1
|
Resnikoff HA, Schwarzbauer JE. Increased basal fibronectin is sufficient to promote excess endothelial cell matrix assembly causing localized barrier dysfunction. Mol Biol Cell 2024; 35:ar120. [PMID: 39046775 PMCID: PMC11449387 DOI: 10.1091/mbc.e24-02-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Endothelial cell behavior is regulated by subendothelial extracellular matrix (ECM). The ECM protein fibronectin (FN) is rare in healthy blood vessels but accumulates in disease accompanied by endothelial dysfunctions. Here, we report that excess assembly of FN disrupts key endothelial functions. We mimicked increased FN expression as in diseased stroma by providing exogenous FN basally in a Transwell insert and found dose-dependent upregulation of subendothelial FN matrix assembly. Taking advantage of discontinuous matrix assembly by endothelial cells, we show correlations between regional increases in FN matrix and disruptions in endothelial cell morphology, VE-cadherin junctions, and the cell cycle, all of which were not changed in FN-deficient regions of the monolayer. These changes affected endothelial barrier function with increased monolayer permeability exposing basal regions of high FN matrix and permitting FN-dependent adhesion of MDA-MB-231 tumor cells from the apical side of the monolayer. FN matrix accumulation was quick and increases in FN matrix preceded all other changes in the endothelium. Therefore, subendothelial accumulation of FN matrix is a cause, not an effect, of endothelial monolayer disorganization and leakiness. Regulating FN accumulation in the subendothelial space could be an important target for controlling progression of fibrosis and related diseases.
Collapse
Affiliation(s)
- Henry A. Resnikoff
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | | |
Collapse
|
2
|
Nicholas SAE, Helming SR, Ménoret A, Pathoulas C, Xu MM, Hensel J, Kimble AL, Heineman B, Jellison ER, Reese B, Zhou B, Rodriguez-Oquendo A, Vella AT, Murphy PA. Endothelial Immunosuppression in Atherosclerosis : Translational Control by Elavl1/HuR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.605922. [PMID: 39131295 PMCID: PMC11312609 DOI: 10.1101/2024.08.02.605922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Atherosclerotic plaques are defined by the accumulation of lipids and immune cells beneath the endothelium of the arterial intima. CD8 T cells are among the most abundant immune cell types in plaque, and conditions linked to their activation correlate with increased levels of cardiovascular disease. As lethal effectors of the immune response, CD8 T cell activation is suppressed at multiple levels. These checkpoints are critical in dampening autoimmune responses, and limiting damage in cardiovascular disease. Endothelial cells are well known for their role in recruiting CD8 T and other hematopoietic cells to low and disturbed flow (LDF) arterial regions that develop plaque, but whether they locally influence CD8 effector functions is unclear. Here, we show that endothelial cells can actively suppress CD8 T cell responses in settings of chronic plaque inflammation, but that this behavior is governed by expression of the RNA-binding protein Embryonic Lethal, Abnormal Vision-Like 1 (Elavl1). In response to immune cell recruitment in plaque, the endothelium dynamically shifts splicing of pre-mRNA and their translation to enhance expression of immune-regulatory proteins including C1q and CD27. This program is immuno-suppressive, and limited by Elavl1. We show this by Cdh5(PAC)-CreERT2-mediated deletion of Elavl1 (ECKO), and analysis of changes in translation by Translating Ribosome Affinity Purification (TRAP). In ECKO mice, the translational shift in chronic inflammation is enhanced, leading to increased ribosomal association of C1q components and other critical regulators of immune response and resulting in a ~70% reduction in plaque CD8 T cells. CITE-seq analysis of the remaining plaque T cells shows that they exhibit lower levels of markers associated with T cell receptor (TCR) signaling, survival, and activation. To understand whether the immunosuppressive mechanism occurred through failed CD8 recruitment or local modulation of T cell responses, we used a novel in vitro co-culture system to show that ECKO endothelial cells suppress CD8 T cell expansion-even in the presence of wild-type myeloid antigen-presenting cells, antigen-specific CD8 T cells, and antigen. Despite the induction of C1q mRNA by T cell co-culture in both wild-type and ECKO endothelial cells, we find C1q protein abundantly expressed only in co-culture with ECKO cells. Together, our data define a novel immune-suppressive transition in the endothelium, reminiscent of the transition of T cells to T-regs, and demonstrate the regulation of this process by Elavl1.
Collapse
Affiliation(s)
- Sarah-Anne E Nicholas
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | - Stephen R Helming
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | | | - Christopher Pathoulas
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | - Maria M Xu
- Department of Immunology, UCONN Health, Farmington, CT
| | - Jessica Hensel
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | - Amy L Kimble
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | - Brent Heineman
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| | | | - Bo Reese
- Institute for Systems Genomics - Center for Genome Innovation, UCONN, Storrs, CT
| | - Beiyan Zhou
- Department of Immunology, UCONN Health, Farmington, CT
| | | | | | - Patrick A Murphy
- Center for Vascular Biology and Calhoun Cardiology Center, UCONN Health School of Medicine, Farmington, CT
| |
Collapse
|
3
|
Wang Y, Wang E, Anany M, Füllsack S, Huo YH, Dutta S, Ji B, Hoeppner LH, Kilari S, Misra S, Caulfield T, Vander Kooi CW, Wajant H, Mukhopadhyay D. The crosstalk between neuropilin-1 and tumor necrosis factor-α in endothelial cells. Front Cell Dev Biol 2024; 12:1210944. [PMID: 38994453 PMCID: PMC11236538 DOI: 10.3389/fcell.2024.1210944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
Tumor necrosis factor-α (TNFα) is a master cytokine which induces expression of chemokines and adhesion molecules, such as intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), in endothelial cells to initiate the vascular inflammatory response. In this study, we identified neuropilin-1 (NRP1), a co-receptor of several structurally diverse ligands, as a modulator of TNFα-induced inflammatory response of endothelial cells. NRP1 shRNA expression suppressed TNFα-stimulated leukocyte adhesion and expression of ICAM-1 and VCAM-1 in human umbilical vein endothelial cells (HUVECs). Likewise, it reduced TNFα-induced phosphorylation of MAPK p38 but did not significantly affect other TNF-induced signaling pathways, such as the classical NFκB and the AKT pathway. Immunofluorescent staining demonstrated co-localization of NRP1 with the two receptors of TNF, TNFR1 and TNFR2. Co-immunoprecipitation further confirmed that NRP1 was in the same protein complex or membrane compartment as TNFR1 and TNFR2, respectively. Modulation of NRP1 expression, however, neither affected TNFR levels in the cell membrane nor the receptor binding affinities of TNFα. Although a direct interface between NRP1 and TNFα/TNFR1 appeared possible from a protein docking model, a direct interaction was not supported by binding assays in cell-free microplates and cultured cells. Furthermore, TNFα was shown to downregulate NRP1 in a time-dependent manner through TNFR1-NFκB pathway in HUVECs. Taken together, our study reveals a novel reciprocal crosstalk between NRP1 and TNFα in vascular endothelial cells.
Collapse
Affiliation(s)
- Ying Wang
- Department of Cardiovascular Medicine, Rochester, MN, United States
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Mohamed Anany
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
- Department of Microbial Biotechnology, Institute of Biotechnology, National Research Centre, Giza, Egypt
| | - Simone Füllsack
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Yu Henry Huo
- Department of Cardiovascular Medicine, Rochester, MN, United States
| | - Shamit Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Baoan Ji
- Department of Cancer Biology, Jacksonville, FL, United States
| | - Luke H Hoeppner
- The Hormel Institute, University of Minnesota, Austin, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | | | - Sanjay Misra
- Department of Radiology, Mayo Clinic, Rochester, MN, United States
| | - Thomas Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Craig W Vander Kooi
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
4
|
Lim XR, Harraz OF. Mechanosensing by Vascular Endothelium. Annu Rev Physiol 2024; 86:71-97. [PMID: 37863105 PMCID: PMC10922104 DOI: 10.1146/annurev-physiol-042022-030946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Mechanical forces influence different cell types in our bodies. Among the earliest forces experienced in mammals is blood movement in the vascular system. Blood flow starts at the embryonic stage and ceases when the heart stops. Blood flow exposes endothelial cells (ECs) that line all blood vessels to hemodynamic forces. ECs detect these mechanical forces (mechanosensing) through mechanosensors, thus triggering physiological responses such as changes in vascular diameter. In this review, we focus on endothelial mechanosensing and on how different ion channels, receptors, and membrane structures detect forces and mediate intricate mechanotransduction responses. We further highlight that these responses often reflect collaborative efforts involving several mechanosensors and mechanotransducers. We close with a consideration of current knowledge regarding the dysregulation of endothelial mechanosensing during disease. Because hemodynamic disruptions are hallmarks of cardiovascular disease, studying endothelial mechanosensing holds great promise for advancing our understanding of vascular physiology and pathophysiology.
Collapse
Affiliation(s)
- Xin Rui Lim
- Department of Pharmacology, Larner College of Medicine and Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, Vermont, USA;
| | - Osama F Harraz
- Department of Pharmacology, Larner College of Medicine and Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, Vermont, USA;
| |
Collapse
|
5
|
Cardona-Mendoza A, Roa Molina NS, Castillo DM, Lafaurie GI, Gualtero Escobar DF. Human Coronary Artery Endothelial Cell Response to Porphyromonas gingivalis W83 in a Collagen Three-Dimensional Culture Model. Microorganisms 2024; 12:248. [PMID: 38399652 PMCID: PMC10892777 DOI: 10.3390/microorganisms12020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
P. gingivalis has been reported to be an endothelial cell inflammatory response inducer that can lead to endothelial dysfunction processes related to atherosclerosis; however, these studies have been carried out in vitro in cell culture models on two-dimensional (2D) plastic surfaces that do not simulate the natural environment where pathology develops. This work aimed to evaluate the pro-inflammatory response of human coronary artery endothelial cells (HCAECs) to P. gingivalis in a 3D cell culture model compared with a 2D cell culture. HCAECs were cultured for 7 days on type I collagen matrices in both cultures and were stimulated at an MOI of 1 or 100 with live P. gingivalis W83 for 24 h. The expression of the genes COX-2, eNOS, and vWF and the levels of the pro-inflammatory cytokines thromboxane A2 (TXA-2) and prostaglandin I2 (PGI2) were evaluated. P. gingivalis W83 in the 2D cell culture increased IL-8 levels at MOI 100 and decreased MCP-1 levels at both MOI 100 and MOI 1. In contrast, the 3D cell culture induced an increased gene expression of COX-2 at both MOIs and reduced MCP-1 levels at MOI 100, whereas the gene expression of eNOS, vWF, and IL-8 and the levels of TXA2 and PGI2 showed no significant changes. These data suggest that in the collagen 3D culture model, P. gingivalis W83 induces a weak endothelial inflammatory response.
Collapse
Affiliation(s)
- Andrés Cardona-Mendoza
- Grupo de Inmunología Celular y Molecular Universidad El Bosque-INMUBO, Vicerrectoría de Investigaciones, Facultad de Odontología, Universidad El Bosque, Bogota 11001, Colombia;
- Unidad de Investigación Básica Oral-UIBO, Vicerrectoría de Investigaciones, Facultad de Odontología, Universidad El Bosque, Bogota 11001, Colombia; (D.M.C.); (G.I.L.)
| | - Nelly Stella Roa Molina
- Centro de Investigaciones Odontológicas (CIO), Facultad de Odontología, Pontificia Universidad Javeriana, Bogota 110231, Colombia;
| | - Diana Marcela Castillo
- Unidad de Investigación Básica Oral-UIBO, Vicerrectoría de Investigaciones, Facultad de Odontología, Universidad El Bosque, Bogota 11001, Colombia; (D.M.C.); (G.I.L.)
| | - Gloria Inés Lafaurie
- Unidad de Investigación Básica Oral-UIBO, Vicerrectoría de Investigaciones, Facultad de Odontología, Universidad El Bosque, Bogota 11001, Colombia; (D.M.C.); (G.I.L.)
| | - Diego Fernando Gualtero Escobar
- Unidad de Investigación Básica Oral-UIBO, Vicerrectoría de Investigaciones, Facultad de Odontología, Universidad El Bosque, Bogota 11001, Colombia; (D.M.C.); (G.I.L.)
| |
Collapse
|
6
|
Chalkias A. Shear Stress and Endothelial Mechanotransduction in Trauma Patients with Hemorrhagic Shock: Hidden Coagulopathy Pathways and Novel Therapeutic Strategies. Int J Mol Sci 2023; 24:17522. [PMID: 38139351 PMCID: PMC10743945 DOI: 10.3390/ijms242417522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Massive trauma remains a leading cause of death and a global public health burden. Post-traumatic coagulopathy may be present even before the onset of resuscitation, and correlates with severity of trauma. Several mechanisms have been proposed to explain the development of abnormal coagulation processes, but the heterogeneity in injuries and patient profiles makes it difficult to define a dominant mechanism. Regardless of the pattern of death, a significant role in the pathophysiology and pathogenesis of coagulopathy may be attributed to the exposure of endothelial cells to abnormal physical forces and mechanical stimuli in their local environment. In these conditions, the cellular responses are translated into biochemical signals that induce/aggravate oxidative stress, inflammation, and coagulopathy. Microvascular shear stress-induced alterations could be treated or prevented by the development and use of innovative pharmacologic strategies that effectively target shear-mediated endothelial dysfunction, including shear-responsive drug delivery systems and novel antioxidants, and by targeting the venous side of the circulation to exploit the beneficial antithrombogenic profile of venous endothelial cells.
