1
|
Ning Y, Zheng M, Zhang Y, Jiao Y, Wang J, Zhang S. RhoA-ROCK2 signaling possesses complex pathophysiological functions in cancer progression and shows promising therapeutic potential. Cancer Cell Int 2024; 24:339. [PMID: 39402585 PMCID: PMC11475559 DOI: 10.1186/s12935-024-03519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024] Open
Abstract
The Rho GTPase signaling pathway is responsible for cell-specific processes, including actin cytoskeleton organization, cell motility, cell division, and the transcription of specific genes. The implications of RhoA and the downstream effector ROCK2 in cancer epithelial-mesenchymal transition, migration, invasion, and therapy resistance associated with stem cells highlight the potential of targeting RhoA/ROCK2 signaling in therapy. Tumor relapse can occur due to cancer cells that do not fully respond to adjuvant chemoradiotherapy, targeted therapy, or immunotherapy. Rho signaling-mediated mitotic defects and cytokinesis failure lead to asymmetric cell division, allowing cells to form polyploids to escape cytotoxicity and promote tumor recurrence and metastasis. In this review, we elucidate the significance of RhoA/ROCK2 in the mechanisms of cancer progression and summarize their inhibitors that may improve treatment strategies.
Collapse
Affiliation(s)
- Yidi Ning
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, P.R. China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, P.R. China
| | - Yue Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P.R. China
| | - Yuqi Jiao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P.R. China
| | - Jiangping Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P.R. China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, P.R. China.
| |
Collapse
|
2
|
Ma R, Feng L, Wu P, Liu Y, Ren HM, Jin XW, Li SW, Tang L, Zhou XQ, Jiang WD. Dietary copper improves intestinal structural integrity in juvenile grass carp ( Ctenopharyngodon idella) probably related to its increased intestinal antioxidant capacity and apical junction complex. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:96-106. [PMID: 39056059 PMCID: PMC11269860 DOI: 10.1016/j.aninu.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/22/2024] [Accepted: 02/20/2024] [Indexed: 07/28/2024]
Abstract
This research evaluated the effects of copper (Cu) on intestinal antioxidant capacity and apical junctional complex (AJC) in juvenile grass carp. A total of 1080 healthy juvenile grass carp (11.16 ± 0.01 g) were fed six diets including different dosages of Cu, namely 0, 2, 4, 6, 8 mg/kg (Cu citrate [CuCit] as Cu source) and 3 mg/kg (CuSO4·5H2O as Cu source). The trial lasted for 9 weeks. The findings revealed that dietary optimal Cu supplementation (2.2 to 4.1 mg/kg) promoted intestinal growth, including intestinal length, intestinal length index, intestinal weight, and intestinal somatic index (P < 0.05). Furthermore, optimal Cu boosted the intestinal mucosal barrier in juvenile grass carp. On the one hand, optimal Cu reduced diamine oxidase and D-lactate levels in serum (P < 0.05), reduced levels of the oxidative damage indicators malondialdehyde, reactive oxygen species (ROS), protein carbonyl, superoxide dismutase (P < 0.05), and catalase mRNA levels were elevated (P < 0.05), thus boosting intestinal antioxidant capacity, the binding protein Keap1a/1b/Nrf2 signaling pathway might be involved. Optimal Cu had no impact on glutathione peroxidase 1b (GPx1b) gene expression (P > 0.05). On the other hand, optimal Cu increased intestinal tight junction (TJ) proteins (except for claudin 15b) and adherens junction (AJ) proteins (E-cadherin, α-catenin, β-catenin, nectin and afadin) mRNA levels (P < 0.05), which could be connected to the signaling pathway formed by the Ras homolog gene family, member A (RhoA), Rho-associated kinase (ROCK), and myosin light chain kinase (MLCK). Finally, based on serum indicator D-lactate and intestinal oxidative damage index (ROS), Cu requirement (CuCit as Cu source) for juvenile grass carp from initial weight to final weight (from 11 to 173 g) was determined to be 4.14 and 4.12 mg/kg diet, respectively. This work may provide a theoretical foundation for identifying putative Cu regulation pathways on fish intestinal health.
Collapse
Affiliation(s)
- Rui Ma
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Wan Jin
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shu-Wei Li
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd., Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd., Chengdu, 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Chengdu, 611130, China
| |
Collapse
|
3
|
Venugopal S, Dan Q, Sri Theivakadadcham VS, Wu B, Kofler M, Layne MD, Connelly KA, Rzepka MF, Friedberg MK, Kapus A, Szászi K. Regulation of the RhoA exchange factor GEF-H1 by profibrotic stimuli through a positive feedback loop involving RhoA, MRTF, and Sp1. Am J Physiol Cell Physiol 2024; 327:C387-C402. [PMID: 38912734 DOI: 10.1152/ajpcell.00088.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/03/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
RhoA and its effectors, the transcriptional coactivators myocardin-related transcription factor (MRTF) and serum response factor (SRF), control epithelial phenotype and are indispensable for profibrotic epithelial reprogramming during fibrogenesis. Context-dependent control of RhoA and fibrosis-associated changes in its regulators, however, remain incompletely characterized. We previously identified the guanine nucleotide exchange factor GEF-H1 as a central mediator of RhoA activation in renal tubular cells exposed to inflammatory or fibrotic stimuli. Here we found that GEF-H1 expression and phosphorylation were strongly elevated in two animal models of fibrosis. In the Unilateral Ureteral Obstruction mouse kidney fibrosis model, GEF-H1 was upregulated predominantly in the tubular compartment. GEF-H1 was also elevated and phosphorylated in a rat pulmonary artery banding (PAB) model of right ventricular fibrosis. Prolonged stimulation of LLC-PK1 tubular cells with tumor necrosis factor (TNF)-α or transforming growth factor (TGF)-β1 increased GEF-H1 expression and activated a luciferase-coupled GEF-H1 promoter. Knockdown and overexpression studies revealed that these effects were mediated by RhoA, cytoskeleton remodeling, and MRTF, indicative of a positive feedback cycle. Indeed, silencing endogenous GEF-H1 attenuated activation of the GEF-H1 promoter. Of importance, inhibition of MRTF using CCG-1423 prevented GEF-H1 upregulation in both animal models. MRTF-dependent increase in GEF-H1 was prevented by inhibition of the transcription factor Sp1, and mutating putative Sp1 binding sites in the GEF-H1 promoter eliminated its MRTF-dependent activation. As the GEF-H1/RhoA axis is key for fibrogenesis, this novel MRTF/Sp1-dependent regulation of GEF-H1 abundance represents a potential target for reducing renal and cardiac fibrosis.NEW & NOTEWORTHY We show that expression of the RhoA regulator GEF-H1 is upregulated in tubular cells exposed to fibrogenic cytokines and in animal models of kidney and heart fibrosis. We identify a pathway wherein GEF-H1/RhoA-dependent MRTF activation through its noncanonical partner Sp1 upregulates GEF-H1. Our data reveal the existence of a positive feedback cycle that enhances Rho signaling through control of both GEF-H1 activation and expression. This feedback loop may play an important role in organ fibrosis.
Collapse
Affiliation(s)
- Shruthi Venugopal
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Qinghong Dan
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Veroni S Sri Theivakadadcham
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Brian Wu
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Michael Kofler
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Matthew D Layne
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, United States
| | - Kim A Connelly
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Mark F Rzepka
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Mark K Friedberg
- Division of Cardiology, Labatt Family Heart Center Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
- Translational Medicine, Hospital for Sick Children Research Institute and University of Toronto, Toronto, Ontario, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Haas AJ, Karakus M, Zihni C, Balda MS, Matter K. ZO-1 Regulates Hippo-Independent YAP Activity and Cell Proliferation via a GEF-H1- and TBK1-Regulated Signalling Network. Cells 2024; 13:640. [PMID: 38607079 PMCID: PMC11011562 DOI: 10.3390/cells13070640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Tight junctions are a barrier-forming cell-cell adhesion complex and have been proposed to regulate cell proliferation. However, the underlying mechanisms are not well understood. Here, we used cells deficient in the junction scaffold ZO-1 alone or together with its paralog ZO-2, which disrupts the junctional barrier. We found that ZO-1 knockout increased cell proliferation, induced loss of cell density-dependent proliferation control, and promoted apoptosis and necrosis. These phenotypes were enhanced by double ZO-1/ZO-2 knockout. Increased proliferation was dependent on two transcriptional regulators: YAP and ZONAB. ZO-1 knockout stimulated YAP nuclear translocation and activity without changes in Hippo-dependent phosphorylation. Knockout promoted TANK-binding kinase 1 (TBK1) activation and increased expression of the RhoA activator GEF-H1. Knockdown of ZO-3, another paralog interacting with ZO1, was sufficient to induce GEF-H1 expression and YAP activity. GEF-H1, TBK1, and mechanotransduction at focal adhesions were found to cooperate to activate YAP/TEAD in ZO-1-deficient cells. Thus, ZO-1 controled cell proliferation and Hippo-independent YAP activity by activating a GEF-H1- and TBK1-regulated mechanosensitive signalling network.
Collapse
Affiliation(s)
| | | | | | - Maria S. Balda
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (A.J.H.); (M.K.); (C.Z.)
| | - Karl Matter
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK; (A.J.H.); (M.K.); (C.Z.)
| |
Collapse
|
5
|
Su Y, Long Y, Xie K. Cingulin family: Structure, function and clinical significance. Life Sci 2024; 341:122504. [PMID: 38354973 DOI: 10.1016/j.lfs.2024.122504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/21/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Cingulin and its paralog paracingulin are vital components of the apical junctional complex in vertebrate epithelial and endothelial cells. They are both found in tight junctions (TJ), and paracingulin is also detectable in adherens junctions (AJ) as TJ cytoplasmic plaque proteins. Cingulin and paracingulin interact with other proteins to perform functions. They interact with cytoskeletal proteins, modulate the activity of small GTPases, such as RhoA and Rac1, and regulate gene expression. In addition, cingulin and paracingulin regulate barrier function and many pathological processes, including inflammation and tumorigenesis. In this review, we summarize the discovery and structure, expression and subcellular distribution, and molecular interactions of cingulin family proteins and discuss their role in development, physiology, and pathological processes.
Collapse
Affiliation(s)
- Yuling Su
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong 510006, China
| | - You Long
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong 510006, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong 510006, China; The Second Affiliated Hospital and Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangdong 510006, China; The South China University of Technology Comprehensive Cancer Center, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
6
|
Fu R, Jiang X, Li G, Zhu Y, Zhang H. Junctional complexes in epithelial cells: sentinels for extracellular insults and intracellular homeostasis. FEBS J 2022; 289:7314-7333. [PMID: 34453866 DOI: 10.1111/febs.16174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 01/13/2023]
Abstract
The cell-cell and cell-ECM junctions within the epithelial tissues are crucial anchoring structures that provide architectural stability, mechanical resistance, and permeability control. Their indispensable role as signaling hubs orchestrating cell shape-related changes such as proliferation, differentiation, migration, and apoptosis has also been well recognized. However, growing amount of evidence now suggests that the multitasking nature of epithelial junctions extends well beyond anchorage-dependent or cell shape change-related biological processes. In this review, we discuss the emerging roles of junctional complexes in regulating innate immune defense, stress resistance, and intracellular proteostasis of the epithelial cells, with emphasis on the upstream regulation of epithelial junctions on various aspects of the epithelial barrier.
