1
|
Herrera JM, Weng Y, Lieberthal TJ, Paoletti M, Chang TT. Hepatocyte Rho-associated kinase signaling is required for mice to survive experimental porphyria-associated liver injury. Hepatol Commun 2025; 9:e0636. [PMID: 39878679 DOI: 10.1097/hc9.0000000000000636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/12/2024] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Rho-associated kinases 1 and 2 (ROCK1 and ROCK2) regulate critical cell functions, including actomyosin contractility, apoptosis, and proliferation. Some studies suggest that ROCK inhibition may serve as a treatment for liver fibrosis. More investigation is needed to understand the role of hepatocyte ROCK signaling in vivo, especially in the context of profibrotic liver injury. METHODS Rock1fl/fl, Rock2fl/fl, and Rock1fl/fl; Rock2fl/fl mice were given adeno-associated virus serotype 8 (AAV8)-thyroid hormone-binding globulin (TBG)-Cre to produce targeted gene deletion in hepatocytes, or given AAV8-TBG-Null to generate littermate controls (WT). Mice were then placed on a 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet to induce liver injury. RESULTS Upon DDC-induced liver injury, mice with hepatocyte-specific deletion of ROCK1 alone (R1 KO) or ROCK2 alone (R2 KO) demonstrated minimal differences compared to WT. In contrast, mice with hepatocyte-specific deletion of both ROCK1 and ROCK2 (DKO) showed pervasive early mortality, increased hepatocellular injury, and decreased hepatic function. DDC-injured DKO mice demonstrated markedly distorted liver histology characterized by large cavities in the parenchyma. RNA-seq analysis showed upregulation of cell death, inflammatory, and profibrotic pathways in DDC-injured DKO liver as compared to DDC-injured WT liver. Cdkn1a (gene encoding p21) was one of the most highly upregulated genes in the DKO liver in response to DDC-induced injury. Correspondingly, there was increased hepatocyte nuclear localization of p21 and expression of cleaved caspase-3 in DDC-injured DKO liver, consistent with the activation of p21-mediated caspase-3-dependent apoptotic cell death pathways. ROCK1/ROCK2-deficient primary hepatocytes demonstrated increased susceptibility to both caspase-3-mediated apoptosis and caspase-3-independent forms of cell death in a cell intrinsic manner. CONCLUSIONS ROCK signaling plays a critical role in mediating hepatocyte cell survival pathways in response to liver injury.
Collapse
Affiliation(s)
- Jessica M Herrera
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA
- UCSF/UC Berkeley Joint Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, California, USA
| | - Yun Weng
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Tyler J Lieberthal
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Marcus Paoletti
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Tammy T Chang
- Department of Surgery, University of California, San Francisco, San Francisco, California, USA
- Liver Center, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
2
|
Hasan MR, Kump AJ, Stepaniak EC, Panta M, Shashidhar K, Katariya R, Sabbir MK, Schwab KR, Inlow MH, Chen Y, Ahmad SM. Genome-Wide Expression Profiling and Phenotypic Analysis of Downstream Targets Identify the Fox Transcription Factor Jumeau as a Master Regulator of Cardiac Progenitor Cell Division. Int J Mol Sci 2024; 25:12933. [PMID: 39684645 DOI: 10.3390/ijms252312933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Forkhead box (Fox) transcription factors (TFs) mediate multiple conserved cardiogenic processes in both mammals and Drosophila. Our prior work identified the roles of two Drosophila Fox genes, jumeau (jumu) and Checkpoint suppressor 1-like (CHES-1-like), in cardiac progenitor cell specification and division, and in the proper positioning of cardiac cell subtypes. Fox TF binding sites are also significantly enriched in the enhancers of genes expressed in the heart, suggesting that these genes may play a core regulatory role in one or more of these cardiogenic processes. We identified downstream targets of Jumu by comparing transcriptional expression profiles of flow cytometry-sorted mesodermal cells from wild-type embryos and embryos completely lacking the jumu gene and found that genes with functional annotation and ontological features suggesting roles in cell division were overrepresented among Jumu targets. Phenotypic analysis of a subset of these targets identified 21 jumu-regulated genes that mediate cardiac progenitor cell division, one of which, Retinal Homeobox (Rx), was characterized in more detail. Finally, the observation that many of these 21 genes and/or their orthologs exhibit genetic or physical interactions among themselves indicates that Jumu is a master regulator acting as a hub of a cardiac progenitor cell division-mediating network.
