1
|
Mercey O, Gadadhar S, Magiera MM, Lebrun L, Kostic C, Moulin A, Arsenijevic Y, Janke C, Guichard P, Hamel V. Glutamylation imbalance impairs the molecular architecture of the photoreceptor cilium. EMBO J 2024; 43:6679-6704. [PMID: 39528655 PMCID: PMC11649768 DOI: 10.1038/s44318-024-00284-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Microtubules, composed of conserved α/β-tubulin dimers, undergo complex post-translational modifications (PTMs) that fine-tune their properties and interactions with other proteins. Cilia exhibit several tubulin PTMs, such as polyglutamylation, polyglycylation, detyrosination, and acetylation, with functions that are not fully understood. Mutations in AGBL5, which encodes the deglutamylating enzyme CCP5, have been linked to retinitis pigmentosa, suggesting that altered polyglutamylation may cause photoreceptor cell degeneration, though the underlying mechanisms are unclear. Using super-resolution ultrastructure expansion microscopy (U-ExM) in mouse and human photoreceptor cells, we observed that most tubulin PTMs accumulate at the connecting cilium that links outer and inner photoreceptor segments. Mouse models with increased glutamylation (Ccp5-/- and Ccp1-/-) or loss of tubulin acetylation (Atat1-/-) showed that aberrant glutamylation, but not acetylation loss, disrupts outer segment architecture. This disruption includes exacerbation of the connecting cilium, loss of the bulge region, and destabilization of the distal axoneme. Additionally, we found significant impairment in tubulin glycylation, as well as reduced levels of intraflagellar transport proteins and of retinitis pigmentosa-associated protein RPGR. Our findings indicate that proper glutamylation levels are crucial for maintaining the molecular architecture of the photoreceptor cilium.
Collapse
Affiliation(s)
- Olivier Mercey
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Sudarshan Gadadhar
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
- Institute for Stem Cell Science and Regenerative Medicine (inStem), GKVK Post, Bellary Road, Bangalore, India
| | - Maria M Magiera
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Laura Lebrun
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay, France
- Université Paris-Saclay, CNRS UMR3348, Orsay, France
| | - Corinne Kostic
- Group for Retinal Disorder Research, Department of Ophthalmology, University Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Alexandre Moulin
- Department of Ophthalmology, University Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Yvan Arsenijevic
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay, France.
- Université Paris-Saclay, CNRS UMR3348, Orsay, France.
| | - Paul Guichard
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| | - Virginie Hamel
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
2
|
Jiang YY, Kumar S, Turkewitz AP. The secretory pathway in Tetrahymena is organized for efficient constitutive secretion at ciliary pockets. iScience 2024; 27:111123. [PMID: 39498308 PMCID: PMC11532953 DOI: 10.1016/j.isci.2024.111123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/19/2024] [Accepted: 10/04/2024] [Indexed: 11/07/2024] Open
Abstract
In ciliates, membrane cisternae called alveoli interpose between the plasma membrane and the cytoplasm, posing a barrier to endocytic and exocytic membrane trafficking. One exception to this barrier is plasma membrane invaginations called parasomal sacs, which are adjacent to ciliary basal bodies. By following a fluorescent secretory marker called ESCargo, we imaged secretory compartments and secretion in these cells. A cortical endoplasmic reticulum is organized along cytoskeletal ridges and cradles a cohort of mitochondria. One cohort of Golgi are highly mobile in a subcortical layer, while the remainder appear stably positioned at periodic sites close to basal bodies, except near the cell tip where, interestingly, Golgi are more closely spaced. Strikingly, ESCargo secretion was readily visible at positions aligned with basal bodies and parasomal sacs. Thus peri-ciliary zones in ciliates are organized, like ciliary pockets in the highly unrelated trypanosomids, as unique hubs of exo-endocytic trafficking.
Collapse
Affiliation(s)
- Yu-Yang Jiang
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
- AbCellera Boston, Inc. 91 Mystic St, Arlington, MA 02474, USA
| | - Santosh Kumar
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind Road, Pune, Maharashtra State 411007, India
| | - Aaron P. Turkewitz
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
3
|
More KJ, Kaur H, Simpson AGB, Spiegel FW, Dacks JB. Contractile vacuoles: a rapidly expanding (and occasionally diminishing?) understanding. Eur J Protistol 2024; 94:126078. [PMID: 38688044 DOI: 10.1016/j.ejop.2024.126078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 05/02/2024]
Abstract
Osmoregulation is the homeostatic mechanism essential for the survival of organisms in hypoosmotic and hyperosmotic conditions. In freshwater or soil dwelling protists this is frequently achieved through the action of an osmoregulatory organelle, the contractile vacuole. This endomembrane organelle responds to the osmotic challenges and compensates by collecting and expelling the excess water to maintain the cellular osmolarity. As compared with other endomembrane organelles, this organelle is underappreciated and under-studied. Here we review the reported presence or absence of contractile vacuoles across eukaryotic diversity, as well as the observed variability in the structure, function, and molecular machinery of this organelle. Our findings highlight the challenges and opportunities for constructing cellular and evolutionary models for this intriguing organelle.
Collapse
Affiliation(s)
- Kiran J More
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Harpreet Kaur
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Alastair G B Simpson
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada; Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Frederick W Spiegel
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; Centre for Life's Origins and Evolution, Department of Genetics, Evolution, & Environment, University College, London, United Kingdom.
| |
Collapse
|
4
|
Aljammal R, Saravanan T, Guan T, Rhodes S, Robichaux MA, Ramamurthy V. Excessive tubulin glutamylation leads to progressive cone-rod dystrophy and loss of outer segment integrity. Hum Mol Genet 2024; 33:802-817. [PMID: 38297980 DOI: 10.1093/hmg/ddae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Mutations in Cytosolic Carboxypeptidase-like Protein 5 (CCP5) are associated with vision loss in humans. To decipher the mechanisms behind CCP5-associated blindness, we generated a novel mouse model lacking CCP5. In this model, we found that increased tubulin glutamylation led to progressive cone-rod dystrophy, with cones showing a more pronounced and earlier functional loss than rod photoreceptors. The observed functional reduction was not due to cell death, levels, or the mislocalization of major phototransduction proteins. Instead, the increased tubulin glutamylation caused shortened photoreceptor axonemes and the formation of numerous abnormal membranous whorls that disrupted the integrity of photoreceptor outer segments (OS). Ultimately, excessive tubulin glutamylation led to the progressive loss of photoreceptors, affecting cones more severely than rods. Our results highlight the importance of maintaining tubulin glutamylation for normal photoreceptor function. Furthermore, we demonstrate that murine cone photoreceptors are more sensitive to disrupted tubulin glutamylation levels than rods, suggesting an essential role for axoneme in the structural integrity of the cone outer segment. This study provides valuable insights into the mechanisms of photoreceptor diseases linked to excessive tubulin glutamylation.
Collapse
Affiliation(s)
- Rawaa Aljammal
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Dr., Morgantown, WV 26506, United States
- Department of Ophthalmology and Visual Sciences, One Stadium Dr, West Virginia University, Morgantown, WV 26506, United States
| | - Thamaraiselvi Saravanan
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Dr., Morgantown, WV 26506, United States
- Department of Ophthalmology and Visual Sciences, One Stadium Dr, West Virginia University, Morgantown, WV 26506, United States
| | - Tongju Guan
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Dr., Morgantown, WV 26506, United States
- Department of Ophthalmology and Visual Sciences, One Stadium Dr, West Virginia University, Morgantown, WV 26506, United States
| | - Scott Rhodes
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Dr., Morgantown, WV 26506, United States
- Department of Ophthalmology and Visual Sciences, One Stadium Dr, West Virginia University, Morgantown, WV 26506, United States
| | - Michael A Robichaux
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Dr., Morgantown, WV 26506, United States
- Department of Ophthalmology and Visual Sciences, One Stadium Dr, West Virginia University, Morgantown, WV 26506, United States
| | - Visvanathan Ramamurthy
- Department of Biochemistry and Molecular Medicine, School of Medicine, West Virginia University, 64 Medical Center Dr., Morgantown, WV 26506, United States
- Department of Ophthalmology and Visual Sciences, One Stadium Dr, West Virginia University, Morgantown, WV 26506, United States
| |
Collapse
|
5
|
Lee C, Maier W, Jiang YY, Nakano K, Lechtreck KF, Gaertig J. Global and local functions of the Fused kinase ortholog CdaH in intracellular patterning in Tetrahymena. J Cell Sci 2024; 137:jcs261256. [PMID: 37667859 PMCID: PMC10565251 DOI: 10.1242/jcs.261256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023] Open
Abstract
Ciliates assemble numerous microtubular structures into complex cortical patterns. During ciliate division, the pattern is duplicated by intracellular segmentation that produces a tandem of daughter cells. In Tetrahymena thermophila, the induction and positioning of the division boundary involves two mutually antagonistic factors: posterior CdaA (cyclin E) and anterior CdaI (Hippo kinase). Here, we characterized the related cdaH-1 allele, which confers a pleiotropic patterning phenotype including an absence of the division boundary and an anterior-posterior mispositioning of the new oral apparatus. CdaH is a Fused or Stk36 kinase ortholog that localizes to multiple sites that correlate with the effects of its loss, including the division boundary and the new oral apparatus. CdaH acts downstream of CdaA to induce the division boundary and drives asymmetric cytokinesis at the tip of the posterior daughter. CdaH both maintains the anterior-posterior position of the new oral apparatus and interacts with CdaI to pattern ciliary rows within the oral apparatus. Thus, CdaH acts at multiple scales, from induction and positioning of structures on the cell-wide polarity axis to local organelle-level patterning.
Collapse
Affiliation(s)
- Chinkyu Lee
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Wolfgang Maier
- Bioinformatics, University of Freiburg, 79110 Freiburg, Germany
| | - Yu-Yang Jiang
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Kentaro Nakano
- Degree Programs in Biology, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Karl F Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
6
|
Jentzsch J, Wunderlich H, Thein M, Bechthold J, Brehm L, Krauss SW, Weiss M, Ersfeld K. Microtubule polyglutamylation is an essential regulator of cytoskeletal integrity in Trypanosoma brucei. J Cell Sci 2024; 137:jcs261740. [PMID: 38205672 DOI: 10.1242/jcs.261740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Tubulin polyglutamylation, catalysed by members of the tubulin tyrosine ligase-like (TTLL) protein family, is an evolutionarily highly conserved mechanism involved in the regulation of microtubule dynamics and function in eukaryotes. In the protozoan parasite Trypanosoma brucei, the microtubule cytoskeleton is essential for cell motility and maintaining cell shape. In a previous study, we showed that T. brucei TTLL6A and TTLL12B are required to regulate microtubule dynamics at the posterior cell pole. Here, using gene deletion, we show that the polyglutamylase TTLL1 is essential for the integrity of the highly organised microtubule structure at the cell pole, with a phenotype distinct from that observed in TTLL6A- and TTLL12B-depleted cells. Reduced polyglutamylation in TTLL1-deficient cells also leads to increased levels in tubulin tyrosination, providing new evidence for an interplay between the tubulin tyrosination and detyrosination cycle and polyglutamylation. We also show that TTLL1 acts differentially on specific microtubule doublets of the flagellar axoneme, although the absence of TTLL1 appears to have no measurable effect on cell motility.