Collapse
Affiliation(s)
- Rong Fu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Xiaowan Jiang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Gang Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Yi Zhu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| | - Huimin Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, China
| |
Collapse
|
7
|
ZO-1 Guides Tight Junction Assembly and Epithelial Morphogenesis via Cytoskeletal Tension-Dependent and -Independent Functions. Cells 2022; 11:cells11233775. [PMID: 36497035 PMCID: PMC9740252 DOI: 10.3390/cells11233775] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Formation and maintenance of tissue barriers require the coordination of cell mechanics and cell-cell junction assembly. Here, we combined methods to modulate ECM stiffness and to measure mechanical forces on adhesion complexes to investigate how tight junctions regulate cell mechanics and epithelial morphogenesis. We found that depletion of the tight junction adaptor ZO-1 disrupted junction assembly and morphogenesis in an ECM stiffness-dependent manner and led to a stiffness-dependant reorganisation of active myosin. Both junction formation and morphogenesis were rescued by inhibition of actomyosin contractility. ZO-1 depletion also impacted mechanical tension at cell-matrix and E-cadherin-based cell-cell adhesions. The effect on E-cadherin also depended on ECM stiffness and correlated with effects of ECM stiffness on actin cytoskeleton organisation. However, ZO-1 knockout also revealed tension-independent functions of ZO-1. ZO-1-deficient cells could assemble functional barriers at low tension, but their tight junctions remained corrupted with strongly reduced and discontinuous recruitment of junctional components. Our results thus reveal that reciprocal regulation between ZO-1 and cell mechanics controls tight junction assembly and epithelial morphogenesis, and that, in a second, tension-independent step, ZO-1 is required to assemble morphologically and structurally fully assembled and functionally normal tight junctions.
Collapse
|
8
|
Chumki SA, van den Goor LM, Hall BN, Miller AL. p115RhoGEF activates RhoA to support tight junction maintenance and remodeling. Mol Biol Cell 2022; 33:ar136. [PMID: 36200892 PMCID: PMC9727809 DOI: 10.1091/mbc.e22-06-0205] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In vertebrates, epithelial cell-cell junctions must rapidly remodel to maintain barrier function as cells undergo dynamic shape-change events. Consequently, localized leaks sometimes arise within the tight junction (TJ) barrier, which are repaired by short-lived activations of RhoA, called "Rho flares." However, how RhoA is activated at leak sites remains unknown. Here we asked which guanine nucleotide exchange factor (GEF) localizes to TJs to initiate Rho activity at Rho flares. We find that p115RhoGEF locally activates Rho flares at sites of TJ loss. Knockdown of p115RhoGEF leads to diminished Rho flare intensity and impaired TJ remodeling. p115RhoGEF knockdown also decreases junctional active RhoA levels, thus compromising the apical actomyosin array and junctional complex. Furthermore, p115RhoGEF is necessary to promote local leak repair to maintain TJ barrier function. In all, our work demonstrates a central role for p115RhoGEF in activating junctional RhoA to preserve barrier function and direct local TJ remodeling.
Collapse
Affiliation(s)
- Shahana A. Chumki
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109
| | - Lotte M. van den Goor
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Benjamin N. Hall
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Ann L. Miller
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109,*Address correspondence to: Ann L. Miller ()
| |
Collapse
|
9
|
Ebnet K, Gerke V. Rho and Rab Family Small GTPases in the Regulation of Membrane Polarity in Epithelial Cells. Front Cell Dev Biol 2022; 10:948013. [PMID: 35859901 PMCID: PMC9289151 DOI: 10.3389/fcell.2022.948013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/14/2022] [Indexed: 11/27/2022] Open
Abstract
Membrane polarity, defined as the asymmetric distribution of lipids and proteins in the plasma membrane, is a critical prerequisite for the development of multicellular tissues, such as epithelia and endothelia. Membrane polarity is regulated by polarized trafficking of membrane components to specific membrane domains and requires the presence of intramembrane diffusion barriers that prevent the intermixing of asymmetrically distributed membrane components. This intramembrane diffusion barrier is localized at the tight junctions (TJs) in these cells. Both the formation of cell-cell junctions and the polarized traffic of membrane proteins and lipids are regulated by Rho and Rab family small GTPases. In this review article, we will summarize the recent developments in the regulation of apico-basal membrane polarity by polarized membrane traffic and the formation of the intramembrane diffusion barrier in epithelial cells with a particular focus on the role of Rho and Rab family small GTPases.
Collapse
Affiliation(s)
- Klaus Ebnet
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
- Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
- *Correspondence: Klaus Ebnet, ; Volker Gerke,
| | - Volker Gerke
- Institute-Associated Research Group: Cell Adhesion and Cell Polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
- Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
- *Correspondence: Klaus Ebnet, ; Volker Gerke,
| |
Collapse
|
10
|
Therapeutic Validation of GEF-H1 Using a De Novo Designed Inhibitor in Models of Retinal Disease. Cells 2022; 11:cells11111733. [PMID: 35681428 PMCID: PMC9179336 DOI: 10.3390/cells11111733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 02/05/2023] Open
Abstract
Inflammation and fibrosis are important components of diseases that contribute to the malfunction of epithelia and endothelia. The Rho guanine nucleotide exchange factor (GEF) GEF-H1/ARHGEF-2 is induced in disease and stimulates inflammatory and fibrotic processes, cell migration, and metastasis. Here, we have generated peptide inhibitors to block the function of GEF-H1. Inhibitors were designed using a structural in silico approach or by isolating an inhibitory sequence from the autoregulatory C-terminal domain. Candidate inhibitors were tested for their ability to block RhoA/GEF-H1 binding in vitro, and their potency and specificity in cell-based assays. Successful inhibitors were then evaluated in models of TGFβ-induced fibrosis, LPS-stimulated endothelial cell-cell junction disruption, and cell migration. Finally, the most potent inhibitor was successfully tested in an experimental retinal disease mouse model, in which it inhibited blood vessel leakage and ameliorated retinal inflammation when treatment was initiated after disease diagnosis. Thus, an antagonist that blocks GEF-H1 signaling effectively inhibits disease features in in vitro and in vivo disease models, demonstrating that GEF-H1 is an effective therapeutic target and establishing a new therapeutic approach.
Collapse
|
11
|
Eliseeva IA, Sogorina EM, Smolin EA, Kulakovskiy IV, Lyabin DN. Diverse Regulation of YB-1 and YB-3 Abundance in Mammals. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S48-S167. [PMID: 35501986 DOI: 10.1134/s000629792214005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 06/14/2023]
Abstract
YB proteins are DNA/RNA binding proteins, members of the family of proteins with cold shock domain. Role of YB proteins in the life of cells, tissues, and whole organisms is extremely important. They are involved in transcription regulation, pre-mRNA splicing, mRNA translation and stability, mRNA packaging into mRNPs, including stress granules, DNA repair, and many other cellular events. Many processes, from embryonic development to aging, depend on when and how much of these proteins have been synthesized. Here we discuss regulation of the levels of YB-1 and, in part, of its homologs in the cell. Because the amount of YB-1 is immediately associated with its functioning, understanding the mechanisms of regulation of the protein amount invariably reveals the events where YB-1 is involved. Control over the YB-1 abundance may allow using this gene/protein as a therapeutic target in cancers, where an increased expression of the YBX1 gene often correlates with the disease severity and poor prognosis.
Collapse
Affiliation(s)
- Irina A Eliseeva
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
| | | | - Egor A Smolin
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
| | - Ivan V Kulakovskiy
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Moscow, 119991, Russia
| | - Dmitry N Lyabin
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
12
|
Arhgef2 regulates mitotic spindle orientation in hematopoietic stem cells and is essential for productive hematopoiesis. Blood Adv 2021; 5:3120-3133. [PMID: 34406376 DOI: 10.1182/bloodadvances.2020002539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 03/29/2021] [Indexed: 11/20/2022] Open
Abstract
How hematopoietic stem cells (HSCs) coordinate their divisional axis and whether this orientation is important for stem cell-driven hematopoiesis is poorly understood. Single-cell RNA sequencing data from patients with Shwachman-Diamond syndrome (SDS), an inherited bone marrow failure syndrome, show that ARHGEF2, a RhoA-specific guanine nucleotide exchange factor and determinant of mitotic spindle orientation, is specifically downregulated in SDS hematopoietic stem and progenitor cells (HSPCs). We demonstrate that transplanted Arhgef2-/- fetal liver and bone marrow cells yield impaired hematopoietic recovery and a production deficit from long-term HSCs, phenotypes that are not the result of differences in numbers of transplanted HSCs, their cell cycle status, level of apoptosis, progenitor output, or homing ability. Notably, these defects are functionally restored in vivo by overexpression of ARHGEF2 or its downstream activated RHOA GTPase. By using live imaging of dividing HSPCs, we show an increased frequency of misoriented divisions in the absence of Arhgef2. ARHGEF2 knockdown in human HSCs also impairs their ability to regenerate hematopoiesis, culminating in significantly smaller xenografts. Together, these data demonstrate a conserved role for Arhgef2 in orienting HSPC division and suggest that HSCs may divide in certain orientations to establish hematopoiesis, the loss of which could contribute to HSC dysfunction in bone marrow failure.
Collapse
|
13
|
Beal R, Alonso-Carriazo Fernandez A, Grammatopoulos DK, Matter K, Balda MS. ARHGEF18/p114RhoGEF Coordinates PKA/CREB Signaling and Actomyosin Remodeling to Promote Trophoblast Cell-Cell Fusion During Placenta Morphogenesis. Front Cell Dev Biol 2021; 9:658006. [PMID: 33842485 PMCID: PMC8027320 DOI: 10.3389/fcell.2021.658006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/03/2021] [Indexed: 12/04/2022] Open
Abstract
Coordination of cell-cell adhesion, actomyosin dynamics and gene expression is crucial for morphogenetic processes underlying tissue and organ development. Rho GTPases are main regulators of the cytoskeleton and adhesion. They are activated by guanine nucleotide exchange factors in a spatially and temporally controlled manner. However, the roles of these Rho GTPase activators during complex developmental processes are still poorly understood. ARHGEF18/p114RhoGEF is a tight junction-associated RhoA activator that forms complexes with myosin II, and regulates actomyosin contractility. Here we show that p114RhoGEF/ARHGEF18 is required for mouse syncytiotrophoblast differentiation and placenta development. In vitro and in vivo experiments identify that p114RhoGEF controls expression of AKAP12, a protein regulating protein kinase A (PKA) signaling, and is required for PKA-induced actomyosin remodeling, cAMP-responsive element binding protein (CREB)-driven gene expression of proteins required for trophoblast differentiation, and, hence, trophoblast cell-cell fusion. Our data thus indicate that p114RhoGEF links actomyosin dynamics and cell-cell junctions to PKA/CREB signaling, gene expression and cell-cell fusion.
Collapse
Affiliation(s)
- Robert Beal
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | - Dimitris K Grammatopoulos
- Translational and Experimental Medicine, Warwick Medical School, Coventry, United Kingdom.,Department of Pathology, Institute of Precision Diagnostics and Translational Medicine, University Hospital Coventry and Warwickshire National Health Service (NHS) Trust, Coventry, United Kingdom
| | - Karl Matter
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Maria S Balda
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
14
|
Joo E, Olson MF. Regulation and functions of the RhoA regulatory guanine nucleotide exchange factor GEF-H1. Small GTPases 2020; 12:358-371. [PMID: 33126816 PMCID: PMC8583009 DOI: 10.1080/21541248.2020.1840889] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Since the discovery by Madaule and Axel in 1985 of the first Ras homologue (Rho) protein in Aplysia and its human orthologue RhoB, membership in the Rho GTPase family has grown to 20 proteins, with representatives in all eukaryotic species. These GTPases are molecular switches that cycle between active (GTP bound) and inactivate (GDP bound) states. The exchange of GDP for GTP on Rho GTPases is facilitated by guanine exchange factors (GEFs). Approximately 80 Rho GEFs have been identified to date, and only a few GEFs associate with microtubules. The guanine nucleotide exchange factor H1, GEF-H1, is a unique GEF that associates with microtubules and is regulated by the polymerization state of microtubule networks. This review summarizes the regulation and functions of GEF-H1 and discusses the roles of GEF-H1 in human diseases.