Collapse
Affiliation(s)
- M Rezaul Hasan
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
- Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
| | - Andrew J Kump
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
- Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
| | - Evelyn C Stepaniak
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
- Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Manoj Panta
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Kuncha Shashidhar
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
- Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
| | - Rajnandani Katariya
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
- Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
| | - Mofazzal K Sabbir
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Kristopher R Schwab
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
- Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
| | - Mark H Inlow
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
- Department of Mathematical Sciences, Indiana State University, Terre Haute, IN 47809, USA
| | - Ye Chen
- Department of Mathematics and Statistics, Northern Arizona University, Flagstaff, AZ 86001, USA
| | - Shaad M Ahmad
- Department of Biology, Indiana State University, Terre Haute, IN 47809, USA
- The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
- Rich and Robin Porter Cancer Research Center, Indiana State University, Terre Haute, IN 47809, USA
| |
Collapse
|
3
|
Lange M, Francis C, Furtado J, Kim YB, Liao JK, Eichmann A. Endothelial Rho kinase controls blood vessel integrity and angiogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.19.624343. [PMID: 39605538 PMCID: PMC11601598 DOI: 10.1101/2024.11.19.624343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background The Rho kinases 1 and 2 (ROCK1/2) are serine-threonine specific protein kinases that control actin cytoskeleton dynamics. They are expressed in all cells throughout the body, including cardiomyocytes, smooth muscle cells and endothelial cells, and intimately involved in cardiovascular health and disease. Pharmacological ROCK inhibition is beneficial in mouse models of hypertension, atherosclerosis, and neointimal thickening that display overactivated ROCK. However, the consequences of endothelial ROCK signaling deficiency in vivo remain unknown. To address this issue, we analyzed endothelial cell (EC) specific ROCK1 and 2 deletions. Methods We generated Cdh5-CreERT2 driven, tamoxifen inducible loss of function alleles of ROCK1 and ROCK2 and analyzed mouse survival and vascular defects through cellular, biochemical, and molecular biology approaches. Results We observed that postnatal or adult loss of endothelial ROCK1 and 2 was lethal within a week. Mice succumbed to multi-organ hemorrhage that occurred because of loss of vascular integrity. ECs displayed deficient cytoskeletal actin polymerization that prevented focal adhesion formation and disrupted junctional integrity. Retinal sprouting angiogenesis was also perturbed, as sprouting vessels exhibited lack of polymerized actin and defective lumen formation. In a three-dimensional endothelial sprouting assay, combined knockdown of ROCK1/2 or knockdown or ROCK2 but not ROCK1 led to reduced sprouting, lumenization and cell polarization defects caused by defective actin and altered VE-cadherin dynamics. The isoform specific role of endothelial ROCK2 correlated with ROCK2 substrate specificity for FAK and LIMK. By analyzing single and three allele mutants we show that one intact allele of ROCK2 is sufficient to maintain vascular integrity in vivo. Conclusion Endothelial ROCK1 and 2 maintain junctional integrity and ensure proper angiogenesis and lumen formation. The presence of one allele of ROCK2 is sufficient to maintain vascular growth and integrity. These data indicate the need of careful consideration for the use of ROCK inhibitors in disease settings.
