membrane of the neuronal synapse. How these proteins partition preferentially in dendrites, and how they traffic in a manner that is spatiotemporally accurate and regulated by synaptic activity are long-standing questions of neuronal cell biology. Recent studies have shed new insights into the spatial control of dendritic membrane traffic, revealing new classes of proteins (e.g., septins) and cytoskeleton-based mechanisms with dendrite-specific functions. Here, we review these advances by revisiting the fundamental mechanisms that control membrane traffic at the levels of protein sorting and motor-driven transport on microtubules and actin filaments. Overall, dendrites possess unique mechanisms for the spatial control of membrane traffic, which might have specialized and co-evolved with their highly arborized morphology.
Collapse
Affiliation(s)
- Megan R Radler
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA
| | - Ayana Suber
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Mahul-Mellier AL, Burtscher J, Maharjan N, Weerens L, Croisier M, Kuttler F, Leleu M, Knott GW, Lashuel HA. The process of Lewy body formation, rather than simply α-synuclein fibrillization, is one of the major drivers of neurodegeneration. Proc Natl Acad Sci U S A 2020; 117:4971-4982. [PMID: 32075919 DOI: 10.1101/751891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023] Open
Abstract
Parkinson's disease (PD) is characterized by the accumulation of misfolded and aggregated α-synuclein (α-syn) into intraneuronal inclusions named Lewy bodies (LBs). Although it is widely believed that α-syn plays a central role in the pathogenesis of PD, the processes that govern α-syn fibrillization and LB formation remain poorly understood. In this work, we sought to dissect the spatiotemporal events involved in the biogenesis of the LBs at the genetic, molecular, biochemical, structural, and cellular levels. Toward this goal, we further developed a seeding-based model of α-syn fibrillization to generate a neuronal model that reproduces the key events leading to LB formation, including seeding, fibrillization, and the formation of inclusions that recapitulate many of the biochemical, structural, and organizational features of bona fide LBs. Using an integrative omics, biochemical and imaging approach, we dissected the molecular events associated with the different stages of LB formation and their contribution to neuronal dysfunction and degeneration. In addition, we demonstrate that LB formation involves a complex interplay between α-syn fibrillization, posttranslational modifications, and interactions between α-syn aggregates and membranous organelles, including mitochondria, the autophagosome, and endolysosome. Finally, we show that the process of LB formation, rather than simply fibril formation, is one of the major drivers of neurodegeneration through disruption of cellular functions and inducing mitochondria damage and deficits, and synaptic dysfunctions. We believe that this model represents a powerful platform to further investigate the mechanisms of LB formation and clearance and to screen and evaluate therapeutics targeting α-syn aggregation and LB formation.
Collapse
Affiliation(s)
- Anne-Laure Mahul-Mellier
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Johannes Burtscher
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Niran Maharjan
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Laura Weerens
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Marie Croisier
- BioEM Core Facility and Technology Platform, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Fabien Kuttler
- Biomolecular Screening Core Facility and Technology Platform, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Marion Leleu
- Gene Expression Core Facility and Technology Platform, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Graham W Knott
- BioEM Core Facility and Technology Platform, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| |
Collapse
|
14
|
Bissen D, Foss F, Acker-Palmer A. AMPA receptors and their minions: auxiliary proteins in AMPA receptor trafficking. Cell Mol Life Sci 2019; 76:2133-2169. [PMID: 30937469 PMCID: PMC6502786 DOI: 10.1007/s00018-019-03068-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/12/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
To correctly transfer information, neuronal networks need to continuously adjust their synaptic strength to extrinsic stimuli. This ability, termed synaptic plasticity, is at the heart of their function and is, thus, tightly regulated. In glutamatergic neurons, synaptic strength is controlled by the number and function of AMPA receptors at the postsynapse, which mediate most of the fast excitatory transmission in the central nervous system. Their trafficking to, at, and from the synapse, is, therefore, a key mechanism underlying synaptic plasticity. Intensive research over the last 20 years has revealed the increasing importance of interacting proteins, which accompany AMPA receptors throughout their lifetime and help to refine the temporal and spatial modulation of their trafficking and function. In this review, we discuss the current knowledge about the roles of key partners in regulating AMPA receptor trafficking and focus especially on the movement between the intracellular, extrasynaptic, and synaptic pools. We examine their involvement not only in basal synaptic function, but also in Hebbian and homeostatic plasticity. Included in our review are well-established AMPA receptor interactants such as GRIP1 and PICK1, the classical auxiliary subunits TARP and CNIH, and the newest additions to AMPA receptor native complexes.
Collapse
Affiliation(s)
- Diane Bissen
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438, Frankfurt am Main, Germany
| | - Franziska Foss
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute (CPI), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
15
|
Neuron-Specific Gene 2 (NSG2) Encodes an AMPA Receptor Interacting Protein That Modulates Excitatory Neurotransmission. eNeuro 2019; 6:eN-NWR-0292-18. [PMID: 30680309 PMCID: PMC6345199 DOI: 10.1523/eneuro.0292-18.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 01/10/2023] Open
Abstract
Neurons have evolved a number of unique protein-coding genes that regulate trafficking of protein complexes within small organelles throughout dendrites and axons. Neuron-specific gene 2 (NSG2) encodes for one of the most abundant proteins in the nervous system during perinatal development. NSG2 belongs to a family of small neuronal endosomal proteins but its function has remained uncharacterized to date. Here, we show that NSG2 is found in discrete punctae restricted to the somatodendritic arbors of developing mouse and human neurons, and a significant proportion of NSG2 punctae colocalize with postsynaptic HOMER1 and surface-expressed AMPA-type glutamate receptors (AMPARs) at excitatory synapses. Immunoprecipitation revealed that NSG2 physically interacts with both the GluA1 and GluA2 AMPAR subunits in mouse brain. Knock-out of NSG2 in mouse hippocampal neurons selectively impaired the frequency of miniature EPSCs (mEPSCs) and caused alterations in PSD95 expression at postsynaptic densities (PSDs). In contrast, NSG2 overexpression caused a significant increase in the amplitude of mEPSCs as well as GluA2 surface expression. Thus, NSG2 functions as an AMPAR-binding protein that is required for normal synapse formation and/or maintenance, and has unique functions compared with other NSG family members.
Collapse
|
16
|
Yap CC, Digilio L, McMahon LP, Garcia ADR, Winckler B. Degradation of dendritic cargos requires Rab7-dependent transport to somatic lysosomes. J Cell Biol 2018; 217:3141-3159. [PMID: 29907658 PMCID: PMC6122995 DOI: 10.1083/jcb.201711039] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/30/2018] [Accepted: 05/31/2018] [Indexed: 12/13/2022] Open
Abstract
Neurons are large and long lived, creating high needs for regulating protein turnover. Disturbances in proteostasis lead to aggregates and cellular stress. We characterized the behavior of the short-lived dendritic membrane proteins Nsg1 and Nsg2 to determine whether these proteins are degraded locally in dendrites or centrally in the soma. We discovered a spatial heterogeneity of endolysosomal compartments in dendrites. Early EEA1-positive and late Rab7-positive endosomes are found throughout dendrites, whereas the density of degradative LAMP1- and cathepsin (Cat) B/D-positive lysosomes decreases steeply past the proximal segment. Unlike in fibroblasts, we found that the majority of dendritic Rab7 late endosomes (LEs) do not contain LAMP1 and that a large proportion of LAMP1 compartments do not contain CatB/D. Second, Rab7 activity is required to mobilize distal predegradative LEs for transport to the soma and terminal degradation. We conclude that the majority of dendritic LAMP1 endosomes are not degradative lysosomes and that terminal degradation of dendritic cargos such as Nsg1, Nsg2, and DNER requires Rab7-dependent transport in LEs to somatic lysosomes.
Collapse
Affiliation(s)
- Chan Choo Yap
- Department of Cell Biology, University of Virginia, Charlottesville, VA
| | - Laura Digilio
- Department of Cell Biology, University of Virginia, Charlottesville, VA
| | - Lloyd P McMahon
- Department of Cell Biology, University of Virginia, Charlottesville, VA
| | | | - Bettina Winckler
- Department of Cell Biology, University of Virginia, Charlottesville, VA
| |
Collapse
|
17
|
Maiorano AM, Lourenco DL, Tsuruta S, Ospina AMT, Stafuzza NB, Masuda Y, Filho AEV, Cyrillo JNDSG, Curi RA, Silva JAIIDV. Assessing genetic architecture and signatures of selection of dual purpose Gir cattle populations using genomic information. PLoS One 2018; 13:e0200694. [PMID: 30071036 PMCID: PMC6071998 DOI: 10.1371/journal.pone.0200694] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/02/2018] [Indexed: 12/31/2022] Open
Abstract
Gir is one of the main cattle breeds raised in tropical South American countries. Strong artificial selection through its domestication resulted in increased genetic differentiation among the countries in recent years. Over the years, genomic studies in Gir have become more common. However, studies of population structure and signatures of selection in divergent Gir populations are scarce and need more attention to better understand genetic differentiation, gene flow, and genetic distance. Genotypes of 173 animals selected for growth traits and 273 animals selected for milk production were used in this study. Clear genetic differentiation between beef and dairy populations was observed. Different criteria led to genetic divergence and genetic differences in allele frequencies between the two populations. Gene segregation in each population was forced by artificial selection, promoting isolation, and increasing genetic variation between them. Results showed evidence of selective forces in different regions of the genome. A total of 282 genes were detected under selection in the test population based on the fixation index (Fst), integrated haplotype score (iHS), and cross-population extend haplotype homozygosity (XP-EHH) approaches. The QTL mapping identified 35 genes associated with reproduction, milk composition, growth, meat and carcass, health, or body conformation traits. The investigation of genes and pathways showed that quantitative traits associated to fertility, milk production, beef quality, and growth were involved in the process of differentiation of these populations. These results would support further investigations of population structure and differentiation in the Gir breed.