Collapse
Affiliation(s)
- Jana Jentzsch
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Hannes Wunderlich
- Experimental Physics I, Department of Physics, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Marinus Thein
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Julia Bechthold
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Lucas Brehm
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Sebastian W Krauss
- Experimental Physics I, Department of Physics, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Matthias Weiss
- Experimental Physics I, Department of Physics, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Klaus Ersfeld
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
7
|
Kalbfuss N, Gönczy P. Towards understanding centriole elimination. Open Biol 2023; 13:230222. [PMID: 37963546 PMCID: PMC10645514 DOI: 10.1098/rsob.230222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/14/2023] [Indexed: 11/16/2023] Open
Abstract
Centrioles are microtubule-based structures crucial for forming flagella, cilia and centrosomes. Through these roles, centrioles are critical notably for proper cell motility, signalling and division. Recent years have advanced significantly our understanding of the mechanisms governing centriole assembly and architecture. Although centrioles are typically very stable organelles, persisting over many cell cycles, they can also be eliminated in some cases. Here, we review instances of centriole elimination in a range of species and cell types. Moreover, we discuss potential mechanisms that enable the switch from a stable organelle to a vanishing one. Further work is expected to provide novel insights into centriole elimination mechanisms in health and disease, thereby also enabling scientists to readily manipulate organelle fate.
Collapse
Affiliation(s)
- Nils Kalbfuss
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Yang J, Wang Z, Wang C, Tang D, Zang Z, Stover NA, Chen X, Li L. Single-cell transcriptome reveals cell division-regulated hub genes in the unicellular eukaryote Paramecium. Eur J Protistol 2023; 89:125978. [PMID: 37080141 DOI: 10.1016/j.ejop.2023.125978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 04/22/2023]
Abstract
The transition from growth to division during the cell cycle encompasses numerous conserved processes such as large-scale DNA replication and protein synthesis. In ciliate cells, asexual cell division is accompanied by additional cellular changes including amitotic nuclear division, extensive ciliogenesis, and trichocyst replication. However, the molecular mechanisms underlying these processes remain elusive. In this study, we present single-cell gene expression profiles of Paramecium cf. multimicronucleatum cells undergoing cell division. Our results reveal that the most up-regulated genes in dividing cells compared to growing cells are associated with 1) cell cycle signaling pathways including transcription, DNA replication, chromosome segregation and protein degradation; 2) microtubule proteins and tubulin glycylases which are essential for ciliogenesis, nuclei separation and structural differentiation signaling; and 3) trichocyst matrix proteins involved in trichocyst synthesis and reproduction. Furthermore, weighted gene co-expression network analysis identified hub genes that may play crucial roles during cell division. Our findings provide insights into cell cycle regulators, microtubules and trichocyst matrix proteins that may exert influence on this process in ciliates.
Collapse
Affiliation(s)
- Juan Yang
- Laboratory of Marine Protozoan Biodiversity & Evolution, Marine College, Shandong University, Weihai 264209, China
| | - Zhenyuan Wang
- Laboratory of Marine Protozoan Biodiversity & Evolution, Marine College, Shandong University, Weihai 264209, China
| | - Chundi Wang
- Laboratory of Marine Protozoan Biodiversity & Evolution, Marine College, Shandong University, Weihai 264209, China
| | - Danxu Tang
- Laboratory of Marine Protozoan Biodiversity & Evolution, Marine College, Shandong University, Weihai 264209, China
| | - Zihan Zang
- Laboratory of Marine Protozoan Biodiversity & Evolution, Marine College, Shandong University, Weihai 264209, China
| | - Naomi A Stover
- Department of Biology, Bradley University, Peoria 61625, USA
| | - Xiao Chen
- Laboratory of Marine Protozoan Biodiversity & Evolution, Marine College, Shandong University, Weihai 264209, China; Suzhou Research Institute, Shandong University, Suzhou 215123, China.
| | - Lifang Li
- Laboratory of Marine Protozoan Biodiversity & Evolution, Marine College, Shandong University, Weihai 264209, China.
| |
Collapse
|
9
|
Schweizer N, Haren L, Dutto I, Viais R, Lacasa C, Merdes A, Lüders J. Sub-centrosomal mapping identifies augmin-γTuRC as part of a centriole-stabilizing scaffold. Nat Commun 2021; 12:6042. [PMID: 34654813 PMCID: PMC8519919 DOI: 10.1038/s41467-021-26252-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 09/22/2021] [Indexed: 11/08/2022] Open
Abstract
Centriole biogenesis and maintenance are crucial for cells to generate cilia and assemble centrosomes that function as microtubule organizing centers (MTOCs). Centriole biogenesis and MTOC function both require the microtubule nucleator γ-tubulin ring complex (γTuRC). It is widely accepted that γTuRC nucleates microtubules from the pericentriolar material that is associated with the proximal part of centrioles. However, γTuRC also localizes more distally and in the centriole lumen, but the significance of these findings is unclear. Here we identify spatially and functionally distinct subpopulations of centrosomal γTuRC. Luminal localization is mediated by augmin, which is linked to the centriole inner scaffold through POC5. Disruption of luminal localization impairs centriole integrity and interferes with cilium assembly. Defective ciliogenesis is also observed in γTuRC mutant fibroblasts from a patient suffering from microcephaly with chorioretinopathy. These results identify a non-canonical role of augmin-γTuRC in the centriole lumen that is linked to human disease.
Collapse
Affiliation(s)
- Nina Schweizer
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Laurence Haren
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, CNRS-Université Toulouse III, 31062, Toulouse, France
| | - Ilaria Dutto
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Ricardo Viais
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Cristina Lacasa
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Andreas Merdes
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, CNRS-Université Toulouse III, 31062, Toulouse, France
| | - Jens Lüders
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain.
| |
Collapse
|
10
|
The Cilioprotist Cytoskeleton , a Model for Understanding How Cell Architecture and Pattern Are Specified: Recent Discoveries from Ciliates and Comparable Model Systems. Methods Mol Biol 2021; 2364:251-295. [PMID: 34542858 DOI: 10.1007/978-1-0716-1661-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The cytoskeletons of eukaryotic, cilioprotist microorganisms are complex, highly patterned, and diverse, reflecting the varied and elaborate swimming, feeding, reproductive, and sensory behaviors of the multitude of cilioprotist species that inhabit the aquatic environment. In the past 10-20 years, many new discoveries and technologies have helped to advance our understanding of how cytoskeletal organelles are assembled in many different eukaryotic model systems, in relation to the construction and modification of overall cellular architecture and function. Microtubule organizing centers, particularly basal bodies and centrioles, have continued to reveal their central roles in architectural engineering of the eukaryotic cell, including in the cilioprotists. This review calls attention to (1) published resources that illuminate what is known of the cilioprotist cytoskeleton; (2) recent studies on cilioprotists and other model organisms that raise specific questions regarding whether basal body- and centriole-associated nucleic acids, both DNA and RNA, should continue to be considered when seeking to employ cilioprotists as model systems for cytoskeletal research; and (3) new, mainly imaging, technologies that have already proven useful for, but also promise to enhance, future cytoskeletal research on cilioprotists.
Collapse
|
11
|
Bodakuntla S, Yuan X, Genova M, Gadadhar S, Leboucher S, Birling M, Klein D, Martini R, Janke C, Magiera MM. Distinct roles of α- and β-tubulin polyglutamylation in controlling axonal transport and in neurodegeneration. EMBO J 2021; 40:e108498. [PMID: 34309047 PMCID: PMC8408597 DOI: 10.15252/embj.2021108498] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/19/2022] Open
Abstract
Tubulin polyglutamylation is a post-translational modification of the microtubule cytoskeleton, which is generated by a variety of enzymes with different specificities. The "tubulin code" hypothesis predicts that modifications generated by specific enzymes selectively control microtubule functions. Our recent finding that excessive accumulation of polyglutamylation in neurons causes their degeneration and perturbs axonal transport provides an opportunity for testing this hypothesis. By developing novel mouse models and a new glutamylation-specific antibody, we demonstrate here that the glutamylases TTLL1 and TTLL7 generate unique and distinct glutamylation patterns on neuronal microtubules. We find that under physiological conditions, TTLL1 polyglutamylates α-tubulin, while TTLL7 modifies β-tubulin. TTLL1, but not TTLL7, catalyses the excessive hyperglutamylation found in mice lacking the deglutamylase CCP1. Consequently, deletion of TTLL1, but not of TTLL7, prevents degeneration of Purkinje cells and of myelinated axons in peripheral nerves in these mice. Moreover, loss of TTLL1 leads to increased mitochondria motility in neurons, while loss of TTLL7 has no such effect. By revealing how specific patterns of tubulin glutamylation, generated by distinct enzymes, translate into specific physiological and pathological readouts, we demonstrate the relevance of the tubulin code for homeostasis.
Collapse
Affiliation(s)
- Satish Bodakuntla
- Institut CurieUniversité PSL, CNRS UMR3348OrsayFrance
- Université Paris‐Saclay, CNRS UMR3348OrsayFrance
- Present address:
National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - Xidi Yuan
- Department of NeurologyDevelopmental NeurobiologyUniversity Hospital WürzburgWürzburgGermany
| | - Mariya Genova
- Institut CurieUniversité PSL, CNRS UMR3348OrsayFrance
- Université Paris‐Saclay, CNRS UMR3348OrsayFrance
| | - Sudarshan Gadadhar
- Institut CurieUniversité PSL, CNRS UMR3348OrsayFrance
- Université Paris‐Saclay, CNRS UMR3348OrsayFrance
| | - Sophie Leboucher
- Institut CurieUniversité PSL, CNRS UMR3348OrsayFrance
- Université Paris‐Saclay, CNRS UMR3348OrsayFrance
| | - Marie‐Christine Birling
- CELPHEDIA, PHENOMINInstitut Clinique de la Souris (ICS), CNRS, INSERMUniversity of StrasbourgIllkirchFrance
| | - Dennis Klein
- Department of NeurologyDevelopmental NeurobiologyUniversity Hospital WürzburgWürzburgGermany
| | - Rudolf Martini
- Department of NeurologyDevelopmental NeurobiologyUniversity Hospital WürzburgWürzburgGermany
| | - Carsten Janke
- Institut CurieUniversité PSL, CNRS UMR3348OrsayFrance
- Université Paris‐Saclay, CNRS UMR3348OrsayFrance
| | - Maria M Magiera
- Institut CurieUniversité PSL, CNRS UMR3348OrsayFrance
- Université Paris‐Saclay, CNRS UMR3348OrsayFrance
| |
Collapse
|
12
|
Abstract
Centrioles are microtubule-based cylindrical structures that assemble the centrosome and template the formation of cilia. The proximal part of centrioles is associated with the pericentriolar material, a protein scaffold from which microtubules are nucleated. This activity is mediated by the γ-tubulin ring complex (γTuRC) whose central role in centrosomal microtubule organization has been recognized for decades. However, accumulating evidence suggests that γTuRC activity at this organelle is neither restricted to the pericentriolar material nor limited to microtubule nucleation. Instead, γTuRC is found along the entire centriole cylinder, at subdistal appendages, and inside the centriole lumen, where its canonical function as a microtubule nucleator might be supplemented or replaced by a function in microtubule anchoring and centriole stabilization, respectively. In this Opinion, we discuss recent insights into the expanded repertoire of γTuRC activities at centrioles and how distinct subpopulations of γTuRC might act in concert to ensure centrosome and cilia biogenesis and function, ultimately supporting cell proliferation, differentiation and homeostasis. We propose that the classical view of centrosomal γTuRC as a pericentriolar material-associated microtubule nucleator needs to be revised.