Collapse
Affiliation(s)
- Emily Joo
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Michael F Olson
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| |
Collapse
|
15
|
Hartmann C, Schwietzer YA, Otani T, Furuse M, Ebnet K. Physiological functions of junctional adhesion molecules (JAMs) in tight junctions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183299. [DOI: 10.1016/j.bbamem.2020.183299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/25/2020] [Accepted: 03/28/2020] [Indexed: 12/24/2022]
|
16
|
Haas AJ, Zihni C, Ruppel A, Hartmann C, Ebnet K, Tada M, Balda MS, Matter K. Interplay between Extracellular Matrix Stiffness and JAM-A Regulates Mechanical Load on ZO-1 and Tight Junction Assembly. Cell Rep 2020; 32:107924. [PMID: 32697990 PMCID: PMC7383227 DOI: 10.1016/j.celrep.2020.107924] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 05/08/2020] [Accepted: 06/26/2020] [Indexed: 12/22/2022] Open
Abstract
Tight-junction-regulated actomyosin activity determines epithelial and endothelial tension on adherens junctions and drives morphogenetic processes; however, whether or not tight junctions themselves are under tensile stress is not clear. Here, we use a tension sensor based on ZO-1, a scaffolding protein that links the junctional membrane to the cytoskeleton, to determine if tight junctions carry a mechanical load. Our data indicate that ZO-1 is under mechanical tension and that forces acting on ZO-1 are regulated by extracellular matrix (ECM) stiffness and the junctional adhesion molecule JAM-A. JAM-A depletion stimulates junctional recruitment of p114RhoGEF/ARHGEF18, mechanical tension on ZO-1, and traction forces at focal adhesions. p114RhoGEF is required for activation of junctional actomyosin activity and tight junction integrity on stiff but not soft ECM. Thus, junctional ZO-1 bears a mechanical load, and junction assembly is regulated by interplay between the physical properties of the ECM and adhesion-regulated signaling at tight junctions.
Collapse
Affiliation(s)
- Alexis J Haas
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Ceniz Zihni
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Artur Ruppel
- LiPhy, CNRS, Université Grenoble Alpes, Grenoble 38000, France
| | - Christian Hartmann
- Institute-associated Research Group "Cell adhesion and cell polarity," Institute of Medical Biochemistry, ZMBE, University of Münster, Münster 48149, Germany
| | - Klaus Ebnet
- Institute-associated Research Group "Cell adhesion and cell polarity," Institute of Medical Biochemistry, ZMBE, University of Münster, Münster 48149, Germany
| | - Masazumi Tada
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Maria S Balda
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK.
| | - Karl Matter
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK.
| |
Collapse
|
17
|
Schwayer C, Shamipour S, Pranjic-Ferscha K, Schauer A, Balda M, Tada M, Matter K, Heisenberg CP. Mechanosensation of Tight Junctions Depends on ZO-1 Phase Separation and Flow. Cell 2020; 179:937-952.e18. [PMID: 31675500 DOI: 10.1016/j.cell.2019.10.006] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/19/2019] [Accepted: 10/07/2019] [Indexed: 10/25/2022]
Abstract
Cell-cell junctions respond to mechanical forces by changing their organization and function. To gain insight into the mechanochemical basis underlying junction mechanosensitivity, we analyzed tight junction (TJ) formation between the enveloping cell layer (EVL) and the yolk syncytial layer (YSL) in the gastrulating zebrafish embryo. We found that the accumulation of Zonula Occludens-1 (ZO-1) at TJs closely scales with tension of the adjacent actomyosin network, revealing that these junctions are mechanosensitive. Actomyosin tension triggers ZO-1 junctional accumulation by driving retrograde actomyosin flow within the YSL, which transports non-junctional ZO-1 clusters toward the TJ. Non-junctional ZO-1 clusters form by phase separation, and direct actin binding of ZO-1 is required for stable incorporation of retrogradely flowing ZO-1 clusters into TJs. If the formation and/or junctional incorporation of ZO-1 clusters is impaired, then TJs lose their mechanosensitivity, and consequently, EVL-YSL movement is delayed. Thus, phase separation and flow of non-junctional ZO-1 confer mechanosensitivity to TJs.
Collapse
Affiliation(s)
- Cornelia Schwayer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Shayan Shamipour
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Alexandra Schauer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Maria Balda
- Institute of Ophthalmology, University College London, London, UK
| | - Masazumi Tada
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Karl Matter
- Institute of Ophthalmology, University College London, London, UK
| | | |
Collapse
|
18
|
Dan Q, Shi Y, Rabani R, Venugopal S, Xiao J, Anwer S, Ding M, Speight P, Pan W, Alexander RT, Kapus A, Szászi K. Claudin-2 suppresses GEF-H1, RHOA, and MRTF, thereby impacting proliferation and profibrotic phenotype of tubular cells. J Biol Chem 2019; 294:15446-15465. [PMID: 31481470 DOI: 10.1074/jbc.ra118.006484] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 08/21/2019] [Indexed: 12/19/2022] Open
Abstract
The tight junctional pore-forming protein claudin-2 (CLDN-2) mediates paracellular Na+ and water transport in leaky epithelia and alters cancer cell proliferation. Previously, we reported that tumor necrosis factor-α time-dependently alters CLDN-2 expression in tubular epithelial cells. Here, we found a similar expression pattern in a mouse kidney injury model (unilateral ureteral obstruction), consisting of an initial increase followed by a drop in CLDN-2 protein expression. CLDN-2 silencing in LLC-PK1 tubular cells induced activation and phosphorylation of guanine nucleotide exchange factor H1 (GEF-H1), leading to Ras homolog family member A (RHOA) activation. Silencing of other claudins had no such effects, and re-expression of an siRNA-resistant CLDN-2 prevented RHOA activation, indicating specific effects of CLDN-2 on RHOA. Moreover, kidneys from CLDN-2 knockout mice had elevated levels of active RHOA. Of note, CLDN-2 silencing reduced LLC-PK1 cell proliferation and elevated expression of cyclin-dependent kinase inhibitor P27 (P27KIP1) in a GEF-H1/RHOA-dependent manner. P27KIP1 silencing abrogated the effects of CLDN-2 depletion on proliferation. CLDN-2 loss also activated myocardin-related transcription factor (MRTF), a fibrogenic RHOA effector, and elevated expression of connective tissue growth factor and smooth muscle actin. Finally, CLDN-2 down-regulation contributed to RHOA activation and smooth muscle actin expression induced by prolonged tumor necrosis factor-α treatment, because they were mitigated by re-expression of CLDN-2. Our results indicate that CLDN-2 suppresses GEF-H1/RHOA. CLDN-2 down-regulation, for example, by inflammation, can reduce proliferation and promote MRTF activation through RHOA. These findings suggest that the initial CLDN-2 elevation might aid epithelial regeneration, and CLDN-2 loss could contribute to fibrotic reprogramming.
Collapse
Affiliation(s)
- Qinghong Dan
- Keenan Research Centre for Biomedical Science at St. Michael's Hospital, University of Toronto, Ontario M5B 1T8, Canada
| | - Yixuan Shi
- Keenan Research Centre for Biomedical Science at St. Michael's Hospital, University of Toronto, Ontario M5B 1T8, Canada
| | - Razieh Rabani
- Keenan Research Centre for Biomedical Science at St. Michael's Hospital, University of Toronto, Ontario M5B 1T8, Canada
| | - Shruthi Venugopal
- Keenan Research Centre for Biomedical Science at St. Michael's Hospital, University of Toronto, Ontario M5B 1T8, Canada
| | - Jenny Xiao
- Keenan Research Centre for Biomedical Science at St. Michael's Hospital, University of Toronto, Ontario M5B 1T8, Canada
| | - Shaista Anwer
- Keenan Research Centre for Biomedical Science at St. Michael's Hospital, University of Toronto, Ontario M5B 1T8, Canada
| | - Mei Ding
- Keenan Research Centre for Biomedical Science at St. Michael's Hospital, University of Toronto, Ontario M5B 1T8, Canada
| | - Pam Speight
- Keenan Research Centre for Biomedical Science at St. Michael's Hospital, University of Toronto, Ontario M5B 1T8, Canada
| | - Wanling Pan
- Departments of Pediatrics and Physiology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - R Todd Alexander
- Departments of Pediatrics and Physiology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science at St. Michael's Hospital, University of Toronto, Ontario M5B 1T8, Canada.,Department of Surgery, University of Toronto, Ontario M5B 1T8, Canada
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science at St. Michael's Hospital, University of Toronto, Ontario M5B 1T8, Canada .,Department of Surgery, University of Toronto, Ontario M5B 1T8, Canada
| |
Collapse
|
19
|
Shigetomi K, Ikenouchi J. Cell Adhesion Structures in Epithelial Cells Are Formed in Dynamic and Cooperative Ways. Bioessays 2019; 41:e1800227. [PMID: 31187900 DOI: 10.1002/bies.201800227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/16/2019] [Indexed: 01/13/2023]
Abstract
There are many morphologically distinct membrane structures with different functions at the surface of epithelial cells. Among these, adherens junctions (AJ) and tight junctions (TJ) are responsible for the mechanical linkage of epithelial cells and epithelial barrier function, respectively. In the process of new cell-cell adhesion formation between two epithelial cells, such as after wounding, AJ form first and then TJ form on the apical side of AJ. This process is very complicated because AJ formation triggers drastic changes in the organization of actin cytoskeleton, the activity of Rho family of small GTPases, and the lipid composition of the plasma membrane, all of which are required for subsequent TJ formation. In this review, the authors focus on the relationship between AJ and TJ as a representative example of specialization of plasma membrane regions and introduce recent findings on how AJ formation promotes the subsequent formation of TJ.
Collapse
Affiliation(s)
- Kenta Shigetomi
- Department of Biology, Faculty of Sciences, Kyushu University, 774 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Junichi Ikenouchi
- Department of Biology, Faculty of Sciences, Kyushu University, 774 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.,Japan Science and Technology Agency, Saitama, 332-0012, Japan.,AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan
| |
Collapse
|
20
|
Han P, Lei Y, Li D, Liu J, Yan W, Tian D. Ten years of research on the role of BVES/ POPDC1 in human disease: a review. Onco Targets Ther 2019; 12:1279-1291. [PMID: 30863095 PMCID: PMC6388986 DOI: 10.2147/ott.s192364] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Since the blood vessel epicardial substance or Popeye domain-containing protein 1 (BVES/POPDC1) was first identified in the developing heart by two independent laboratories in 1999, an increasing number of studies have investigated the structure, function, and related diseases of BVES/POPDC1. During the first 10 years following the discovery of BVES/POPDC1, studies focused mainly on its structure, expression patterns, and functions. Based on these studies, further investigations conducted over the previous decade examined the role of BVES/POPDC1 in human diseases, such as colitis, heart diseases, and human cancers. This review provides an overview of the structure and expression of BVES/POPDC1, mainly focusing on its potential role and mechanism through which it is involved in human cancers.
Collapse
Affiliation(s)
- Ping Han
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, ;
| | - Yu Lei
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, ;
| | - Dongxiao Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, ;
| | - Jingmei Liu
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, ;
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, ;
| | - Dean Tian
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China, ;
| |
Collapse
|
21
|
Tight junction-associated protein GEF-H1 in the neighbours of dividing epithelial cells is essential for adaptation of cell-cell membrane during cytokinesis. Exp Cell Res 2018; 371:72-82. [PMID: 30056063 DOI: 10.1016/j.yexcr.2018.07.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 11/22/2022]
Abstract
Animal cells divide by a process called cytokinesis which relies on the constriction of a contractile actomyosin ring leading to the production of two daughter cells. Cytokinesis is an intrinsic property of cells which occurs even for artificially isolated cells. During division, isolated cells undergo dramatic changes in shape such as rounding and membrane deformation as the division furrow ingresses. However, cells are often embedded in tissues and thus are surrounded by neighbouring cells. How these neighbours might influence, or might themselves be influenced by, the shape changes of cytokinesis is poorly understood in vertebrates. Here, we show that during cytokinesis of epithelial cells in the Xenopus embryo, lateral cell-cell contacts remain almost perpendicular to the epithelial plane. Depletion of the tight junction-associated protein GEF-H1 leads to a transient and stereotyped deformation of cell-cell contacts. Although, this deformation occurs only during cytokinesis, we show that it originates from immediate neighbours of the dividing cell. Moreover, we show that exocyst and recycling endosome regulation by GEF-H1 are involved in adaptation of cell-cell contacts to deformation. Our results highlight the crucial role of tight junctions and GEF-H1 in cell-cell contact adaptation when cells are exposed to a mechanical stress such as cytokinesis.