Collapse
Affiliation(s)
- Athanasios Chalkias
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5158, USA;
- Outcomes Research Consortium, Cleveland, OH 44195, USA
| |
Collapse
|
7
|
Yan A, Gotlieb AI. The microenvironment of the atheroma expresses phenotypes of plaque instability. Cardiovasc Pathol 2023; 67:107572. [PMID: 37595697 DOI: 10.1016/j.carpath.2023.107572] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/06/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023] Open
Abstract
Data from histopathology studies of human atherosclerotic tissue specimens and from vascular imaging studies support the concept that the local arterial microenvironment of a stable atheroma promotes destabilizing conditions that result in the transition to an unstable atheroma. Destabilization is characterized by several different plaque phenotypes that cause major clinical events such as acute coronary syndrome and cerebrovascular strokes. There are several rupture-associated phenotypes causing thrombotic vascular occlusion including simple fibrous cap rupture of an atheroma, fibrous cap rupture at site of previous rupture-and-repair of an atheroma, and nodular calcification with rupture. Endothelial erosion without rupture has more recently been shown to be a common phenotype to promote thrombosis as well. Microenvironment features that are linked to these phenotypes of plaque instability are neovascularization arising from the vasa vasorum network leading to necrotic core expansion, intraplaque hemorrhage, and cap rupture; activation of adventitial and perivascular adipose tissue cells leading to secretion of cytokines, growth factors, adipokines in the outer artery wall that destabilize plaque structure; and vascular smooth muscle cell phenotypic switching through transdifferentiation and stem/progenitor cell activation resulting in the promotion of inflammation, calcification, and secretion of extracellular matrix, altering fibrous cap structure, and necrotic core growth. As the technology evolves, studies using noninvasive vascular imaging will be able to investigate the transition of stable to unstable atheromas in real time. A limitation in the field, however, is that reliable and predictable experimental models of spontaneous plaque rupture and/or erosion are not currently available to study the cell and molecular mechanisms that regulate the conversion of the stable atheroma to an unstable plaque.
Collapse
Affiliation(s)
- Angela Yan
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Avrum I Gotlieb
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Tamargo IA, Baek KI, Kim Y, Park C, Jo H. Flow-induced reprogramming of endothelial cells in atherosclerosis. Nat Rev Cardiol 2023; 20:738-753. [PMID: 37225873 PMCID: PMC10206587 DOI: 10.1038/s41569-023-00883-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/26/2023]
Abstract
Atherosclerotic diseases such as myocardial infarction, ischaemic stroke and peripheral artery disease continue to be leading causes of death worldwide despite the success of treatments with cholesterol-lowering drugs and drug-eluting stents, raising the need to identify additional therapeutic targets. Interestingly, atherosclerosis preferentially develops in curved and branching arterial regions, where endothelial cells are exposed to disturbed blood flow with characteristic low-magnitude oscillatory shear stress. By contrast, straight arterial regions exposed to stable flow, which is associated with high-magnitude, unidirectional shear stress, are relatively well protected from the disease through shear-dependent, atheroprotective endothelial cell responses. Flow potently regulates structural, functional, transcriptomic, epigenomic and metabolic changes in endothelial cells through mechanosensors and mechanosignal transduction pathways. A study using single-cell RNA sequencing and chromatin accessibility analysis in a mouse model of flow-induced atherosclerosis demonstrated that disturbed flow reprogrammes arterial endothelial cells in situ from healthy phenotypes to diseased ones characterized by endothelial inflammation, endothelial-to-mesenchymal transition, endothelial-to-immune cell-like transition and metabolic changes. In this Review, we discuss this emerging concept of disturbed-flow-induced reprogramming of endothelial cells (FIRE) as a potential pro-atherogenic mechanism. Defining the flow-induced mechanisms through which endothelial cells are reprogrammed to promote atherosclerosis is a crucial area of research that could lead to the identification of novel therapeutic targets to combat the high prevalence of atherosclerotic disease.
Collapse
Affiliation(s)
- Ian A Tamargo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
- Molecular and Systems Pharmacology Program, Emory University, Atlanta, GA, USA
| | - Kyung In Baek
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Yerin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Christian Park
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.
- Molecular and Systems Pharmacology Program, Emory University, Atlanta, GA, USA.
- Department of Medicine, Emory University School, Atlanta, GA, USA.
| |
Collapse
|
9
|
Hamrangsekachaee M, Wen K, Yazdani N, Willits RK, Bencherif SA, Ebong EE. Endothelial glycocalyx sensitivity to chemical and mechanical sub-endothelial substrate properties. Front Bioeng Biotechnol 2023; 11:1250348. [PMID: 38026846 PMCID: PMC10643223 DOI: 10.3389/fbioe.2023.1250348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Glycocalyx (GCX) is a carbohydrate-rich structure that coats the surface of endothelial cells (ECs) and lines the blood vessel lumen. Mechanical perturbations in the vascular environment, such as blood vessel stiffness, can be transduced and sent to ECs through mechanosensors such as GCX. Adverse stiffness alters GCX-mediated mechanotransduction and leads to EC dysfunction and eventually atherosclerotic cardiovascular diseases. To understand GCX-regulated mechanotransduction events, an in vitro model emulating in vivo vessel conditions is needed. To this end, we investigated the impact of matrix chemical and mechanical properties on GCX expression via fabricating a tunable non-swelling matrix based on the collagen-derived polypeptide, gelatin. To study the effect of matrix composition, we conducted a comparative analysis of GCX expression using different concentrations (60-25,000 μg/mL) of gelatin and gelatin methacrylate (GelMA) in comparison to fibronectin (60 μg/mL), a standard coating material for GCX-related studies. Using immunocytochemistry analysis, we showed for the first time that different substrate compositions and concentrations altered the overall GCX expression on human umbilical vein ECs (HUVECs). Subsequently, GelMA hydrogels were fabricated with stiffnesses of 2.5 and 5 kPa, representing healthy vessel tissues, and 10 kPa, corresponding to diseased vessel tissues. Immunocytochemistry analysis showed that on hydrogels with different levels of stiffness, the GCX expression in HUVECs remained unchanged, while its major polysaccharide components exhibited dysregulation in distinct patterns. For example, there was a significant decrease in heparan sulfate expression on pathological substrates (10 kPa), while sialic acid expression increased with increased matrix stiffness. This study suggests the specific mechanisms through which GCX may influence ECs in modulating barrier function, immune cell adhesion, and mechanotransduction function under distinct chemical and mechanical conditions of both healthy and diseased substrates.
Collapse
Affiliation(s)
| | - Ke Wen
- Chemical Engineering Department, Northeastern University, Boston, MA, United States
| | - Narges Yazdani
- Bioengineering Department, Northeastern University, Boston, MA, United States
| | - Rebecca K. Willits
- Chemical Engineering Department, Northeastern University, Boston, MA, United States
- Bioengineering Department, Northeastern University, Boston, MA, United States
| | - Sidi A. Bencherif
- Chemical Engineering Department, Northeastern University, Boston, MA, United States
- Bioengineering Department, Northeastern University, Boston, MA, United States
- Laboratoire de BioMécanique et BioIngénierie (BMBI), UMR CNRS, Sorbonne Universités, Université de Technologie of Compiègne (UTC), Compiègne, France
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
| | - Eno E. Ebong
- Chemical Engineering Department, Northeastern University, Boston, MA, United States
- Bioengineering Department, Northeastern University, Boston, MA, United States
- Neuroscience Department, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
10
|
LUO X, JIAN W. Different roles of endothelial cell-derived fibronectin and plasma fibronectin in endothelial dysfunction. Turk J Med Sci 2023; 53:1667-1677. [PMID: 38813506 PMCID: PMC10760598 DOI: 10.55730/1300-0144.5735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 12/12/2023] [Accepted: 10/25/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim Atherosclerosis is significantly influenced by endothelial cell activation and dysfunction. Studies have demonstrated the substantial presence of fibronectin (Fn) within atherosclerotic plaques, promoting endothelial inflammation and activation. However, cellular Fn (cFn) secreted by various cell types, including endothelial cells and smooth muscle cells, and plasma Fn (pFn) produced by hepatocytes. They are distinct forms of Fn that differ in both structure and function. The specific contribution of different types of Fn in promoting endothelial cell activation and dysfunction remain uncertain. Therefore, this study aimed to investigate the respective roles of pFn and endothelial cell-derived Fn (FnEC) in promoting endothelial cell activation and dysfunction. Materials and methods Initially, endothelial cell injury was induced by exposing the cells to oxidized low-density lipoprotein (ox-LDL) and subsequently we generated a mutant strain of aortic endothelial cells with Fn knockdown (FnEC-KD). The impact of the FnEC-KD arel the addition of pFn on the expression levels of inflammatory factors, vasoconstrictors, and diastolic factors were compared. Results The results showed that the FnEC-KD significantly inhibited ox-LDL-induced intercellular adhesion molecule 1 (ICAM-1, p < 0.05), vascular cell adhesion molecule (VCAM-1, p < 0.05), and endothelin (p < 0.05) expression, and nuclear factor kappa-B (NFκB, p < 0.05) activation. These results implied that FnEC-KD inhibited both endothelial cell activation and dysfunction. Surprisingly, the addition of pFn significantly inhibited the ox-LDL-induced ICAM-1 (p < 0.05), VCAM-1 (p < 0.05), and endothelin (p < 0.05) expression and NFκB (p < 0.05) activation. Implying that pFn inhibits endothelial cell activation and dysfunction. Additionally, the study revealed that ox-LDL stimulation enhanced the production of excessive nitric oxide, leading to severe endothelial cell damage. Conclusion Aortic FnEC promotes endothelial cell activation and endothelial dysfunction, whereas pFn inhibits ox-LDL-induced endothelial cell activation and endothelial dysfunction.
Collapse
Affiliation(s)
- Xiaoxin LUO
- Department of Traditional Chinese Medicine Diagnostics, Faculty of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha,
China
| | - Weixiong JIAN
- Department of Traditional Chinese Medicine Diagnostics, Faculty of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha,
China
- Department of National Key Discipline of Traditional Chinese Medicine Diagnostics and Hunan Provincial Key Laboratory, Faculty of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha,
China
| |
Collapse
|
11
|
Lin PK, Davis GE. Extracellular Matrix Remodeling in Vascular Disease: Defining Its Regulators and Pathological Influence. Arterioscler Thromb Vasc Biol 2023; 43:1599-1616. [PMID: 37409533 PMCID: PMC10527588 DOI: 10.1161/atvbaha.123.318237] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023]
Abstract
Because of structural and cellular differences (ie, degrees of matrix abundance and cross-linking, mural cell density, and adventitia), large and medium-sized vessels, in comparison to capillaries, react in a unique manner to stimuli that induce vascular disease. A stereotypical vascular injury response is ECM (extracellular matrix) remodeling that occurs particularly in larger vessels in response to injurious stimuli, such as elevated angiotensin II, hyperlipidemia, hyperglycemia, genetic deficiencies, inflammatory cell infiltration, or exposure to proinflammatory mediators. Even with substantial and prolonged vascular damage, large- and medium-sized arteries, persist, but become modified by (1) changes in vascular wall cellularity; (2) modifications in the differentiation status of endothelial cells, vascular smooth muscle cells, or adventitial stem cells (each can become activated); (3) infiltration of the vascular wall by various leukocyte types; (4) increased exposure to critical growth factors and proinflammatory mediators; and (5) marked changes in the vascular ECM, that remodels from a homeostatic, prodifferentiation ECM environment to matrices that instead promote tissue reparative responses. This latter ECM presents previously hidden matricryptic sites that bind integrins to signal vascular cells and infiltrating leukocytes (in coordination with other mediators) to proliferate, invade, secrete ECM-degrading proteinases, and deposit injury-induced matrices (predisposing to vessel wall fibrosis). In contrast, in response to similar stimuli, capillaries can undergo regression responses (rarefaction). In summary, we have described the molecular events controlling ECM remodeling in major vascular diseases as well as the differential responses of arteries versus capillaries to key mediators inducing vascular injury.