Collapse
Affiliation(s)
- Nina Schweizer
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Jens Lüders
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
| |
Collapse
|
13
|
Jentzsch J, Sabri A, Speckner K, Lallinger-Kube G, Weiss M, Ersfeld K. Microtubule polyglutamylation is important for regulating cytoskeletal architecture and motility in Trypanosoma brucei. J Cell Sci 2020; 133:jcs248047. [PMID: 32843576 DOI: 10.1242/jcs.248047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/30/2020] [Indexed: 11/20/2022] Open
Abstract
The shape of kinetoplastids, such as Trypanosoma brucei, is precisely defined during the stages of the life cycle and governed by a stable subpellicular microtubule cytoskeleton. During the cell cycle and transitions between life cycle stages, this stability has to transiently give way to a dynamic behaviour to enable cell division and morphological rearrangements. How these opposing requirements of the cytoskeleton are regulated is poorly understood. Two possible levels of regulation are activities of cytoskeleton-associated proteins and microtubule post-translational modifications (PTMs). Here, we investigate the functions of two putative tubulin polyglutamylases in T. brucei, TTLL6A and TTLL12B. Depletion of both proteins leads to a reduction in tubulin polyglutamylation in situ and is associated with disintegration of the posterior cell pole, loss of the microtubule plus-end-binding protein EB1 and alterations of microtubule dynamics. We also observe a reduced polyglutamylation of the flagellar axoneme. Quantitative motility analysis reveals that the PTM imbalance correlates with a transition from directional to diffusive cell movement. These data show that microtubule polyglutamylation has an important role in regulating cytoskeletal architecture and motility in the parasite T. bruceiThis article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jana Jentzsch
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Adal Sabri
- Experimental Physics I, Department of Physics, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Konstantin Speckner
- Experimental Physics I, Department of Physics, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Gertrud Lallinger-Kube
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Matthias Weiss
- Experimental Physics I, Department of Physics, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Klaus Ersfeld
- Molecular Parasitology, Department of Biology, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| |
Collapse
|
14
|
Joachimiak E, Waclawek E, Niziolek M, Osinka A, Fabczak H, Gaertig J, Wloga D. The LisH Domain-Containing N-Terminal Fragment is Important for the Localization, Dimerization, and Stability of Katnal2 in Tetrahymena. Cells 2020; 9:cells9020292. [PMID: 31991798 PMCID: PMC7072489 DOI: 10.3390/cells9020292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
Katanin-like 2 protein (Katnal2) orthologs have a tripartite domain organization. Two highly conserved regions, an N-terminal LisH (Lis-homology) domain and a C-terminal AAA catalytic domain, are separated by a less conserved linker. The AAA domain of Katnal2 shares the highest amino acid sequence homology with the AAA domain of the canonical katanin p60. Katnal2 orthologs are present in a wide range of eukaryotes, from protists to humans. In the ciliate Tetrahymena thermophila, a Katnal2 ortholog, Kat2, co-localizes with the microtubular structures, including basal bodies and ciliary outer doublets, and this co-localization is sensitive to levels of microtubule glutamylation. The functional analysis of Kat2 domains suggests that an N-terminal fragment containing a LisH domain plays a role in the subcellular localization, dimerization, and stability of Kat2.
Collapse
Affiliation(s)
- Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur, 02-093 Warsaw, Poland; (E.J.); (E.W.); (M.N.); (A.O.); (H.F.)
| | - Ewa Waclawek
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur, 02-093 Warsaw, Poland; (E.J.); (E.W.); (M.N.); (A.O.); (H.F.)
| | - Michal Niziolek
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur, 02-093 Warsaw, Poland; (E.J.); (E.W.); (M.N.); (A.O.); (H.F.)
| | - Anna Osinka
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur, 02-093 Warsaw, Poland; (E.J.); (E.W.); (M.N.); (A.O.); (H.F.)
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur, 02-093 Warsaw, Poland; (E.J.); (E.W.); (M.N.); (A.O.); (H.F.)
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA;
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology PAS, 3 Pasteur, 02-093 Warsaw, Poland; (E.J.); (E.W.); (M.N.); (A.O.); (H.F.)
- Correspondence: ; Tel.: +48-(22)-5892338
| |
Collapse
|
15
|
Bayless BA, Navarro FM, Winey M. Motile Cilia: Innovation and Insight From Ciliate Model Organisms. Front Cell Dev Biol 2019; 7:265. [PMID: 31737631 PMCID: PMC6838636 DOI: 10.3389/fcell.2019.00265] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022] Open
Abstract
Ciliates are a powerful model organism for the study of basal bodies and motile cilia. These single-celled protists contain hundreds of cilia organized in an array making them an ideal system for both light and electron microscopy studies. Isolation and subsequent proteomic analysis of both cilia and basal bodies have been carried out to great success in ciliates. These studies reveal that ciliates share remarkable protein conservation with metazoans and have identified a number of essential basal body/ciliary proteins. Ciliates also boast a genetic and molecular toolbox that allows for facile manipulation of ciliary genes. Reverse genetics studies in ciliates have expanded our understanding of how cilia are positioned within an array, assembled, stabilized, and function at a molecular level. The advantages of cilia number coupled with a robust genetic and molecular toolbox have established ciliates as an ideal system for motile cilia and basal body research and prove a promising system for future research.
Collapse
Affiliation(s)
- Brian A Bayless
- Department of Biology, Santa Clara University, Santa Clara, CA, United States
| | - Francesca M Navarro
- Department of Biology, Santa Clara University, Santa Clara, CA, United States
| | - Mark Winey
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
16
|
Soares H, Carmona B, Nolasco S, Viseu Melo L. Polarity in Ciliate Models: From Cilia to Cell Architecture. Front Cell Dev Biol 2019; 7:240. [PMID: 31681771 PMCID: PMC6813674 DOI: 10.3389/fcell.2019.00240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022] Open
Abstract
Tetrahymena and Paramecium are highly differentiated unicellular organisms with elaborated cortical patterns showing a regular arrangement of hundreds to thousands of basal bodies in longitudinal rows that extend from the anterior to the posterior region of the cell. Thus both ciliates exhibit a permanent antero–posterior axis and left–right asymmetry. This cell polarity is reflected in the direction of the structures nucleated around each basal body such as the ciliary rootlets. Studies in these ciliates showed that basal bodies assemble two types of cilia, the cortical cilia and the cilia of the oral apparatus, a complex structure specialized in food capture. These two cilia types display structural differences at their tip domain. Basal bodies possessing distinct compositions creating specialized landmarks are also present. Cilia might be expected to express and transmit polarities throughout signaling pathways given their recognized role in signal transduction. This review will focus on how local polarities in basal bodies/cilia are regulated and transmitted through cell division in order to maintain the global polarity and shape of these cells and locally constrain the interpretation of signals by different cilia. We will also discuss ciliates as excellent biological models to study development and morphogenetic mechanisms and their relationship with cilia diversity and function in metazoans.
Collapse
Affiliation(s)
- Helena Soares
- Centro de Química e Bioquímica/Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.,Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Bruno Carmona
- Centro de Química e Bioquímica/Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.,Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Sofia Nolasco
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, Lisbon, Portugal.,CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Luís Viseu Melo
- Physics Department and CEFEMA, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
17
|
Ferreira LT, Figueiredo AC, Orr B, Lopes D, Maiato H. Dissecting the role of the tubulin code in mitosis. Methods Cell Biol 2018; 144:33-74. [PMID: 29804676 DOI: 10.1016/bs.mcb.2018.03.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitosis is an essential process that takes place in all eukaryotes and involves the equal division of genetic material from a parental cell into two identical daughter cells. During mitosis, chromosome movement and segregation are orchestrated by a specialized structure known as the mitotic spindle, composed of a bipolar array of microtubules. The fundamental structure of microtubules comprises of α/β-tubulin heterodimers that associate head-to-tail and laterally to form hollow filaments. In vivo, microtubules are modified by abundant and evolutionarily conserved tubulin posttranslational modifications (PTMs), giving these filaments the potential for a wide chemical diversity. In recent years, the concept of a "tubulin code" has emerged as an extralayer of regulation governing microtubule function. A range of tubulin isoforms, each with a diverse set of PTMs, provides a readable code for microtubule motors and other microtubule-associated proteins. This chapter focuses on the complexity of tubulin PTMs with an emphasis on detyrosination and summarizes the methods currently used in our laboratory to experimentally manipulate these modifications and study their impact in mitosis.
Collapse
Affiliation(s)
- Luísa T Ferreira
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana C Figueiredo
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Bernardo Orr
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Danilo Lopes
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Helder Maiato
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal; i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Faculdade de Medicina, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
18
|
Louka P, Vasudevan KK, Guha M, Joachimiak E, Wloga D, Tomasi RFX, Baroud CN, Dupuis-Williams P, Galati DF, Pearson CG, Rice LM, Moresco JJ, Yates JR, Jiang YY, Lechtreck K, Dentler W, Gaertig J. Proteins that control the geometry of microtubules at the ends of cilia. J Cell Biol 2018; 217:4298-4313. [PMID: 30217954 PMCID: PMC6279374 DOI: 10.1083/jcb.201804141] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/25/2018] [Accepted: 08/31/2018] [Indexed: 11/22/2022] Open
Abstract
Cilia, essential motile and sensory organelles, have several compartments: the basal body, transition zone, and the middle and distal axoneme segments. The distal segment accommodates key functions, including cilium assembly and sensory activities. While the middle segment contains doublet microtubules (incomplete B-tubules fused to complete A-tubules), the distal segment contains only A-tubule extensions, and its existence requires coordination of microtubule length at the nanometer scale. We show that three conserved proteins, two of which are mutated in the ciliopathy Joubert syndrome, determine the geometry of the distal segment, by controlling the positions of specific microtubule ends. FAP256/CEP104 promotes A-tubule elongation. CHE-12/Crescerin and ARMC9 act as positive and negative regulators of B-tubule length, respectively. We show that defects in the distal segment dimensions are associated with motile and sensory deficiencies of cilia. Our observations suggest that abnormalities in distal segment organization cause a subset of Joubert syndrome cases.