Collapse
|
22
|
Derksen PWB, van de Ven RAH. Shared mechanisms regulate spatiotemporal RhoA-dependent actomyosin contractility during adhesion and cell division. Small GTPases 2018; 11:113-121. [PMID: 29291271 DOI: 10.1080/21541248.2017.1366966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Local modulation of the actin cytoskeleton is essential for the initiation and maintenance of strong homotypic adhesive interfaces between neighboring cells. The epithelial adherens junction (AJ) fulfils a central role in this process by mediating E-cadherin interactions and functioning as a signaling scaffold to control the activity of the small GTPase RhoA and subsequent actomyosin contractility. Interestingly, a number of regulatory proteins that modulate RhoA activity at the AJ also control RhoA during cytokinesis, an actomyosin-dependent process that divides the cytoplasm to generate two daughter cells at the final stages of mitosis. Recent insights have revealed that the central player in AJ stability, p120-catenin (p120), interacts with and modulates essential regulators of actomyosin contraction during cytokinesis. In cancer, loss of this modulation is a common event during tumor progression that can induce chromosomal instability and tumor progression.In this review, we will highlight the functional differences and similarities of the different RhoA-associated factors that have been linked to both the regulation of cell-cell adhesion and cytokinesis.
Collapse
Affiliation(s)
- Patrick W B Derksen
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan CX Utrecht, the Netherlands
| | - Robert A H van de Ven
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue Boston, MA, USA
| |
Collapse
|
23
|
Sandí MJ, Marshall CB, Balan M, Coyaud É, Zhou M, Monson DM, Ishiyama N, Chandrakumar AA, La Rose J, Couzens AL, Gingras AC, Raught B, Xu W, Ikura M, Morrison DK, Rottapel R. MARK3-mediated phosphorylation of ARHGEF2 couples microtubules to the actin cytoskeleton to establish cell polarity. Sci Signal 2017; 10:10/503/eaan3286. [PMID: 29089450 DOI: 10.1126/scisignal.aan3286] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The PAR-1-MARK pathway controls cell polarity through the phosphorylation of microtubule-associated proteins. Rho-Rac guanine nucleotide exchange factor 2 (ARHGEF2), which activates Ras homolog family member A (RHOA), is anchored to the microtubule network and sequestered in an inhibited state through binding to dynein light chain Tctex-1 type 1 (DYNLT1). We showed in mammalian cells that liver kinase B1 (LKB1) activated the microtubule affinity-regulating kinase 3 (MARK3), which in turn phosphorylated ARHGEF2 at Ser151 This modification disrupted the interaction between ARHGEF2 and DYNLT1 by generating a 14-3-3 binding site in ARHGEF2, thus causing ARHGEF2 to dissociate from microtubules. Phosphorylation of ARHGEF2 by MARK3 stimulated RHOA activation and the formation of stress fibers and focal adhesions, and was required for organized cellular architecture in three-dimensional culture. Protein phosphatase 2A (PP2A) dephosphorylated Ser151 in ARHGEF2 to restore the inhibited state. Thus, we have identified a regulatory switch controlled by MARK3 that couples microtubules to the actin cytoskeleton to establish epithelial cell polarity through ARHGEF2.
Collapse
Affiliation(s)
- María-José Sandí
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Princess Margaret Cancer Research Tower, Toronto, Ontario M5G 1L7, Canada
| | - Christopher B Marshall
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Princess Margaret Cancer Research Tower, Toronto, Ontario M5G 1L7, Canada
| | - Marc Balan
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Princess Margaret Cancer Research Tower, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Étienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Princess Margaret Cancer Research Tower, Toronto, Ontario M5G 1L7, Canada
| | - Ming Zhou
- Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA
| | - Daniel M Monson
- Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA
| | - Noboru Ishiyama
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Princess Margaret Cancer Research Tower, Toronto, Ontario M5G 1L7, Canada
| | - Arun A Chandrakumar
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Princess Margaret Cancer Research Tower, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - José La Rose
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Princess Margaret Cancer Research Tower, Toronto, Ontario M5G 1L7, Canada
| | - Amber L Couzens
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Princess Margaret Cancer Research Tower, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Wei Xu
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Department of Biostatistics, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Princess Margaret Cancer Research Tower, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Deborah K Morrison
- Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA
| | - Robert Rottapel
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Princess Margaret Cancer Research Tower, Toronto, Ontario M5G 1L7, Canada. .,Department of Medical Biophysics, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Division of Rheumatology, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
24
|
Zihni C, Vlassaks E, Terry S, Carlton J, Leung TKC, Olson M, Pichaud F, Balda MS, Matter K. An apical MRCK-driven morphogenetic pathway controls epithelial polarity. Nat Cell Biol 2017; 19:1049-1060. [PMID: 28825699 PMCID: PMC5617103 DOI: 10.1038/ncb3592] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/17/2017] [Indexed: 12/13/2022]
Abstract
Polarized epithelia develop distinct cell surface domains, with the apical membrane acquiring characteristic morphological features such as microvilli. Cell polarization is driven by polarity determinants including the evolutionarily conserved partitioning-defective (PAR) proteins that are separated into distinct cortical domains. PAR protein segregation is thought to be a consequence of asymmetric actomyosin contractions. The mechanism of activation of apically polarized actomyosin contractility is unknown. Here we show that the Cdc42 effector MRCK activates myosin-II at the apical pole to segregate aPKC-Par6 from junctional Par3, defining the apical domain. Apically polarized MRCK-activated actomyosin contractility is reinforced by cooperation with aPKC-Par6 downregulating antagonistic RhoA-driven junctional actomyosin contractility, and drives polarization of cytosolic brush border determinants and apical morphogenesis. MRCK-activated polarized actomyosin contractility is required for apical differentiation and morphogenesis in vertebrate epithelia and Drosophila photoreceptors. Our results identify an apical origin of actomyosin-driven morphogenesis that couples cytoskeletal reorganization to PAR polarity signalling.
Collapse
Affiliation(s)
- Ceniz Zihni
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Evi Vlassaks
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Stephen Terry
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Jeremy Carlton
- Division of Cancer Studies, Section of Cell Biology and Imaging, King's College London, London SE1 1UL, UK
| | - Thomas King Chor Leung
- Institute of Molecular and Cell Biology, A-STAR, 61 Biopolis Drive, Singapore 138673 and the Department of Anatomy, National University of Singapore, Singapore 119260, Singapore
| | - Michael Olson
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Franck Pichaud
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Maria Susana Balda
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Karl Matter
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| |
Collapse
|
25
|
Fine N, Dimitriou ID, Rullo J, Sandí MJ, Petri B, Haitsma J, Ibrahim H, La Rose J, Glogauer M, Kubes P, Cybulsky M, Rottapel R. GEF-H1 is necessary for neutrophil shear stress-induced migration during inflammation. J Cell Biol 2017; 215:107-119. [PMID: 27738004 PMCID: PMC5057286 DOI: 10.1083/jcb.201603109] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/19/2016] [Indexed: 12/14/2022] Open
Abstract
In their work, Fine et al. demonstrate that GEF-H1 is required for the spreading and crawling of neutrophils in response to intravascular blood flow. They uncover a novel mechanism that couples shear stress with Rho-dependent migratory behavior of neutrophils during inflammation. Leukocyte crawling and transendothelial migration (TEM) are potentiated by shear stress caused by blood flow. The mechanism that couples shear stress to migration has not been fully elucidated. We found that mice lacking GEF-H1 (GEF-H1−/−), a RhoA-specific guanine nucleotide exchange factor (GEF), displayed limited migration and recruitment of neutrophils into inflamed tissues. GEF-H1−/− leukocytes were deficient in in vivo crawling and TEM in the postcapillary venules. We demonstrated that although GEF-H1 deficiency had little impact on the migratory properties of neutrophils under static conditions, shear stress triggered GEF-H1–dependent spreading and crawling of neutrophils and relocalization of GEF-H1 to flotillin-2–rich uropods. Our results identify GEF-H1 as a component of the shear stress response machinery in neutrophils required for a fully competent immune response to bacterial infection.
Collapse
Affiliation(s)
- Noah Fine
- Princess Margaret Cancer Center, Toronto, Ontario M5G 1L7, Canada Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1L7, Canada Matrix Dynamics Group, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Ioannis D Dimitriou
- Princess Margaret Cancer Center, Toronto, Ontario M5G 1L7, Canada Department of Immunology, University of Toronto, Toronto, Ontario M5S 1L7, Canada
| | - Jacob Rullo
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - María José Sandí
- Princess Margaret Cancer Center, Toronto, Ontario M5G 1L7, Canada
| | - Björn Petri
- Immunology Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Infection, Immunity and Inflammation, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Jack Haitsma
- Department of Anesthesiology, VU Medical Center, 1081 HV Amsterdam, Netherlands
| | - Hisham Ibrahim
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Jose La Rose
- Princess Margaret Cancer Center, Toronto, Ontario M5G 1L7, Canada
| | - Michael Glogauer
- Matrix Dynamics Group, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Paul Kubes
- Immunology Research Group, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Infection, Immunity and Inflammation, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Myron Cybulsky
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Robert Rottapel
- Princess Margaret Cancer Center, Toronto, Ontario M5G 1L7, Canada Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1L7, Canada Department of Immunology, University of Toronto, Toronto, Ontario M5S 1L7, Canada Department of Medicine, University of Toronto, Toronto, Ontario M5S 1L7, Canada Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
26
|
Raya-Sandino A, Castillo-Kauil A, Domínguez-Calderón A, Alarcón L, Flores-Benitez D, Cuellar-Perez F, López-Bayghen B, Chávez-Munguía B, Vázquez-Prado J, González-Mariscal L. Zonula occludens-2 regulates Rho proteins activity and the development of epithelial cytoarchitecture and barrier function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1714-1733. [PMID: 28554775 DOI: 10.1016/j.bbamcr.2017.05.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 05/18/2017] [Accepted: 05/24/2017] [Indexed: 12/11/2022]
Abstract
Silencing Zonula occludens 2 (ZO-2), a tight junctions (TJ) scaffold protein, in epithelial cells (MDCK ZO-2 KD) triggers: 1) Decreased cell to substratum attachment, accompanied by reduced expression of claudin-7 and integrin β1, and increased vinculin recruitment to focal adhesions and stress fibers formation; 2) Lowered cell-cell aggregation and appearance of wider intercellular spaces; 3) Increased RhoA/ROCK activity, mediated by GEF-HI recruitment to cell borders by cingulin; 4) Increased Cdc42 activity, mitotic spindle disorientation and the appearance of cysts with multiple lumens; 5) Increased Rac and cofilin activity, multiple lamellipodia formation and random cell migration but increased wound closure; 6) Diminished cingulin phosphorylation and disappearance of planar network of microtubules at the TJ region; and 7) Increased transepithelial electrical resistance at steady state, coupled to an increased expression of ZO-1 and claudin-4 and a decreased expression of claudin-2 and paracingulin. Hence, ZO-2 is a crucial regulator of Rho proteins activity and the development of epithelial cytoarchitecture and barrier function.