Collapse
Affiliation(s)
- Amanda Marchi Maiorano
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, Sao Paulo, Brazil
- * E-mail:
| | - Daniela Lino Lourenco
- Animal and Dairy Science, Animal Breeding and Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Shogo Tsuruta
- Animal and Dairy Science, Animal Breeding and Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Alejandra Maria Toro Ospina
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, Sao Paulo, Brazil
| | - Nedenia Bonvino Stafuzza
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, Sao Paulo, Brazil
| | - Yutaka Masuda
- Animal and Dairy Science, Animal Breeding and Genetics, University of Georgia, Athens, Georgia, United States of America
| | | | | | - Rogério Abdallah Curi
- Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Botucatu, Sao Paulo, Brazil
| | | |
Collapse
|
18
|
Yap CC, Digilio L, McMahon L, Winckler B. The endosomal neuronal proteins Nsg1/NEEP21 and Nsg2/P19 are itinerant, not resident proteins of dendritic endosomes. Sci Rep 2017; 7:10481. [PMID: 28874679 PMCID: PMC5585371 DOI: 10.1038/s41598-017-07667-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/29/2017] [Indexed: 12/28/2022] Open
Abstract
Membrane traffic critically regulates most aspects of neuronal function. Neurons express many neuronal-specific proteins that regulate membrane traffic, including the poorly understood small transmembrane proteins neural-specific gene 1 and 2 (Nsg1/NEEP21 and Nsg2/P19). Nsg1 has been implicated in regulating endosomal recycling and sorting of several important neuronal receptors. Nsg2 is largely unstudied. At steady-state, Nsg1 and Nsg2 only partially co-localize with known endosomal compartments, and it was suggested that they mark a neuronal-specific endosome. Since Nsg1 localizes to and functions in the dendritic endosome, we set out to discover how Nsg1 and Nsg2 localization to endosomes is regulated in primary rat hippocampal neurons, using quadruple immunolocalization against endogenous proteins, live imaging of dendritic endosomes, and interference approaches against the endosomal regulators Rab5 and Rab7. In contrast to previous conclusions, we now show that Nsg1 and Nsg2 are not resident endosomal proteins, but traffic rapidly from the cell surface to lysosomes and have a half-life of less than two hours. Their partial co-localization with canonical endosomal markers thus reflects their rapid flux towards degradation rather than specific targeting to a singular compartment. These findings will require rethinking of how this class of endosomal proteins regulates trafficking of much longer-lived receptors.
Collapse
Affiliation(s)
- Chan Choo Yap
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Laura Digilio
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Lloyd McMahon
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
19
|
Barford K, Yap CC, Dwyer ND, Winckler B. The related neuronal endosomal proteins NEEP21 (Nsg1) and P19 (Nsg2) have divergent expression profiles in vivo. J Comp Neurol 2017; 525:1861-1878. [PMID: 28299779 DOI: 10.1002/cne.24168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/28/2016] [Accepted: 11/18/2016] [Indexed: 01/23/2023]
Abstract
Endosomal maturation and transport constitutes a complex trafficking system present in all cell types. Neurons have adapted their endosomal system to meet their unique and complex needs. These adaptations include repurposing existing proteins to diversify endocytosis and trafficking, as well as preferential expression of certain regulators more highly in neurons than other cell types. These neuronal regulators include the family of Neuron-Specific Gene family members (Nsg), NEEP21 (Nsg1), and P19 (Nsg2). NEEP21/Nsg1 plays a role in the trafficking of multiple receptors, including the cell adhesion molecule L1/NgCAM, the neurotransmitter receptor GluA2, and β-APP. Recently, we showed that NEEP2/Nsg1 and P19/Nsg2 are not expressed in all neuronal cell types in vitro. However, it is not known where and when NEEP21/Nsg1 and P19/Nsg2 are expressed in vivo, and whether both proteins are always coexpressed. Here, we show that NEEP21/Nsg1 and P19/Nsg2 are present in both overlapping and distinct cell populations in the hippocampus, neocortex, and cerebellum during development. NEEP21/Nsg1 and P19/Nsg2 levels are highest during embryonic development, and expression persists in the juvenile mouse brain. In particular, a subset of layer V cortical neurons retains relatively high expression of both NEEP21/Nsg1 and P19/Nsg2 at postnatal day 16 as well as in the CA1-3 regions of the hippocampus. In the cerebellum, NEEP21/Nsg1 expression becomes largely restricted to Purkinje neurons in adulthood whereas P19/Nsg2 expression strikingly disappears from the cerebellum with age. This divergent and restricted expression likely reflects differential needs for this class of trafficking regulators in different neurons during different stages of maturation.
Collapse
Affiliation(s)
- Kelly Barford
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - Chan Choo Yap
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - Noelle D Dwyer
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
20
|
Brown JC, Petersen A, Zhong L, Himelright ML, Murphy JA, Walikonis RS, Gerges NZ. Bidirectional regulation of synaptic transmission by BRAG1/IQSEC2 and its requirement in long-term depression. Nat Commun 2016; 7:11080. [PMID: 27009485 PMCID: PMC4820844 DOI: 10.1038/ncomms11080] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/16/2016] [Indexed: 01/09/2023] Open
Abstract
Dysfunction of the proteins regulating synaptic function can cause synaptic plasticity imbalance that underlies neurological disorders such as intellectual disability. A study found that four distinct mutations within BRAG1, an Arf-GEF synaptic protein, each led to X-chromosome-linked intellectual disability (XLID). Although the physiological functions of BRAG1 are poorly understood, each of these mutations reduces BRAG1's Arf-GEF activity. Here we show that BRAG1 is required for the activity-dependent removal of AMPA receptors in rat hippocampal pyramidal neurons. Moreover, we show that BRAG1 bidirectionally regulates synaptic transmission. On one hand, BRAG1 is required for the maintenance of synaptic transmission. On the other hand, BRAG1 expression enhances synaptic transmission, independently of BRAG1 Arf-GEF activity or neuronal activity, but dependently on its C-terminus interactions. This study demonstrates a dual role of BRAG1 in synaptic function and highlights the functional relevance of reduced BRAG1 Arf-GEF activity as seen in the XLID-associated human mutations.
Collapse
Affiliation(s)
- Joshua C Brown
- Department of Cell Biology, Neurobiology and Anatomy, The Medical College of Wisconsin, Milwaukee, Wisconsin 53132 USA
| | - Amber Petersen
- Department of Cell Biology, Neurobiology and Anatomy, The Medical College of Wisconsin, Milwaukee, Wisconsin 53132 USA
| | - Ling Zhong
- Department of Cell Biology, Neurobiology and Anatomy, The Medical College of Wisconsin, Milwaukee, Wisconsin 53132 USA
| | - Miranda L Himelright
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269 USA
| | - Jessica A Murphy
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269 USA
| | - Randall S Walikonis
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269 USA
| | - Nashaat Z Gerges
- Department of Cell Biology, Neurobiology and Anatomy, The Medical College of Wisconsin, Milwaukee, Wisconsin 53132 USA
| |
Collapse
|
21
|
Benmessaoud IR, Mahul-Mellier AL, Horváth E, Maco B, Spina M, Lashuel HA, Forró L. Health hazards of methylammonium lead iodide based perovskites: cytotoxicity studies. Toxicol Res (Camb) 2016; 5:407-419. [PMID: 30090356 PMCID: PMC6062200 DOI: 10.1039/c5tx00303b] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/19/2015] [Indexed: 01/03/2023] Open
Abstract
New technologies launch novel materials; besides their performances in products, their health hazards must be tested. This applies to the lead halide perovskite CH3NH3PbI3 as well, which offers fulgurate applications in photovoltaic devices. We report the effects of CH3NH3PbI3 photovoltaic perovskites in human lung adenocarcinoma epithelial cells (A549), human dopaminergic neuroblastoma cells (SH-SY5Y) and murine primary hippocampal neurons by using multiple assays and electron microscopy studies. In cell culture media the major part of the dissolved CH3NH3PbI3 has a strong cell-type dependent effect. Hippocampal primary neurons and neuroblastoma cells suffer a massive apoptotic cell death, whereas exposure to lung epithelial cells dramatically alters the kinetics of proliferation, metabolic activity and cellular morphology without inducing noticeable cell death. Our findings underscore the critical importance of conducting further studies to investigate the effect of short and long-term exposure to CH3NH3PbI3 on health and environment.