Collapse
Affiliation(s)
- Prisca K. Lin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| | - George E. Davis
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida School of Medicine, Tampa, FL 33612
| |
Collapse
|
12
|
Burke-Kleinman J, Rubianto J, Hou G, Santerre JP, Bendeck MP. Matrix-Binding, N-Cadherin-Targeting Chimeric Peptide Inhibits Intimal Thickening but Not Endothelial Repair in Balloon-Injured Carotid Arteries. Arterioscler Thromb Vasc Biol 2023; 43:1639-1652. [PMID: 37409527 PMCID: PMC10443629 DOI: 10.1161/atvbaha.123.319400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Treatment of occluded vessels can involve angioplasty, stenting, and bypass grafting, which can be limited by restenosis and thrombosis. Drug-eluting stents attenuate restenosis, but the current drugs used are cytotoxic, causing smooth muscle cell (SMC) and endothelial cell (EC) death that may lead to late thrombosis. N-cadherin is a junctional protein expressed by SMCs, which promotes directional SMC migration contributing to restenosis. We propose that engaging N-cadherin with mimetic peptides can act as a cell type-selective therapeutic strategy to inhibit polarization and directional migration of SMCs without negatively impacting ECs. METHODS We designed a novel N-cadherin-targeting chimeric peptide with a histidine-alanine-valine cadherin-binding motif, combined with a fibronectin-binding motif from Staphylococcus aureus. This peptide was tested in SMC and EC culture assays of migration, viability, and apoptosis. Rat carotid arteries were balloon injured and treated with the N-cadherin peptide. RESULTS Treating scratch-wounded SMCs with the N-cadherin-targeting peptide inhibited migration and reduced polarization of wound-edge cells. The peptide colocalized with fibronectin. Importantly, EC junction, permeability, or migration was not impacted by peptide treatment in vitro. We also demonstrated that the chimeric peptide persisted for 24 hours after transient delivery in the balloon-injured rat carotid artery. Treatment with the N-cadherin-targeting chimeric peptide reduced intimal thickening in balloon-injured rat carotid arteries at 1 and 2 weeks after injury. Reendothelialization of injured vessels after 2 weeks was unimpaired by peptide treatment. CONCLUSIONS These studies show that an N-cadherin-binding and fibronectin-binding chimeric peptide is effective in inhibiting SMC migration in vitro and in vivo and limiting neointimal hyperplasia after balloon angioplasty without affecting EC repair. These results establish the potential of an advantageous SMC-selective strategy for antirestenosis therapy.
Collapse
Affiliation(s)
- Jonah Burke-Kleinman
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine (J.B.-K., G.H., M.P.B.), University of Toronto, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada (J.B.-K., J.R., G.H., J.P.S., M.P.B.)
| | - Jonathan Rubianto
- Institute of Biomedical Engineering (J.R., J.P.S.), University of Toronto, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada (J.B.-K., J.R., G.H., J.P.S., M.P.B.)
| | - Guangpei Hou
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine (J.B.-K., G.H., M.P.B.), University of Toronto, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada (J.B.-K., J.R., G.H., J.P.S., M.P.B.)
| | - J. Paul Santerre
- Institute of Biomedical Engineering (J.R., J.P.S.), University of Toronto, Canada
- Department of Chemical Engineering and Applied Chemistry, Faculty of Engineering (J.P.S.), University of Toronto, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada (J.B.-K., J.R., G.H., J.P.S., M.P.B.)
| | - Michelle P. Bendeck
- Department of Chemical Engineering and Applied Chemistry, Faculty of Engineering (J.P.S.), University of Toronto, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada (J.B.-K., J.R., G.H., J.P.S., M.P.B.)
| |
Collapse
|
13
|
Wang YK, Weng HK, Mo FE. The regulation and functions of the matricellular CCN proteins induced by shear stress. J Cell Commun Signal 2023:10.1007/s12079-023-00760-z. [PMID: 37191841 DOI: 10.1007/s12079-023-00760-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
Shear stress is a frictional drag generated by the flow of fluid, such as blood or interstitial fluid, and plays a critical role in regulating cellular gene expression and functional phenotype. The matricellular CCN family proteins are dynamically regulated by shear stress of different flow patterns, and their expression significantly alters the microenvironment of cells. Secreted CCN proteins mainly bind to several cell surface integrin receptors to mediate their diverse functions in regulating cell survival, function, and behavior. Gene-knockout studies indicate major functions of CCN proteins in the cardiovascular and skeletal systems, the two primary systems in which CCN expressions are regulated by shear stress. In the cardiovascular system, the endothelium is directly exposed to vascular shear stress. Unidirectional laminar blood flow generates laminar shear stress, which promotes a mature endothelial phenotype and upregulates anti-inflammatory CCN3 expression. In contrast, disturbed flow generates oscillatory shear stress, which induces endothelial dysfunction through the induction of CCN1 and CCN2. Shear-induced CCN1 binds to integrin α6β1 and promotes superoxide production, NF-κB activation, and inflammatory gene expression in endothelial cells. Although the interaction between shear stress and CCN4-6 is not clear, CCN 4 exhibits a proinflammatory property and CCN5 inhibits vascular cell growth and migration. The crucial roles of CCN proteins in cardiovascular development, homeostasis, and disease are evident but not fully understood. In the skeletal system, mechanical loading on bone generates shear stress from interstitial fluid in the lacuna-canalicular system and promotes osteoblast differentiation and bone formation. CCN1 and CCN2 are induced and potentially mediate fluid shear stress mechanosensing in osteocytes. However, the exact roles of interstitial shear stress-induced CCN1 and CCN2 in bone are still not clear. In contrast to other CCN family proteins, CCN3 inhibits osteoblast differentiation, although its regulation by interstitial shear stress in osteocytes has not been reported. The induction of CCN proteins by shear stress in bone and their functions remain largely unknown and merit further investigation. This review discusses the expression and functions of CCN proteins regulated by shear stress in physiological conditions, diseases, and cell culture models. The roles between CCN family proteins can be compensatory or counteractive in tissue remodeling and homeostasis.
Collapse
Affiliation(s)
- Yang-Kao Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Hung-Kai Weng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Fan-E Mo
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
14
|
Chen M, Cavinato C, Hansen J, Tanaka K, Ren P, Hassab A, Li DS, Youshao E, Tellides G, Iyengar R, Humphrey JD, Schwartz MA. FN (Fibronectin)-Integrin α5 Signaling Promotes Thoracic Aortic Aneurysm in a Mouse Model of Marfan Syndrome. Arterioscler Thromb Vasc Biol 2023; 43:e132-e150. [PMID: 36994727 PMCID: PMC10133209 DOI: 10.1161/atvbaha.123.319120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Marfan syndrome, caused by mutations in the gene for fibrillin-1, leads to thoracic aortic aneurysms (TAAs). Phenotypic modulation of vascular smooth muscle cells (SMCs) and ECM (extracellular matrix) remodeling are characteristic of both nonsyndromic and Marfan aneurysms. The ECM protein FN (fibronectin) is elevated in the tunica media of TAAs and amplifies inflammatory signaling in endothelial and SMCs through its main receptor, integrin α5β1. We investigated the role of integrin α5-specific signals in Marfan mice in which the cytoplasmic domain of integrin α5 was replaced with that of integrin α2 (denoted α5/2 chimera). METHODS We crossed α5/2 chimeric mice with Fbn1mgR/mgR mice (mgR model of Marfan syndrome) to evaluate the survival rate and pathogenesis of TAAs among wild-type, α5/2, mgR, and α5/2 mgR mice. Further biochemical and microscopic analysis of porcine and mouse aortic SMCs investigated molecular mechanisms by which FN affects SMCs and subsequent development of TAAs. RESULTS FN was elevated in the thoracic aortas from Marfan patients, in nonsyndromic aneurysms, and in mgR mice. The α5/2 mutation greatly prolonged survival of Marfan mice, with improved elastic fiber integrity, mechanical properties, SMC density, and SMC contractile gene expression. Furthermore, plating of wild-type SMCs on FN decreased contractile gene expression and activated inflammatory pathways whereas α5/2 SMCs were resistant. These effects correlated with increased NF-kB activation in cultured SMCs and mgR aortas, which was alleviated by the α5/2 mutation or NF-kB inhibition. CONCLUSIONS FN-integrin α5 signaling is a significant driver of TAA in the mgR mouse model. This pathway thus warrants further investigation as a therapeutic target.
Collapse
Affiliation(s)
- Minghao Chen
- Cardiovascular Research Center (M.C., K.T., M.A.S.), Yale School of Medicine, New Haven, CT
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT (C.C., D.S.L., E.Y., J.D.H., M.A.S.)
| | - Jens Hansen
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York (J.H., R.I.)
| | - Keiichiro Tanaka
- Cardiovascular Research Center (M.C., K.T., M.A.S.), Yale School of Medicine, New Haven, CT
| | - Pengwei Ren
- Department of Surgery (P.R., A.H., G.T., M.A.S.), Yale School of Medicine, New Haven, CT
| | - Abdulrahman Hassab
- Department of Surgery (P.R., A.H., G.T., M.A.S.), Yale School of Medicine, New Haven, CT
| | - David S Li
- Department of Biomedical Engineering, Yale University, New Haven, CT (C.C., D.S.L., E.Y., J.D.H., M.A.S.)
| | - Eric Youshao
- Department of Biomedical Engineering, Yale University, New Haven, CT (C.C., D.S.L., E.Y., J.D.H., M.A.S.)
| | - George Tellides
- Department of Surgery (P.R., A.H., G.T., M.A.S.), Yale School of Medicine, New Haven, CT
- Vascular Biology and Therapeutics Program (G.T., J.D.H.), Yale School of Medicine, New Haven, CT
| | - Ravi Iyengar
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York (J.H., R.I.)
| | - Jay D Humphrey
- Vascular Biology and Therapeutics Program (G.T., J.D.H.), Yale School of Medicine, New Haven, CT
- Department of Biomedical Engineering, Yale University, New Haven, CT (C.C., D.S.L., E.Y., J.D.H., M.A.S.)
| | - Martin A Schwartz
- Cardiovascular Research Center (M.C., K.T., M.A.S.), Yale School of Medicine, New Haven, CT
- Department of Surgery (P.R., A.H., G.T., M.A.S.), Yale School of Medicine, New Haven, CT
- Departments of Medicine (Cardiology) and Cell Biology (M.A.S.), Yale School of Medicine, New Haven, CT
- Department of Biomedical Engineering, Yale University, New Haven, CT (C.C., D.S.L., E.Y., J.D.H., M.A.S.)
| |
Collapse
|
15
|
Chu PH, Chen SC, Chen HY, Wu CB, Huang WT, Chiang HY. Astrocyte-associated fibronectin promotes the proinflammatory phenotype of astrocytes through β1 integrin activation. Mol Cell Neurosci 2023; 125:103848. [PMID: 36948232 DOI: 10.1016/j.mcn.2023.103848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/24/2023] Open
Abstract
Astrocytes are key players in neuroinflammation. In response to central nervous system (CNS) injury or disease, astrocytes undergo reactive astrogliosis, which is characterized by increased proliferation, migration, and glial fibrillary acidic protein (GFAP) expression. Activation of the transcription factor nuclear factor-κB (NF-κB) and upregulation of downstream proinflammatory mediators in reactive astrocytes induce a proinflammatory phenotype in astrocytes, thereby exacerbating neuroinflammation by establishing an inflammatory loop. In this study, we hypothesized that excessive fibronectin (FN) derived from reactive astrocytes would induce this proinflammatory phenotype in astrocytes in an autocrine manner. We exogenously treated astrocytes with monomer FN, which can be incorporated into the extracellular matrix (ECM), to mimic plasma FN extravasated through a compromised blood-brain barrier in neuroinflammation. We also induced de novo synthesis and accumulation of astrocyte-derived FN through tumor necrosis factor-α (TNF-α) stimulation. The excessive FN deposition resulting from both treatments initiated reactive astrogliosis and triggered NF-κB signaling in the cultured astrocytes. In addition, inhibition of FN accumulation in the ECM by the FN inhibitor pUR4 strongly attenuated the FN- and TNF-α-induced GFAP expression, NF-κB activation, and proinflammatory mediator production of astrocytes by interrupting FN-β1 integrin coupling and thus the inflammatory loop. In an in vivo experiment, intrathecal injection of pUR4 considerably ameliorated FN deposition, GFAP expression, and NF-κB activation in inflamed spinal cord, suggesting the therapeutic potential of pUR4 for attenuating neuroinflammation and promoting neuronal function restoration.