Collapse
Affiliation(s)
- Arturo Raya-Sandino
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), México D.F. 07360, Mexico
| | - Alejandro Castillo-Kauil
- Department of Cell Biology, Center for Research and Advanced Studies (Cinvestav), México D.F. 07360, Mexico
| | - Alaide Domínguez-Calderón
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), México D.F. 07360, Mexico
| | - Lourdes Alarcón
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), México D.F. 07360, Mexico
| | - David Flores-Benitez
- Max-Planck-Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Francisco Cuellar-Perez
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), México D.F. 07360, Mexico
| | - Bruno López-Bayghen
- Department of Toxicology, Center for Research and Advanced Studies (Cinvestav), México D.F. 07360, Mexico
| | - Bibiana Chávez-Munguía
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (Cinvestav), México D.F. 07360, Mexico
| | - José Vázquez-Prado
- Department of Pharmacology, Center for Research and Advanced Studies (Cinvestav), México D.F. 07360, Mexico
| | - Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), México D.F. 07360, Mexico.
| |
Collapse
|
27
|
Hatte G, Prigent C, Tassan JP. Tight junctions negatively regulate mechanical forces applied to adherens junctions in vertebrate epithelial tissue. J Cell Sci 2017; 131:jcs.208736. [DOI: 10.1242/jcs.208736] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 12/08/2017] [Indexed: 12/28/2022] Open
Abstract
Epithelia are layers of polarised cells tightly bound to each other by adhesive contacts. Epithelia act as barriers between an organism and its external environment. Understanding how epithelia maintain their essential integrity while remaining sufficiently plastic to allow events such as cytokinesis to take place is a key biological problem. In vertebrates, the remodelling and reinforcement of adherens junctions maintains epithelial integrity during cytokinesis. The involvement of tight junctions in cell division, however, has remained unexplored. Here, we examine the role of tight junctions during cytokinesis in the epithelium of the Xenopus laevis embryo. Depletion of tight junction-associated proteins ZO-1 and GEF-H1 leads to altered cytokinesis duration and contractile ring geometry. Using a tension biosensor, we show that cytokinesis defects originate from misregulation of tensile forces applied to adherens junctions. Our results reveal that tight junctions regulate mechanical tension applied to adherens junctions, which in turn impacts cytokinesis.
Collapse
Affiliation(s)
- Guillaume Hatte
- CNRS UMR 6290, Rennes, France
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes, France
| | - Claude Prigent
- CNRS UMR 6290, Rennes, France
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes, France
| | - Jean-Pierre Tassan
- CNRS UMR 6290, Rennes, France
- Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes, France
| |
Collapse
|
28
|
Porreca I, Ulloa-Severino L, Almeida P, Cuomo D, Nardone A, Falco G, Mallardo M, Ambrosino C. Molecular targets of developmental exposure to bisphenol A in diabesity: a focus on endoderm-derived organs. Obes Rev 2017; 18:99-108. [PMID: 27776381 DOI: 10.1111/obr.12471] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/08/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022]
Abstract
Several studies associate foetal human exposure to bisphenol A (BPA) to metabolic/endocrine diseases, mainly diabesity. They describe the role of BPA in the disruption of pancreatic beta cell, adipocyte and hepatocyte functions. Indeed, the complexity of the diabesity phenotype is due to the involvement of different endoderm-derived organs, all targets of BPA. Here, we analyse this point delineating a picture of different mechanisms of BPA toxicity in endoderm-derived organs leading to diabesity. Moving from epidemiological data, we summarize the in vivo experimental data of the BPA effects on endoderm-derived organs (thyroid, pancreas, liver, gut, prostate and lung) after prenatal exposure. Mainly, we gather molecular data evidencing harmful effects at low-dose exposure, pointing to the risk to human health. Although the fragmentation of molecular data does not allow a clear conclusion to be drawn, the present work indicates that the developmental exposure to BPA represents a risk for endoderm-derived organs development as it deregulates the gene expression from the earliest developmental stages. A more systematic analysis of BPA impact on the transcriptomes of endoderm-derived organs is still missing. Here, we suggest in vitro toxicogenomics approaches as a tool for the identification of common mechanisms of BPA toxicity leading to the diabesity in organs having the same developmental origin.
Collapse
Affiliation(s)
| | - L Ulloa-Severino
- IRGS, Biogem, Ariano Irpino, Italy.,PhD School in Nanotechnology, University of Trieste, Trieste, Italy
| | - P Almeida
- STAB VIDA-Investigação e Serviços em Ciências Biológicas, Madan Parque, Caparica, Portugal
| | - D Cuomo
- IRGS, Biogem, Ariano Irpino, Italy
| | - A Nardone
- Department of Public Health, University of Naples 'Federico II', Naples, Italy
| | - G Falco
- IRGS, Biogem, Ariano Irpino, Italy.,Department of Biology, University of Naples 'Federico II', Naples, Italy
| | - M Mallardo
- Molecular Medicine and Medical Biotechnologies, University of Naples 'Federico II', Naples, Italy
| | - C Ambrosino
- IRGS, Biogem, Ariano Irpino, Italy.,Department of Science and Technology, University of Sannio, Benevento, Italy
| |
Collapse
|
29
|
Crosstalk between Inflammation and ROCK/MLCK Signaling Pathways in Gastrointestinal Disorders with Intestinal Hyperpermeability. Gastroenterol Res Pract 2016; 2016:7374197. [PMID: 27746814 PMCID: PMC5056309 DOI: 10.1155/2016/7374197] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 12/18/2022] Open
Abstract
The barrier function of the intestine is essential for maintaining the normal homeostasis of the gut and mucosal immune system. Abnormalities in intestinal barrier function expressed by increased intestinal permeability have long been observed in various gastrointestinal disorders such as Crohn's disease (CD), ulcerative colitis (UC), celiac disease, and irritable bowel syndrome (IBS). Imbalance of metabolizing junction proteins and mucosal inflammation contributes to intestinal hyperpermeability. Emerging studies exploring in vitro and in vivo model system demonstrate that Rho-associated coiled-coil containing protein kinase- (ROCK-) and myosin light chain kinase- (MLCK-) mediated pathways are involved in the regulation of intestinal permeability. With this perspective, we aim to summarize the current state of knowledge regarding the role of inflammation and ROCK-/MLCK-mediated pathways leading to intestinal hyperpermeability in gastrointestinal disorders. In the near future, it may be possible to specifically target these specific pathways to develop novel therapies for gastrointestinal disorders associated with increased gut permeability.
Collapse
|
30
|
Tian Y, Gawlak G, Tian X, Shah AS, Sarich N, Citi S, Birukova AA. Role of Cingulin in Agonist-induced Vascular Endothelial Permeability. J Biol Chem 2016; 291:23681-23692. [PMID: 27590342 DOI: 10.1074/jbc.m116.720763] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 01/13/2023] Open
Abstract
Agonist-induced activation of Rho GTPase signaling leads to endothelial cell (EC) permeability and may culminate in pulmonary edema, a devastating complication of acute lung injury. Cingulin is an adaptor protein first discovered in epithelium and is involved in the organization of the tight junctions. This study investigated the role of cingulin in control of agonist-induced lung EC permeability via interaction with RhoA-specific activator GEF-H1. The siRNA-induced cingulin knockdown augmented thrombin-induced EC permeability monitored by measurements of transendothelial electrical resistance and endothelial cell permeability for macromolecules. Increased thrombin-induced permeability in ECs with depleted cingulin was associated with increased activation of GEF-H1 and RhoA detected in pulldown activation assays. Increased GEF-H1 association with cingulin was essential for down-regulation of thrombin-induced RhoA barrier disruptive signaling. Using cingulin-truncated mutants, we determined that GEF-H1 interaction with the rod + tail domain of cingulin was required for inactivation of GEF-H1 and endothelial cell barrier preservation. The results demonstrate the role for association of GEF-H1 with cingulin as the mechanism of RhoA pathway inactivation and rescue of EC barrier after agonist challenge.
Collapse
Affiliation(s)
- Yufeng Tian
- From the Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637 and
| | - Grzegorz Gawlak
- From the Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637 and
| | - Xinyong Tian
- From the Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637 and
| | - Alok S Shah
- From the Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637 and
| | - Nicolene Sarich
- From the Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637 and
| | - Sandra Citi
- the Department of Cell Biology, University of Geneva, 1205 Geneva, Switzerland
| | - Anna A Birukova
- From the Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637 and
| |
Collapse
|
31
|
Abstract
Signaling via the Rho GTPases provides crucial regulation of numerous cell polarization events, including apicobasal (AB) polarity, polarized cell migration, polarized cell division and neuronal polarity. Here we review the relationships between the Rho family GTPases and epithelial AB polarization events, focusing on the 3 best-characterized members: Rho, Rac and Cdc42. We discuss a multitude of processes that are important for AB polarization, including lumen formation, apical membrane specification, cell-cell junction assembly and maintenance, as well as tissue polarity. Our discussions aim to highlight the immensely complex regulatory mechanisms that encompass Rho GTPase signaling during AB polarization. More specifically, in this review we discuss several emerging common themes, that include: 1) the need for Rho GTPase activities to be carefully balanced in both a spatial and temporal manner through a multitude of mechanisms; 2) the existence of signaling feedback loops and crosstalk to create robust cellular responses; and 3) the frequent multifunctionality that exists among AB polarity regulators. Regarding this latter theme, we provide further discussion of the potential plasticity of the cell polarity machinery and as a result the possible implications for human disease.
Collapse
Key Words
- AB, Apicobasal
- AJ, Adherens junction
- Amot, Angiomotin
- Arp2/3, Actin-related protein-2/3
- Baz, Bazooka
- C. elegans, Caenorhabditis elegans
- CA, Constitutively-active
- CD2AP, CD2-associated protein
- Caco2, Human colon carcinoma
- Cdc42
- Cora, Coracle
- Crb, Crumbs
- DN, Dominant-negative
- Dia1, Diaphanous-related formin 1
- Dlg, Discs large
- Drosophila, Drosophila melanogaster
- Dys-β, Dystrobrevin-β
- ECM, Extracellular matrix
- Ect2, Epithelial cell transforming sequence 2 oncogene
- Eya1, Eyes absent 1
- F-actin, Filamentous actin
- FRET, Fluorescence resonance energy transfer
- GAP, GTPase-activating protein
- GDI, Guanine nucleotide dissociation inhibitor
- GEF, Guanine nucleotide exchange factor
- GTPases
- JACOP, Junction-associated coiled-coiled protein
- JAM, Junctional adhesion molecule
- LKB1, Liver kinase B1
- Lgl, Lethal giant larvae
- MDCK, Madin-Darby canine kidney
- MTOC, Microtubule-organizing center
- NrxIV, Neurexin IV
- Pals1, Protein associated with Lin-7 1
- Par, Partitioning-defective
- Patj, Pals1-associated TJ protein
- ROCK, Rho-associated kinase
- Rac
- Rho
- Rich1, RhoGAP interacting with CIP4 homologues
- S. cerevisiae, Saccharomyces cerevisiae
- S. pombe, Schizosaccharomyces pombe
- SH3BP1, SH3-domain binding protein 1
- Scrib, Scribble
- Std, Stardust
- TEM4, Tumor endothelial marker 4
- TJ, Tight junction
- Tiam1, T-cell lymphoma invasion and metastasis-inducing protein 1
- WASp, Wiskott-aldrich syndrome protein
- Yrt, Yurt
- ZA, zonula adherens
- ZO, Zonula occludens
- aPKC, Atypical Protein Kinase C
- apicobasal
- epithelia
- junction
- par
- polarity
- α-cat, Alpha-catenin
- β-cat, Beta-Catenin
- β2-syn, Beta-2-syntrophin
Collapse
Affiliation(s)
- Natalie Ann Mack
- a School of Life Sciences; Queens Medical Center ; University of Nottingham ; Nottingham , UK
| | | |
Collapse
|
32
|
Zihni C, Balda MS, Matter K. Signalling at tight junctions during epithelial differentiation and microbial pathogenesis. J Cell Sci 2015; 127:3401-13. [PMID: 25125573 DOI: 10.1242/jcs.145029] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tight junctions are a component of the epithelial junctional complex, and they form the paracellular diffusion barrier that enables epithelial cells to create cellular sheets that separate compartments with different compositions. The assembly and function of tight junctions are intimately linked to the actomyosin cytoskeleton and, hence, are under the control of signalling mechanisms that regulate cytoskeletal dynamics. Tight junctions not only receive signals that guide their assembly and function, but transmit information to the cell interior to regulate cell proliferation, migration and survival. As a crucial component of the epithelial barrier, they are often targeted by pathogenic viruses and bacteria, aiding infection and the development of disease. In this Commentary, we review recent progress in the understanding of the molecular signalling mechanisms that drive junction assembly and function, and the signalling processes by which tight junctions regulate cell behaviour and survival. We also discuss the way in which junctional components are exploited by pathogenic viruses and bacteria, and how this might affect junctional signalling mechanisms.