Collapse
Affiliation(s)
- Iness R Benmessaoud
- Laboratory of Physics of Complex Matter , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland . ; Tel: +41 21 69 34306
| | - Anne-Laure Mahul-Mellier
- Laboratory of Molecular and Chemical Biology of Neurodegeneration , EPFL , 1015 Lausanne , Switzerland . ; Tel: +41 21 69 39691
| | - Endre Horváth
- Laboratory of Physics of Complex Matter , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland . ; Tel: +41 21 69 34306
| | - Bohumil Maco
- Laboratory of Molecular and Chemical Biology of Neurodegeneration , EPFL , 1015 Lausanne , Switzerland . ; Tel: +41 21 69 39691
| | - Massimo Spina
- Laboratory of Physics of Complex Matter , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland . ; Tel: +41 21 69 34306
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration , EPFL , 1015 Lausanne , Switzerland . ; Tel: +41 21 69 39691
| | - Làszló Forró
- Laboratory of Physics of Complex Matter , Ecole Polytechnique Fédérale de Lausanne (EPFL) , 1015 Lausanne , Switzerland . ; Tel: +41 21 69 34306
| |
Collapse
|
22
|
Ctip2-, Satb2-, Prox1-, and GAD65-Expressing Neurons in Rat Cultures: Preponderance of Single- and Double-Positive Cells, and Cell Type-Specific Expression of Neuron-Specific Gene Family Members, Nsg-1 (NEEP21) and Nsg-2 (P19). PLoS One 2015; 10:e0140010. [PMID: 26465886 PMCID: PMC4605768 DOI: 10.1371/journal.pone.0140010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/31/2015] [Indexed: 11/19/2022] Open
Abstract
The brain consists of many distinct neuronal cell types, but which cell types are present in widely used primary cultures of embryonic rodent brain is often not known. We characterized how abundantly four cell type markers (Ctip2, Satb2, Prox1, GAD65) were represented in cultured rat neurons, how easily neurons expressing different markers can be transfected with commonly used plasmids, and whether neuronal-enriched endosomal proteins Nsg-1 (NEEP21) and Nsg-2 (P19) are ubiquitously expressed in all types of cultured neurons. We found that cultured neurons stably maintain cell type identities that are reflective of cell types in vivo. This includes neurons maintaining simultaneous expression of two transcription factors, such as Ctip2+/Satb2+ or Prox1+/Ctip2+ double-positive cells, which have also been described in vivo. Secondly, we established the superior efficiency of CAG promoters for both Lipofectamine-mediated transfection as well as for electroporation. Thirdly, we discovered that Nsg-1 and Nsg-2 were not expressed equally in all neurons: whereas high levels of both Nsg-1 and Nsg-2 were found in Satb2-, Ctip2-, and GAD65-positive neurons, Prox1-positive neurons in hippocampal cultures expressed low levels of both. Our findings thus highlight the importance of identifying neuronal cell types for doing cell biology in cultured neurons: Keeping track of neuronal cell type might uncover effects in assays that might otherwise be masked by the mixture of responsive and non-responsive neurons in the dish.
Collapse
|
23
|
Fibril growth and seeding capacity play key roles in α-synuclein-mediated apoptotic cell death. Cell Death Differ 2015; 22:2107-22. [PMID: 26138444 DOI: 10.1038/cdd.2015.79] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/30/2015] [Accepted: 05/06/2015] [Indexed: 02/08/2023] Open
Abstract
The role of extracellular α-synuclein (α-syn) in the initiation and the spreading of neurodegeneration in Parkinson's disease (PD) has been studied extensively over the past 10 years. However, the nature of the α-syn toxic species and the molecular mechanisms by which they may contribute to neuronal cell loss remain controversial. In this study, we show that fully characterized recombinant monomeric, fibrillar or stabilized forms of oligomeric α-syn do not trigger significant cell death when added individually to neuroblastoma cell lines. However, a mixture of preformed fibrils (PFFs) with monomeric α-syn becomes toxic under conditions that promote their growth and amyloid formation. In hippocampal primary neurons and ex vivo hippocampal slice cultures, α-syn PFFs are capable of inducing a moderate toxicity over time that is greatly exacerbated upon promoting fibril growth by addition of monomeric α-syn. The causal relationship between α-syn aggregation and cellular toxicity was further investigated by assessing the effect of inhibiting fibrillization on α-syn-induced cell death. Remarkably, our data show that blocking fibril growth by treatment with known pharmacological inhibitor of α-syn fibrillization (Tolcapone) or replacing monomeric α-syn by monomeric β-synuclein in α-syn mixture composition prevent α-syn-induced toxicity in both neuroblastoma cell lines and hippocampal primary neurons. We demonstrate that exogenously added α-syn fibrils bind to the plasma membrane and serve as nucleation sites for the formation of α-syn fibrils and promote the accumulation and internalization of these aggregates that in turn activate both the extrinsic and intrinsic apoptotic cell death pathways in our cellular models. Our results support the hypothesis that ongoing aggregation and fibrillization of extracellular α-syn play central roles in α-syn extracellular toxicity, and suggest that inhibiting fibril growth and seeding capacity constitute a viable strategy for protecting against α-syn-induced toxicity and slowing the progression of neurodegeneration in PD and other synucleinopathies.
Collapse
|
24
|
Muthusamy N, Chen YJ, Yin DM, Mei L, Bergson C. Complementary roles of the neuron-enriched endosomal proteins NEEP21 and calcyon in neuronal vesicle trafficking. J Neurochem 2015; 132:20-31. [PMID: 25376768 DOI: 10.1111/jnc.12989] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/17/2014] [Accepted: 10/23/2014] [Indexed: 01/18/2023]
Abstract
Understanding mechanisms governing the trafficking of transmembrane (TM) cargoes to synapses and other specialized membranes in neurons represents a long-standing challenge in cell biology. Investigation of the neuron-enriched endosomal protein of 21 kDa (NEEP21, or NSG1or P21) and Calcyon (Caly, or NSG3) indicates that the emergence of the NEEP21/Caly/P19 gene family could play a vital role in the success of these mechanisms in vertebrates. The upshot of a sizeable body of work is that the NEEP21 and Caly perform distinct endocytic and recycling functions, which impact (i) α amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor trafficking at excitatory synapses; (ii) transport to/in neuronal axons; as well as (iii) proteolytic processing of amyloid precursor protein and neuregulin 1, suggesting roles in neuron development, synaptic function, and neurodegeneration. We argue that their distinct effects on cargo endocytosis and recycling depend on interactions with vesicle trafficking and synaptic scaffolding proteins. As they play complementary, but opposing roles in cargo endocytosis, recycling, and degradation, balancing NEEP21 and Caly expression levels or activity could be important for homeostasis in a variety of signaling pathways, and also lead to a novel therapeutic strategy for disorders like Alzheimer's disease and schizophrenia. This review focuses on two closely related, neuron-enriched endosomal proteins: NEEP21 and Calcyon which perform distinct roles in regulating receptor endocytosis, recycling, and degradation. Based on an in-depth examination of the literature, we argue that these two proteins carry out complementary yet sometimes opposing vesicle trafficking functions that impact excitatory transmission, transcytosis, axonal transport, and also proteolytic processing by beta-secretase I (BACE1). Finally, we propose that balancing NEEP21 and Calcyon expression and/or activity could be important for homeostasis in a variety of signaling pathways, and also lead to a novel therapeutic strategy for disorders like Alzheimer's disease and schizophrenia. AMPA = α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; NMDA = N-Methyl-D-aspartate.
Collapse
Affiliation(s)
- Nagendran Muthusamy
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC
| | | | | | | | | |
Collapse
|
25
|
Maturational conversion of dendritic early endosomes and their roles in L1-mediated axon growth. J Neurosci 2015; 34:14633-43. [PMID: 25355216 DOI: 10.1523/jneurosci.1837-14.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The function of endosomes is intricately linked to cellular function in all cell types, including neurons. Intriguingly, neurons express cell type-specific proteins that localize to endosomes, but little is known about how these neuronal proteins interface with canonical endosomes and ubiquitously expressed endosomal components, such as EEA1 (Early Endosomal Antigen 1). NEEP21 (Neuronal Early Endosomal Protein 21 kDa) localizes to somatodendritic endosomes, and downregulation of NEEP21 perturbs the correct trafficking of multiple receptors, including glutamate receptors (GluA2) during LTP and amyloidogenic processing of βAPP. Our own work implicated NEEP21 in correct trafficking of the axonal cell adhesion molecule L1/neuron-glia cell adhesion molecule (NgCAM). NEEP21 dynamically localizes with EEA1-positive early endosomes but is also found in EEA1-negative endosomes. Live imaging reveals that NEEP21-positive, EEA1-negative endosomes arise as a consequence of maturational conversion of EEA1/NEEP21 double-positive endosomes. Interfering with EEA1 function causes missorting of L1/NgCAM, axon outgrowth defects on the L1 substrate, and disturbance of NEEP21 localization. Last, we uncover evidence that functional interference with NEEP21 reduces axon and dendrite growth of primary rat hippocampal neurons on L1 substrate but not on N-cadherin substrate, thus implicating endosomal trafficking through somatodendritic early endosomes in L1-mediated axon growth.