Collapse
Affiliation(s)
- Pao-Hsien Chu
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan; Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Shao-Chi Chen
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Yung Chen
- Department of Occupational Therapy, Graduate Institute of Behavioral Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Bei Wu
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Ting Huang
- Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hou-Yu Chiang
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan; Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
16
|
Coagulation Disorders in Sepsis and COVID-19-Two Sides of the Same Coin? A Review of Inflammation-Coagulation Crosstalk in Bacterial Sepsis and COVID-19. J Clin Med 2023; 12:jcm12020601. [PMID: 36675530 PMCID: PMC9866352 DOI: 10.3390/jcm12020601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Sepsis is a major cause of morbidity and mortality worldwide. Sepsis-associated coagulation disorders are involved in the pathogenesis of multiorgan failure and lead to a subsequently worsening prognosis. Alongside the global impact of the COVID-19 pandemic, a great number of research papers have focused on SARS-CoV-2 pathogenesis and treatment. Significant progress has been made in this regard and coagulation disturbances were once again found to underlie some of the most serious adverse outcomes of SARS-CoV-2 infection, such as acute lung injury and multiorgan dysfunction. In the attempt of untangling the mechanisms behind COVID-19-associated coagulopathy (CAC), a series of similarities with sepsis-induced coagulopathy (SIC) became apparent. Whether they are, in fact, the same disease has not been established yet. The clinical picture of CAC shows the unique feature of an initial phase of intravascular coagulation confined to the respiratory system. Only later on, patients can develop a clinically significant form of systemic coagulopathy, possibly with a consumptive pattern, but, unlike SIC, it is not a key feature. Deepening our understanding of CAC pathogenesis has to remain a major goal for the research community, in order to design and validate accurate definitions and classification criteria.
Collapse
|
17
|
Zamani M, Cheng YH, Charbonier F, Gupta VK, Mayer AT, Trevino AE, Quertermous T, Chaudhuri O, Cahan P, Huang NF. Single-Cell Transcriptomic Census of Endothelial Changes Induced by Matrix Stiffness and the Association with Atherosclerosis. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2203069. [PMID: 36816792 PMCID: PMC9937733 DOI: 10.1002/adfm.202203069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Indexed: 05/28/2023]
Abstract
Vascular endothelial cell (EC) plasticity plays a critical role in the progression of atherosclerosis by giving rise to mesenchymal phenotypes in the plaque lesion. Despite the evidence for arterial stiffening as a major contributor to atherosclerosis, the complex interplay among atherogenic stimuli in vivo has hindered attempts to determine the effects of extracellular matrix (ECM) stiffness on endothelial-mesenchymal transition (EndMT). To study the regulatory effects of ECM stiffness on EndMT, an in vitro model is developed in which human coronary artery ECs are cultured on physiological or pathological stiffness substrates. Leveraging single-cell RNA sequencing, cell clusters with mesenchymal transcriptional features are identified to be more prevalent on pathological substrates than physiological substrates. Trajectory inference analyses reveal a novel mesenchymal-to-endothelial reverse transition, which is blocked by pathological stiffness substrates, in addition to the expected EndMT trajectory. ECs pushed to a mesenchymal character by pathological stiffness substrates are enriched in transcriptional signatures of atherosclerotic ECs from human and murine plaques. This study characterizes at single-cell resolution the transcriptional programs that underpin EC plasticity in both physiological or pathological milieus, and thus serves as a valuable resource for more precisely defining EndMT and the transcriptional programs contributing to atherosclerosis.
Collapse
Affiliation(s)
- Maedeh Zamani
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Yu-Hao Cheng
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Frank Charbonier
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Vivek Kumar Gupta
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | | | - Thomas Quertermous
- Division of Cardiovascular Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Patrick Cahan
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ngan F Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
18
|
Gole S, Tkachenko S, Masannat T, Baylis RA, Cherepanova OA. Endothelial-to-Mesenchymal Transition in Atherosclerosis: Friend or Foe? Cells 2022; 11:cells11192946. [PMID: 36230908 PMCID: PMC9563961 DOI: 10.3390/cells11192946] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
Despite many decades of research, complications of atherosclerosis resulting from the rupture or erosion of unstable plaques remain the leading cause of death worldwide. Advances in cellular lineage tracing techniques have allowed researchers to begin investigating the role of individual cell types in the key processes regulating plaque stability, including maintenance of the fibrous cap, a protective collagen-rich structure that underlies the endothelium. This structure was previously thought to be entirely derived from smooth muscle cells (SMC), which migrated from the vessel wall. However, recent lineage tracing studies have identified endothelial cells (EC) as an essential component of this protective barrier through an endothelial-to-mesenchymal transition (EndoMT), a process that has previously been implicated in pulmonary, cardiac, and kidney fibrosis. Although the presence of EndoMT in atherosclerotic plaques has been shown by several laboratories using EC-lineage tracing mouse models, whether EndoMT is detrimental (i.e., worsening disease progression) or beneficial (i.e., an athero-protective response that prevents plaque instability) remains uncertain as there are data to support both possibilities, which will be further discussed in this review.
Collapse
Affiliation(s)
- Sarin Gole
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NB5, Cleveland, OH 44195, USA
| | - Svyatoslav Tkachenko
- Genetics and Genome Sciences, Case Western Reserve University, 2109 Adelbert, RD, BRB, Cleveland, OH 44106, USA
| | - Tarek Masannat
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NB5, Cleveland, OH 44195, USA
| | - Richard A. Baylis
- Department of Medicine, Massachusetts General Hospital, 55 Fruit St Gray 730, Boston, MA 02114, USA
| | - Olga A. Cherepanova
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NB5, Cleveland, OH 44195, USA
- Correspondence: ; Tel.: +1-216-445-7491
| |
Collapse
|
19
|
Chen M, Hu R, Cavinato C, Zhuang ZW, Zhang J, Yun S, Fernandez Tussy P, Singh A, Murtada SI, Tanaka K, Liu M, Fernández-Hernando C, Humphrey JD, Schwartz MA. Fibronectin-Integrin α5 Signaling in Vascular Complications of Type 1 Diabetes. Diabetes 2022; 71:2020-2033. [PMID: 35771994 PMCID: PMC9450851 DOI: 10.2337/db21-0958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/20/2022] [Indexed: 11/13/2022]
Abstract
Vascular complications are a major cause of illness and death in patients with type 1 diabetes (T1D). Diabetic vascular basement membranes are enriched in fibronectin (FN), an extracellular matrix protein that amplifies inflammatory signaling in endothelial cells through its main receptor, integrin α5β1. Binding of the integrin α5 cytoplasmic domain to phosphodiesterase 4D5 (PDE4D5), which increases phosphodiesterase catalytic activity and inhibits antiinflammatory cAMP signaling, was found to mediate these effects. Here, we examined mice in which the integrin α5 cytoplasmic domain is replaced by that of α2 (integrin α5/2) or the integrin α5 binding site in PDE4D is mutated (PDE4Dmut). T1D was induced via injection of streptozotocin and hyperlipidemia induced via injection of PCSK9 virus and provision of a high-fat diet. We found that in T1D and hyperlipidemia, the integrin α5/2 mutation reduced atherosclerosis plaque size by ∼50%, with reduced inflammatory cell invasion and metalloproteinase expression. Integrin α5/2 T1D mice also had improved blood-flow recovery from hindlimb ischemia and improved biomechanical properties of the carotid artery. By contrast, the PDE4Dmut had no beneficial effects in T1D. FN signaling through integrin α5 is thus a major contributor to diabetic vascular disease but not through its interaction with PDE4D.
Collapse
Affiliation(s)
- Minghao Chen
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT
| | - Rui Hu
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Zhenwu W. Zhuang
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT
| | - Jiasheng Zhang
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT
| | - Sanguk Yun
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT
| | - Pablo Fernandez Tussy
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
- Departments of Comparative Medicine and Pathology, Yale Center for Molecular and Systems Metabolism, Yale School of Medicine, New Haven, CT
| | - Abhishek Singh
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
- Departments of Comparative Medicine and Pathology, Yale Center for Molecular and Systems Metabolism, Yale School of Medicine, New Haven, CT
| | - Sae-Il Murtada
- Department of Biomedical Engineering, Yale University, New Haven, CT
| | - Keiichiro Tanaka
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT
| | - Min Liu
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of China
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
- Departments of Comparative Medicine and Pathology, Yale Center for Molecular and Systems Metabolism, Yale School of Medicine, New Haven, CT
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT
| | - Martin A. Schwartz
- Yale Cardiovascular Research Center, Department of Internal Medicine, Yale School of Medicine, New Haven, CT
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, CT
- Department of Biomedical Engineering, Yale University, New Haven, CT
- Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT
| |
Collapse
|
20
|
Splice factor polypyrimidine tract-binding protein 1 (Ptbp1) primes endothelial inflammation in atherogenic disturbed flow conditions. Proc Natl Acad Sci U S A 2022; 119:e2122227119. [PMID: 35858420 PMCID: PMC9335344 DOI: 10.1073/pnas.2122227119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Plaque forms in low and disturbed flow regions of the vasculature, where platelets adhere and endothelial cells are “primed” to respond to cytokines (e.g., tumor necrosis factor-α) with elevated levels of cell adhesion molecules via the NF-κB signaling pathway. We show that the splice factor polypyrimidine tract binding protein (Ptbp1; purple) mediates priming. Ptbp1 is induced in endothelial cells by platelet recruitment, promoting priming and subsequent myeloid cell infiltration into plaque. Mechanistically, Ptbp1 regulates splicing of genes (e.g., Ripk1) involved in the NF-κB signaling pathway and is required for efficient nuclear translocation of NF-κB in endothelial cells. This provides new insight into the molecular mechanisms underlying an endothelial priming process that reinforces vascular inflammation. NF-κB–mediated endothelial activation drives leukocyte recruitment and atherosclerosis, in part through adhesion molecules Icam1 and Vcam1. The endothelium is primed for cytokine activation of NF-κB by exposure to low and disturbed blood flow (LDF)but the molecular underpinnings are not fully understood. In an experimental in vivo model of LDF, platelets were required for the increased expression of several RNA-binding splice factors, including polypyrimidine tract binding protein (Ptbp1). This was coordinated with changes in RNA splicing in the NF-κB pathway in primed cells, leading us to examine splice factors as mediators of priming. Using Icam1 and Vcam1 induction by tumor necrosis factor (TNF)-α stimulation as a readout, we performed a CRISPR Cas9 knockout screen and identified a requirement for Ptbp1 in priming. Deletion of Ptbp1 had no effect on cell growth or response to apoptotic stimuli, but reversed LDF splicing patterns and inhibited NF-κB nuclear translocation and transcriptional activation of downstream targets, including Icam1 and Vcam1. In human coronary arteries, elevated PTBP1 correlates with expression of TNF pathway genes and plaque. In vivo, endothelial-specific deletion of Ptbp1 reduced Icam1 expression and myeloid cell infiltration at regions of LDF in atherosclerotic mice, limiting atherosclerosis. This may be mediated, in part, by allowing inclusion of a conserved alternative exon in Ripk1 leading to a reduction in Ripk1 protein. Our data show that Ptbp1, which is induced in a subset of the endothelium by platelet recruitment at regions of LDF, is required for priming of the endothelium for subsequent NF-κB activation, myeloid cell recruitment and atherosclerosis.
Collapse
|
21
|
Vidović T, Ewald CY. Longevity-Promoting Pathways and Transcription Factors Respond to and Control Extracellular Matrix Dynamics During Aging and Disease. FRONTIERS IN AGING 2022; 3:935220. [PMID: 35874275 PMCID: PMC9301135 DOI: 10.3389/fragi.2022.935220] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/27/2022] [Indexed: 05/28/2023]
Abstract
Aging is one of the largest risk factors for cancer, type 2 diabetes, osteoarthritis, cardiovascular diseases, and other age-related pathologies. Here, we give a detailed description of the interplay of chronic age-related pathologies with the remodeling of the extracellular matrix during disease development and progression. Longevity-promoting signaling pathways slow or prevent age-related diseases. In particular, we focus on the mTOR signaling pathway, sirtuins, and canonical longevity-promoting transcription factors, such as FOXO, NF-κB, and Nrf2. We extend our analysis using chromatin immunoprecipitation (ChIP) sequencing and transcriptomic data and report that many established and emerging longevity-promoting transcription factors, such as CREB1, FOXO1,3, GATA1,2,3,4, HIF1A, JUN, KLF4, MYC, NFE2L2/Nrf2, RELA/NF-κB, REST, STAT3,5A, and TP53/p53, directly regulate many extracellular matrix genes and remodelers. We propose that modulation of these pathways increases lifespan and protects from age-related diseases in part due to their effects on extracellular matrix remodeling. Therefore, to successfully treat age-related diseases, it is necessary to better understand the connection between extracellular matrix components and longevity pathways.