Collapse
Affiliation(s)
- Panagiota Louka
- Department of Cellular Biology, University of Georgia, Athens, GA
| | | | - Mayukh Guha
- Department of Cellular Biology, University of Georgia, Athens, GA
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Raphaël F-X Tomasi
- Department of Mechanics, LadHyX, Ecole Polytechnique-Centre National de la Recherche Scientifique, Palaiseau, France
| | - Charles N Baroud
- Department of Mechanics, LadHyX, Ecole Polytechnique-Centre National de la Recherche Scientifique, Palaiseau, France
| | - Pascale Dupuis-Williams
- UMR-S1174 Institut National de la Santé et de la Recherche Médicale, Université Paris-Sud, Bat 443, Orsay, France
- École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Paris, France
| | - Domenico F Galati
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Chad G Pearson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Luke M Rice
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX
| | - James J Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA
| | - Yu-Yang Jiang
- Department of Cellular Biology, University of Georgia, Athens, GA
| | - Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA
| | - William Dentler
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA
| |
Collapse
|
19
|
van Dijk J, Bompard G, Cau J, Kunishima S, Rabeharivelo G, Mateos-Langerak J, Cazevieille C, Cavelier P, Boizet-Bonhoure B, Delsert C, Morin N. Microtubule polyglutamylation and acetylation drive microtubule dynamics critical for platelet formation. BMC Biol 2018; 16:116. [PMID: 30336771 PMCID: PMC6194603 DOI: 10.1186/s12915-018-0584-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/03/2018] [Indexed: 11/10/2022] Open
Abstract
Background Upon maturation in the bone marrow, polyploid megakaryocytes elongate very long and thin cytoplasmic branches called proplatelets. Proplatelets enter the sinusoids blood vessels in which platelets are ultimately released. Microtubule dynamics, bundling, sliding, and coiling, drive these dramatic morphological changes whose regulation remains poorly understood. Microtubule properties are defined by tubulin isotype composition and post-translational modification patterns. It remains unknown whether microtubule post-translational modifications occur in proplatelets and if so, whether they contribute to platelet formation. Results Here, we show that in proplatelets from mouse megakaryocytes, microtubules are both acetylated and polyglutamylated. To bypass the difficulties of working with differentiating megakaryocytes, we used a cell model that allowed us to test the functions of these modifications. First, we show that α2bβ3integrin signaling in D723H cells is sufficient to induce β1tubulin expression and recapitulate the specific microtubule behaviors observed during proplatelet elongation and platelet release. Using this model, we found that microtubule acetylation and polyglutamylation occur with different spatio-temporal patterns. We demonstrate that microtubule acetylation, polyglutamylation, and β1tubulin expression are mandatory for proplatelet-like elongation, swelling formation, and cytoplast severing. We discuss the functional importance of polyglutamylation of β1tubulin-containing microtubules for their efficient bundling and coiling during platelet formation. Conclusions We characterized and validated a powerful cell model to address microtubule behavior in mature megakaryocytes, which allowed us to demonstrate the functional importance of microtubule acetylation and polyglutamylation for platelet release. Furthermore, we bring evidence of a link between the expression of a specific tubulin isotype, the occurrence of microtubule post-translational modifications, and the acquisition of specific microtubule behaviors. Thus, our findings could widen the current view of the regulation of microtubule behavior in cells such as osteoclasts, spermatozoa, and neurons, which express distinct tubulin isotypes and display specific microtubule activities during differentiation. Electronic supplementary material The online version of this article (10.1186/s12915-018-0584-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juliette van Dijk
- Universités de Montpellier, 34293, Montpellier, France.,CRBM, CNRS, UMR 5237, 1919 Route de Mende, 34293, Montpellier, France
| | - Guillaume Bompard
- Universités de Montpellier, 34293, Montpellier, France.,IGH, CNRS UMR9002, 141, rue de la Cardonille, 34396, Montpellier, France
| | - Julien Cau
- Universités de Montpellier, 34293, Montpellier, France.,IGH, CNRS UMR9002, 141, rue de la Cardonille, 34396, Montpellier, France.,Montpellier Rio Imaging, 34293, Montpellier, France
| | - Shinji Kunishima
- Department of Advanced Diagnosis, National Hospital Organization Nagoya Medical Center, 4-1-1 Sannomaru, Naka-ku, Nagoya, 4600001, Japan.,Present address: Department of Medical Technology, Gifu University of Medical Science, Seki, Gifu, 5013892, Japan
| | - Gabriel Rabeharivelo
- Universités de Montpellier, 34293, Montpellier, France.,CRBM, CNRS, UMR 5237, 1919 Route de Mende, 34293, Montpellier, France
| | - Julio Mateos-Langerak
- Universités de Montpellier, 34293, Montpellier, France.,IGH, CNRS UMR9002, 141, rue de la Cardonille, 34396, Montpellier, France.,Montpellier Rio Imaging, 34293, Montpellier, France
| | - Chantal Cazevieille
- Universités de Montpellier, 34293, Montpellier, France.,INM, INSERM UMR1051, 34293, Montpellier, France
| | - Patricia Cavelier
- Universités de Montpellier, 34293, Montpellier, France.,IGMM, CNRS, UMR 5535, 1919 Route de Mende, 34293, Montpellier, France
| | - Brigitte Boizet-Bonhoure
- Universités de Montpellier, 34293, Montpellier, France.,IGH, CNRS UMR9002, 141, rue de la Cardonille, 34396, Montpellier, France
| | - Claude Delsert
- Universités de Montpellier, 34293, Montpellier, France.,CRBM, CNRS, UMR 5237, 1919 Route de Mende, 34293, Montpellier, France.,3AS Station Expérimentale d'Aquaculture Ifremer, Chemin de Maguelone, 34250, Palavas-les-Flots, France
| | - Nathalie Morin
- Universités de Montpellier, 34293, Montpellier, France. .,CRBM, CNRS, UMR 5237, 1919 Route de Mende, 34293, Montpellier, France.
| |
Collapse
|
20
|
Kimura Y, Tsutsumi K, Konno A, Ikegami K, Hameed S, Kaneko T, Kaplan OI, Teramoto T, Fujiwara M, Ishihara T, Blacque OE, Setou M. Environmental responsiveness of tubulin glutamylation in sensory cilia is regulated by the p38 MAPK pathway. Sci Rep 2018; 8:8392. [PMID: 29849065 PMCID: PMC5976657 DOI: 10.1038/s41598-018-26694-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/16/2018] [Indexed: 01/09/2023] Open
Abstract
Glutamylation is a post-translational modification found on tubulin that can alter the interaction between microtubules (MTs) and associated proteins. The molecular mechanisms regulating tubulin glutamylation in response to the environment are not well understood. Here, we show that in the sensory cilia of Caenorhabditis elegans, tubulin glutamylation is upregulated in response to various signals such as temperature, osmolality, and dietary conditions. Similarly, tubulin glutamylation is modified in mammalian photoreceptor cells following light adaptation. A tubulin glutamate ligase gene ttll-4, which is essential for tubulin glutamylation of axonemal MTs in sensory cilia, is activated by p38 MAPK. Amino acid substitution of TTLL-4 has revealed that a Thr residue (a putative MAPK-phosphorylation site) is required for enhancement of tubulin glutamylation. Intraflagellar transport (IFT), a bidirectional trafficking system specifically observed along axonemal MTs, is required for the formation, maintenance, and function of sensory cilia. Measurement of the velocity of IFT particles revealed that starvation accelerates IFT, which was also dependent on the Thr residue of TTLL-4. Similarly, starvation-induced attenuation of avoidance behaviour from high osmolality conditions was also dependent on ttll-4. Our data suggest that a novel evolutionarily conserved regulatory system exists for tubulin glutamylation in sensory cilia in response to the environment.
Collapse
Affiliation(s)
- Yoshishige Kimura
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Liberal Arts and Sciences, Kanagawa University of Human Services, 1-10-1 Heisei-cho, Yokosuka, Kanagawa, 238-8522, Japan
| | - Koji Tsutsumi
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Alu Konno
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Koji Ikegami
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
- Department of Anatomy and Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, Hiroshima, 734-8553, Japan
| | - Saira Hameed
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Tomomi Kaneko
- Department of Liberal Arts and Sciences, Kanagawa University of Human Services, 1-10-1 Heisei-cho, Yokosuka, Kanagawa, 238-8522, Japan
| | - Oktay Ismail Kaplan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, 4, Ireland
- Abdullah Gul Universitesi, Doga Bilimleri Fakultesi, Sumer Kampusu, 38090, Kocasinan, Kayseri, Turkey
| | - Takayuki Teramoto
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Manabi Fujiwara
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takeshi Ishihara
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Mitsutoshi Setou
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan.
- Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, Shizuoka, 431-3192, Japan.
- The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
- Department of Anatomy, The University of Hong Kong, Hong Kong, China.
- Division of Neural Systematics, National Institute for Physiological Sciences, 38 Nishigonaka Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
21
|
Joachimiak E, Jerka‐Dziadosz M, Krzemień‐Ojak Ł, Wacławek E, Jedynak K, Urbanska P, Brutkowski W, Sas‐Nowosielska H, Fabczak H, Gaertig J, Wloga D. Multiple phosphorylation sites on γ‐tubulin are essential and contribute to the biogenesis of basal bodies in
Tetrahymena. J Cell Physiol 2018; 233:8648-8665. [DOI: 10.1002/jcp.26742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 04/09/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia BiologyDepartment of Cell BiologyNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Maria Jerka‐Dziadosz
- Laboratory of Cytoskeleton and Cilia BiologyDepartment of Cell BiologyNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Łucja Krzemień‐Ojak
- Laboratory of Cytoskeleton and Cilia BiologyDepartment of Cell BiologyNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Ewa Wacławek
- Laboratory of Cytoskeleton and Cilia BiologyDepartment of Cell BiologyNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Katarzyna Jedynak
- Faculty of BiologyDepartment of Animal PhysiologyInstitute of ZoologyUniversity of WarsawWarsawPoland
| | - Paulina Urbanska
- Laboratory of Cytoskeleton and Cilia BiologyDepartment of Cell BiologyNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Wojciech Brutkowski
- Laboratory of Imaging Tissue Structure and FunctionNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Hanna Sas‐Nowosielska
- Laboratory of Imaging Tissue Structure and FunctionNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia BiologyDepartment of Cell BiologyNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| | - Jacek Gaertig
- Department of Cellular BiologyUniversity of GeorgiaAthensGeorgia
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia BiologyDepartment of Cell BiologyNencki Institute of Experimental Biology of Polish Academy of SciencesWarsawPoland
| |
Collapse
|
22
|
Kubo T, Oda T. Electrostatic interaction between polyglutamylated tubulin and the nexin-dynein regulatory complex regulates flagellar motility. Mol Biol Cell 2017. [PMID: 28637765 PMCID: PMC5555654 DOI: 10.1091/mbc.e17-05-0285] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The 3D localization of polyglutamylated tubulin in eukaryotic flagella is identified. Polyglutamylated tubulins are located on the interface between the microtubule and its cross-bridging structure, the N-DRC. Flagellar motility is regulated by electrostatic interaction between negatively charged tubulins and positively charged N-DRC. Tubulins undergo various posttranslational modifications. Among them, polyglutamylation is involved in the motility of eukaryotic flagella and the stability of the axonemal microtubules. However, it remains unclear where polyglutamylated tubulin localizes precisely within the axoneme and how tubulin polyglutamylation affects flagellar motility. In this study, we identified the three-dimensional localization of the polyglutamylated tubulin in Chlamydomonas flagella using antibody labeling and cryo–electron tomography. Polyglutamylated tubulins specifically located in close proximity to a microtubule-cross-bridging structure called the nexin–dynein regulatory complex (N-DRC). Because N-DRC is positively charged, we hypothesized that there is an electrostatic interaction between the polyglutamylated tubulin and the N-DRC, and therefore we mutated the amino acid sequences of DRC4 to modify the charge of the N-DRC. We found that both augmentation and reduction of the positive charge on DRC4 resulted in reduced flagellar motility. Moreover, reduced motility in a mutant with a structurally defective N-DRC was partially restored by increasing the positive charge on DRC4. These results clearly indicate that beating motion of flagella is maintained by the electrostatic cross-bridge formed between the negatively charged polyglutamylated tubulins and the positively charged N-DRC.