Collapse
|
26
|
Khalaf O, Fauvet B, Oueslati A, Dikiy I, Mahul-Mellier AL, Ruggeri FS, Mbefo MK, Vercruysse F, Dietler G, Lee SJ, Eliezer D, Lashuel HA. The H50Q mutation enhances α-synuclein aggregation, secretion, and toxicity. J Biol Chem 2014; 289:21856-76. [PMID: 24936070 DOI: 10.1074/jbc.m114.553297] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Over the last two decades, the identification of missense mutations in the α-synuclein (α-Syn) gene SNCA in families with inherited Parkinson disease (PD) has reinforced the central role of α-Syn in PD pathogenesis. Recently, a new missense mutation (H50Q) in α-Syn was described in patients with a familial form of PD and dementia. Here we investigated the effects of this novel mutation on the biophysical properties of α-Syn and the consequences for its cellular function. We found that the H50Q mutation affected neither the structure of free or membrane-bound α-Syn monomer, its interaction with metals, nor its capacity to be phosphorylated in vitro. However, compared with the wild-type (WT) protein, the H50Q mutation accelerated α-Syn fibrillization in vitro. In cell-based models, H50Q mutation did not affect α-Syn subcellular localization or its ability to be phosphorylated by PLK2 and GRK6. Interestingly, H50Q increased α-Syn secretion from SHSY5Y cells into culture medium and induced more mitochondrial fragmentation in hippocampal neurons. Although the transient overexpression of WT or H50Q did not induce toxicity, both species induced significant cell death when added to the culture medium of hippocampal neurons. Strikingly, H50Q exhibited more toxicity, suggesting that the H50Q-related enhancement of α-Syn aggregation and secretion may play a role in the extracellular toxicity of this mutant. Together, our results provide novel insight into the mechanism by which this newly described PD-associated mutation may contribute to the pathogenesis of PD and related disorders.
Collapse
Affiliation(s)
- Ossama Khalaf
- From the Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute and
| | - Bruno Fauvet
- From the Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute and
| | - Abid Oueslati
- From the Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute and
| | - Igor Dikiy
- Department of Biochemistry, Program in Structural Biology, Weill Cornell Medical College, New York, New York 10065, and
| | - Anne-Laure Mahul-Mellier
- From the Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute and
| | - Francesco Simone Ruggeri
- Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Martial K Mbefo
- From the Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute and
| | - Filip Vercruysse
- From the Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute and
| | - Giovanni Dietler
- Laboratory of Physics of Living Matter, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Seung-Jae Lee
- Department of Biomedical Science and Technology, Konkuk University, Seoul 143-701, South Korea
| | - David Eliezer
- Department of Biochemistry, Program in Structural Biology, Weill Cornell Medical College, New York, New York 10065, and
| | - Hilal A Lashuel
- From the Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute and
| |
Collapse
|
27
|
Fares MB, Ait-Bouziad N, Dikiy I, Mbefo MK, Jovičić A, Kiely A, Holton JL, Lee SJ, Gitler AD, Eliezer D, Lashuel HA. The novel Parkinson's disease linked mutation G51D attenuates in vitro aggregation and membrane binding of α-synuclein, and enhances its secretion and nuclear localization in cells. Hum Mol Genet 2014; 23:4491-509. [PMID: 24728187 DOI: 10.1093/hmg/ddu165] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A novel mutation in the α-Synuclein (α-Syn) gene "G51D" was recently identified in two familial cases exhibiting features of Parkinson's disease (PD) and multiple system atrophy (MSA). In this study, we explored the impact of this novel mutation on the aggregation, cellular and biophysical properties of α-Syn, in an attempt to unravel how this mutant contributes to PD/MSA. Our results show that the G51D mutation significantly attenuates α-Syn aggregation in vitro. Moreover, it disrupts local helix formation in the presence of SDS, decreases binding to lipid vesicles C-terminal to the site of mutation and severely inhibits helical folding in the presence of acidic vesicles. When expressed in yeast, α-Syn(G51D) behaves similarly to α-Syn(A30P), as both exhibit impaired membrane association, form few inclusions and are non-toxic. In contrast, enhanced secreted and nuclear levels of the G51D mutant were observed in mammalian cells, as well as in primary neurons, where α-Syn(G51D) was enriched in the nuclear compartment, was hyper-phosphorylated at S129 and exacerbated α-Syn-induced mitochondrial fragmentation. Finally, post-mortem human brain tissues of α-Syn(G51D) cases were examined, and revealed only partial colocalization with nuclear membrane markers, probably due to post-mortem tissue delay and fixation. These findings suggest that the PD-linked mutations may cause neurodegeneration via different mechanisms, some of which may be independent of α-Syn aggregation.
Collapse
Affiliation(s)
- Mohamed-Bilal Fares
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Ecole Polytechnique Fédérale de Lausanne, Station 19, CH-1015 Lausanne, Switzerland
| | - Nadine Ait-Bouziad
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Ecole Polytechnique Fédérale de Lausanne, Station 19, CH-1015 Lausanne, Switzerland
| | - Igor Dikiy
- Department of Biochemistry and Program in Structural Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Martial K Mbefo
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Ecole Polytechnique Fédérale de Lausanne, Station 19, CH-1015 Lausanne, Switzerland
| | - Ana Jovičić
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aoife Kiely
- Queen Square Brain Bank, UCL Institute of Neurology, London, UK
| | - Janice L Holton
- Queen Square Brain Bank, UCL Institute of Neurology, London, UK
| | - Seung-Jae Lee
- Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David Eliezer
- Department of Biochemistry and Program in Structural Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Ecole Polytechnique Fédérale de Lausanne, Station 19, CH-1015 Lausanne, Switzerland
| |
Collapse
|
28
|
Mahul-Mellier AL, Fauvet B, Gysbers A, Dikiy I, Oueslati A, Georgeon S, Lamontanara AJ, Bisquertt A, Eliezer D, Masliah E, Halliday G, Hantschel O, Lashuel HA. c-Abl phosphorylates α-synuclein and regulates its degradation: implication for α-synuclein clearance and contribution to the pathogenesis of Parkinson's disease. Hum Mol Genet 2014; 23:2858-79. [PMID: 24412932 DOI: 10.1093/hmg/ddt674] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Increasing evidence suggests that the c-Abl protein tyrosine kinase could play a role in the pathogenesis of Parkinson's disease (PD) and other neurodegenerative disorders. c-Abl has been shown to regulate the degradation of two proteins implicated in the pathogenesis of PD, parkin and α-synuclein (α-syn). The inhibition of parkin's neuroprotective functions is regulated by c-Abl-mediated phosphorylation of parkin. However, the molecular mechanisms by which c-Abl activity regulates α-syn toxicity and clearance remain unknown. Herein, using NMR spectroscopy, mass spectrometry, in vitro enzymatic assays and cell-based studies, we established that α-syn is a bona fide substrate for c-Abl. In vitro studies demonstrate that c-Abl directly interacts with α-syn and catalyzes its phosphorylation mainly at tyrosine 39 (pY39) and to a lesser extent at tyrosine 125 (pY125). Analysis of human brain tissues showed that pY39 α-syn is detected in the brains of healthy individuals and those with PD. However, only c-Abl protein levels were found to be upregulated in PD brains. Interestingly, nilotinib, a specific inhibitor of c-Abl kinase activity, induces α-syn protein degradation via the autophagy and proteasome pathways, whereas the overexpression of α-syn in the rat midbrains enhances c-Abl expression. Together, these data suggest that changes in c-Abl expression, activation and/or c-Abl-mediated phosphorylation of Y39 play a role in regulating α-syn clearance and contribute to the pathogenesis of PD.
Collapse
|
29
|
Abstract
Among the largest cells in the body, neurons possess an immense surface area and intricate geometry that poses many unique cell biological challenges. This morphological complexity is critical for neural circuit formation and enables neurons to compartmentalize cell-cell communication and local intracellular signalling to a degree that surpasses other cell types. The adaptive plastic properties of neurons, synapses and circuits have been classically studied by measurement of electrophysiological properties, ionic conductances and excitability. Over the last 15 years, the field of synaptic and neural electrophysiology has collided with neuronal cell biology to produce a more integrated understanding of how these remarkable highly differentiated cells utilize common eukaryotic cellular machinery to decode, integrate and propagate signals in the nervous system. The present article gives a very brief and personal overview of the organelles and trafficking machinery of neuronal dendrites and their role in dendritic and synaptic plasticity.