Collapse
Affiliation(s)
| | - Collin Y. Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
22
|
Self-therapeutic metal-based nanoparticles for treating inflammatory diseases. Acta Pharm Sin B 2022; 13:1847-1865. [DOI: 10.1016/j.apsb.2022.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 02/07/2023] Open
|
23
|
Comprehensive characterization of the prostate tumor microenvironment identifies CXCR4/CXCL12 crosstalk as a novel antiangiogenic therapeutic target in prostate cancer. Mol Cancer 2022; 21:132. [PMID: 35717322 PMCID: PMC9206324 DOI: 10.1186/s12943-022-01597-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/15/2022] [Indexed: 12/26/2022] Open
Abstract
Background Crosstalk between neoplastic and stromal cells fosters prostate cancer (PCa) progression and dissemination. Insight in cell-to-cell communication networks provides new therapeutic avenues to mold processes that contribute to PCa tumor microenvironment (TME) alterations. Here we performed a detailed characterization of PCa tumor endothelial cells (TEC) to delineate intercellular crosstalk between TEC and the PCa TME. Methods TEC isolated from 67 fresh radical prostatectomy (RP) specimens underwent multi-omic ex vivo characterization as well as orthogonal validation of both TEC functions and key markers by immunohistochemistry (IHC) and immunofluorescence (IF). To identify cell–cell interaction targets in TEC, we performed single-cell RNA sequencing (scRNA-seq) in four PCa patients who underwent a RP to catalogue cellular TME composition. Targets were cross-validated using IHC, publicly available datasets, cell culture expriments as well as a PCa xenograft mouse model. Results Compared to adjacent normal endothelial cells (NEC) bulk RNA-seq analysis revealed upregulation of genes associated with tumor vasculature, collagen modification and extracellular matrix remodeling in TEC. PTGIR, PLAC9, CXCL12 and VDR were identified as TEC markers and confirmed by IF and IHC in an independent patient cohort. By scRNA-seq we identified 27 cell (sub)types, including endothelial cells (EC) with arterial, venous and immature signatures, as well as angiogenic tip EC. A focused molecular analysis revealed that arterial TEC displayed highest CXCL12 mRNA expression levels when compared to all other TME cell (sub)populations and showed a negative prognostic role. Receptor-ligand interaction analysis predicted interactions between arterial TEC derived CXCL12 and its cognate receptor CXCR4 on angiogenic tip EC. CXCL12 was in vitro and in vivo validated as actionable TEC target by highlighting the vessel number- and density- reducing activity of the CXCR4-inhibitor AMD3100 in murine PCa as well as by inhibition of TEC proliferation and migration in vitro. Conclusions Overall, our comprehensive analysis identified novel PCa TEC targets and highlights CXCR4/CXCL12 interaction as a potential novel target to interfere with tumor angiogenesis in PCa. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01597-7.
Collapse
|
24
|
Dupont S, Wickström SA. Mechanical regulation of chromatin and transcription. Nat Rev Genet 2022; 23:624-643. [DOI: 10.1038/s41576-022-00493-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 01/14/2023]
|
25
|
Page MM, Ellis KL, Chan DC, Pang J, Hooper AJ, Bell DA, Burnett JR, Moses EK, Watts GF. A variant in the fibronectin (FN1) gene, rs1250229-T, is associated with decreased risk of coronary artery disease in familial hypercholesterolaemia. J Clin Lipidol 2022; 16:525-529. [DOI: 10.1016/j.jacl.2022.05.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022]
|
26
|
Mauersberger C, Hinterdobler J, Schunkert H, Kessler T, Sager HB. Where the Action Is-Leukocyte Recruitment in Atherosclerosis. Front Cardiovasc Med 2022; 8:813984. [PMID: 35087886 PMCID: PMC8787128 DOI: 10.3389/fcvm.2021.813984] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is the leading cause of death worldwide and leukocyte recruitment is a key element of this phenomenon, thus allowing immune cells to enter the arterial wall. There, in concert with accumulating lipids, the invading leukocytes trigger a plethora of inflammatory responses which promote the influx of additional leukocytes and lead to the continued growth of atherosclerotic plaques. The recruitment process follows a precise scheme of tethering, rolling, firm arrest, crawling and transmigration and involves multiple cellular and subcellular players. This review aims to provide a comprehensive up-to-date insight into the process of leukocyte recruitment relevant to atherosclerosis, each from the perspective of endothelial cells, monocytes and macrophages, neutrophils, T lymphocytes and platelets. In addition, therapeutic options targeting leukocyte recruitment into atherosclerotic lesions-or potentially arising from the growing body of insights into its precise mechanisms-are highlighted.
Collapse
Affiliation(s)
- Carina Mauersberger
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Julia Hinterdobler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
27
|
Vascular Pathobiology: Atherosclerosis and Large Vessel Disease. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
28
|
Kircheis R. Coagulopathies after Vaccination against SARS-CoV-2 May Be Derived from a Combined Effect of SARS-CoV-2 Spike Protein and Adenovirus Vector-Triggered Signaling Pathways. Int J Mol Sci 2021; 22:10791. [PMID: 34639132 PMCID: PMC8509779 DOI: 10.3390/ijms221910791] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
Novel coronavirus SARS-CoV-2 has resulted in a global pandemic with worldwide 6-digit infection rates and thousands of death tolls daily. Enormous efforts are undertaken to achieve high coverage of immunization to reach herd immunity in order to stop the spread of SARS-CoV-2 infection. Several SARS-CoV-2 vaccines based on mRNA, viral vectors, or inactivated SARS-CoV-2 virus have been approved and are being applied worldwide. However, the recent increased numbers of normally very rare types of thromboses associated with thrombocytopenia have been reported, particularly in the context of the adenoviral vector vaccine ChAdOx1 nCoV-19 from Astra Zeneca. The statistical prevalence of these side effects seems to correlate with this particular vaccine type, i.e., adenoviral vector-based vaccines, but the exact molecular mechanisms are still not clear. The present review summarizes current data and hypotheses for molecular and cellular mechanisms into one integrated hypothesis indicating that coagulopathies, including thromboses, thrombocytopenia, and other related side effects, are correlated to an interplay of the two components in the vaccine, i.e., the spike antigen and the adenoviral vector, with the innate and immune systems, which under certain circumstances can imitate the picture of a limited COVID-19 pathological picture.
Collapse
|
29
|
Mishchenko EL, Mishchenko AM, Ivanisenko VA. Mechanosensitive molecular interactions in atherogenic regions of the arteries: development of atherosclerosis. Vavilovskii Zhurnal Genet Selektsii 2021; 25:552-561. [PMID: 34595377 PMCID: PMC8453358 DOI: 10.18699/vj21.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 11/30/2022] Open
Abstract
A terrible disease of the cardiovascular system, atherosclerosis, develops in the areas of bends and
branches of arteries, where the direction and modulus of the blood flow velocity vector change, and consequently
so does the mechanical effect on endothelial cells in contact with the blood flow. The review focuses on topical
research studies on the development of atherosclerosis – mechanobiochemical events that transform the proatherogenic
mechanical stimulus of blood flow – low and low/oscillatory arterial wall shear stress in the chains of biochemical
reactions in endothelial cells, leading to the expression of specific proteins that cause the progression
of the pathological process. The stages of atherogenesis, systemic risk factors for atherogenesis and its important
hemodynamic factor, low and low/oscillatory wall shear stress exerted by blood flow on the endothelial cells lining
the arterial walls, have been described. The interactions of cell adhesion molecules responsible for the development
of atherosclerosis under low and low/oscillating shear stress conditions have been demonstrated. The activation
of the regulator of the expression of cell adhesion molecules, the transcription factor NF-κB, and the factors
regulating its activation under these conditions have been described. Mechanosensitive signaling pathways leading
to the expression of NF-κB in endothelial cells have been described. Studies of the mechanobiochemical signaling
pathways and interactions involved in the progression of atherosclerosis provide valuable information for the
development of approaches that delay or block the development of this disease.
Key words: atherogenesis; shear stress; transcription factor NF-κB; RelA expression; mechanosensitive receptors;
cell adhesion molecules; signaling pathways; mechanotransduction.
Collapse
Affiliation(s)
- E L Mishchenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | - V A Ivanisenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
30
|
Budatha M, Zhang J, Schwartz MA. Fibronectin-Mediated Inflammatory Signaling Through Integrin α5 in Vascular Remodeling. J Am Heart Assoc 2021; 10:e021160. [PMID: 34472370 PMCID: PMC8649308 DOI: 10.1161/jaha.121.021160] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Adhesion of vascular endothelial cells to the underlying basement membrane potently modulates endothelial cells to cells' inflammatory activation. The normal basement membrane proteins laminin and collagen IV attenuate inflammatory signaling in part through integrin α2β1. In contrast, fibronectin, the provisional matrix protein found in injured, remodeling or inflamed vessels, sensitizes endothelial cells to inflammatory stimuli through integrins α5β1and and αvβ3. A chimeric integrin in which the cytoplasmic domain of α5 is replaced with that of α2 pairs with β1 and binds fibronectin but signals like α2β1. Methods and Results Here, we examined mice in which integrin α5 is replaced with the α5/2 chimera, using the transverse aortic constriction and partial carotid ligation models of vessel remodeling. Following transverse aortic constriction and partial carotid ligation surgery, wild‐type mice showed increased fibronectin deposition and expression of inflammatory markers, which were strongly attenuated in a5/2 mice. α5/2 mice also showed reduced artery wall hypertrophy in the transverse aortic constriction model and diminished inward remodeling in the partial carotid ligation model. Acute atherosclerosis after partial carotid ligation in hyperlipidemic ApoE−/− mice on a high fat diet was dramatically decreased in α5/2 mice. Conclusions Fibronectin and integrin α5 signaling is a key element of pathological vascular remodeling in acute models of both hypertension and disturbed flow. These results underscore the key role for integrin α5 signaling in pathological vascular remodeling associated with hypertension and atherosclerosis and support its potential as a therapeutic target.
Collapse
Affiliation(s)
- Madhusudhan Budatha
- Department of Medicine Division of Nephrology University of Texas Long School of Medicine San Antonio TX.,Yale Cardiovascular Research Center New Haven CT.,Department of Internal Medicine (Cardiology) Yale School of Medicine New Haven CT
| | | | - Martin A Schwartz
- Yale Cardiovascular Research Center New Haven CT.,Department of Internal Medicine (Cardiology) Yale School of Medicine New Haven CT.,Departments of Cell Biology and Biomedical Engineering Yale University New Haven CT
| |
Collapse
|
31
|
Alfaidi M, Scott ML, Orr AW. Sinner or Saint?: Nck Adaptor Proteins in Vascular Biology. Front Cell Dev Biol 2021; 9:688388. [PMID: 34124074 PMCID: PMC8187788 DOI: 10.3389/fcell.2021.688388] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/28/2021] [Indexed: 12/28/2022] Open
Abstract
The Nck family of modular adaptor proteins, including Nck1 and Nck2, link phosphotyrosine signaling to changes in cytoskeletal dynamics and gene expression that critically modulate cellular phenotype. The Nck SH2 domain interacts with phosphotyrosine at dynamic signaling hubs, such as activated growth factor receptors and sites of cell adhesion. The Nck SH3 domains interact with signaling effectors containing proline-rich regions that mediate their activation by upstream kinases. In vascular biology, Nck1 and Nck2 play redundant roles in vascular development and postnatal angiogenesis. However, recent studies suggest that Nck1 and Nck2 differentially regulate cell phenotype in the adult vasculature. Domain-specific interactions likely mediate these isoform-selective effects, and these isolated domains may serve as therapeutic targets to limit specific protein-protein interactions. In this review, we highlight the function of the Nck adaptor proteins, the known differences in domain-selective interactions, and discuss the role of individual Nck isoforms in vascular remodeling and function.
Collapse
Affiliation(s)
- Mabruka Alfaidi
- Department of Pathology and Translational Pathobiology, Louisiana State University Health - Shreveport, Shreveport, LA, United States
| | - Matthew L Scott
- Department of Pathology and Translational Pathobiology, Louisiana State University Health - Shreveport, Shreveport, LA, United States
| | - Anthony Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health - Shreveport, Shreveport, LA, United States.,Department of Cell Biology and Anatomy, LSU Health - Shreveport, Shreveport, LA, United States.,Department of Molecular & Cellular Physiology, LSU Health - Shreveport, Shreveport, LA, United States
| |
Collapse
|
32
|
Okamoto T, Park EJ, Kawamoto E, Usuda H, Wada K, Taguchi A, Shimaoka M. Endothelial connexin-integrin crosstalk in vascular inflammation. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166168. [PMID: 33991620 DOI: 10.1016/j.bbadis.2021.166168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/18/2021] [Accepted: 05/02/2021] [Indexed: 02/06/2023]
Abstract
Cardiovascular diseases including blood vessel disorders represent a major cause of death globally. The essential roles played by local and systemic vascular inflammation in the pathogenesis of cardiovascular diseases have been increasingly recognized. Vascular inflammation triggers the aberrant activation of endothelial cells, which leads to the functional and structural abnormalities in vascular vessels. In addition to humoral mediators such as pro-inflammatory cytokines and prostaglandins, the alteration of physical and mechanical microenvironment - including vascular stiffness and shear stress - modify the gene expression profiles and metabolic profiles of endothelial cells via mechano-transduction pathways, thereby contributing to the pathogenesis of vessel disorders. Notably, connexins and integrins crosstalk each other in response to the mechanical stress, and, thereby, play an important role in regulating the mechano-transduction of endothelial cells. Here, we provide an overview on how the inter-play between connexins and integrins in endothelial cells unfold during the mechano-transduction in vascular inflammation.