Collapse
Affiliation(s)
- Ceniz Zihni
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Maria S Balda
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Karl Matter
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| |
Collapse
|
33
|
Tornavaca O, Chia M, Dufton N, Almagro LO, Conway DE, Randi AM, Schwartz MA, Matter K, Balda MS. ZO-1 controls endothelial adherens junctions, cell-cell tension, angiogenesis, and barrier formation. ACTA ACUST UNITED AC 2015; 208:821-38. [PMID: 25753039 PMCID: PMC4362456 DOI: 10.1083/jcb.201404140] [Citation(s) in RCA: 390] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Intercellular junctions are crucial for mechanotransduction, but whether tight junctions contribute to the regulation of cell-cell tension and adherens junctions is unknown. Here, we demonstrate that the tight junction protein ZO-1 regulates tension acting on VE-cadherin-based adherens junctions, cell migration, and barrier formation of primary endothelial cells, as well as angiogenesis in vitro and in vivo. ZO-1 depletion led to tight junction disruption, redistribution of active myosin II from junctions to stress fibers, reduced tension on VE-cadherin and loss of junctional mechanotransducers such as vinculin and PAK2, and induced vinculin dissociation from the α-catenin-VE-cadherin complex. Claudin-5 depletion only mimicked ZO-1 effects on barrier formation, whereas the effects on mechanotransducers were rescued by inhibition of ROCK and phenocopied by JAM-A, JACOP, or p114RhoGEF down-regulation. ZO-1 was required for junctional recruitment of JACOP, which, in turn, recruited p114RhoGEF. ZO-1 is thus a central regulator of VE-cadherin-dependent endothelial junctions that orchestrates the spatial actomyosin organization, tuning cell-cell tension, migration, angiogenesis, and barrier formation.
Collapse
Affiliation(s)
- Olga Tornavaca
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| | - Minghao Chia
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| | - Neil Dufton
- National Heart and Lung Institute (NHLI) Vascular Sciences Unit, Imperial Centre for Translational and Experimental Medicine (ICTEM), Hammersmith Hospital, Imperial College London, London W12 0NN, England, UK
| | - Lourdes Osuna Almagro
- National Heart and Lung Institute (NHLI) Vascular Sciences Unit, Imperial Centre for Translational and Experimental Medicine (ICTEM), Hammersmith Hospital, Imperial College London, London W12 0NN, England, UK
| | - Daniel E Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284
| | - Anna M Randi
- National Heart and Lung Institute (NHLI) Vascular Sciences Unit, Imperial Centre for Translational and Experimental Medicine (ICTEM), Hammersmith Hospital, Imperial College London, London W12 0NN, England, UK
| | - Martin A Schwartz
- Department of Medicine and Department of Cell Biology, Yale University, New Haven, CT 06520 Department of Medicine and Department of Cell Biology, Yale University, New Haven, CT 06520
| | - Karl Matter
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| | - Maria S Balda
- Department of Cell Biology, UCL Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| |
Collapse
|
34
|
RhoGTPase signalling at epithelial tight junctions: Bridging the GAP between polarity and cancer. Int J Biochem Cell Biol 2015; 64:120-5. [PMID: 25757376 PMCID: PMC4503795 DOI: 10.1016/j.biocel.2015.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/17/2015] [Accepted: 02/26/2015] [Indexed: 01/19/2023]
Abstract
The establishment and maintenance of epithelial polarity must be correctly controlled for normal development and homeostasis. Tight junctions (TJ) in vertebrates define apical and basolateral membrane domains in polarized epithelia via bi-directional, complex signalling pathways between TJ themselves and the cytoskeleton they are associated with. RhoGTPases are central to these processes and evidence suggests that their regulation is coordinated by interactions between GEFs and GAPs with junctional, cytoplasmic adapter proteins. In this InFocus review we determine that the expression, localization or stability of a variety of these adaptor proteins is altered in various cancers, potentially representing an important mechanistic link between loss of polarity and cancer. We focus here, on two well characterized RhoGTPases Cdc42 and RhoA who's GEFs and GAPs are predominantly localized to TJ via cytoplasmic adaptor proteins.
Collapse
|
35
|
Durgan J, Tao G, Walters MS, Florey O, Schmidt A, Arbelaez V, Rosen N, Crystal RG, Hall A. SOS1 and Ras regulate epithelial tight junction formation in the human airway through EMP1. EMBO Rep 2015; 16:87-96. [PMID: 25394671 PMCID: PMC4304732 DOI: 10.15252/embr.201439218] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 11/09/2022] Open
Abstract
The human airway is lined with respiratory epithelial cells, which create a critical barrier through the formation of apical tight junctions. To investigate the molecular mechanisms underlying this process, an RNAi screen for guanine nucleotide exchange factors (GEFs) was performed in human bronchial epithelial cells (16HBE). We report that SOS1, acting through the Ras/MEK/ERK pathway, is essential for tight junction formation. Global microarray analysis identifies epithelial membrane protein 1 (EMP1), an integral tetraspan membrane protein, as a major transcriptional target. EMP1 is indispensable for tight junction formation and function in 16HBE cells and in a human airway basal progenitor-like cell line (BCi-NS1.1). Furthermore, EMP1 is significantly downregulated in human lung cancers. Together, these data identify important roles for SOS1/Ras and EMP1 in tight junction assembly during airway morphogenesis.
Collapse
Affiliation(s)
- Joanne Durgan
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Guangbo Tao
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew S Walters
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Oliver Florey
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anja Schmidt
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Vanessa Arbelaez
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Neal Rosen
- Molecular Pharmacology & Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Alan Hall
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
36
|
The tumour suppressor DLC2 ensures mitotic fidelity by coordinating spindle positioning and cell-cell adhesion. Nat Commun 2014; 5:5826. [PMID: 25518808 PMCID: PMC4284802 DOI: 10.1038/ncomms6826] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/07/2014] [Indexed: 02/07/2023] Open
Abstract
Dividing epithelial cells need to coordinate spindle positioning with shape changes to maintain cell–cell adhesion. Microtubule interactions with the cell cortex regulate mitotic spindle positioning within the plane of division. How the spindle crosstalks with the actin cytoskeleton to ensure faithful mitosis and spindle positioning is unclear. Here we demonstrate that the tumour suppressor DLC2, a negative regulator of Cdc42, and the interacting kinesin Kif1B coordinate cell junction maintenance and planar spindle positioning by regulating microtubule growth and crosstalk with the actin cytoskeleton. Loss of DLC2 induces the mislocalization of Kif1B, increased Cdc42 activity and cortical recruitment of the Cdc42 effector mDia3, a microtubule stabilizer and promoter of actin dynamics. Accordingly, DLC2 or Kif1B depletion promotes microtubule stabilization, defective spindle positioning, chromosome misalignment and aneuploidy. The tumour suppressor DLC2 and Kif1B are thus central components of a signalling network that guides spindle positioning, cell–cell adhesion and mitotic fidelity. Epithelial cells must position their mitotic spindle correctly to maintain cell–cell adhesion. Here Vitiello et al. show that the tumour suppressor DLC2 and the mitotic kinesin Kif1b coordinate microtubule–actin interactions upstream of mDia3, guiding spindle positioning and mitotic fidelity.
Collapse
|
37
|
Bauer HC, Krizbai IA, Bauer H, Traweger A. "You Shall Not Pass"-tight junctions of the blood brain barrier. Front Neurosci 2014; 8:392. [PMID: 25520612 PMCID: PMC4253952 DOI: 10.3389/fnins.2014.00392] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/14/2014] [Indexed: 12/31/2022] Open
Abstract
The structure and function of the barrier layers restricting the free diffusion of substances between the central nervous system (brain and spinal cord) and the systemic circulation is of great medical interest as various pathological conditions often lead to their impairment. Excessive leakage of blood-borne molecules into the parenchyma and the concomitant fluctuations in the microenvironment following a transient breakdown of the blood-brain barrier (BBB) during ischemic/hypoxic conditions or because of an autoimmune disease are detrimental to the physiological functioning of nervous tissue. On the other hand, the treatment of neurological disorders is often hampered as only minimal amounts of therapeutic agents are able to penetrate a fully functional BBB or blood cerebrospinal fluid barrier. An in-depth understanding of the molecular machinery governing the establishment and maintenance of these barriers is necessary to develop rational strategies allowing a controlled delivery of appropriate drugs to the CNS. At the basis of such tissue barriers are intimate cell-cell contacts (zonulae occludentes, tight junctions) which are present in all polarized epithelia and endothelia. By creating a paracellular diffusion constraint TJs enable the vectorial transport across cell monolayers. More recent findings indicate that functional barriers are already established during development, protecting the fetal brain. As an understanding of the biogenesis of TJs might reveal the underlying mechanisms of barrier formation during ontogenic development numerous in vitro systems have been developed to study the assembly and disassembly of TJs. In addition, monitoring the stage-specific expression of TJ-associated proteins during development has brought much insight into the “developmental tightening” of tissue barriers. Over the last two decades a detailed molecular map of transmembrane and cytoplasmic TJ-proteins has been identified. These proteins not only form a cell-cell adhesion structure, but integrate various signaling pathways, thereby directly or indirectly impacting upon processes such as cell-cell adhesion, cytoskeletal rearrangement, and transcriptional control. This review will provide a brief overview on the establishment of the BBB during embryonic development in mammals and a detailed description of the ultrastructure, biogenesis, and molecular composition of epithelial and endothelial TJs will be given.
Collapse
Affiliation(s)
- Hans-Christian Bauer
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University - Spinal Cord Injury and Tissue Regeneration Center Salzburg Salzburg, Austria ; Department of Traumatology and Sports Injuries, Paracelsus Medical University Salzburg, Austria ; Austrian Cluster for Tissue Regeneration Vienna, Austria
| | - István A Krizbai
- Biological Research Centre, Institute of Biophysics, Hungarian Academy of Sciences Szeged, Hungary ; Institute of Life Sciences, Vasile Goldis Western University of Arad Arad, Romania
| | - Hannelore Bauer
- Department of Organismic Biology, University of Salzburg Salzburg, Austria
| | - Andreas Traweger
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University - Spinal Cord Injury and Tissue Regeneration Center Salzburg Salzburg, Austria ; Austrian Cluster for Tissue Regeneration Vienna, Austria
| |
Collapse
|
38
|
Zhang Y, Wang F, Niu YJ, Liu HL, Rui R, Cui XS, Kim NH, Sun SC. Formin mDia1, a downstream molecule of FMNL1, regulates Profilin1 for actin assembly and spindle organization during mouse oocyte meiosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:317-27. [PMID: 25447542 DOI: 10.1016/j.bbamcr.2014.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/06/2014] [Accepted: 11/04/2014] [Indexed: 02/07/2023]
Abstract
Mammalian diaphanous1 (mDia1) is a homologue of Drosophila diaphanous and belongs to the Formin-homology family of proteins that catalyze actin nucleation and polymerization. Although Formin family proteins, such as Drosophila diaphanous, have been shown to be essential for cytokinesis, whether and how mDia1 functions during meiosis remain uncertain. In this study, we explored possible roles and the signaling pathway involved for mDia1 using a mouse oocyte model. mDia1 depletion reduced polar body extrusion, which may have been due to reduced cortical actin assembly. mDia1 and Profilin1 had similar localization patterns in mouse oocytes and mDia1 knockdown resulted in reduced Profilin1 expression. Depleting FMNL1, another Formin family member, resulted in reduced mDia1 expression, while RhoA inhibition did not alter mDia1 expression, which indicated that there was a FMNL1-mDia1-Profilin1 signaling pathway in mouse oocytes. Additionally, mDia1 knockdown resulted in disrupting oocyte spindle morphology, which was confirmed by aberrant p-MAPK localization. Thus, these results demonstrated indispensable roles for mDia1 in regulating mouse oocyte meiotic maturation through its effects on actin assembly and spindle organization.