Collapse
Affiliation(s)
- Tomohiro Kubo
- Department of Anatomy and Structural Biology, Graduate School of Medical Science, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Toshiyuki Oda
- Department of Anatomy and Structural Biology, Graduate School of Medical Science, University of Yamanashi, Yamanashi 409-3898, Japan
| |
Collapse
|
23
|
Wloga D, Joachimiak E, Louka P, Gaertig J. Posttranslational Modifications of Tubulin and Cilia. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028159. [PMID: 28003186 DOI: 10.1101/cshperspect.a028159] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tubulin undergoes several highly conserved posttranslational modifications (PTMs) including acetylation, detyrosination, glutamylation, and glycylation. These PTMs accumulate on a subset of microtubules that are long-lived, including those in the basal bodies and axonemes. Tubulin PTMs are distributed nonuniformly. In the outer doublet microtubules of the axoneme, the B-tubules are highly enriched in the detyrosinated, polyglutamylated, and polyglycylated tubulin, whereas the A-tubules contain mostly unmodified tubulin. The nonuniform patterns of tubulin PTMs may functionalize microtubules in a position-dependent manner. Recent studies indicate that tubulin PTMs contribute to the assembly, disassembly, maintenance, and motility of cilia. In particular, tubulin glutamylation has emerged as a key PTM that affects ciliary motility through regulation of axonemal dynein arms and controls the stability and length of the axoneme.
Collapse
Affiliation(s)
- Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Panagiota Louka
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
24
|
Bosch Grau M, Masson C, Gadadhar S, Rocha C, Tort O, Marques Sousa P, Vacher S, Bieche I, Janke C. Alterations in the balance of tubulin glycylation and glutamylation in photoreceptors leads to retinal degeneration. J Cell Sci 2017; 130:938-949. [PMID: 28104815 DOI: 10.1242/jcs.199091] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/10/2017] [Indexed: 01/09/2023] Open
Abstract
Tubulin is subject to a wide variety of posttranslational modifications, which, as part of the tubulin code, are involved in the regulation of microtubule functions. Glycylation has so far predominantly been found in motile cilia and flagella, and absence of this modification leads to ciliary disassembly. Here, we demonstrate that the correct functioning of connecting cilia of photoreceptors, which are non-motile sensory cilia, is also dependent on glycylation. In contrast to many other tissues, only one glycylase, TTLL3, is expressed in retina. Ttll3-/- mice lack glycylation in photoreceptors, which results in shortening of connecting cilia and slow retinal degeneration. Moreover, absence of glycylation results in increased levels of tubulin glutamylation in photoreceptors, and inversely, the hyperglutamylation observed in the Purkinje cell degeneration (pcd) mouse abolishes glycylation. This suggests that both posttranslational modifications compete for modification sites, and that unbalancing the glutamylation-glycylation equilibrium on axonemes of connecting cilia, regardless of the enzymatic mechanism, invariably leads to retinal degeneration.
Collapse
Affiliation(s)
- Montserrat Bosch Grau
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
| | - Christel Masson
- CERTO Centre d'Etudes et de Recherches Thérapeutiques en Ophtalmologie, Université Paris Sud, Université Paris-Saclay, CNRS UMR9197, Orsay F-91405, France
| | - Sudarshan Gadadhar
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
| | - Cecilia Rocha
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
| | - Olivia Tort
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
| | - Patricia Marques Sousa
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France.,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
| | - Sophie Vacher
- Institut Curie, PSL Research University, Department of Genetics, Paris F-75005, France
| | - Ivan Bieche
- Institut Curie, PSL Research University, Department of Genetics, Paris F-75005, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris F-75005, France
| | - Carsten Janke
- Institut Curie, PSL Research University, CNRS UMR3348, Orsay F-91405, France .,Université Paris Sud, Université Paris-Saclay, CNRS UMR3348, Orsay F-91405, France
| |
Collapse
|
25
|
Sfr1, a Tetrahymena thermophila Sfi1 Repeat Protein, Modulates the Production of Cortical Row Basal Bodies. mSphere 2016; 1:mSphere00257-16. [PMID: 27904881 PMCID: PMC5112337 DOI: 10.1128/msphere.00257-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/14/2016] [Indexed: 01/08/2023] Open
Abstract
Basal bodies and centrioles are structurally similar and, when rendered dysfunctional as a result of improper assembly or maintenance, are associated with human diseases. Centrins are conserved and abundant components of both structures whose basal body and centriolar functions remain incompletely understood. Despite the extensive study of centrins in Tetrahymena thermophila, little is known about how centrin-binding proteins contribute to centrin’s roles in basal body assembly, stability, and orientation. The sole previous study of the large centrin-binding protein family in Tetrahymena revealed a role for Sfr13 in the stabilization and separation of basal bodies. In this study, we found that Sfr1 localizes to all Tetrahymena basal bodies and complete genetic deletion of SFR1 leads to overproduction of basal bodies. The uncovered inhibitory role of Sfr1 in basal body production suggests that centrin-binding proteins, as well as centrins, may influence basal body number both positively and negatively. Basal bodies are essential microtubule-based structures that template, anchor, and orient cilia at the cell surface. Cilia act primarily in the generation of directional fluid flow and sensory reception, both of which are utilized for a broad spectrum of cellular processes. Although basal bodies contribute to vital cell functions, the molecular contributors of their assembly and maintenance are poorly understood. Previous studies of the ciliate Tetrahymena thermophila revealed important roles for two centrin family members in basal body assembly, separation of new basal bodies, and stability. Here, we characterize the basal body function of a centrin-binding protein, Sfr1, in Tetrahymena. Sfr1 is part of a large family of 13 proteins in Tetrahymena that contain Sfi1 repeats (SFRs), a motif originally identified in Saccharomyces cerevisiae Sfi1 that binds centrin. Sfr1 is the only SFR protein in Tetrahymena that localizes to all cortical row and oral apparatus basal bodies. In addition, Sfr1 resides predominantly at the microtubule scaffold from the proximal cartwheel to the distal transition zone. Complete genomic knockout of SFR1 (sfr1Δ) causes a significant increase in both cortical row basal body density and the number of cortical rows, contributing to an overall overproduction of basal bodies. Reintroduction of Sfr1 into sfr1Δ mutant cells leads to a marked reduction of cortical row basal body density and the total number of cortical row basal bodies. Therefore, Sfr1 directly modulates cortical row basal body production. This study reveals an inhibitory role for Sfr1, and potentially centrins, in Tetrahymena basal body production. IMPORTANCE Basal bodies and centrioles are structurally similar and, when rendered dysfunctional as a result of improper assembly or maintenance, are associated with human diseases. Centrins are conserved and abundant components of both structures whose basal body and centriolar functions remain incompletely understood. Despite the extensive study of centrins in Tetrahymena thermophila, little is known about how centrin-binding proteins contribute to centrin’s roles in basal body assembly, stability, and orientation. The sole previous study of the large centrin-binding protein family in Tetrahymena revealed a role for Sfr13 in the stabilization and separation of basal bodies. In this study, we found that Sfr1 localizes to all Tetrahymena basal bodies and complete genetic deletion of SFR1 leads to overproduction of basal bodies. The uncovered inhibitory role of Sfr1 in basal body production suggests that centrin-binding proteins, as well as centrins, may influence basal body number both positively and negatively.
Collapse
|
26
|
Zhang J, Tian M, Yan GX, Shodhan A, Miao W. E2fl1 is a meiosis-specific transcription factor in the protist Tetrahymena thermophila. Cell Cycle 2016; 16:123-135. [PMID: 27892792 DOI: 10.1080/15384101.2016.1259779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Members of the E2F family of transcription factors have been reported to regulate the expression of genes involved in cell cycle control, DNA replication, and DNA repair in multicellular eukaryotes. Here, E2FL1, a meiosis-specific E2F transcription factor gene, was identified in the model ciliate Tetrahymena thermophila. Loss of this gene resulted in meiotic arrest prior to anaphase I. The cytological experiments revealed that the meiotic homologous pairing was not affected in the absence of E2FL1, but the paired homologous chromosomes did not separate and assumed a peculiar tandem arrangement. This is the first time that an E2F family member has been shown to regulate meiotic events. Moreover, BrdU incorporation showed that DSB processing during meiosis was abnormal upon the deletion of E2FL1. Transcriptome sequencing analysis revealed that E2FL1 knockout decreased the expression of genes involved in DNA replication and DNA repair in T. thermophila, suggesting that the function of E2F is highly conserved in eukaryotes. In addition, E2FL1 deletion inhibited the expression of related homologous chromosome segregation genes in T. thermophila. The result may explain the meiotic arrest phenotype at anaphase I. Finally, by searching for E2F DNA-binding motifs in the entire T. thermophila genome, we identified 714 genes containing at least one E2F DNA-binding motif; of these, 235 downregulated represent putative E2FL1 target genes.
Collapse
Affiliation(s)
- Jing Zhang
- a Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , People's Republic of China.,b University of Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Miao Tian
- a Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , People's Republic of China.,c Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna , Vienna , Austria
| | - Guan-Xiong Yan
- a Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , People's Republic of China.,b University of Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Anura Shodhan
- c Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna , Vienna , Austria
| | - Wei Miao
- a Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan , People's Republic of China
| |
Collapse
|
27
|
Waclawek E, Joachimiak E, Hall MH, Fabczak H, Wloga D. Regulation of katanin activity in the ciliate Tetrahymena thermophila. Mol Microbiol 2016; 103:134-150. [PMID: 27726198 DOI: 10.1111/mmi.13547] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2016] [Indexed: 01/10/2023]
Abstract
Katanin is a microtubule severing protein that functions as a heterodimer composed of an AAA domain catalytic subunit, p60, and a regulatory subunit, a WD40 repeat protein, p80. Katanin-dependent severing of microtubules is important for proper execution of key cellular activities including cell division, migration, and differentiation. Published data obtained in Caenorhabditis elegans, Xenopus and mammals indicate that katanin is regulated at multiple levels including transcription, posttranslational modifications (of both katanin and microtubules) and degradation. Little is known about how katanin is regulated in unicellular organisms. Here we show that in the ciliated protist Tetrahymena thermophila, as in Metazoa, the localization and activity of katanin requires specific domains of both p60 and p80, and that the localization of p60, but not p80, is sensitive to the levels of microtubule glutamylation. A prolonged overexpression of either a full length, or a fragment of p80 containing WD40 repeats, partly phenocopies a knockout of p60, indicating that in addition to its activating role, p80 could also contribute to the inhibition of p60. We also show that the level of p80 depends on the 26S proteasome activity.