Collapse
Affiliation(s)
- Takayuki Okamoto
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan.
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan; Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan
| | - Haruki Usuda
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan
| | - Koichiro Wada
- Department of Pharmacology, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-city, Shimane 693-8501, Japan
| | - Akihiko Taguchi
- Department of Regenerative Medicine Research, Foundation for Biomedical Research and Innovation at Kobe, 2-2 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-city, Mie 514-8507, Japan.
| |
Collapse
|
33
|
Mo FE. Shear-Regulated Extracellular Microenvironments and Endothelial Cell Surface Integrin Receptors Intertwine in Atherosclerosis. Front Cell Dev Biol 2021; 9:640781. [PMID: 33889574 PMCID: PMC8056009 DOI: 10.3389/fcell.2021.640781] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/18/2021] [Indexed: 01/22/2023] Open
Abstract
Mechanical forces imposed by blood flow shear stress directly modulate endothelial gene expression and functional phenotype. The production of extracellular matrix proteins and corresponding cell-surface integrin receptors in arterial endothelial cells is intricately regulated by blood flow patterns. Laminar blood flow promotes mature and atheroresistant endothelial phenotype, while disturbed flow induces dysfunctional and atheroprone endothelial responses. Here, we discuss how hemodynamic changes orchestrate the remodeling of extracellular microenvironments and the expression profile of the integrin receptors in endothelial cells leading to oxidative stress and inflammation. Targeting the interaction between matrix proteins and their corresponding integrins is a potential therapeutic approach for atherosclerosis.
Collapse
Affiliation(s)
- Fan-E Mo
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
34
|
The molecular mechanism of mechanotransduction in vascular homeostasis and disease. Clin Sci (Lond) 2021; 134:2399-2418. [PMID: 32936305 DOI: 10.1042/cs20190488] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Blood vessels are constantly exposed to mechanical stimuli such as shear stress due to flow and pulsatile stretch. The extracellular matrix maintains the structural integrity of the vessel wall and coordinates with a dynamic mechanical environment to provide cues to initiate intracellular signaling pathway(s), thereby changing cellular behaviors and functions. However, the precise role of matrix-cell interactions involved in mechanotransduction during vascular homeostasis and disease development remains to be fully determined. In this review, we introduce hemodynamics forces in blood vessels and the initial sensors of mechanical stimuli, including cell-cell junctional molecules, G-protein-coupled receptors (GPCRs), multiple ion channels, and a variety of small GTPases. We then highlight the molecular mechanotransduction events in the vessel wall triggered by laminar shear stress (LSS) and disturbed shear stress (DSS) on vascular endothelial cells (ECs), and cyclic stretch in ECs and vascular smooth muscle cells (SMCs)-both of which activate several key transcription factors. Finally, we provide a recent overview of matrix-cell interactions and mechanotransduction centered on fibronectin in ECs and thrombospondin-1 in SMCs. The results of this review suggest that abnormal mechanical cues or altered responses to mechanical stimuli in EC and SMCs serve as the molecular basis of vascular diseases such as atherosclerosis, hypertension and aortic aneurysms. Collecting evidence and advancing knowledge on the mechanotransduction in the vessel wall can lead to a new direction of therapeutic interventions for vascular diseases.
Collapse
|
35
|
Tanaka K, Joshi D, Timalsina S, Schwartz MA. Early events in endothelial flow sensing. Cytoskeleton (Hoboken) 2021; 78:217-231. [PMID: 33543538 DOI: 10.1002/cm.21652] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/15/2022]
Abstract
Responses of vascular and lymphatic endothelial cells (ECs) to fluid shear stress (FSS) from blood or lymphatic fluid flow govern the development, physiology, and diseases of these structures. Extensive research has characterized the signaling, gene expression and cytoskeletal pathways that mediate effects on EC phenotype and vascular morphogenesis. But the primary mechanisms by which ECs transduce the weak forces from flow into biochemical signals are less well understood. This review covers recent advances in our understanding of the immediate mechanisms of FSS mechanotransduction, integrating results from different disciplines, addressing their roles in development, physiology and disease, and suggesting important questions for future work.
Collapse
Affiliation(s)
- Keiichiro Tanaka
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Divyesh Joshi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Sushma Timalsina
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA.,Department of Cell Biology, Yale University, New Haven, Connecticut, USA.,Department of Biomedical engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
36
|
Alfaidi M, Acosta CH, Wang D, Traylor JG, Orr AW. Selective role of Nck1 in atherogenic inflammation and plaque formation. J Clin Invest 2021; 130:4331-4347. [PMID: 32427580 DOI: 10.1172/jci135552] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/13/2020] [Indexed: 12/25/2022] Open
Abstract
Although the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS) established the role of treating inflammation in atherosclerosis, our understanding of endothelial activation at atherosclerosis-prone sites remains limited. Disturbed flow at atheroprone regions primes plaque inflammation by enhancing endothelial NF-κB signaling. Herein, we demonstrate a role for the Nck adaptor proteins in disturbed flow-induced endothelial activation. Although highly similar, only Nck1 deletion, but not Nck2 deletion, limited flow-induced NF-κB activation and proinflammatory gene expression. Nck1-knockout mice showed reduced endothelial activation and inflammation in both models, disturbed flow- and high fat diet-induced atherosclerosis, whereas Nck2 deletion did not. Bone marrow chimeras confirmed that vascular Nck1, but not hematopoietic Nck1, mediated this effect. Domain-swap experiments and point mutations identified the Nck1 SH2 domain and the first SH3 domain as critical for flow-induced endothelial activation. We further characterized Nck1's proinflammatory role by identifying interleukin 1 type I receptor kinase-1 (IRAK-1) as a Nck1-selective binding partner, demonstrating that IRAK-1 activation by disturbed flow required Nck1 in vitro and in vivo, showing endothelial Nck1 and IRAK-1 staining in early human atherosclerosis, and demonstrating that disturbed flow-induced endothelial activation required IRAK-1. Taken together, our data reveal a hitherto unknown link between Nck1 and IRAK-1 in atherogenic inflammation.
Collapse
Affiliation(s)
- Mabruka Alfaidi
- Department of Pathology and Translational Pathobiology.,Center for Cardiovascular Diseases and Sciences
| | | | - Dongdong Wang
- Department of Pathology and Translational Pathobiology.,Center for Cardiovascular Diseases and Sciences
| | - James G Traylor
- Department of Pathology and Translational Pathobiology.,Center for Cardiovascular Diseases and Sciences
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology.,Center for Cardiovascular Diseases and Sciences.,Department of Cell Biology and Anatomy, and.,Department of Molecular and Cellular Physiology, LSU Health Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
37
|
Suppressive Effects of the Gynura bicolor Ether Extract on Endothelial Permeability and Leukocyte Transmigration in Human Endothelial Cells Induced by TNF- α. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2020:9413724. [PMID: 33425001 PMCID: PMC7772037 DOI: 10.1155/2020/9413724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/16/2020] [Accepted: 12/06/2020] [Indexed: 11/25/2022]
Abstract
Gynura bicolor (Roxb. and Willd.) DC (G. bicolor) is generally used as a dietary vegetable and traditional herb in Taiwan and the Far East. G. bicolor exerts antioxidant and anti-inflammatory effects and regulates blood lipids and cholesterol. However, the effects of G. bicolor on endothelial transmigration and atherosclerosis are not clear. The present study investigated the effects of G. bicolor on endothelial permeability and transmigration in human endothelial cells. We prepared G. bicolor ether extract (GBEE) for use as the experimental material. Under TNF-α stimulation, HL-60 cell adherence to EA.hy926 cells, the shape of EA.hy926 cells, and the expression of adhesion molecules and transmigration-related regulatory molecules were analysed after pretreatment with GBEE for 24 h. GBEE inhibited leukocyte adhesion to endothelial cells, reduced intercellular adhesion molecule-1 (ICAM-1) and platelet endothelial cell adhesion molecule-1 (PECAM-1) expressions, and decreased endothelial monolayer permeability. GBEE also reduced paracellular transmigration by reducing the levels of reactive oxygen species (ROS), Src phosphorylation, and vascular endothelial-cadherin (VE-cadherin) phosphorylation. GBEE reduced transcellular migration via inhibition of Ras homolog family member A (RhoA) and Rho-associated protein kinase (ROCK) expression and phosphorylation of the ezrin-radixin-moesin (ERM) protein. Incubation of EA.hy926 cells with GBEE for 8 h and stimulation with TNF-α for 3 h reduced the phosphorylation of the inhibitor of kappa B (IĸB) and DNA-binding activity of nuclear factor-ĸB (NF-ĸB). These results suggest that GBEE has a protective effect against endothelial dysfunction via suppression of leukocyte-endothelium adhesion and transmigration.
Collapse
|
38
|
Murphy PA, Jailkhani N, Nicholas SA, Del Rosario AM, Balsbaugh JL, Begum S, Kimble A, Hynes RO. Alternative Splicing of FN (Fibronectin) Regulates the Composition of the Arterial Wall Under Low Flow. Arterioscler Thromb Vasc Biol 2021; 41:e18-e32. [PMID: 33207933 PMCID: PMC8428803 DOI: 10.1161/atvbaha.120.314013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Exposure of the arterial endothelium to low and disturbed flow is a risk factor for the erosion and rupture of atherosclerotic plaques and aneurysms. Circulating and locally produced proteins are known to contribute to an altered composition of the extracellular matrix at the site of lesions, and to contribute to inflammatory processes within the lesions. We have previously shown that alternative splicing of FN (fibronectin) protects against flow-induced hemorrhage. However, the impact of alternative splicing of FN on extracellular matrix composition remains unknown. Approach and Results: Here, we perform quantitative proteomic analysis of the matrisome of murine carotid arteries in mice deficient in the production of FN splice isoforms containing alternative exons EIIIA and EIIIB (FN-EIIIAB null) after exposure to low and disturbed flow in vivo. We also examine serum-derived and endothelial-cell contributions to the matrisome in a simplified in vitro system. We found flow-induced differences in the carotid artery matrisome that were impaired in FN-EIIIAB null mice. One of the most interesting differences was reduced recruitment of FBLN1 (fibulin-1), abundant in blood and not locally produced in the intima. This defect was validated in our in vitro assay, where FBLN1 recruitment from serum was impaired by the absence of these alternatively spliced segments. CONCLUSIONS Our results reveal the extent of the dynamic alterations in the matrisome in the acute response to low and disturbed flow and show how changes in the splicing of FN, a common response in vascular inflammation and remodeling, can affect matrix composition.
Collapse
Affiliation(s)
- Patrick A. Murphy
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139
- UCONN Health, Farmington, CT 06030
| | - Noor Jailkhani
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139
| | | | | | | | - Shahinoor Begum
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | | | - Richard O. Hynes
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139
- Howard Hughes Medical Institute, Chevy Chase, MD 20815
| |
Collapse
|
39
|
Nakayama A, Albarrán-Juárez J, Liang G, Roquid KA, Iring A, Tonack S, Chen M, Müller OJ, Weinstein LS, Offermanns S. Disturbed flow-induced Gs-mediated signaling protects against endothelial inflammation and atherosclerosis. JCI Insight 2020; 5:140485. [PMID: 33268595 PMCID: PMC7714404 DOI: 10.1172/jci.insight.140485] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/28/2020] [Indexed: 01/05/2023] Open
Abstract
Atherosclerosis develops preferentially in areas of the arterial system, in which blood flow is disturbed. Exposure of endothelial cells to disturbed flow has been shown to induce inflammatory signaling, including NF-κB activation, which leads to the expression of leukocyte adhesion molecules and chemokines. Here, we show that disturbed flow promotes the release of adrenomedullin from endothelial cells, which in turn activates its Gs-coupled receptor calcitonin receptor–like receptor (CALCRL). This induces antiinflammatory signaling through cAMP and PKA, and it results in reduced endothelial inflammation in vitro and in vivo. Suppression of endothelial expression of Gαs, the α subunit of the G-protein Gs; CALCRL; or adrenomedullin leads to increased disturbed flow–induced inflammatory signaling in vitro and in vivo. Furthermore, mice with induced endothelial-specific deficiency of Gαs, CALCRL, or adrenomedullin show increased atherosclerotic lesions. Our data identify an antiinflammatory signaling pathway in endothelial cells stimulated by disturbed flow and suggest activation of the endothelial adrenomedullin/CALCRL/Gs system as a promising approach to inhibit progression of atherosclerosis. Disturbed flow promotes the release of adrenomedullin from endothelial cells and activates Gs-mediated signaling, which reduces endothelial inflammation in vitro and in vivo.