Collapse
Affiliation(s)
- Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying-Jie Niu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong-Lin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Rong Rui
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiang-Shun Cui
- Department of Animal Sciences, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Nam-Hyung Kim
- Department of Animal Sciences, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
39
|
Zuo Y, Oh W, Frost JA. Controlling the switches: Rho GTPase regulation during animal cell mitosis. Cell Signal 2014; 26:2998-3006. [PMID: 25286227 DOI: 10.1016/j.cellsig.2014.09.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/23/2014] [Indexed: 11/29/2022]
Abstract
Animal cell division is a fundamental process that requires complex changes in cytoskeletal organization and function. Aberrant cell division often has disastrous consequences for the cell and can lead to cell senescence, neoplastic transformation or death. As important regulators of the actin cytoskeleton, Rho GTPases play major roles in regulating many aspects of mitosis and cytokinesis. These include centrosome duplication and separation, generation of cortical rigidity, microtubule-kinetochore stabilization, cleavage furrow formation, contractile ring formation and constriction, and abscission. The ability of Rho proteins to function as regulators of cell division depends on their ability to cycle between their active, GTP-bound and inactive, GDP-bound states. However, Rho proteins are inherently inefficient at fulfilling this cycle and require the actions of regulatory proteins that enhance GTP binding (RhoGEFs), stimulate GTPase activity (RhoGAPs), and sequester inactive Rho proteins in the cytosol (RhoGDIs). The roles of these regulatory proteins in controlling cell division are an area of active investigation. In this review we will delineate the current state of knowledge of how specific RhoGEFs, RhoGAPs and RhoGDIs control mitosis and cytokinesis, and highlight the mechanisms by which their functions are controlled.
Collapse
Affiliation(s)
- Yan Zuo
- University of Texas Health Science Center at Houston, Department of Integrative Biology and Pharmacology, 6431 Fannin St., Houston, TX 77030, United States
| | - Wonkyung Oh
- University of Texas Health Science Center at Houston, Department of Integrative Biology and Pharmacology, 6431 Fannin St., Houston, TX 77030, United States
| | - Jeffrey A Frost
- University of Texas Health Science Center at Houston, Department of Integrative Biology and Pharmacology, 6431 Fannin St., Houston, TX 77030, United States.
| |
Collapse
|
40
|
Li G, Flodby P, Luo J, Kage H, Sipos A, Gao D, Ji Y, Beard LL, Marconett CN, DeMaio L, Kim YH, Kim KJ, Laird-Offringa IA, Minoo P, Liebler JM, Zhou B, Crandall ED, Borok Z. Knockout mice reveal key roles for claudin 18 in alveolar barrier properties and fluid homeostasis. Am J Respir Cell Mol Biol 2014; 51:210-22. [PMID: 24588076 DOI: 10.1165/rcmb.2013-0353oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Claudin proteins are major constituents of epithelial and endothelial tight junctions (TJs) that regulate paracellular permeability to ions and solutes. Claudin 18, a member of the large claudin family, is highly expressed in lung alveolar epithelium. To elucidate the role of claudin 18 in alveolar epithelial barrier function, we generated claudin 18 knockout (C18 KO) mice. C18 KO mice exhibited increased solute permeability and alveolar fluid clearance (AFC) compared with wild-type control mice. Increased AFC in C18 KO mice was associated with increased β-adrenergic receptor signaling together with activation of cystic fibrosis transmembrane conductance regulator, higher epithelial sodium channel, and Na-K-ATPase (Na pump) activity and increased Na-K-ATPase β1 subunit expression. Consistent with in vivo findings, C18 KO alveolar epithelial cell (AEC) monolayers exhibited lower transepithelial electrical resistance and increased solute and ion permeability with unchanged ion selectivity. Claudin 3 and claudin 4 expression was markedly increased in C18 KO mice, whereas claudin 5 expression was unchanged and occludin significantly decreased. Microarray analysis revealed changes in cytoskeleton-associated gene expression in C18 KO mice, consistent with observed F-actin cytoskeletal rearrangement in AEC monolayers. These findings demonstrate a crucial nonredundant role for claudin 18 in the regulation of alveolar epithelial TJ composition and permeability properties. Increased AFC in C18 KO mice identifies a role for claudin 18 in alveolar fluid homeostasis beyond its direct contributions to barrier properties that may, at least in part, compensate for increased permeability.
Collapse
Affiliation(s)
- Guanglei Li
- 1 Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rezaee F, Georas SN. Breaking barriers. New insights into airway epithelial barrier function in health and disease. Am J Respir Cell Mol Biol 2014; 50:857-69. [PMID: 24467704 DOI: 10.1165/rcmb.2013-0541rt] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Epithelial permeability is a hallmark of mucosal inflammation, but the molecular mechanisms involved remain poorly understood. A key component of the epithelial barrier is the apical junctional complex that forms between neighboring cells. Apical junctional complexes are made of tight junctions and adherens junctions and link to the cellular cytoskeleton via numerous adaptor proteins. Although the existence of tight and adherens junctions between epithelial cells has long been recognized, in recent years there have been significant advances in our understanding of the molecular regulation of junctional complex assembly and disassembly. Here we review the current thinking about the structure and function of the apical junctional complex in airway epithelial cells, emphasizing the translational aspects of relevance to cystic fibrosis and asthma. Most work to date has been conducted using cell culture models, but technical advancements in imaging techniques suggest that we are on the verge of important new breakthroughs in this area in physiological models of airway diseases.
Collapse
Affiliation(s)
- Fariba Rezaee
- 1 Division of Pediatric Pulmonary Medicine, Department of Pediatrics, and
| | | |
Collapse
|
42
|
Ngok SP, Lin WH, Anastasiadis PZ. Establishment of epithelial polarity--GEF who's minding the GAP? J Cell Sci 2014; 127:3205-15. [PMID: 24994932 DOI: 10.1242/jcs.153197] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cell polarization is a fundamental process that underlies epithelial morphogenesis, cell motility, cell division and organogenesis. Loss of polarity predisposes tissues to developmental disorders and contributes to cancer progression. The formation and establishment of epithelial cell polarity is mediated by the cooperation of polarity protein complexes, namely the Crumbs, partitioning defective (Par) and Scribble complexes, with Rho family GTPases, including RhoA, Rac1 and Cdc42. The activation of different GTPases triggers distinct downstream signaling pathways to modulate protein-protein interactions and cytoskeletal remodeling. The spatio-temporal activation and inactivation of these small GTPases is tightly controlled by a complex interconnected network of different regulatory proteins, including guanine-nucleotide-exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine-nucleotide-dissociation inhibitors (GDIs). In this Commentary, we focus on current understanding on how polarity complexes interact with GEFs and GAPs to control the precise location and activation of Rho GTPases (Crumbs for RhoA, Par for Rac1, and Scribble for Cdc42) to promote apical-basal polarization in mammalian epithelial cells. The mutual exclusion of GTPase activities, especially that of RhoA and Rac1, which is well established, provides a mechanism through which polarity complexes that act through distinct Rho GTPases function as cellular rheostats to fine-tune specific downstream pathways to differentiate and preserve the apical and basolateral domains. This article is part of a Minifocus on Establishing polarity.
Collapse
Affiliation(s)
- Siu P Ngok
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Room 307, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Wan-Hsin Lin
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Room 307, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Panos Z Anastasiadis
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Room 307, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| |
Collapse
|
43
|
Lu RY, Yang WX, Hu YJ. The role of epithelial tight junctions involved in pathogen infections. Mol Biol Rep 2014; 41:6591-610. [PMID: 24965148 DOI: 10.1007/s11033-014-3543-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 06/20/2014] [Indexed: 12/12/2022]
Abstract
Tight junctions (TJs) are sealing complexes between adjacent epithelial cells, functioning by controlling paracellular passage and maintaining cell polarity. These functions of TJs are primarily based on structural integrity as well as dynamic regulatory balance, indicating plasticity of TJ in response to external stimuli. An indispensable role of TJs involved in pathogen infection has been widely demonstrated since disruption of TJs leads to a distinct increase in paracellular permeability and polarity defects which facilitate viral or bacterial entry and spread. In addition to pathological changes in TJ integrity, TJ proteins such as occludin and claudins can either function as receptors for pathogen entry or interact with viral/bacterial effector molecules as an essential step for characterizing an infective stage. This suggests a more complicated role for TJ itself and especially specific TJ components. Thus, this review surveys the role of the epithelial TJs involved in various pathogen infections, and extends TJ targeted therapeutic and pharmacological application prospects.
Collapse
Affiliation(s)
- Ru-Yi Lu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, China
| | | | | |
Collapse
|
44
|
Nagai N, Lundh von Leithner P, Izumi-Nagai K, Hosking B, Chang B, Hurd R, Adamson P, Adamis AP, Foxton RH, Ng YS, Shima DT. Spontaneous CNV in a novel mutant mouse is associated with early VEGF-A-driven angiogenesis and late-stage focal edema, neural cell loss, and dysfunction. Invest Ophthalmol Vis Sci 2014; 55:3709-19. [PMID: 24845632 DOI: 10.1167/iovs.14-13989] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Characterization of a mouse model of spontaneous choroidal neovascularization (sCNV) and its effect on retinal architecture and function. METHODS The sCNV mouse phenotype was characterized by using fundus photography, fluorescein angiography, confocal scanning laser ophthalmoscopy (SLO), optical coherence tomography (OCT), ERG, immunostaining, biochemistry, and electron microscopy. A role for VEGF-A signaling in sCNV was investigated by using neutralizing antibodies and a role for macrophages explored by cell-depletion studies. RESULTS The sCNV starts between postnatal day 10 and 15 (P10-P15), increasing in number and severity causing RPE disruption and dysfunction. Various morphological methods confirmed the choroidal origin and subretinal position of the angiogenic vessels. At approximately P25, vessels were present in the outer retina with instances of anastomosis of some sCNV lesions with the retinal vasculature. The number of CNV lesions was significantly decreased by systemic blockade of the VEGF-A pathway. Choroidal neovascularization size also was significantly modulated by reducing the number of lesion-associated macrophages. Later stages of sCNV were associated with edema, neuronal loss, and dysfunction. CONCLUSIONS The sCNV mouse is a new model for the study of both early and late events associated with choroidal neovascularization. Pharmacological reduction in sCNV with VEGF-A antagonists and an anti-inflammatory strategy suggests the model may be useful for investigating novel targets for treating human ocular neovascular disease.
Collapse
Affiliation(s)
- Norihiro Nagai
- Department of Ocular Biology and Therapeutics, University College London, Institute of Ophthalmology, London, United Kingdom
| | - Pete Lundh von Leithner
- Department of Ocular Biology and Therapeutics, University College London, Institute of Ophthalmology, London, United Kingdom
| | - Kanako Izumi-Nagai
- Department of Ocular Biology and Therapeutics, University College London, Institute of Ophthalmology, London, United Kingdom
| | - Brett Hosking
- Department of Ocular Biology and Therapeutics, University College London, Institute of Ophthalmology, London, United Kingdom
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, Maine, United States
| | - Ron Hurd
- The Jackson Laboratory, Bar Harbor, Maine, United States
| | - Peter Adamson
- GSK Ophthalmology, GlaxoSmithKline, Stevenage, Hertfordshire, United Kingdom
| | | | - Richard H Foxton
- Department of Ocular Biology and Therapeutics, University College London, Institute of Ophthalmology, London, United Kingdom
| | - Yin Shan Ng
- Department of Ocular Biology and Therapeutics, University College London, Institute of Ophthalmology, London, United Kingdom
| | - David T Shima
- Department of Ocular Biology and Therapeutics, University College London, Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
45
|
Reyes CC, Jin M, Breznau EB, Espino R, Delgado-Gonzalo R, Goryachev AB, Miller AL. Anillin regulates cell-cell junction integrity by organizing junctional accumulation of Rho-GTP and actomyosin. Curr Biol 2014; 24:1263-70. [PMID: 24835458 DOI: 10.1016/j.cub.2014.04.021] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 02/24/2014] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
Abstract
Anillin is a scaffolding protein that organizes and stabilizes actomyosin contractile rings and was previously thought to function primarily in cytokinesis [1-10]. Using Xenopus laevis embryos as a model system to examine Anillin's role in the intact vertebrate epithelium, we find that a population of Anillin surprisingly localizes to epithelial cell-cell junctions throughout the cell cycle, whereas it was previously thought to be nuclear during interphase [5, 11]. Furthermore, we show that Anillin plays a critical role in regulating cell-cell junction integrity. Both tight junctions and adherens junctions are disrupted when Anillin is knocked down, leading to altered cell shape and increased intercellular spaces. Anillin interacts with Rho, F-actin, and myosin II [3, 8, 9], all of which regulate cell-cell junction structure and function. When Anillin is knocked down, active Rho (Rho-guanosine triphosphate [GTP]), F-actin, and myosin II are misregulated at junctions. Indeed, increased dynamic "flares" of Rho-GTP are observed at cell-cell junctions, whereas overall junctional F-actin and myosin II accumulation is reduced when Anillin is depleted. We propose that Anillin is required for proper Rho-GTP distribution at cell-cell junctions and for maintenance of a robust apical actomyosin belt, which is required for cell-cell junction integrity. These results reveal a novel role for Anillin in regulating epithelial cell-cell junctions.