Collapse
Affiliation(s)
- Ewa Waclawek
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str, Warsaw, 02-093, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str, Warsaw, 02-093, Poland
| | - Malgorzata Hanna Hall
- Laboratory of Molecular and Systemic Neuromorphology, Department of Neurophysiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str, Warsaw, 02-093, Poland
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str, Warsaw, 02-093, Poland
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str, Warsaw, 02-093, Poland
| |
Collapse
|
28
|
Park IY, Chowdhury P, Tripathi DN, Powell RT, Dere R, Terzo EA, Rathmell WK, Walker CL. Methylated α-tubulin antibodies recognize a new microtubule modification on mitotic microtubules. MAbs 2016; 8:1590-1597. [PMID: 27594515 DOI: 10.1080/19420862.2016.1228505] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Posttranslational modifications (PTMs) on microtubules differentiate these cytoskeletal elements for a variety of cellular functions. We recently identified SETD2 as a dual-function histone and microtubule methyltransferase, and methylation as a new microtubule PTM that occurs on lysine 40 of α-tubulin, which is trimethylated (α-TubK40me3) by SETD2. In the course of these studies, we generated polyclonal (α-TubK40me3 pAb) and monoclonal (α-TubK40me3 mAb) antibodies to a methylated α-tubulin peptide (GQMPSD-Kme3-TIGGGDC). Here, we characterize these antibodies, and the specific mono-, di- or tri-methylated lysine residues they recognize. While both the pAb and mAb antibodies recognized lysines methylated by SETD2 on microtubules and histones, the clone 18 mAb was more specific for methylated microtubules, with little cross-reactivity for methylated histones. The clone 18 mAb recognized specific subsets of microtubules during mitosis and cytokinesis, and lacked the chromatin staining seen by immunocytochemistry with the pAb. Western blot analysis using these antibodies revealed that methylated α-tubulin migrated faster than unmethylated α-tubulin, suggesting methylation may be a signal for additional processing of α-tubulin and/or microtubules. As the first reagents that specifically recognize methylated α-tubulin, these antibodies are a valuable tool for studying this new modification of the cytoskeleton, and the function of methylated microtubules.
Collapse
Affiliation(s)
- In Young Park
- a Center for Precision Environmental Health, Departments of Cellular and Molecular Biology and Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Pratim Chowdhury
- a Center for Precision Environmental Health, Departments of Cellular and Molecular Biology and Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Durga Nand Tripathi
- a Center for Precision Environmental Health, Departments of Cellular and Molecular Biology and Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Reid T Powell
- a Center for Precision Environmental Health, Departments of Cellular and Molecular Biology and Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Ruhee Dere
- a Center for Precision Environmental Health, Departments of Cellular and Molecular Biology and Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Esteban A Terzo
- b Division of Hematology/Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University , Nashville , TN , USA
| | - W Kimryn Rathmell
- b Division of Hematology/Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University , Nashville , TN , USA
| | - Cheryl Lyn Walker
- a Center for Precision Environmental Health, Departments of Cellular and Molecular Biology and Medicine, Baylor College of Medicine , Houston , TX , USA
| |
Collapse
|
29
|
Pimenta-Marques A, Bento I, Lopes CAM, Duarte P, Jana SC, Bettencourt-Dias M. A mechanism for the elimination of the female gamete centrosome in Drosophila melanogaster. Science 2016; 353:aaf4866. [PMID: 27229142 DOI: 10.1126/science.aaf4866] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/11/2016] [Indexed: 12/11/2022]
Abstract
An important feature of fertilization is the asymmetric inheritance of centrioles. In most species it is the sperm that contributes the initial centriole, which builds the first centrosome that is essential for early development. However, given that centrioles are thought to be exceptionally stable structures, the mechanism behind centriole disappearance in the female germ line remains elusive and paradoxical. We elucidated a program for centriole maintenance in fruit flies, led by Polo kinase and the pericentriolar matrix (PCM): The PCM is down-regulated in the female germ line during oogenesis, which results in centriole loss. Perturbing this program prevents centriole loss, leading to abnormal meiotic and mitotic divisions, and thus to female sterility. This mechanism challenges the view that centrioles are intrinsically stable structures and reveals general functions for Polo kinase and the PCM in centriole maintenance. We propose that regulation of this maintenance program is essential for successful sexual reproduction and defines centriole life span in different tissues in homeostasis and disease, thereby shaping the cytoskeleton.
Collapse
Affiliation(s)
- A Pimenta-Marques
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156 Oeiras, Portugal.
| | - I Bento
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156 Oeiras, Portugal.
| | - C A M Lopes
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156 Oeiras, Portugal
| | - P Duarte
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156 Oeiras, Portugal
| | - S C Jana
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156 Oeiras, Portugal
| | - M Bettencourt-Dias
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156 Oeiras, Portugal.
| |
Collapse
|
30
|
Kushida Y, Takaine M, Nakano K, Sugai T, Numata O. Dynamic Change of Cellular Localization of Microtubule-Organizing Center During Conjugation of Ciliate Tetrahymena thermophila. Zoolog Sci 2016; 32:25-32. [PMID: 25660693 DOI: 10.2108/zs140149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To obtain a comprehensive picture of microtubule dynamics during conjugation, the mode of sexual reproduction in ciliates, we combined indirect immunofluorescence and three-dimensional imaging using confocal laser-scanning microscope to visualize the cellular localization of DNA, microtubules, and γ-tubulin, the main component of the microtubule-organizing center in mating Tetrahymena cells. As the conjugational stages proceeded, the distribution of γ-tubulin changed drastically and microtubules showed dynamic appearance and disappearance during meiosis, nuclear selection, nuclear exchange, and the development of new macronuclei. This study highlights the involvement of cytoskeletal regulation in the modulation of germline nuclear motilities required for ciliate reproduction.
Collapse
Affiliation(s)
- Yasuharu Kushida
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | |
Collapse
|
31
|
Abstract
Tetrahymena thermophila is a ciliate with hundreds of cilia primarily used for cellular motility. These cells propel themselves by generating hydrodynamic forces through coordinated ciliary beating. The coordination of cilia is ensured by the polarized organization of basal bodies (BBs), which exhibit remarkable structural and molecular conservation with BBs in other eukaryotes. During each cell cycle, massive BB assembly occurs and guarantees that future Tetrahymena cells gain a full complement of BBs and their associated cilia. BB duplication occurs next to existing BBs, and the predictable patterning of new BBs is facilitated by asymmetric BB accessory structures that are integrated with a membrane-associated cytoskeletal network. The large number of BBs combined with robust molecular genetics merits Tetrahymena as a unique model system to elucidate the fundamental events of BB assembly and organization.
Collapse
Affiliation(s)
- Brian A Bayless
- Department of Cell and Developmental Biology, University of Colorado-Anschutz Medical Campus, 2801 E. 17th Ave, Aurora, CO 80045-2537 USA
| | - Domenico F Galati
- Department of Cell and Developmental Biology, University of Colorado-Anschutz Medical Campus, 2801 E. 17th Ave, Aurora, CO 80045-2537 USA
| | - Chad G Pearson
- Department of Cell and Developmental Biology, University of Colorado-Anschutz Medical Campus, 2801 E. 17th Ave, Aurora, CO 80045-2537 USA
| |
Collapse
|
32
|
Lack of Cytosolic Carboxypeptidase 1 Leads to Subfertility due to the Reduced Number of Antral Follicles in pcd3J-/- Females. PLoS One 2015; 10:e0139557. [PMID: 26452267 PMCID: PMC4599934 DOI: 10.1371/journal.pone.0139557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 09/15/2015] [Indexed: 11/19/2022] Open
Abstract
Females homozygous for the Purkinje cell degeneration mutation (pcd) are fertile, although the success rate is much lower than in the wild type. We performed detailed analysis of reproductive abnormalities of pcd females. The number of oocytes produced following exogenous gonadotropin treatment was much lower in pcd3J-/- females than in pcd3J+/+ females. Furthermore, the estrous cyclicity of pcd3J-/- females according to the appearance of the vagina was almost undetectable comparing to that of the wild type. Histological analyses and follicle counting of 4- and 8-week-old pcd3J-/- ovaries showed an increase in the number of secondary follicles and a decrease in the number of antral follicles, indicating that AGTPBP1/ CCP1 plays an important role in the development of secondary follicles into antral follicles. Consistent with a previous analysis of the pcd cerebellum, pcd3J-/- ovaries also showed a clear increase in the level of polyglutamylation. Gene expression analysis showed that both oocytes and cumulus cells express CCP1. However, Ccp4 and CCP6, which can compensate the function of CCP1, were not expressed in mouse ovaries. Failure of microtubule deglutamylation did not affect the structure and function of the meiotic spindle in properly aligning chromosomes in the center of the nucleus during meiosis in pcd3J-/- females. We also showed that the pituitary-derived growth and reproduction-related endocrine system functions normally in pcd3J-/- mice. The results of this study provide insight into additional functions of CCP1, which cannot be fully explained by the side chain deglutamylation of microtubules alone.
Collapse
|
33
|
PLK4 trans-Autoactivation Controls Centriole Biogenesis in Space. Dev Cell 2015; 35:222-35. [DOI: 10.1016/j.devcel.2015.09.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 09/17/2015] [Accepted: 09/24/2015] [Indexed: 01/11/2023]
|
34
|
Fırat-Karalar EN, Stearns T. The centriole duplication cycle. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0460. [PMID: 25047614 DOI: 10.1098/rstb.2013.0460] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Centrosomes are the main microtubule-organizing centre of animal cells and are important for many critical cellular and developmental processes from cell polarization to cell division. At the core of the centrosome are centrioles, which recruit pericentriolar material to form the centrosome and act as basal bodies to nucleate formation of cilia and flagella. Defects in centriole structure, function and number are associated with a variety of human diseases, including cancer, brain diseases and ciliopathies. In this review, we discuss recent advances in our understanding of how new centrioles are assembled and how centriole number is controlled. We propose a general model for centriole duplication control in which cooperative binding of duplication factors defines a centriole 'origin of duplication' that initiates duplication, and passage through mitosis effects changes that license the centriole for a new round of duplication in the next cell cycle. We also focus on variations on the general theme in which many centrioles are created in a single cell cycle, including the specialized structures associated with these variations, the deuterosome in animal cells and the blepharoplast in lower plant cells.
Collapse
Affiliation(s)
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA Department of Genetics, Stanford University Medical School, Stanford, CA 94305-5120, USA
| |
Collapse
|
35
|
Abstract
Centrioles are among the largest protein-based structures found in most cell types, measuring approximately 250 nm in diameter and approximately 500 nm long in vertebrate cells. Here, we briefly review ultrastructural observations about centrioles and associated structures. At the core of most centrioles is a microtubule scaffold formed from a radial array of nine triplet microtubules. Beyond the microtubule triplets of the centriole, we discuss the critically important cartwheel structure and the more enigmatic luminal density, both found on the inside of the centriole. Finally, we discuss the connectors between centrioles, and the distal and subdistal appendages outside of the microtubule scaffold that reflect centriole age and impart special functions to the centriole. Most of the work we review has been done with electron microscopy or electron tomography of resin-embedded samples, but we also highlight recent work performed with cryoelectron microscopy, cryotomography and subvolume averaging. Significant opportunities remain in the description of centriolar structure, both in mapping of component proteins within the structure and in determining the effect of mutations on components that contribute to the structure and function of the centriole.
Collapse
Affiliation(s)
- Mark Winey
- Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Eileen O'Toole
- Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA The Boulder Laboratory for the 3D EM of Cells, Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309, USA
| |
Collapse
|
36
|
Abstract
The cartwheel is a subcentriolar structure consisting of a central hub and nine radially arranged spokes, located at the proximal end of the centriole. It appears at the initial stage of the centriole assembly process as the first ninefold symmetrical structure. The cartwheel was first described more than 50 years ago, but it is only recently that its pivotal role in establishing the ninefold symmetry of the centriole was demonstrated. Significant progress has since been made in understanding its fine structure and assembly mechanism. Most importantly, the central part of the cartwheel, from which the ninefold symmetry originates, is shown to form by self-association of nine dimers of the protein SAS-6. This finding, together with emerging data on other components of the cartwheel, has opened new avenues in centrosome biology.