Collapse
Affiliation(s)
- Martin Lange
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Caitlin Francis
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jessica Furtado
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Mass, USA
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - James K Liao
- Division of Cardiology/Sarver Heart Center, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Anne Eichmann
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Université de Paris, INSERM, PARCC, F-75015, Paris, France
| |
Collapse
|
4
|
Sedmera D, Olejnickova V, Sankova B, Kolesova H, Bartos M, Kvasilova A, Phillips LC, Bamforth SD, Phillips HM. Morphological, electrophysiological, and molecular alterations in foetal noncompacted cardiomyopathy induced by disruption of ROCK signalling. Front Cell Dev Biol 2024; 12:1471751. [PMID: 39435333 PMCID: PMC11491540 DOI: 10.3389/fcell.2024.1471751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/13/2024] [Indexed: 10/23/2024] Open
Abstract
Left ventricular noncompaction cardiomyopathy is associated with heart failure, arrhythmia, and sudden cardiac death. The developmental mechanism underpinning noncompaction in the adult heart is still not fully understood, with lack of trabeculae compaction, hypertrabeculation, and loss of proliferation cited as possible causes. To study this, we utilised a mouse model of aberrant Rho kinase (ROCK) signalling in cardiomyocytes, which led to a noncompaction phenotype during embryogenesis, and monitored how this progressed after birth and into adulthood. The cause of the early noncompaction at E15.5 was attributed to a decrease in proliferation in the developing ventricular wall. By E18.5, the phenotype became patchy, with regions of noncompaction interspersed with thick compacted areas of ventricular wall. To study how this altered myoarchitecture of the heart influenced impulse propagation in the developing and adult heart, we used histology with immunohistochemistry for gap junction protein expression, optical mapping, and electrocardiography. At the prenatal stages, a clear reduction in left ventricular wall thickness, accompanied by abnormal conduction of the ectopically paced beat in that area, was observed in mutant hearts. This correlated with increased expression of connexin-40 and connexin-43 in noncompacted trabeculae. In postnatal stages, left ventricular noncompaction was resolved, but the right ventricular wall remained structurally abnormal through to adulthood with cardiomyocyte hypertrophy and retention of myocardial crypts. Thus, this is a novel model of self-correcting embryonic hypertrabeculation cardiomyopathy, but it highlights that remodelling potential differs between the left and right ventricles. We conclude that disruption of ROCK signalling induces both morphological and electrophysiological changes that evolve over time, highlighting the link between myocyte proliferation and noncompaction phenotypes and electrophysiological differentiation.
Collapse
Affiliation(s)
- David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia
- Laboratory of Developmental Cardiology, Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Veronika Olejnickova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Barbora Sankova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Hana Kolesova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Martin Bartos
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia
- Institute of Dental Medicine, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Alena Kvasilova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Lauren C. Phillips
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Simon D. Bamforth
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Helen M. Phillips
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
5
|
Wang YC, Yuan Y, Zhang J, Zhang Y, Kao WWY, Liu CY. β-Catenin gain of function mutant in mouse periocular neural crest-derived mesenchymal cells impairs embryonic eyelid morphogenesis and leads to blepharophimosis syndrome in mice. Ocul Surf 2024; 34:267-276. [PMID: 39197676 DOI: 10.1016/j.jtos.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/31/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
PURPOSE The aberrant canonical Wnt-β-catenin signaling can cause devastating outcomes of tissue morphogenesis and tumor formation. In this study, we examined the impact of overexpression of constitutive active β-catenin in mouse periocular neural crest-derived mesenchymal cells during embryonic eyelid morphogenesis. METHODS We expressed a stabilized β-catenin in which the exon 3 of the Ctnnb1 gene was deleted in periocular neural crest (PONC)-derived eyelid stromal cells (Ctnnb1Δex3-PONC). Histopathological examinations were performed to examine the eyelid morphogenetic alterations in Ctnnb1Δex3-PONC mice. Immunohistochemical investigations for cell proliferation, apoptosis, and differentiation were also assessed. RESULTS We discovered that nuclear accumulation of β-catenin resulted in a reduction of nuclear Ki-67 and phospho-Erk1/2 expression levels and elevation of apoptosis in PONC cells during embryonic eyelid closure morphogenesis. Interestingly, however, the eyelid epithelial migration was not affected, which resulted in only eyelid epidermal closure but lacked underneath dermal formation at embryonic (E) day 16.5. The sequelae of Ctnnb1Δex3-PONC revealed the malformation of the eyelid margin and Meibomian gland and deficiency of Muller's smooth muscle fibers formation. Consequently, Ctnnb1Δex3-PONC mice manifested blepharophimosis syndrome at P21. CONCLUSION Our data suggested that aberrant expression of β-catenin gain of function in PONC interrupts the interplay between epithelium and stroma for the morphogenesis of eyelid closure during embryonic development.