Collapse
Affiliation(s)
- Ciara C Reyes
- The Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Meiyan Jin
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elaina B Breznau
- The Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rhogelyn Espino
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ricard Delgado-Gonzalo
- Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Andrew B Goryachev
- Centre for Systems Biology, School of Biological Sciences, The University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, Scotland, UK
| | - Ann L Miller
- The Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
46
|
Iyengar S, Zhan C, Lu J, Korngold R, Schwartz DH. Treatment with a rho kinase inhibitor improves survival from graft-versus-host disease in mice after MHC-haploidentical hematopoietic cell transplantation. Biol Blood Marrow Transplant 2014; 20:1104-11. [PMID: 24796280 DOI: 10.1016/j.bbmt.2014.04.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/24/2014] [Indexed: 11/26/2022]
Abstract
Acute graft-versus-host disease (GVHD) is a major complication of allogeneic hematopoietic cell transplantation (HCT) and the main cause of nonrelapse mortality during the first 100 days post-transplant. Although GVHD can be prevented by extensive removal of mature donor T cells from the donor hematopoietic stem cell population, doing so eliminates any potential allogeneic graft-versus-tumor (GVT) effect also mediated by donor T cells and results in unacceptable rates of cancer relapse. One potential solution to this problem of separating GVHD development from a GVT response is to prevent T cell-mediated GVHD in the intestinal tract (IT) while preserving systemic antihost alloreactivity of donor T cells that target residual tumor cells expressing host alloantigens. We examined the ability of the anti-inflammatory rho kinase inhibitor, fasudil, given orally and intraperitoneally, to prevent GVHD in a C3H → B6C3F1 mouse model of MHC-haploidentical bone marrow transplantation. Fasudil-treated recipients of anti-thy-1 mAb + C' treated bone marrow (ATBM) cells plus T cells had a 73% 90-day survival compared with 25% among untreated ATBM + T cell recipients (P < .0001). Severe initial weight loss was similar in the 2 groups, but less diarrhea was observed among treated animals, and fasudil-treated survivors recovered more weight than untreated survivors. Skin inflammation occurred and resolved between weeks 2 and 8 with similar severity and kinetics in both treated and untreated surviving animals, indicating persistent alloreactivity. Day 10 post-transplantation splenocytes from fasudil-treated mice, containing mature donor T cells, and day 98 splenocytes, containing mature donor and de novo thymus-derived T cells, exhibited alloreactivity against host parental antigens, as assessed by in vitro IFN-γ production and rounds of allostimulated proliferation, respectively. These data support the idea that targeted treatment of the IT with rho kinase inhibitors can ameliorate lethal GVHD while preserving systemic alloreactivity. The results also suggest that similar mechanisms of IT-specific tolerance or resistance to GVHD operate in fasudil-treated and untreated long-term survivors of allogeneic ATBM + T cells.
Collapse
Affiliation(s)
- Sujatha Iyengar
- Jurist Department of Research, Hackensack University Medical Center, Hackensack, New Jersey.
| | - Caixin Zhan
- Jurist Department of Research, Hackensack University Medical Center, Hackensack, New Jersey
| | - Jordan Lu
- Jurist Department of Research, Hackensack University Medical Center, Hackensack, New Jersey
| | - Robert Korngold
- Jurist Department of Research, Hackensack University Medical Center, Hackensack, New Jersey
| | - David H Schwartz
- Jurist Department of Research, Hackensack University Medical Center, Hackensack, New Jersey
| |
Collapse
|
47
|
Itoh K, Ossipova O, Sokol SY. GEF-H1 functions in apical constriction and cell intercalations and is essential for vertebrate neural tube closure. J Cell Sci 2014; 127:2542-53. [PMID: 24681784 DOI: 10.1242/jcs.146811] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Rho family GTPases regulate many morphogenetic processes during vertebrate development including neural tube closure. Here we report a function for GEF-H1/Lfc/ArhGEF2, a RhoA-specific guanine nucleotide exchange factor that functions in neurulation in Xenopus embryos. Morpholino-mediated depletion of GEF-H1 resulted in severe neural tube defects, which were rescued by GEF-H1 RNA. Lineage tracing of GEF-H1 morphants at different developmental stages revealed abnormal cell intercalation and apical constriction, suggesting that GEF-H1 regulates these cell behaviors. Molecular marker analysis documented defects in myosin II light chain (MLC) phosphorylation, Rab11 and F-actin accumulation in GEF-H1-depleted cells. In gain-of-function studies, overexpressed GEF-H1 induced Rho-associated kinase-dependent ectopic apical constriction - marked by apical accumulation of phosphorylated MLC, γ-tubulin and F-actin in superficial ectoderm - and stimulated apical protrusive activity of deep ectoderm cells. Taken together, our observations newly identify functions of GEF-H1 in morphogenetic movements that lead to neural tube closure.
Collapse
Affiliation(s)
- Keiji Itoh
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Olga Ossipova
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y Sokol
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
48
|
Steed E, Elbediwy A, Vacca B, Dupasquier S, Hemkemeyer SA, Suddason T, Costa AC, Beaudry JB, Zihni C, Gallagher E, Pierreux CE, Balda MS, Matter K. MarvelD3 couples tight junctions to the MEKK1-JNK pathway to regulate cell behavior and survival. J Cell Biol 2014; 204:821-38. [PMID: 24567356 PMCID: PMC3941049 DOI: 10.1083/jcb.201304115] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 01/23/2014] [Indexed: 12/20/2022] Open
Abstract
MarvelD3 is a transmembrane component of tight junctions, but there is little evidence for a direct involvement in the junctional permeability barrier. Tight junctions also regulate signaling mechanisms that guide cell proliferation; however, the transmembrane components that link the junction to such signaling pathways are not well understood. In this paper, we show that MarvelD3 is a dynamic junctional regulator of the MEKK1-c-Jun NH2-terminal kinase (JNK) pathway. Loss of MarvelD3 expression in differentiating Caco-2 cells resulted in increased cell migration and proliferation, whereas reexpression in a metastatic tumor cell line inhibited migration, proliferation, and in vivo tumor formation. Expression levels of MarvelD3 inversely correlated with JNK activity, as MarvelD3 recruited MEKK1 to junctions, leading to down-regulation of JNK phosphorylation and inhibition of JNK-regulated transcriptional mechanisms. Interplay between MarvelD3 internalization and JNK activation tuned activation of MEKK1 during osmotic stress, leading to junction dissociation and cell death in MarvelD3-depleted cells. MarvelD3 thus couples tight junctions to the MEKK1-JNK pathway to regulate cell behavior and survival.
Collapse
Affiliation(s)
- Emily Steed
- Department of Cell Biology, Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| | - Ahmed Elbediwy
- Department of Cell Biology, Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| | - Barbara Vacca
- Department of Cell Biology, Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| | - Sébastien Dupasquier
- CELL Unit, de Duve Institute and Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Sandra A. Hemkemeyer
- Department of Cell Biology, Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| | - Tesha Suddason
- Department of Immunology, Imperial College London, London W12 0NN, England, UK
| | - Ana C. Costa
- Department of Cell Biology, Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| | - Jean-Bernard Beaudry
- CELL Unit, de Duve Institute and Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Ceniz Zihni
- Department of Cell Biology, Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| | - Ewen Gallagher
- Department of Immunology, Imperial College London, London W12 0NN, England, UK
| | - Christophe E. Pierreux
- CELL Unit, de Duve Institute and Université Catholique de Louvain, B-1200 Brussels, Belgium
| | - Maria S. Balda
- Department of Cell Biology, Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| | - Karl Matter
- Department of Cell Biology, Institute of Ophthalmology, University College London, London EC1V 9EL, England, UK
| |
Collapse
|
49
|
Lessey-Morillon EC, Osborne LD, Monaghan-Benson E, Guilluy C, O'Brien ET, Superfine R, Burridge K. The RhoA guanine nucleotide exchange factor, LARG, mediates ICAM-1-dependent mechanotransduction in endothelial cells to stimulate transendothelial migration. THE JOURNAL OF IMMUNOLOGY 2014; 192:3390-8. [PMID: 24585879 DOI: 10.4049/jimmunol.1302525] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
RhoA-mediated cytoskeletal rearrangements in endothelial cells (ECs) play an active role in leukocyte transendothelial cell migration (TEM), a normal physiological process in which leukocytes cross the endothelium to enter the underlying tissue. Although much has been learned about RhoA signaling pathways downstream from ICAM-1 in ECs, little is known about the consequences of the tractional forces that leukocytes generate on ECs as they migrate over the surface before TEM. We have found that after applying mechanical forces to ICAM-1 clusters, there is an increase in cellular stiffening and enhanced RhoA signaling compared with ICAM-1 clustering alone. We have identified that leukemia-associated Rho guanine nucleotide exchange factor (LARG), also known as Rho GEF 12 (ARHGEF12) acts downstream of clustered ICAM-1 to increase RhoA activity, and that this pathway is further enhanced by mechanical force on ICAM-1. Depletion of LARG decreases leukocyte crawling and inhibits TEM. To our knowledge, this is the first report of endothelial LARG regulating leukocyte behavior and EC stiffening in response to tractional forces generated by leukocytes.
Collapse
Affiliation(s)
- Elizabeth C Lessey-Morillon
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | | | | | | | | | | | | |
Collapse
|
50
|
McCormack J, Welsh NJ, Braga VMM. Cycling around cell-cell adhesion with Rho GTPase regulators. J Cell Sci 2014; 126:379-91. [PMID: 23547086 DOI: 10.1242/jcs.097923] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The formation and stability of epithelial adhesive systems, such as adherens junctions, desmosomes and tight junctions, rely on a number of cellular processes that ensure a dynamic interaction with the cortical cytoskeleton, and appropriate delivery and turnover of receptors at the surface. Unique signalling pathways must be coordinated to allow the coexistence of distinct adhesive systems at discrete sub-domains along junctions and the specific properties they confer to epithelial cells. Rho, Rac and Cdc42 are members of the Rho small GTPase family, and are well-known regulators of cell-cell adhesion. The spatio-temporal control of small GTPase activation drives specific intracellular processes to enable the hierarchical assembly, morphology and maturation of cell-cell contacts. Here, we discuss the small GTPase regulators that control the precise amplitude and duration of the levels of active Rho at cell-cell contacts, and the mechanisms that tailor the output of Rho signalling to a particular cellular event. Interestingly, the functional interaction is reciprocal; Rho regulators drive the maturation of cell-cell contacts, whereas junctions can also modulate the localisation and activity of Rho regulators to operate in diverse processes in the epithelial differentiation programme.
Collapse
Affiliation(s)
- Jessica McCormack
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London. Sir Alexander Fleming Building, London SW7 2AZ, UK
| | | | | |
Collapse
|