Collapse
Affiliation(s)
- Masafumi Hirono
- Department of Biological Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
37
|
Delgehyr N, Meunier A, Faucourt M, Bosch Grau M, Strehl L, Janke C, Spassky N. Ependymal cell differentiation, from monociliated to multiciliated cells. Methods Cell Biol 2015; 127:19-35. [PMID: 25837384 DOI: 10.1016/bs.mcb.2015.01.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Primary and motile cilia differ in their structure, composition, and function. In the brain, primary cilia are immotile signalling organelles present on neural stem cells and neurons. Multiple motile cilia are found on the surface of ependymal cells in all brain ventricles, where they contribute to the flow of cerebrospinal fluid. During development, monociliated ependymal progenitor cells differentiate into multiciliated ependymal cells, thus providing a simple system for studying the transition between these two stages. In this chapter, we provide protocols for immunofluorescence staining of developing ependymal cells in vivo, on whole mounts of lateral ventricle walls, and in vitro, on cultured ependymal cells. We also provide a list of markers we currently use to stain both types of cilia, including proteins at the ciliary membrane and tubulin posttranslational modifications of the axoneme.
Collapse
Affiliation(s)
- Nathalie Delgehyr
- Institut de Biologie de l'Ecole Normal Supérieure (IBENS), Paris, France; INSERM, U1024, Paris, France; CNRS, UMR 8197, Paris, France
| | - Alice Meunier
- Institut de Biologie de l'Ecole Normal Supérieure (IBENS), Paris, France; INSERM, U1024, Paris, France; CNRS, UMR 8197, Paris, France
| | - Marion Faucourt
- Institut de Biologie de l'Ecole Normal Supérieure (IBENS), Paris, France; INSERM, U1024, Paris, France; CNRS, UMR 8197, Paris, France
| | - Montserrat Bosch Grau
- Curie Institute, Orsay, France; CNRS, UMR3306, Orsay, France; INSERM, U1005, Orsay, France; INSERM, UMRS 1120; Unité de Génétique et Physiologie de l'Audition, Pasteur Institute, Paris, France
| | - Laetitia Strehl
- Institut de Biologie de l'Ecole Normal Supérieure (IBENS), Paris, France; INSERM, U1024, Paris, France; CNRS, UMR 8197, Paris, France; INSERM, UMRS 975, Brain and Spinal Cord Institute, Hôpital de la Salpêtrière, Paris, France
| | - Carsten Janke
- Curie Institute, Orsay, France; CNRS, UMR3306, Orsay, France; INSERM, U1005, Orsay, France
| | - Nathalie Spassky
- Institut de Biologie de l'Ecole Normal Supérieure (IBENS), Paris, France; INSERM, U1024, Paris, France; CNRS, UMR 8197, Paris, France
| |
Collapse
|
38
|
Jiang YY, Lechtreck K, Gaertig J. Total internal reflection fluorescence microscopy of intraflagellar transport in Tetrahymena thermophila. Methods Cell Biol 2015; 127:445-56. [PMID: 25837403 DOI: 10.1016/bs.mcb.2015.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Live imaging has become a powerful tool in studies of ciliary proteins. Tetrahymena thermophila is an established ciliated model with well-developed genetic and biochemical approaches, but its large size, complex shape, and the large number of short and overlapping cilia, have made live imaging of ciliary proteins challenging. Here we describe a method that combines paralysis of cilia by nickel ions and total internal reflection microscopy for live imaging of fluorescent proteins inside cilia of Tetrahymena. Using this method, we quantitatively documented the intraflagellar transport in Tetrahymena.
Collapse
Affiliation(s)
- Yu-Yang Jiang
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
39
|
Aubusson-Fleury A, Cohen J, Lemullois M. Ciliary heterogeneity within a single cell: the Paramecium model. Methods Cell Biol 2015; 127:457-85. [PMID: 25837404 DOI: 10.1016/bs.mcb.2014.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Paramecium is a single cell able to divide in its morphologically differentiated stage that has many cilia anchored at its cell surface. Many thousands of cilia are thus assembled in a short period of time during division to duplicate the cell pattern while the cell continues swimming. Most, but not all, of these sensory cilia are motile and involved in two main functions: prey capture and cell locomotion. These cilia display heterogeneity, both in their length and their biochemical properties. Thanks to these properties, as well as to the availability of many postgenomic tools and the possibility to follow the regrowth of cilia after deciliation, Paramecium offers a nice opportunity to study the assembly of the cilia, as well as the genesis of their diversity within a single cell. In this paper, after a brief survey of Paramecium morphology and cilia properties, we describe the tools and the protocols currently used for immunofluorescence, transmission electron microscopy, and ultrastructural immunocytochemistry to analyze cilia, with special recommendations to overcome the problem raised by cilium diversity.
Collapse
Affiliation(s)
- Anne Aubusson-Fleury
- Centre de Génétique Moléculaire, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Université Paris Sud, Bat 26 Allée de la terrasse, 91 198 Gif sur Yvette Cedex, France
| | - Jean Cohen
- Centre de Génétique Moléculaire, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Université Paris Sud, Bat 26 Allée de la terrasse, 91 198 Gif sur Yvette Cedex, France
| | - Michel Lemullois
- Centre de Génétique Moléculaire, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Université Paris Sud, Bat 26 Allée de la terrasse, 91 198 Gif sur Yvette Cedex, France
| |
Collapse
|
40
|
Tanco S, Tort O, Demol H, Aviles FX, Gevaert K, Van Damme P, Lorenzo J. C-terminomics screen for natural substrates of cytosolic carboxypeptidase 1 reveals processing of acidic protein C termini. Mol Cell Proteomics 2014; 14:177-90. [PMID: 25381060 DOI: 10.1074/mcp.m114.040360] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytosolic carboxypeptidases (CCPs) constitute a new subfamily of M14 metallocarboxypeptidases associated to axonal regeneration and neuronal degeneration, among others. CCPs are deglutamylating enzymes, able to catalyze the shortening of polyglutamate side-chains and the gene-encoded C termini of tubulin, telokin, and myosin light chain kinase. The functions of these enzymes are not entirely understood, in part because of the lack of information about C-terminal protein processing in the cell and its functional implications. By means of C-terminal COFRADIC, a positional proteomics approach, we searched for cellular substrates targets of CCP1, the most relevant member of this family. We here identified seven new putative CCP1 protein substrates, including ribosomal proteins, translation factors, and high mobility group proteins. Furthermore, we showed for the first time that CCP1 processes both glutamates as well as C-terminal aspartates. The implication of these C termini in molecular interactions furthermore suggests that CCP1-mediated shortening of acidic protein tails might regulate protein-protein and protein-DNA interactions.
Collapse
Affiliation(s)
- Sebastian Tanco
- From the ‡Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium; §Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium; ¶Institute for Biotechnology and Biomedicine and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Olivia Tort
- ¶Institute for Biotechnology and Biomedicine and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Hans Demol
- From the ‡Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium; §Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Francesc Xavier Aviles
- ¶Institute for Biotechnology and Biomedicine and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Kris Gevaert
- From the ‡Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium; §Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Petra Van Damme
- From the ‡Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium; §Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium;
| | - Julia Lorenzo
- ¶Institute for Biotechnology and Biomedicine and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
41
|
Tort O, Tanco S, Rocha C, Bièche I, Seixas C, Bosc C, Andrieux A, Moutin MJ, Avilés FX, Lorenzo J, Janke C. The cytosolic carboxypeptidases CCP2 and CCP3 catalyze posttranslational removal of acidic amino acids. Mol Biol Cell 2014; 25:3017-27. [PMID: 25103237 PMCID: PMC4230590 DOI: 10.1091/mbc.e14-06-1072] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The posttranslational modification of tubulin plays an important role in regulating microtubule function. Enzymes responsible for deglutamylating tubulin are members of a family of cytosolic carboxypeptidases. By completing the functional characterization of this protein family in mammals, it is demonstrated that CCP2 and CCP3 are deglutamylases. The posttranslational modification of carboxy-terminal tails of tubulin plays an important role in the regulation of the microtubule cytoskeleton. Enzymes responsible for deglutamylating tubulin have been discovered within a novel family of mammalian cytosolic carboxypeptidases. The discovery of these enzymes also revealed the existence of a range of other substrates that are enzymatically deglutamylated. Only four of six mammalian cytosolic carboxypeptidases had been enzymatically characterized. Here we complete the functional characterization of this protein family by demonstrating that CCP2 and CCP3 are deglutamylases, with CCP3 being able to hydrolyze aspartic acids with similar efficiency. Deaspartylation is a novel posttranslational modification that could, in conjunction with deglutamylation, broaden the range of potential substrates that undergo carboxy-terminal processing. In addition, we show that CCP2 and CCP3 are highly regulated proteins confined to ciliated tissues. The characterization of two novel enzymes for carboxy-terminal protein modification provides novel insights into the broadness of this barely studied process.
Collapse
Affiliation(s)
- Olivia Tort
- Institut de Biotecnologia i de Biomedicina, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain Institut Curie, 91405 Orsay, France
| | - Sebastián Tanco
- Institut de Biotecnologia i de Biomedicina, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain Department of Medical Protein Research, VIB, 9000 Ghent, Belgium Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Cecilia Rocha
- Institut Curie, 91405 Orsay, France PSL Research University, 75005 Paris, France Centre National de la Recherche Scientifique, UMR3306, 91405 Orsay, France Institut National de la Santé et de la Recherche Médicale, U1005, 91405 Orsay, France
| | - Ivan Bièche
- PSL Research University, 75005 Paris, France Department of Genetics, Institut Curie, 75248 Paris, France
| | - Cecilia Seixas
- Centro de Estudos de Doenças Crónicas, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisbon, Portugal
| | - Christophe Bosc
- Institut des Neurosciences de Grenoble, Institut National de la Santé et de la Recherche Médicale, U836, CEA, Université Joseph Fourier, 38042 Grenoble, France Université Grenoble Alpes, 38000 Grenoble, France CEA, Institut de Recherches en Technologies et Sciences pour le Vivant, 38000 Grenoble, France
| | - Annie Andrieux
- Institut des Neurosciences de Grenoble, Institut National de la Santé et de la Recherche Médicale, U836, CEA, Université Joseph Fourier, 38042 Grenoble, France Université Grenoble Alpes, 38000 Grenoble, France CEA, Institut de Recherches en Technologies et Sciences pour le Vivant, 38000 Grenoble, France
| | - Marie-Jo Moutin
- Institut des Neurosciences de Grenoble, Institut National de la Santé et de la Recherche Médicale, U836, CEA, Université Joseph Fourier, 38042 Grenoble, France Université Grenoble Alpes, 38000 Grenoble, France CEA, Institut de Recherches en Technologies et Sciences pour le Vivant, 38000 Grenoble, France
| | - Francesc Xavier Avilés
- Institut de Biotecnologia i de Biomedicina, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Julia Lorenzo
- Institut de Biotecnologia i de Biomedicina, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Carsten Janke
- Institut Curie, 91405 Orsay, France PSL Research University, 75005 Paris, France Centre National de la Recherche Scientifique, UMR3306, 91405 Orsay, France Institut National de la Santé et de la Recherche Médicale, U1005, 91405 Orsay, France
| |
Collapse
|
42
|
Abstract
Centrioles and basal bodies (CBBs) are microtubule-rich cylindrical structures that nucleate and organize centrosomes and cilia, respectively. Despite their apparent ninefold rotational symmetry, the nine sets of triplet microtubules in CBBs possess asymmetries in their morphology and in the structures that associate with them. These asymmetries define the position of nascent CBB assembly, the orientation of ciliary beating, the orientation of spindle poles and the maintenance of cellular geometry. For some of these functions, the orientation of CBBs is first established during new CBB biogenesis when the daughter structure is positioned adjacent to the mother. The mother CBB organizes the surrounding environment that nascent CBBs are born into, thereby providing a nest for the new CBB to develop. Protists, including ciliates and algae, highlight the importance of this environment with the formation of asymmetrically placed scaffolds onto which new basal bodies assemble and are positioned. Recent studies illuminate the positioning of nascent centrioles relative to a modular pericentriolar material (PCM) environment and suggest that, like ciliates, centrosomes organize an immediate environment surrounding centrioles for their biogenesis and positioning. In this Commentary, I will explore the positioning of nascent CBB assembly as the first event in building cellular asymmetries and describe how the environment surrounding both basal bodies and centrioles may define asymmetric assembly.