Collapse
Affiliation(s)
- Akiko Nakayama
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Julián Albarrán-Juárez
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Guozheng Liang
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Kenneth Anthony Roquid
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - András Iring
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Sarah Tonack
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Min Chen
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Oliver J Müller
- Department of Internal Medicine III, University of Kiel, Kiel, and German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Germany
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany.,Centre for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt, Frankfurt, Germany.,DZHK RheinMain, Germany
| |
Collapse
|
40
|
Durotaxis behavior of bEnd.3 cells on soft substrate with patterned platinum nanoparticle array. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01618-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
41
|
Al-Yafeai Z, Pearson BH, Peretik JM, Cockerham ED, Reeves KA, Bhattarai U, Wang D, Petrich BG, Orr AW. Integrin affinity modulation critically regulates atherogenic endothelial activation in vitro and in vivo. Matrix Biol 2020; 96:87-103. [PMID: 33157226 DOI: 10.1016/j.matbio.2020.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022]
Abstract
While vital to platelet and leukocyte adhesion, the role of integrin affinity modulation in adherent cells remains controversial. In endothelial cells, atheroprone hemodynamics and oxidized lipoproteins drive an increase in the high affinity conformation of α5β1 integrins in endothelial cells in vitro, and α5β1 integrin inhibitors reduce proinflammatory endothelial activation to these stimuli in vitro and in vivo. However, the importance of α5β1 integrin affinity modulation to endothelial phenotype remains unknown. We now show that endothelial cells (talin1 L325R) unable to induce high affinity integrins initially adhere and spread but show significant defects in nascent adhesion formation. In contrast, overall focal adhesion number, area, and composition in stably adherent cells are similar between talin1 wildtype and talin1 L325R endothelial cells. However, talin1 L325R endothelial cells fail to induce high affinity α5β1 integrins, fibronectin deposition, and proinflammatory responses to atheroprone hemodynamics and oxidized lipoproteins. Inducing the high affinity conformation of α5β1 integrins in talin1 L325R endothelial cells suggest that NF-κB activation and maximal fibronectin deposition require both integrin activation and other integrin-independent signaling. In endothelial-specific talin1 L325R mice, atheroprone hemodynamics fail to promote inflammation and macrophage recruitment, demonstrating a vital role for integrin activation in regulating endothelial phenotype.
Collapse
Affiliation(s)
- Zaki Al-Yafeai
- Departments of Molecular and Cellular Physiology, LSU Health Sciences Center - Shreveport, Shreveport, LA 71130, United States
| | - Brenna H Pearson
- Departments of Molecular and Cellular Physiology, LSU Health Sciences Center - Shreveport, Shreveport, LA 71130, United States
| | - Jonette M Peretik
- Pathology and Translational Pathobiology,LSU Health Sciences Center - Shreveport, Shreveport, LA 71130, United States
| | - Elizabeth D Cockerham
- Pathology and Translational Pathobiology,LSU Health Sciences Center - Shreveport, Shreveport, LA 71130, United States
| | - Kaylea A Reeves
- Pathology and Translational Pathobiology,LSU Health Sciences Center - Shreveport, Shreveport, LA 71130, United States
| | - Umesh Bhattarai
- Departments of Molecular and Cellular Physiology, LSU Health Sciences Center - Shreveport, Shreveport, LA 71130, United States
| | - Dongdong Wang
- Pathology and Translational Pathobiology,LSU Health Sciences Center - Shreveport, Shreveport, LA 71130, United States
| | - Brian G Petrich
- Department of Pediatrics, Shreveport, LA, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA, United States
| | - A Wayne Orr
- Departments of Molecular and Cellular Physiology, LSU Health Sciences Center - Shreveport, Shreveport, LA 71130, United States.; Cell Biology and Anatomy,LSU Health Sciences Center - Shreveport, Shreveport, LA 71130, United States.; Pathology and Translational Pathobiology,LSU Health Sciences Center - Shreveport, Shreveport, LA 71130, United States.; Department of Pathology and Translational Pathobiology, 1501 Kings Hwy, Biomedical Research Institute, Rm. 6-21, LSU Health Sciences Center - Shreveport, Shreveport, LA 71130, United States.
| |
Collapse
|
42
|
Myeloperoxidase: A versatile mediator of endothelial dysfunction and therapeutic target during cardiovascular disease. Pharmacol Ther 2020; 221:107711. [PMID: 33137376 DOI: 10.1016/j.pharmthera.2020.107711] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Myeloperoxidase (MPO) is a prominent mammalian heme peroxidase and a fundamental component of the innate immune response against microbial pathogens. In recent times, MPO has received considerable attention as a key oxidative enzyme capable of impairing the bioactivity of nitric oxide (NO) and promoting endothelial dysfunction; a clinically relevant event that manifests throughout the development of inflammatory cardiovascular disease. Increasing evidence indicates that during cardiovascular disease, MPO is released intravascularly by activated leukocytes resulting in its transport and sequestration within the vascular endothelium. At this site, MPO catalyzes various oxidative reactions that are capable of promoting vascular inflammation and impairing NO bioactivity and endothelial function. In particular, MPO catalyzes the production of the potent oxidant hypochlorous acid (HOCl) and the catalytic consumption of NO via the enzyme's NO oxidase activity. An emerging paradigm is the ability of MPO to also influence endothelial function via non-catalytic, cytokine-like activities. In this review article we discuss the implications of our increasing knowledge of the versatility of MPO's actions as a mediator of cardiovascular disease and endothelial dysfunction for the development of new pharmacological agents capable of effectively combating MPO's pathogenic activities. More specifically, we will (i) discuss the various transport mechanisms by which MPO accumulates into the endothelium of inflamed or diseased arteries, (ii) detail the clinical and basic scientific evidence identifying MPO as a significant cause of endothelial dysfunction and cardiovascular disease, (iii) provide an up-to-date coverage on the different oxidative mechanisms by which MPO can impair endothelial function during cardiovascular disease including an evaluation of the contributions of MPO-catalyzed HOCl production and NO oxidation, and (iv) outline the novel non-enzymatic mechanisms of MPO and their potential contribution to endothelial dysfunction. Finally, we deliver a detailed appraisal of the different pharmacological strategies available for targeting the catalytic and non-catalytic modes-of-action of MPO in order to protect against endothelial dysfunction in cardiovascular disease.
Collapse
|
43
|
Qu D, Wang L, Huo M, Song W, Lau CW, Xu J, Xu A, Yao X, Chiu JJ, Tian XY, Huang Y. Focal TLR4 activation mediates disturbed flow-induced endothelial inflammation. Cardiovasc Res 2020; 116:226-236. [PMID: 30785200 DOI: 10.1093/cvr/cvz046] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 07/19/2018] [Accepted: 02/18/2019] [Indexed: 11/13/2022] Open
Abstract
AIMS Disturbed blood flow at arterial branches and curvatures modulates endothelial function and predisposes the region to endothelial inflammation and subsequent development of atherosclerotic lesions. Activation of the endothelial Toll-like receptors (TLRs), in particular TLR4, contributes to vascular inflammation. Therefore, we investigate whether TLR4 can sense disturbed flow (DF) to mediate the subsequent endothelial inflammation. METHODS AND RESULTS En face staining of endothelium revealed that TLR4 expression, activation, and its downstream inflammatory markers were elevated in mouse aortic arch compared with thoracic aorta, which were absent in Tlr4mut mice. Similar results were observed in the partial carotid ligation model where TLR4 signalling was activated in response to ligation-induced flow disturbance in mouse carotid arteries, and such effect was attenuated in Tlr4mut mice. DF in vitro increased TLR4 expression and activation in human endothelial cells (ECs) and promoted monocyte-EC adhesion, which were inhibited in TLR4-knockdown ECs. Among endogenous TLR4 ligands examined as candidate mediators of DF-induced TLR4 activation, fibronectin containing the extra domain A (FN-EDA) expressed by ECs was increased by DF and was revealed to directly interact with and activate TLR4. CONCLUSION Our findings demonstrate the indispensable role of TLR4 in DF-induced endothelial inflammation and pinpoint FN-EDA as the endogenous TLR4 activator in this scenario. This novel mechanism of vascular inflammation under DF condition may serve as a critical initiating step in atherogenesis.
Collapse
Affiliation(s)
- Dan Qu
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Li Wang
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Mingyu Huo
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Wencong Song
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Chi-Wai Lau
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Jian Xu
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
| | - Xiaoqiang Yao
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Jeng-Jiann Chiu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Xiao Yu Tian
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
44
|
Hebbel RP, Wei P, Milbauer L, Corban MT, Solovey A, Kiley J, Pattee J, Lerman LO, Pan W, Lerman A. Abnormal Endothelial Gene Expression Associated With Early Coronary Atherosclerosis. J Am Heart Assoc 2020; 9:e016134. [PMID: 32673514 PMCID: PMC7660702 DOI: 10.1161/jaha.120.016134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background We examined feasibility of a unique approach towards gaining insight into heritable risk for early atherosclerosis: surveying gene expression by endothelial cells from living subjects. Methods and Results Subjects aged <50 years (mean age, 37; range, 22-49) without obstructive coronary artery disease underwent coronary reactivity testing that identified them as having normal or abnormal coronary endothelial function. Cultures of Blood Outgrowth Endothelial Cells (BOEC) from 6 normal and 13 abnormal subjects passed rigorous quality control and were used for microarray assessment of gene expression. Of 9 genes differentially expressed at false discovery rate <0.1%, we here focus upon abnormal subjects having elevated expression of HMGB1 (high mobility group box 1) which we unexpectedly found to be linked to low LAMC1 (laminin gamma 1) expression. This linkage was corroborated by 3 of our past studies and confirmed bio-functionally. Compared with normal BOEC, abnormal BOEC released 13±3-fold more HMGB1 in response to lipopolysaccharide; and they deposited one tenth as much LAMC1 into collagen subendothelial matrix during culture. Clinical follow-up data are provided for 4 normal subjects (followed 13.4±0.1 year) and for 12 abnormal subjects (followed 9.1±4.5 years). Conclusions The known pathogenic effects of high-HMGB1 and low-LAMC1 predict that the combination would biologically converge upon the focal adhesion complex, to the detriment of endothelial shear responsiveness. This gene expression pattern may comprise a heritable risk state that promotes early coronary atherosclerosis. If so, the testing could be applied even in childhood, enabling early intervention. This approach offers a way to bridge the information gap between genetics and clinical phenotype.
Collapse
Affiliation(s)
- Robert P Hebbel
- Division of Hematology-Oncology-Transplantation Department of Medicine, and Vascular Biology Center University of Minnesota Medical School Minneapolis MN
| | - Peng Wei
- Division of Hematology-Oncology-Transplantation Department of Medicine, and Vascular Biology Center University of Minnesota Medical School Minneapolis MN.,Division of Biostatistics School of Public Health University of Minnesota Minneapolis MN
| | - Liming Milbauer
- Division of Hematology-Oncology-Transplantation Department of Medicine, and Vascular Biology Center University of Minnesota Medical School Minneapolis MN
| | - Michel T Corban
- Department of Cardiovascular Diseases Mayo Clinic College of Medicine and Science Rochester MN
| | - Anna Solovey
- Division of Hematology-Oncology-Transplantation Department of Medicine, and Vascular Biology Center University of Minnesota Medical School Minneapolis MN
| | - James Kiley
- Division of Hematology-Oncology-Transplantation Department of Medicine, and Vascular Biology Center University of Minnesota Medical School Minneapolis MN
| | - Jack Pattee
- Division of Biostatistics School of Public Health University of Minnesota Minneapolis MN
| | - Lilach O Lerman
- Department of Cardiovascular Diseases Mayo Clinic College of Medicine and Science Rochester MN.,Division of Nephrology and Hypertension Department of Medicine Mayo Clinic College of Medicine and Science Rochester MN
| | - Wei Pan
- Division of Biostatistics School of Public Health University of Minnesota Minneapolis MN
| | - Amir Lerman
- Department of Cardiovascular Diseases Mayo Clinic College of Medicine and Science Rochester MN
| |
Collapse
|
45
|
Zhang C, Zhou T, Chen Z, Yan M, Li B, Lv H, Wang C, Xiang S, Shi L, Zhu Y, Ai D. Coupling of Integrin α5 to Annexin A2 by Flow Drives Endothelial Activation. Circ Res 2020; 127:1074-1090. [PMID: 32673515 DOI: 10.1161/circresaha.120.316857] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RATIONALE Atherosclerosis preferentially occurs at specific sites of the vasculature where endothelial cells (ECs) are exposed to disturbed blood flow. Translocation of integrin α5 to lipid rafts promotes integrin activation and ligation, which is critical for oscillatory shear stress (OSS)-induced EC activation. However, the underlying mechanism of OSS promoted integrin α5 lipid raft translocation has remained largely unknown. OBJECTIVE The objective of this study was to specify the mechanotransduction mechanism of OSS-induced integrin α5 translocation and subsequent EC activation. METHODS AND RESULTS Mass spectrometry studies identified endothelial ANXA2 (annexin A2) as a potential carrier allowing integrin α5β1 to traffic in response to OSS. Interference by siRNA of AnxA2 in ECs greatly decreased OSS-induced integrin α5β1 translocation to lipid rafts, EC activation, and monocyte adhesion. Pharmacological and genetic inhibition of PTP1B (protein tyrosine phosphatase 1B) blunted OSS-induced integrin α5β1 activation, which is dependent on Piezo1-mediated calcium influx in ECs. Furthermore, ANXA2 was identified as a direct substrate of activated PTP1B by mass spectrometry. Using bioluminescence resonance energy transfer assay, PTP1B-dephosphorylated ANXA2 at Y24 was found to lead to conformational freedom of the C-terminal core domain from the N-terminal domain of ANXA2. Immunoprecipitation assays showed that this unmasked ANXA2-C-terminal core domain specifically binds to an integrin α5 nonconserved cytoplasmic domain but not β1. Importantly, ectopic lentiviral overexpression of an ANXA2Y24F mutant increased and shRNA against Ptp1B decreased integrin α5β1 ligation, inflammatory signaling, and progression of plaques at atheroprone sites in apolipoprotein E (ApoE)-/- mice. However, the antiatherosclerotic effect of Ptp1B shRNA was abolished in AnxA2-/-ApoE-/- mice. CONCLUSIONS Our data elucidate a novel endothelial mechanotransduction molecular mechanism linking atheroprone flow and activation of integrin α5β1, thereby identifying a class of potential therapeutic targets for atherosclerosis. Graphic Abstract: An graphic abstract is available for this article.