Collapse
Affiliation(s)
- Michael D Ehlers
- *Neuroscience Research Unit, Pfizer Worldwide Research and Development, 700 Main Street, Cambridge, MA 02139, U.S.A
| |
Collapse
|
30
|
Muthusamy N, Faundez V, Bergson C. Calcyon, a mammalian specific NEEP21 family member, interacts with adaptor protein complex 3 (AP-3) and regulates targeting of AP-3 cargoes. J Neurochem 2012; 123:60-72. [PMID: 22650988 DOI: 10.1111/j.1471-4159.2012.07814.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Calcyon is a neural enriched, single transmembrane protein that interacts with clathrin light chain and stimulates clathrin assembly and clathrin-mediated endocytosis. A similar property is shared by the heterotetrameric adaptor protein (AP) complexes AP-1, AP-2, and AP-3 which recruit cargoes for insertion into clathrin coated transport vesicles. Here we report that AP medium (μ) subunits interact with a YXXØ-type tyrosine motif located at residues 133-136 in the cytoplasmic domain of calcyon. Site specific mutagenesis of the critical tyrosine and bulky hydrophobic residues tyrosine 133 and methionine 136 preferentially abrogated binding of the ubiquitous and neuronal isoforms of μ3, and also impacted μ1 and μ2 binding to a lesser degree. The relevance of these interactions was explored in vivo using mice harboring null alleles of calcyon. As seen in the mutagenesis studies, calcyon deletion in mice preferentially altered the subcellular distribution of AP-3 suggesting that calcyon could regulate membrane-bound pools of AP-3 and AP-3 function. To test this hypothesis, we focused on the hilar region of hippocampus, where levels of calcyon, AP-3, and AP-3 cargoes are abundant. We analyzed brain cryosections from control and calcyon null mice for zinc transporter 3 (ZnT3), and phosphatidylinositol-4-kinase type II alpha (PI4KIIα), two well-defined AP-3 cargoes. Confocal microscopy indicated that ZnT3 and PI4KIIα are significantly reduced in the hippocampal mossy fibers of calcyon knock-out brain, a phenotype previously described in AP-3 deficiencies. Altogether, our data suggest that calcyon directly interacts with μ3A and μ3B, and regulates the subcellular distribution of AP-3 and the targeting of AP-3 cargoes.
Collapse
Affiliation(s)
- Nagendran Muthusamy
- Graduate Program in Neuroscience Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | |
Collapse
|
31
|
Moore FB, Baleja JD. Molecular remodeling mechanisms of the neural somatodendritic compartment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1720-30. [PMID: 22705351 DOI: 10.1016/j.bbamcr.2012.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/06/2012] [Accepted: 06/07/2012] [Indexed: 12/28/2022]
Abstract
Neuronal cells use the process of vesicle trafficking to manipulate the populations of neurotransmitter receptors and other membrane proteins. Long term potentiation (LTP) is a long-lived increase in synaptic strength between neurons and increases postsynaptic dendritic spine size and the concentration of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate-type glutamate receptor (AMPAR) located in the postsynaptic density. AMPAR is removed from the cell surface via clathrin-mediated endocytosis. While the adaptor protein 2 (AP2) complex of endocytosis seems to have the components needed to allow temporal and spatial regulations of internalization, many accessory proteins are involved, such as epidermal growth factor receptor phosphorylation substrate 15 (Eps15). A sequence of repeats in the Eps15 protein is known as the Eps15 homology (EH) domain. It has affinity for asparagine-proline-phenylalanine (NPF) sequences that are contained within vesicle trafficking proteins such as epsin, Rab11 family interacting protein 2 (Rab11-FIP2), and Numb. After endocytosis, a pool of AMPAR is stored in the endosomal recycling compartment that can be transported to the dendritic spine surface upon stimulation during LTP for lateral diffusion into the postsynaptic density. Rab11 and the Eps15 homologue EHD1 are involved in receptor recycling. EHD family members are also involved in transcytosis of the neuronal cell adhesion molecule neuron-glia cell adhesion molecule (NgCAM) from the somatodendritic compartment to the axon. Neurons have a unique morphology comprising many projections of membrane that is constructed in part by the effects of the Eps15 homologue, intersectin. Morphogenesis in the somatodendritic compartment is becoming better understood, but there is still much exciting territory to explore, especially regarding the roles of various EH domain-NPF interactions in endocytic and recycling processes.
Collapse
Affiliation(s)
- Fletcher B Moore
- Department of Biochemistry, Tufts University School of Medicine, Boston, MA 02111, USA
| | | |
Collapse
|
32
|
Abstract
Endocytosis and endosomal trafficking play a multitude of roles in cellular function beyond regulating entry of essential nutrients. In this review, we discuss the cell biological principles of endosomal trafficking, the neuronal adaptations to endosomal organization, and the role of endosomal trafficking in neural development. In particular, we consider how cell fate decisions, polarity, migration, and axon outgrowth and guidance are influenced by five endosomal tricks: dynamic modulation of receptor levels by endocytosis and recycling, cargo-specific responses via cargo-specific endocytic regulators, cell-type-specific endocytic regulation, ligand-specific endocytic regulation, and endosomal regulation of ligand processing and trafficking.
Collapse
Affiliation(s)
- Chan Choo Yap
- Department of Neuroscience, University of Virginia, 409 Lane Road, Charlottesville, VA 22908, USA
| | | |
Collapse
|
33
|
Brunner JM, Plattet P, Doucey MA, Rosso L, Curie T, Montagner A, Wittek R, Vandelvelde M, Zurbriggen A, Hirling H, Desvergne B. Morbillivirus glycoprotein expression induces ER stress, alters Ca2+ homeostasis and results in the release of vasostatin. PLoS One 2012; 7:e32803. [PMID: 22403712 PMCID: PMC3293893 DOI: 10.1371/journal.pone.0032803] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 02/04/2012] [Indexed: 11/26/2022] Open
Abstract
Although the pathology of Morbillivirus in the central nervous system (CNS) is well described, the molecular basis of neurodegenerative events still remains poorly understood. As a model to explore Morbillivirus-mediated CNS dysfunctions, we used canine distemper virus (CDV) that we inoculated into two different cell systems: a monkey cell line (Vero) and rat primary hippocampal neurons. Importantly, the recombinant CDV used in these studies not only efficiently infects both cell types but recapitulates the uncommon, non-cytolytic cell-to-cell spread mediated by virulent CDVs in brain of dogs. Here, we demonstrated that both CDV surface glycoproteins (F and H) markedly accumulated in the endoplasmic reticulum (ER). This accumulation triggered an ER stress, characterized by increased expression of the ER resident chaperon calnexin and the proapoptotic transcription factor CHOP/GADD 153. The expression of calreticulin (CRT), another ER resident chaperon critically involved in the response to misfolded proteins and in Ca(2+) homeostasis, was also upregulated. Transient expression of recombinant CDV F and H surface glycoproteins in Vero cells and primary hippocampal neurons further confirmed a correlation between their accumulation in the ER, CRT upregulation, ER stress and disruption of ER Ca(2+) homeostasis. Furthermore, CDV infection induced CRT fragmentation with re-localisation of a CRT amino-terminal fragment, also known as vasostatin, on the surface of infected and neighbouring non-infected cells. Altogether, these results suggest that ER stress, CRT fragmentation and re-localization on the cell surface may contribute to cytotoxic effects and ensuing cell dysfunctions triggered by Morbillivirus, a mechanism that might potentially be relevant for other neurotropic viruses.
Collapse
Affiliation(s)
- Jean-Marc Brunner
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
- Institut de Biotechnologie, University of Lausanne, Lausanne, Switzerland
| | - Philippe Plattet
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Marie-Agnès Doucey
- Division of Experimental Oncology, Multidisciplinary Oncology Center, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Lia Rosso
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Thomas Curie
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Alexandra Montagner
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Riccardo Wittek
- Institut de Biotechnologie, University of Lausanne, Lausanne, Switzerland
| | - Marc Vandelvelde
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andreas Zurbriggen
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Harald Hirling
- Brain Mind Institute, Faculté des Sciences de la Vie, Ecole Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland
| | - Béatrice Desvergne
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
34
|
Bando SY, Alegro MC, Amaro E, Silva AV, Castro LHM, Wen HT, Lima LDA, Brentani H, Moreira-Filho CA. Hippocampal CA3 transcriptome signature correlates with initial precipitating injury in refractory mesial temporal lobe epilepsy. PLoS One 2011; 6:e26268. [PMID: 22022585 PMCID: PMC3194819 DOI: 10.1371/journal.pone.0026268] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 09/23/2011] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Prolonged febrile seizures constitute an initial precipitating injury (IPI) commonly associated with refractory mesial temporal lobe epilepsy (RMTLE). In order to investigate IPI influence on the transcriptional phenotype underlying RMTLE we comparatively analyzed the transcriptomic signatures of CA3 explants surgically obtained from RMTLE patients with (FS) or without (NFS) febrile seizure history. Texture analyses on MRI images of dentate gyrus were conducted in a subset of surgically removed sclerotic hippocampi for identifying IPI-associated histo-radiological alterations. METHODOLOGY/PRINCIPAL FINDINGS DNA microarray analysis revealed that CA3 global gene expression differed significantly between FS and NFS subgroups. An integrative functional genomics methodology was used for characterizing the relations between GO biological processes themes and constructing transcriptional interaction networks defining the FS and NFS transcriptomic signatures and its major gene-gene links (hubs). Co-expression network analysis showed that: i) CA3 transcriptomic profiles differ according to the IPI; ii) FS distinctive hubs are mostly linked to glutamatergic signalization while NFS hubs predominantly involve GABAergic pathways and neurotransmission modulation. Both networks have relevant hubs related to nervous system development, what is consistent with cell genesis activity in the hippocampus of RMTLE patients. Moreover, two candidate genes for therapeutic targeting came out from this analysis: SSTR1, a relevant common hub in febrile and afebrile transcriptomes, and CHRM3, due to its putative role in epilepsy susceptibility development. MRI texture analysis allowed an overall accuracy of 90% for pixels correctly classified as belonging to FS or NFS groups. Histological examination revealed that granule cell loss was significantly higher in FS hippocampi. CONCLUSIONS/SIGNIFICANCE CA3 transcriptional signatures and dentate gyrus morphology fairly correlate with IPI in RMTLE, indicating that FS-RMTLE represents a distinct phenotype. These findings may shed light on the molecular mechanisms underlying refractory epilepsy phenotypes and contribute to the discovery of novel specific drug targets for therapeutic interventions.