Collapse
Affiliation(s)
- Chad G Pearson
- University of Colorado, Anschutz Medical Campus, Department of Cell and Developmental Biology, 12801 E. 17th Avenue, Room 12104, Aurora, CO 80045, USA
| |
Collapse
|
43
|
Plattner H. The contractile vacuole complex of protists--new cues to function and biogenesis. Crit Rev Microbiol 2013; 41:218-27. [PMID: 23919298 DOI: 10.3109/1040841x.2013.821650] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The contractile vacuole complex (CVC) of freshwater protists sequesters the excess of water and ions (Ca(2+)) for exocytosis cycles at the pore. Sequestration is based on a chemiosmotic proton gradient produced by a V-type H(+)-ATPase. So far, many pieces of information available have not been combined to a comprehensive view on CVC biogenesis and function. One main function now appears as follows. Ca(2+)-release channels, type inositol 1,4,5-trisphosphate receptors (InsP3R), may serve for fine-tuning of local cytosolic Ca(2+) concentration and mediate numerous membrane-to-membrane interactions within the tubular spongiome meshwork. Such activity is suggested by the occurrence of organelle-specific soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) and Ras-related in brain (Rab) proteins, which may regulate functional requirements. For tubulation, F-Bin-amphiphysin-Rvs (F-BAR) proteins are available. In addition, there is indirect evidence for the occurrence of H(+)/Ca(2+) exchangers (to sequester Ca(2+)) and mechanosensitive Ca(2+)-channels (for signaling the filling sate). The periodic activity of the CVC may be regulated by the mechanosensitive Ca(2+)-channels. Such channels are known to colocalize with and to be functionally supported by stomatins, which were recently detected in the CVC. A Kif18-related kinesin motor protein might control the length of radial arms. Two additional InsP3-related channels and several SNAREs are associated with the pore. De novo organelle biogenesis occurs under epigenetic control during mitotic activity and may involve the assembly of γ-tubulin, centrin, calmodulin and a never in mitosis A-type (NIMA) kinase - components also engaged in mitotic processes.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz , Konstanz , Germany
| |
Collapse
|
44
|
Yin F, Sheng X, Gao Q, Li Q, Shi Z, Gu F. Localization of α-, γ-, and δ-tubulin in the hypotrich ciliateStylonychia pustulata(Hyportrichida, Ciliophora). Anim Cells Syst (Seoul) 2013. [DOI: 10.1080/19768354.2013.828654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
45
|
Gaertig J, Wloga D, Vasudevan KK, Guha M, Dentler W. Discovery and functional evaluation of ciliary proteins in Tetrahymena thermophila. Methods Enzymol 2013; 525:265-84. [PMID: 23522474 PMCID: PMC4392907 DOI: 10.1016/b978-0-12-397944-5.00013-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The ciliate Tetrahymena thermophila is an excellent model system for the discovery and functional studies of ciliary proteins. The power of the model is based on the ease with which cilia can be purified in large quantities for fractionation and proteomic identification, and the ability to knock out any gene by homologous DNA recombination. Here, we include methods used by our laboratories for isolation and fractionation of cilia, in vivo tagging and localization of ciliary proteins, and the evaluation of ciliary mutants.
Collapse
Affiliation(s)
- Jacek Gaertig
- Department of Cellular Biology, University of Georgia, Athens, GA 30605, USA
| | - Dorota Wloga
- Nencki Institute of Experimental Biology, Polish Academy of Science, 02-093 Warsaw, Poland
| | | | - Mayukh Guha
- Department of Cellular Biology, University of Georgia, Athens, GA 30605, USA
| | - William Dentler
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
46
|
Magiera MM, Janke C. Investigating tubulin posttranslational modifications with specific antibodies. Methods Cell Biol 2013; 115:247-67. [PMID: 23973077 DOI: 10.1016/b978-0-12-407757-7.00016-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Microtubules play highly diverse and essential roles in every eukaryotic cell. While built from conserved dimers of α- and β-tubulin, microtubules can be diversified by posttranslational modifications in order to fulfill specific functions in cells. The tubulin posttranslational modifications: acetylation, detyrosination, polyglutamylation, and polyglycylation play important roles in microtubule functions; however, only little functional and mechanistic insight has been gained so far. The modification state of microtubules can be visualized with specific antibodies. A drawback is that detailed information about the specificities and limitations of these antibodies are not easily accessible in the literature. We provide here a comprehensive description of the currently available set of antibodies specific to tubulin modifications. Focusing on glutamylation antibodies, we discuss specific protocols that allow using these antibodies to gain semi-quantitative information on the levels and distribution of tubulin modifications in immunocytochemistry and immunoblot.
Collapse
|
47
|
Contractile Vacuole Complex—Its Expanding Protein Inventory. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 306:371-416. [DOI: 10.1016/b978-0-12-407694-5.00009-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
48
|
Bayless BA, Giddings TH, Winey M, Pearson CG. Bld10/Cep135 stabilizes basal bodies to resist cilia-generated forces. Mol Biol Cell 2012; 23:4820-32. [PMID: 23115304 PMCID: PMC3521689 DOI: 10.1091/mbc.e12-08-0577] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/18/2012] [Accepted: 10/23/2012] [Indexed: 12/03/2022] Open
Abstract
Basal bodies nucleate, anchor, and organize cilia. As the anchor for motile cilia, basal bodies must be resistant to the forces directed toward the cell as a consequence of ciliary beating. The molecules and generalized mechanisms that contribute to the maintenance of basal bodies remain to be discovered. Bld10/Cep135 is a basal body outer cartwheel domain protein that has established roles in the assembly of nascent basal bodies. We find that Bld10 protein first incorporates stably at basal bodies early during new assembly. Bld10 protein continues to accumulate at basal bodies after assembly, and we hypothesize that the full complement of Bld10 is required to stabilize basal bodies. We identify a novel mechanism for Bld10/Cep135 in basal body maintenance so that basal bodies can withstand the forces produced by motile cilia. Bld10 stabilizes basal bodies by promoting the stability of the A- and C-tubules of the basal body triplet microtubules and by properly positioning the triplet microtubule blades. The forces generated by ciliary beating promote basal body disassembly in bld10Δ cells. Thus Bld10/Cep135 acts to maintain the structural integrity of basal bodies against the forces of ciliary beating in addition to its separable role in basal body assembly.
Collapse
Affiliation(s)
- Brian A. Bayless
- Department of Cell and Developmental Biology, University of Colorado Denver–Anshutz Medical Campus, Aurora, CO 80045-2537
| | - Thomas H. Giddings
- Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309-0347
| | - Mark Winey
- Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309-0347
| | - Chad G. Pearson
- Department of Cell and Developmental Biology, University of Colorado Denver–Anshutz Medical Campus, Aurora, CO 80045-2537
| |
Collapse
|
49
|
Vonderfecht T, Cookson MW, Giddings TH, Clarissa C, Winey M. The two human centrin homologues have similar but distinct functions at Tetrahymena basal bodies. Mol Biol Cell 2012; 23:4766-77. [PMID: 23087207 PMCID: PMC3521684 DOI: 10.1091/mbc.e12-06-0454] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Centrins are a ubiquitous family of small Ca(2+)-binding proteins found at basal bodies that are placed into two groups based on sequence similarity to the human centrins 2 and 3. Analyses of basal body composition in different species suggest that they contain a centrin isoform from each group. We used the ciliate protist Tetrahymena thermophila to gain a better understanding of the functions of the two centrin groups and to determine their potential redundancy. We have previously shown that the Tetrahymena centrin 1 (Cen1), a human centrin 2 homologue, is required for proper basal body function. In this paper, we show that the Tetrahymena centrin 2 (Cen2), a human centrin 3 homologue, has functions similar to Cen1 in basal body orientation, maintenance, and separation. The two are, however, not redundant. A further examination of human centrin 3 homologues shows that they function in a manner distinct from human centrin 2 homologues. Our data suggest that basal bodies require a centrin from both groups in order to function correctly.
Collapse
Affiliation(s)
- Tyson Vonderfecht
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309, USA
| | | | | | | | | |
Collapse
|
50
|
Backer CB, Gutzman JH, Pearson CG, Cheeseman IM. CSAP localizes to polyglutamylated microtubules and promotes proper cilia function and zebrafish development. Mol Biol Cell 2012; 23:2122-30. [PMID: 22493317 PMCID: PMC3364176 DOI: 10.1091/mbc.e11-11-0931] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Subsets of microtubules are modified by polyglutamylation, but the precise function of this modification is unknown. A microtubule-binding protein, CSAP, is identified that colocalizes with polyglutamylated tubulin. In zebrafish, CSAP is required for normal brain development and proper left–right asymmetry. The diverse populations of microtubule polymers in cells are functionally distinguished by different posttranslational modifications, including polyglutamylation. Polyglutamylation is enriched on subsets of microtubules including those found in the centrioles, mitotic spindle, and cilia. However, whether this modification alters intrinsic microtubule dynamics or affects extrinsic associations with specific interacting partners remains to be determined. Here we identify the microtubule-binding protein centriole and spindle–associated protein (CSAP), which colocalizes with polyglutamylated tubulin to centrioles, spindle microtubules, and cilia in human tissue culture cells. Reducing tubulin polyglutamylation prevents CSAP localization to both spindle and cilia microtubules. In zebrafish, CSAP is required for normal brain development and proper left–right asymmetry, defects that are qualitatively similar to those reported previously for depletion of polyglutamylation-conjugating enzymes. We also find that CSAP is required for proper cilia beating. Our work supports a model in which polyglutamylation can target selected microtubule-associated proteins, such as CSAP, to microtubule subpopulations, providing specific functional capabilities to these populations.
Collapse
Affiliation(s)
- Chelsea B Backer
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | | | | |
Collapse
|