Collapse
Affiliation(s)
- Chenghu Zhang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases (C.Z., T.Z., Z.C., M.Y., B.L., H.L., C.W., Y.Z., D.A.), Tianjin Medical University, China
| | - Ting Zhou
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases (C.Z., T.Z., Z.C., M.Y., B.L., H.L., C.W., Y.Z., D.A.), Tianjin Medical University, China
| | - Zhipeng Chen
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases (C.Z., T.Z., Z.C., M.Y., B.L., H.L., C.W., Y.Z., D.A.), Tianjin Medical University, China
| | - Meng Yan
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases (C.Z., T.Z., Z.C., M.Y., B.L., H.L., C.W., Y.Z., D.A.), Tianjin Medical University, China
| | - Bochuan Li
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases (C.Z., T.Z., Z.C., M.Y., B.L., H.L., C.W., Y.Z., D.A.), Tianjin Medical University, China
| | - Huizhen Lv
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases (C.Z., T.Z., Z.C., M.Y., B.L., H.L., C.W., Y.Z., D.A.), Tianjin Medical University, China.,National Clinical Research Center for Blood Diseases; Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (H.L., L.S., D.A.)
| | - Chunjiong Wang
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases (C.Z., T.Z., Z.C., M.Y., B.L., H.L., C.W., Y.Z., D.A.), Tianjin Medical University, China
| | - Song Xiang
- Department of Biochemistry and Molecular Biology (S.X., L.S.), Tianjin Medical University, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology (S.X., L.S.), Tianjin Medical University, China.,National Clinical Research Center for Blood Diseases; Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (H.L., L.S., D.A.)
| | - Yi Zhu
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases (C.Z., T.Z., Z.C., M.Y., B.L., H.L., C.W., Y.Z., D.A.), Tianjin Medical University, China
| | - Ding Ai
- State Key Laboratory of Experimental Hematology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Key Laboratory of Metabolic Diseases (C.Z., T.Z., Z.C., M.Y., B.L., H.L., C.W., Y.Z., D.A.), Tianjin Medical University, China.,National Clinical Research Center for Blood Diseases; Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China (H.L., L.S., D.A.)
| |
Collapse
|
46
|
Alfaidi M, Bhattarai U, Orr AW. Nck1, But Not Nck2, Mediates Disturbed Flow-Induced p21-Activated Kinase Activation and Endothelial Permeability. J Am Heart Assoc 2020; 9:e016099. [PMID: 32468886 PMCID: PMC7428973 DOI: 10.1161/jaha.120.016099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Alteration in hemodynamic shear stress at atheroprone sites promotes endothelial paracellular pore formation and permeability. The molecular mechanism remains unknown. Methods and Results We show that Nck (noncatalytic region of tyrosine kinase) deletion significantly ameliorates disturbed flow‐induced permeability, and selective isoform depletion suggests distinct signaling mechanisms. Only Nck1 deletion significantly reduces disturbed flow‐induced paracellular pore formation and permeability, whereas Nck2 depletion has no significant effects. Additionally, Nck1 re‐expression, but not Nck2, restores disturbed flow‐induced permeability in Nck1/2 knockout cells, confirming the noncompensating roles. In vivo, using the partial carotid ligation model of disturbed flow, Nck1 knockout prevented the increase in vascular permeability, as assessed by Evans blue and fluorescein isothiocyanate dextran extravasations and leakage of plasma fibrinogen into the vessel wall. Domain swap experiments mixing SH2 (phosphotyrosine binding) and SH3 (proline‐rich binding) domains between Nck1 and Nck2 showed a dispensable role for SH2 domains but a critical role for the Nck1 SH3 domains in rescuing disturbed flow‐induced endothelial permeability. Consistent with this, both Nck1 and Nck2 bind to platelet endothelial adhesion molecule‐1 (SH2 dependent) in response to shear stress, but only Nck1 ablation interferes with shear stress–induced PAK2 (p21‐activated kinase) membrane translocation and activation. A single point mutation into individual Nck1 SH3 domains suggests a role for the first domain of Nck1 in PAK recruitment to platelet endothelial cell adhesion molecule‐1 and activation in response to shear stress. Conclusions This work provides the first evidence that Nck1 but not the highly similar Nck2 plays a distinct role in disturbed flow‐induced vascular permeability by selective p21‐activated kinase activation.
Collapse
Affiliation(s)
- Mabruka Alfaidi
- Department of Pathology and Translational Pathobiology LSU Health-Shreveport LA
| | - Umesh Bhattarai
- Department of Molecular& Cellular Physiology LSU Health-Shreveport LA
| | - A Wayne Orr
- Department of Pathology and Translational Pathobiology LSU Health-Shreveport LA.,Department of Molecular& Cellular Physiology LSU Health-Shreveport LA.,Department of Cell Biology and Anatomy LSU Health-Shreveport LA
| |
Collapse
|
47
|
|
48
|
Arteriogenesis of the Spinal Cord-The Network Challenge. Cells 2020; 9:cells9020501. [PMID: 32098337 PMCID: PMC7072838 DOI: 10.3390/cells9020501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/27/2022] Open
Abstract
Spinal cord ischemia (SCI) is a clinical complication following aortic repair that significantly impairs the quality and expectancy of life. Despite some strategies, like cerebrospinal fluid drainage, the occurrence of neurological symptoms, such as paraplegia and paraparesis, remains unpredictable. Beside the major blood supply through conduit arteries, a huge collateral network protects the central nervous system from ischemia—the paraspinous and the intraspinal compartment. The intraspinal arcades maintain perfusion pressure following a sudden inflow interruption, whereas the paraspinal system first needs to undergo arteriogenesis to ensure sufficient blood supply after an acute ischemic insult. The so-called steal phenomenon can even worsen the postoperative situation by causing the hypoperfusion of the spine when, shortly after thoracoabdominal aortic aneurysm (TAAA) surgery, muscles connected with the network divert blood and cause additional stress. Vessels are a conglomeration of different cell types involved in adapting to stress, like endothelial cells, smooth muscle cells, and pericytes. This adaption to stress is subdivided in three phases—initiation, growth, and the maturation phase. In fields of endovascular aortic aneurysm repair, pre-operative selective segmental artery occlusion may enable the development of a sufficient collateral network by stimulating collateral vessel growth, which, again, may prevent spinal cord ischemia. Among others, the major signaling pathways include the phosphoinositide 3 kinase (PI3K) pathway/the antiapoptotic kinase (AKT) pathway/the endothelial nitric oxide synthase (eNOS) pathway, the Erk1, the delta-like ligand (DII), the jagged (Jag)/NOTCH pathway, and the midkine regulatory cytokine signaling pathways.
Collapse
|
49
|
Lay AJ, Coleman PR, Formaz-Preston A, Ting KK, Roediger B, Weninger W, Schwartz MA, Vadas MA, Gamble JR. ARHGAP18: A Flow-Responsive Gene That Regulates Endothelial Cell Alignment and Protects Against Atherosclerosis. J Am Heart Assoc 2020; 8:e010057. [PMID: 30630384 PMCID: PMC6497359 DOI: 10.1161/jaha.118.010057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Vascular endothelial cell (EC) alignment in the direction of flow is an adaptive response that protects against aortic diseases, such as atherosclerosis. The Rho GTPases are known to regulate this alignment. Herein, we analyze the effect of ARHGAP18 on the regulation of EC alignment and examine the effect of ARHGAP18 deficiency on the development of atherosclerosis in mice. Methods and Results We used in vitro analysis of ECs under flow conditions together with apolipoprotein E−/−Arhgap18−/− double‐mutant mice to study the function of ARHGAP18 in a high‐fat diet–induced model of atherosclerosis. Depletion of ARHGAP18 inhibited the alignment of ECs in the direction of flow and promoted inflammatory phenotype, as evidenced by disrupted junctions and increased expression of nuclear factor‐κB and intercellular adhesion molecule‐1 and decreased endothelial nitric oxide synthase. Mice with double deletion in ARHGAP18 and apolipoprotein E and fed a high‐fat diet show early onset of atherosclerosis, with lesions developing in atheroprotective regions. Conclusions ARHGAP18 is a protective gene that maintains EC alignments in the direction of flow. Deletion of ARHGAP18 led to loss of EC ability to align and promoted atherosclerosis development.
Collapse
Affiliation(s)
- Angelina J Lay
- 1 Vascular Biology Program Centre for the Endothelium Centenary Institute The University of Sydney Newtown Australia
| | - Paul R Coleman
- 1 Vascular Biology Program Centre for the Endothelium Centenary Institute The University of Sydney Newtown Australia
| | - Ann Formaz-Preston
- 1 Vascular Biology Program Centre for the Endothelium Centenary Institute The University of Sydney Newtown Australia
| | - Ka Ka Ting
- 1 Vascular Biology Program Centre for the Endothelium Centenary Institute The University of Sydney Newtown Australia
| | - Ben Roediger
- 2 Immune Imaging Program, Centenary Institute The University of Sydney Newtown Australia
| | - Wolfgang Weninger
- 2 Immune Imaging Program, Centenary Institute The University of Sydney Newtown Australia
| | - Martin A Schwartz
- 3 Department of Internal Medicine Yale Cardiovascular Research Center Yale University New Haven CT
| | - Mathew A Vadas
- 1 Vascular Biology Program Centre for the Endothelium Centenary Institute The University of Sydney Newtown Australia
| | - Jennifer R Gamble
- 1 Vascular Biology Program Centre for the Endothelium Centenary Institute The University of Sydney Newtown Australia
| |
Collapse
|
50
|
Garoffolo G, Pesce M. Mechanotransduction in the Cardiovascular System: From Developmental Origins to Homeostasis and Pathology. Cells 2019; 8:cells8121607. [PMID: 31835742 PMCID: PMC6953076 DOI: 10.3390/cells8121607] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022] Open
Abstract
With the term ‘mechanotransduction’, it is intended the ability of cells to sense and respond to mechanical forces by activating intracellular signal transduction pathways and the relative phenotypic adaptation. While a known role of mechanical stimuli has been acknowledged for developmental biology processes and morphogenesis in various organs, the response of cells to mechanical cues is now also emerging as a major pathophysiology determinant. Cells of the cardiovascular system are typically exposed to a variety of mechanical stimuli ranging from compression to strain and flow (shear) stress. In addition, these cells can also translate subtle changes in biophysical characteristics of the surrounding matrix, such as the stiffness, into intracellular activation cascades with consequent evolution toward pro-inflammatory/pro-fibrotic phenotypes. Since cellular mechanotransduction has a potential readout on long-lasting modifications of the chromatin, exposure of the cells to mechanically altered environments may have similar persisting consequences to those of metabolic dysfunctions or chronic inflammation. In the present review, we highlight the roles of mechanical forces on the control of cardiovascular formation during embryogenesis, and in the development and pathogenesis of the cardiovascular system.
Collapse
Affiliation(s)
- Gloria Garoffolo
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Via Parea, 4, I-20138 Milan, Italy;
- PhD Program in Translational and Molecular Medicine DIMET, Università di Milano - Bicocca, 20126 Milan, Italy
- Correspondence:
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS, Via Parea, 4, I-20138 Milan, Italy;
| |
Collapse
|