Collapse
Affiliation(s)
- Yen-Chiao Wang
- Edith J. Crawley Vision Research Center/Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267-0838, USA
| | - Yong Yuan
- Edith J. Crawley Vision Research Center/Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267-0838, USA
| | - Jianhua Zhang
- Edith J. Crawley Vision Research Center/Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267-0838, USA
| | - Yujin Zhang
- Edith J. Crawley Vision Research Center/Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267-0838, USA
| | - Winston W-Y Kao
- Edith J. Crawley Vision Research Center/Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267-0838, USA
| | - Chia-Yang Liu
- Edith J. Crawley Vision Research Center/Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267-0838, USA.
| |
Collapse
|
6
|
Formstone C, Aldeiri B, Davenport M, Francis-West P. Ventral body wall closure: Mechanistic insights from mouse models and translation to human pathology. Dev Dyn 2024. [PMID: 39319771 DOI: 10.1002/dvdy.735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
The ventral body wall (VBW) that encloses the thoracic and abdominal cavities arises by extensive cell movements and morphogenetic changes during embryonic development. These morphogenetic processes include embryonic folding generating the primary body wall; the initial ventral cover of the embryo, followed by directed mesodermal cell migrations, contributing to the secondary body wall. Clinical anomalies in VBW development affect approximately 1 in 3000 live births. However, the cell interactions and critical cellular behaviors that control VBW development remain little understood. Here, we describe the embryonic origins of the VBW, the cellular and morphogenetic processes, and key genes, that are essential for VBW development. We also provide a clinical overview of VBW anomalies, together with environmental and genetic influences, and discuss the insight gained from over 70 mouse models that exhibit VBW defects, and their relevance, with respect to human pathology. In doing so we propose a phenotypic framework for researchers in the field which takes into account the clinical picture. We also highlight cases where there is a current paucity of mouse models for particular clinical defects and key gaps in knowledge about embryonic VBW development that need to be addressed to further understand mechanisms of human VBW pathologies.
Collapse
Affiliation(s)
- Caroline Formstone
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, Hatfield, UK
| | - Bashar Aldeiri
- Department of Paediatric Surgery, Chelsea and Westminster Hospital, London, UK
| | - Mark Davenport
- Department of Paediatric Surgery, King's College Hospital, London, UK
| | | |
Collapse
|
7
|
Matoba K, Nagai Y, Sekiguchi K, Ohashi S, Mitsuyoshi E, Shimoda M, Tachibana T, Kawanami D, Yokota T, Utsunomiya K, Nishimura R. Deletion of podocyte Rho-associated, coiled-coil-containing protein kinase 2 protects mice from focal segmental glomerulosclerosis. Commun Biol 2024; 7:402. [PMID: 38565675 PMCID: PMC10987559 DOI: 10.1038/s42003-024-06127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) shares podocyte damage as an essential pathological finding. Several mechanisms underlying podocyte injury have been proposed, but many important questions remain. Rho-associated, coiled-coil-containing protein kinase 2 (ROCK2) is a serine/threonine kinase responsible for a wide array of cellular functions. We found that ROCK2 is activated in podocytes of adriamycin (ADR)-induced FSGS mice and cultured podocytes stimulated with ADR. Conditional knockout mice in which the ROCK2 gene was selectively disrupted in podocytes (PR2KO) were resistant to albuminuria, glomerular sclerosis, and podocyte damage induced by ADR injection. In addition, pharmacological intervention for ROCK2 significantly ameliorated podocyte loss and kidney sclerosis in a murine model of FSGS by abrogating profibrotic factors. RNA sequencing of podocytes treated with a ROCK2 inhibitor proved that ROCK2 is a cyclic nucleotide signaling pathway regulator. Our study highlights the potential utility of ROCK2 inhibition as a therapeutic option for FSGS.