Collapse
Affiliation(s)
- Silvia Y. Bando
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, São Paulo, Brazil
| | - Maryana C. Alegro
- Laboratory of Integrated Systems, Escola Politécnica da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Edson Amaro
- Department of Radiology, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, São Paulo, Brazil
| | - Alexandre V. Silva
- Department of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | - Luiz H. M. Castro
- Clinical Neurology Division, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Hung-Tzu Wen
- Epilepsy Surgery Group, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Leandro de A. Lima
- Laboratory of Biotechnology, Hospital do Câncer AC Camargo, São Paulo, São Paulo, Brazil
| | - Helena Brentani
- Department of Psychiatry, Instituto Nacional de Psiquiatria do Desenvolvimento and Laboratório de Investigação Médica 23, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, São Paulo, Brazil
| | - Carlos Alberto Moreira-Filho
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
35
|
Hoogenraad CC, van der Sluijs P. GRASP-1 regulates endocytic receptor recycling and synaptic plasticity. Commun Integr Biol 2011; 3:433-5. [PMID: 21057633 DOI: 10.4161/cib.3.5.12209] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 04/28/2010] [Indexed: 11/19/2022] Open
Abstract
Remodeling of synapses is a fundamental mechanism for information storage and processing in the brain. Previous studies showed that the endosomal pathway plays a central role in synapse formation and plasticity. A popular model holds that recycling endosomes in dendrites provide the local intracellular pool of postsynaptic receptors for long-term potentiation (LTP), a widely studied cellular model for learning and memory formation. However, we are far from a complete understanding how endocytic receptor sorting and recycling is organized and coordinated in dendrites. Especially, the molecular mechanisms that couple specific endosomal trafficking routes during LTP are poorly understood. In a recent paper we discovered that the coiled-coil protein GRIP-associated protein-1 (GRASP-1) is a neuron-specific effector of the small GTPase Rab4 and key component of AMPA receptor recycling machinery in dendrites.1 GRASP-1 is essential for maintenance of spine morphology and important for LTP. GRASP-1 connects Rab4 and Rab11 recycling endosomal domains through the interaction with target (t)-SNARE syntaxin 13, which constitutes a new principle for regulating endosomal recycling. Here, we summarize our recently reported observations and further discuss their possible implications.
Collapse
|
36
|
Lasiecka ZM, Winckler B. Mechanisms of polarized membrane trafficking in neurons -- focusing in on endosomes. Mol Cell Neurosci 2011; 48:278-87. [PMID: 21762782 DOI: 10.1016/j.mcn.2011.06.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 06/21/2011] [Accepted: 06/25/2011] [Indexed: 12/13/2022] Open
Abstract
Neurons are polarized cells that have a complex and unique morphology: long processes (axons and dendrites) extending far from the cell body. In addition, the somatodendritic and axonal domains are further divided into specific subdomains, such as synapses (pre- and postsynaptic specializations), proximal and distal dendrites, axon initial segments, nodes of Ranvier, and axon growth cones. The striking asymmetry and complexity of neuronal cells are necessary for their function in receiving, processing and transferring electrical signals, with each domain playing a precise function in these processes. In order to establish and maintain distinct neuronal domains, mechanisms must exist for protein delivery to specific neuronal compartments, such that each compartment has the correct functional molecular composition. How polarized membrane domains are established and maintained is a long-standing question. Transmembrane proteins, such as receptors and adhesion molecules, can be transported to their proper membrane domains by several pathways. The biosynthetic secretory system delivers newly synthesized transmembrane proteins from the ER via the Golgi and trans-Golgi-network (TGN) to the plasma membrane. In addition, the endosomal system is critically involved in many instances in ensuring proper (re)targeting of membrane components because it can internalize and degrade mislocalized proteins, or recycle proteins from one domain to another. The endosomal system is thus crucial for establishing and maintaining neuronal polarity. In this review, we focus mainly on the intracellular compartments that serve as sorting stations for polarized transport, with particular emphasis on the emerging roles of endosomes.
Collapse
Affiliation(s)
- Zofia M Lasiecka
- Department of Neuroscience, University of Virginia Medical School, 409 Lane Rd. Extension, MR4-6116, Charlottesville, VA 22908, USA
| | | |
Collapse
|
37
|
Mattiuzzo NR, Toulza E, Jonca N, Serre G, Guerrin M. A large-scale multi-technique approach identifies forty-nine new players of keratinocyte terminal differentiation in human epidermis. Exp Dermatol 2011; 20:113-8. [PMID: 21255089 DOI: 10.1111/j.1600-0625.2010.01188.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
At the latest stage of terminal differentiation in the epidermis, granular keratinocytes (GKs) undergo cornification, a programmed cell death required for the establishment of a functional skin barrier. A complex genetic regulatory network orchestrates the underlying biochemical modifications, but very few transcription factors specific to this programme have been identified to date. Here, we describe a large-scale, multi-technique approach performed on cells purified from normal human epidermis, primarily focusing on the identification of regulators. We combined data from microarray analysis of cell fractions enriched in GKs or basal keratinocytes, from an expressed sequence tag (EST) library built from GKs and from an in silico promoter analysis of 52 differentiation-associated genes. Among 3576 genes potentially expressed in GK, 298 candidates were selected, and half were directly profiled for the first time in the different layers of the epidermis by quantitative real-time PCR. Forty-nine genes upregulated during terminal differentiation, associated with numerous function of GK including lipid synthesis and secretion, were identified. Of 94 transcription factors detected, 37 were found to be either positively or negatively regulated, suggesting their involvement as regulators of gene expression in the GKs. These results largely extend the number of genes known as involved in the latest step of the terminal differentiation of human epidermis as well as the number of transcription factors known to control the expression of these genes.
Collapse
Affiliation(s)
- Nicolas R Mattiuzzo
- UMR 5165 Epidermis Differentiation and Rheumatoid Autoimmunity, CNRS - University of Toulouse, Toulouse, France
| | | | | | | | | |
Collapse
|
38
|
Winckler B, Yap CC. Endocytosis and endosomes at the crossroads of regulating trafficking of axon outgrowth-modifying receptors. Traffic 2011; 12:1099-108. [PMID: 21535338 DOI: 10.1111/j.1600-0854.2011.01213.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In neurons, many receptors must be localized correctly to axons or dendrites for proper function. During development, receptors for nerve growth and guidance are targeted to axons and localized to growth cones where receptor activation by ligands results in promotion or inhibition of axon growth. Signaling outcomes downstream of ligand binding are determined by the location, levels and residence times of receptors on the neuronal plasma membrane. Therefore, the mechanisms controlling the trafficking of these receptors are crucial to the proper wiring of circuits. Membrane proteins accumulate on the axonal surface by multiple routes, including polarized sorting in the trans Golgi network, sorting in endosomes and removal by endocytosis. Endosomes also play important roles in the signaling pathways for both growth-promoting and -inhibiting molecules: signaling endosomes derived from endocytosis are important for signaling from growth cones to cell bodies. Growth-promoting neurotrophins and growth-inhibiting Nogo-A can use EHD4/Pincher-dependent endocytosis at the growth cone for their respective retrograde signaling. In addition to retrograde transport of endosomes, anterograde transport to axons in endosomes also occurs for several receptors, including the axon outgrowth-promoting cell adhesion molecule L1/NgCAM and TrkA. L1/NgCAM also depends on EHD4/Pincher-dependent endocytosis for its axonal polarization. In this review, we will focus on receptors whose trafficking has been reported to be modulated by the EHD4/Pincher family of endosomal regulators, namely L1/NgCAM, Trk and Nogo-A. We will first summarize the pathways underlying the axonal transport of these proteins and then discuss the potential roles of EHD4/Pincher in mediating their endocytosis.
Collapse
Affiliation(s)
- Bettina Winckler
- Department of Neuroscience, University of Virginia Medical School, MR4-6115, 409 Lane Road Ext., Charlottesville, VA 22936, USA.
| | | |
Collapse
|
39
|
Kennedy MJ, Ehlers MD. Mechanisms and function of dendritic exocytosis. Neuron 2011; 69:856-75. [PMID: 21382547 DOI: 10.1016/j.neuron.2011.02.032] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2011] [Indexed: 12/30/2022]
Abstract
Dendritic exocytosis is required for a broad array of neuronal functions including retrograde signaling, neurotransmitter release, synaptic plasticity, and establishment of neuronal morphology. While the details of synaptic vesicle exocytosis from presynaptic terminals have been intensely studied for decades, the mechanisms of dendritic exocytosis are only now emerging. Here we review the molecules and mechanisms of dendritic exocytosis and discuss how exocytosis from dendrites influences neuronal function and circuit plasticity.
Collapse
Affiliation(s)
- Matthew J Kennedy
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
40
|
Rengaraj D, Lee BR, Park KJ, Lee SI, Kang KS, Choi JW, Kang SJ, Song G, Han JY. The distribution of neuron-specific gene family member 1 in brain and germ cells: Implications for the regulation of germ-line development by brain. Dev Dyn 2011; 240:850-61. [DOI: 10.1002/dvdy.22575] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2011] [Indexed: 11/07/2022] Open
|
41
|
Mansuy V, Geller S, Rey JP, Campagne C, Boccard J, Poulain P, Prevot V, Pralong FP. Phenotypic and molecular characterization of proliferating and differentiated GnRH-expressing GnV-3 cells. Mol Cell Endocrinol 2011; 332:97-105. [PMID: 20937356 DOI: 10.1016/j.mce.2010.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 09/14/2010] [Accepted: 10/02/2010] [Indexed: 12/27/2022]
Abstract
GnRH neurons provide the primary driving force upon the neuroendocrine reproductive axis. Here we used GnV-3 cells, a model of conditionally immortalized GnRH-expressing neurons, to perform an analysis of cell cycle and compare the gene expression profile of proliferating cells with differentiated cells. In the proliferation medium, 45 ± 1.5% of GnV-3 cells are in S-phase by FACS analysis. In the differentiation medium, only 9 ± 0.9% of them are in S-phase, and they acquire the characteristic bipolar shape displayed by preoptic GnRH neurons in vivo. In addition, GnV-3 cells in the differentiated state exhibit electrophysiological properties characteristic of neurons. Transcriptomic analysis identified up-regulation of 1931 genes and down-regulation of 1270 genes in cells grown in the differentiation medium compared to cells in the proliferation medium. Subsequent gene ontology study indicated that genes over-expressed in proliferating GnV-3 cells were mainly involved in cell cycle regulations, whereas genes over-expressed in differentiated cells were mainly involved in processes of differentiation, neurogenesis and neuronal morphogenesis. Taken together, these data demonstrate the occurrence of morphological and physiological changes in GnV-3 cells between the proliferating and the differentiated state. Moreover, the genes differentially regulated between these two different states are providing novel pathways potentially important for a better understanding of the physiology of mature GnRH neurons.
Collapse
Affiliation(s)
- Virginie Mansuy
- Service of Endocrinology, Diabetology and Metabolism, University Hospital and Faculty of Biology and Medicine, 1011 Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
In neurons, the endosomal system is essential for membrane receptor trafficking to dendrites and axons and thereby participates in various neuronal functions, such as neurite outgrowth and synaptic plasticity. A multitude of regulators coordinates trafficking through endosomes, but most of them have not been studied in detail in neurons. In non-neuronal cells, EHD1 (Eps15 homology-domain containing protein 1) functions in the recycling endosome and is required for endosome-to-plasma membrane transport of multiple cargos. In this study, we analyze the role of EHD1 in neurons. In particular, we investigate whether EHD1 is required for polarized trafficking of the dendritically targeted transferrin and the axonal adhesion molecule L1/NgCAM (neuron-glia cell adhesion molecule) and, if so, in what compartment it is required. We find that endosomal recycling of both L1/NgCAM and transferrin is impaired when EHD1 is downregulated. We show that EHD1 colocalizes with L1/NgCAM and transferrin mostly in EEA1 (early endosome antigen 1)-positive early endosomes and less extensively with recycling endosomes. Using live imaging, we observe that EHD1 is stably associated with endosomal membranes during their maturation into EEA1-positive compartments and often persists on them longer than EEA1. Finally, we show that downregulation of EHD1 causes a delay of L1/NgCAM in exiting EEA1-positive endosomes, resulting in impaired targeting of L1/NgCAM to the axonal membrane. We conclude that, in neurons, EHD1 functions in early endosomes rather than (or possibly in addition to) recycling endosomes. These findings point to the existence of neuronal adaptations of the endosomal system.
Collapse
|
43
|
Identification of NEEP21 as a ß-amyloid precursor protein-interacting protein in vivo that modulates amyloidogenic processing in vitro. J Neurosci 2010; 30:15677-85. [PMID: 21084623 DOI: 10.1523/jneurosci.4464-10.2010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease and the most common form of dementia. AD is pathologically characterized by the deposition of pathogenic Aβ peptides that are derived from larger integral membrane proteins, termed β-amyloid precursor proteins (APPs). In an attempt to understand the function of APP, in vitro studies have focused on the identification of interacting proteins. To investigate the APP in vivo interactome in an unbiased manner, we generated mice that harbor a mouse prion protein promoter-driven cDNA encoding human APP-695 fused to a C-terminal affinity tag. Using this tag, we prepared mild detergent lysates from transgenic mouse brain cortical membrane preparations and isolated a number of previously identified APP-interacting proteins. In addition to these factors, mass spectrometric analysis revealed the presence of NEEP21 as a novel interacting protein. We now report that NEEP21 profoundly affects the processing of APP and Aβ production. Thus, this study demonstrates that using proteomic methods on our transgenic model can uncover important in vivo APP-interacting proteins that will provide insights into the biology of APP.
Collapse
|
44
|
Kudoh T, Kimura J, Lu ZG, Miki Y, Yoshida K. D4S234E, a novel p53-responsive gene, induces apoptosis in response to DNA damage. Exp Cell Res 2010; 316:2849-58. [DOI: 10.1016/j.yexcr.2010.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 06/17/2010] [Accepted: 06/24/2010] [Indexed: 11/24/2022]
|
45
|
Vileno B, Jeney S, Sienkiewicz A, Marcoux PR, Miller LM, Forró L. Evidence of lipid peroxidation and protein phosphorylation in cells upon oxidative stress photo-generated by fullerols. Biophys Chem 2010; 152:164-9. [PMID: 20970241 DOI: 10.1016/j.bpc.2010.09.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/18/2010] [Accepted: 09/18/2010] [Indexed: 10/19/2022]
Abstract
An oxidative stress (OS) state is characterized by the generation of Reactive Oxygen Species (ROS) in a biological system above its capacity to counterbalance them [1]. Exposure to OS induces the accumulation of intracellular ROS, which in turn causes cell damage in the form of protein, lipid, and/or DNA oxidations. Such conditions are believed to be linked to numerous diseases or simply to the ageing of tissues. However, the controlled generation of ROS via photosensitizing drugs or photosensitizers (PS) is now widely used to treat various tumors and other infections [2,3]. Here we present a method to track the chemical changes in a cell after exposure to oxidative stress. OS is induced via fullerols, a custom made water soluble derivative of fullerene (C(60)), under visible light illumination. Synchrotron-based Fourier Transform InfraRed Microspectroscopy (S-FTIRM) was used to assess the chemical makeup of single cells after OS exposure. Consequently, a chemical fingerprint of oxidative stress was probed in this study through an increase in the bands linked with lipid peroxidation (carbonyl ester group at 1740 cm(-1)) and protein phosphorylation (asymmetric phosphate stretching at 1240 cm(-1)).
Collapse
Affiliation(s)
- B Vileno
- NN Group, Institute of Physics of Condensed Matter, School of Basic Sciences (Station 3), Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
46
|
L1 syndrome mutations impair neuronal L1 function at different levels by divergent mechanisms. Neurobiol Dis 2010; 40:222-37. [PMID: 20621658 DOI: 10.1016/j.nbd.2010.05.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/19/2010] [Accepted: 05/25/2010] [Indexed: 11/22/2022] Open
Abstract
Mutations in the human L1CAM gene cause neurodevelopmental disorders collectively referred to as L1 syndrome. Here, we investigated cellular pathomechanisms underlying two L1 syndrome mutations, R184Q and W1036L. We demonstrate that these mutations cause partial endoplasmic reticulum (ER) retention of L1, reduce L1 cell surface expression, but do not induce ER stress in neuronal NSC-34 cells. We provide evidence that surface trafficking of mutated L1 is affected by defective sorting to ER exit sites and attenuated ER export. However, in differentiated neuronal cultures and long-term cultured hippocampal slices, the L1-R184Q protein is restricted to cell bodies, whereas L1-W1036L also aberrantly localizes to dendrites. These trafficking defects preclude axonal targeting of L1, thereby affecting L1-mediated axon growth and arborization. Our results indicate that L1 syndrome mutations impair neuronal L1 function at different levels, firstly by attenuating ER export and secondly by interfering with polarized neuronal trafficking.
Collapse
|
47
|
Abstract
Wiring of the brain relies initially on the correct outgrowth of axons to reach the appropriate target area for innervation. A large number of guidance receptors present in the plasma membrane of axonal growth cones and elsewhere on the neuron read and execute directional cues present in the extracellular environment of the navigating growth cone. The exact timing, levels, and localization of expression of the guidance receptors in the plasma membrane therefore determine the outcome of guidance decisions. Many guidance receptors are localized in exquisitely precise spatial and temporal patterns. The cellular mechanisms ensuring these localization patterns include spatially accurate sorting after synthesis in the secretory pathway, retrieval of inappropriately expressed receptors by endocytosis followed by degradation or recycling, and restriction of diffusion. This article will discuss the machinery and regulation underlying the restricted distribution of membrane receptors, focusing on the currently best-studied example, the L1 cell adhesion molecule. In addition to the long-range mechanisms ensuring appropriate localization, the same mechanisms can act locally to adjust levels and localization of receptors. These local mechanisms are regulated by ligand binding and subsequent activation of local signaling cascades. It is likely that the localization of all guidance receptors is regulated by a combination of sorting, retrieval, recycling and retention, similar to the ones we discuss here for L1.
Collapse
Affiliation(s)
- Bettina Winckler
- University of Virginia, Department of Neuroscience, Charlottesville, Virgina 22908, USA
| | | |
Collapse
|
48
|
Abstract
An important mechanism for the regulation of excitatory synaptic transmission in the hippocampus involves tight control of AMPAR [AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor] trafficking to alter the number or subtype of synaptic receptors. This is achieved via the multiple stages of the endosomal system. AMPARs constitutively cycle through early endosomes and recycling endosomes to maintain synaptic receptor numbers. However, on induction of synaptic plasticity, subtle alterations are made to this cycle by the action of specific AMPAR-interacting proteins and also via a number of additional proteins that regulate endosomal sorting more generally. During long-term depression, receptors are diverted to late endosomes and lysosomes rather than recycling back to the plasma membrane, hence reducing the number of receptors at the synapse. The increased number of synaptic AMPARs after induction of LTP (long-term potentiation) originates from the recycling compartment. In addition, transient changes in subunit composition may arise as a result of retention of AMPAR subtypes within the endosome during LTP. Aberrant trafficking after pathological insults such as oxygen/glucose deprivation or mechanical trauma also involves alterations in synaptic AMPAR subunit composition, leading to calcium influx that ultimately results in cell death.
Collapse
|
49
|
Mbefo MK, Paleologou KE, Boucharaba A, Oueslati A, Schell H, Fournier M, Olschewski D, Yin G, Zweckstetter M, Masliah E, Kahle PJ, Hirling H, Lashuel HA. Phosphorylation of synucleins by members of the Polo-like kinase family. J Biol Chem 2010; 285:2807-22. [PMID: 19889641 PMCID: PMC2807335 DOI: 10.1074/jbc.m109.081950] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Indexed: 01/22/2023] Open
Abstract
Phosphorylation of alpha-synuclein (alpha-syn) at Ser-129 is a hallmark of Parkinson disease and related synucleinopathies. However, the identity of the natural kinases and phosphatases responsible for regulating alpha-syn phosphorylation remain unknown. Here we demonstrate that three closely related members of the human Polo-like kinase (PLK) family (PLK1, PLK2, and PLK3) phosphorylate alpha-syn and beta-syn specifically at Ser-129 and Ser-118, respectively. Unlike other kinases reported to partially phosphorylate alpha-syn at Ser-129 in vitro, phosphorylation by PLK2 and PLK3 is quantitative (>95% conversion). Only PLK1 and PLK3 phosphorylate beta-syn at Ser-118, whereas no phosphorylation of gamma-syn was detected by any of the four PLKs (PLK1 to -4). PLK-mediated phosphorylation was greatly reduced in an isolated C-terminal fragment (residues 103-140) of alpha-syn, suggesting substrate recognition via the N-terminal repeats and/or the non-amyloid component domain of alpha-syn. PLKs specifically co-localized with phosphorylated Ser-129 (Ser(P)-129) alpha-syn in various subcellular compartments (cytoplasm, nucleus, and membranes) of mammalian cell lines and primary neurons as well as in alpha-syn transgenic mice, especially cortical brain areas involved in synaptic plasticity. Furthermore, we report that the levels of PLK2 are significantly increased in brains of Alzheimer disease and Lewy body disease patients. Taken together, these results provide biochemical and in vivo evidence of alpha-syn and beta-syn phosphorylation by specific PLKs. Our results suggest a need for further studies to elucidate the potential role of PLK-syn interactions in the normal biology of these proteins as well as their involvement in the pathogenesis of Parkinson disease and other synucleinopathies.
Collapse
Affiliation(s)
- Martial K. Mbefo
- From the Laboratory of Molecular Neurobiology and Neuroproteomics and
| | | | - Ahmed Boucharaba
- the Laboratory of Cellular Neurobiology, Brain Mind Institute, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Abid Oueslati
- From the Laboratory of Molecular Neurobiology and Neuroproteomics and
| | - Heinrich Schell
- the Laboratory for Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University Clinics Tübingen, D-72076 Tübingen, Germany
| | - Margot Fournier
- From the Laboratory of Molecular Neurobiology and Neuroproteomics and
| | - Diana Olschewski
- From the Laboratory of Molecular Neurobiology and Neuroproteomics and
| | - Guowei Yin
- the Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Markus Zweckstetter
- the Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- the Deutsche Forschungsgemeinschaft Research Center for the Molecular Physiology of the Brain D-37073 Göttingen, Germany, and
| | - Eliezer Masliah
- the Department of Neurosciences, University of California, San Diego, La Jolla, California
| | - Philipp J. Kahle
- the Laboratory for Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University Clinics Tübingen, D-72076 Tübingen, Germany
| | - Harald Hirling
- the Laboratory of Cellular Neurobiology, Brain Mind Institute, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Hilal A. Lashuel
- From the Laboratory of Molecular Neurobiology and Neuroproteomics and
| |
Collapse
|
50
|
Neuron specific Rab4 effector GRASP-1 coordinates membrane specialization and maturation of recycling endosomes. PLoS Biol 2010; 8:e1000283. [PMID: 20098723 PMCID: PMC2808209 DOI: 10.1371/journal.pbio.1000283] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 12/10/2009] [Indexed: 12/23/2022] Open
Abstract
The neuronal protein GRASP-1 is shown to be a key molecule controlling endosomal trafficking and thereby regulating synapse integrity and synaptic plasticity. The endosomal pathway in neuronal dendrites is essential for membrane receptor trafficking and proper synaptic function and plasticity. However, the molecular mechanisms that organize specific endocytic trafficking routes are poorly understood. Here, we identify GRIP-associated protein-1 (GRASP-1) as a neuron-specific effector of Rab4 and key component of the molecular machinery that coordinates recycling endosome maturation in dendrites. We show that GRASP-1 is necessary for AMPA receptor recycling, maintenance of spine morphology, and synaptic plasticity. At the molecular level, GRASP-1 segregates Rab4 from EEA1/Neep21/Rab5-positive early endosomal membranes and coordinates the coupling to Rab11-labelled recycling endosomes by interacting with the endosomal SNARE syntaxin 13. We propose that GRASP-1 connects early and late recycling endosomal compartments by forming a molecular bridge between Rab-specific membrane domains and the endosomal SNARE machinery. The data uncover a new mechanism to achieve specificity and directionality in neuronal membrane receptor trafficking. Neurons communicate with each other through specialized structures called synapses, and proper synapse function is fundamental for information processing and memory storage. The endosomal membrane trafficking pathway is crucial for the structure and function of synapses; however, the components of the neuronal endosomal transport machinery are poorly characterized. In this paper, we report that a protein called GRASP-1 is required for neurotransmitter receptor recycling through endosomes and back to the cell surface, as well as for the normal morphology of dendritic spines—the projections that form synapses—and for synaptic plasticity. We show that GRASP-1 coordinates coupling between early and later steps of the endocytic recycling pathway by binding to Rab4, a regulator of early endosomes, and to another endosomal protein found later in the pathway called syntaxin 13—a so-called SNARE protein involved in membrane fusion. GRASP-1 binds Rab4 with its N terminus and syntaxin 13 with its C terminus, suggesting that these interactions could structurally and functionally link early endosomes to those later in the recycling pathway. We propose a model in which GRASP-1 forms a molecular bridge between different endosomal membranes and the SNARE fusion machinery. Our study thus provides new mechanistic information about endosome function in neurons and highlights GRASP-1 as a key molecule that controls membrane receptor sorting and recycling during synaptic plasticity.
Collapse
|