Collapse
Affiliation(s)
- Keiichiro Matoba
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan.
| | - Yosuke Nagai
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Kensuke Sekiguchi
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Shinji Ohashi
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Etsuko Mitsuyoshi
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Masayuki Shimoda
- Department of Pathology, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Toshiaki Tachibana
- Core Research Facilities for Basic Science, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Daiji Kawanami
- Department of Endocrinology and Diabetes, Fukuoka University School of Medicine, Fukuoka, 814-0180, Japan
| | - Tamotsu Yokota
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | | | - Rimei Nishimura
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| |
Collapse
|
8
|
Fayed HS, Bakleh MZ, Ashraf JV, Howarth A, Ebner D, Al Haj Zen A. Selective ROCK Inhibitor Enhances Blood Flow Recovery after Hindlimb Ischemia. Int J Mol Sci 2023; 24:14410. [PMID: 37833857 PMCID: PMC10572734 DOI: 10.3390/ijms241914410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The impairment in microvascular network formation could delay the restoration of blood flow after acute limb ischemia. A high-content screen of a GSK-published kinase inhibitor library identified a set of ROCK inhibitor hits enhancing endothelial network formation. Subsequent kinase activity profiling against a panel of 224 protein kinases showed that two indazole-based ROCK inhibitor hits exhibited high selectivity for ROCK1 and ROCK2 isoforms compared to other ROCK inhibitors. One of the chemical entities, GSK429286, was selected for follow-up studies. We found that GSK429286 was ten times more potent in enhancing endothelial tube formation than Fasudil, a classic ROCK inhibitor. ROCK1 inhibition by RNAi phenocopied the angiogenic phenotype of the GSK429286 compound. Using an organotypic angiogenesis co-culture assay, we showed that GSK429286 formed a dense vascular network with thicker endothelial tubes. Next, mice received either vehicle or GSK429286 (10 mg/kg i.p.) for seven days after hindlimb ischemia induction. As assessed by laser speckle contrast imaging, GSK429286 potentiated blood flow recovery after ischemia induction. At the histological level, we found that GSK429286 significantly increased the size of new microvessels in the regenerating areas of ischemic muscles compared with vehicle-treated ones. Our findings reveal that selective ROCK inhibitors have in vitro pro-angiogenic properties and therapeutic potential to restore blood flow in limb ischemia.
Collapse
Affiliation(s)
- Hend Salah Fayed
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| | - Mouayad Zuheir Bakleh
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| | | | - Alison Howarth
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Daniel Ebner
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Ayman Al Haj Zen
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
- BHF Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
9
|
Novel Animal Model of Limbal Stem Cell Deficiency Induced by Forcing Eye-Open at Birth. Cornea 2023:00003226-990000000-00244. [PMID: 36796015 DOI: 10.1097/ico.0000000000003242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/08/2022] [Indexed: 02/18/2023]
Abstract
PURPOSE The aim of this study was to develop a rat model of limbal stem cell deficiency (LSCD) by forcing eye-open at birth (FEOB). METHODS A total of 200 Sprague-Dawley neonatal rats were randomly divided into the control group and the experimental group, which received eyelid open surgery on postnatal day 1 (P1). Observation time points were defined as P1, P5, P10, P15, and P30. Slit-lamp microscope and corneal confocal microscope were used to observe the clinical features of the model. The eyeballs were collected for hematoxylin and eosin staining and periodic acid-Schiff staining. Proliferating cell nuclear antigen, CD68/polymorphonuclear leukocytes, and cytokeratin 10/12/13 immunostaining were performed, while the ultrastructure of the cornea was observed by scanning electron microscopy. Real-time polymerase chain reactions (PCRs), western blot, and immunohistochemical staining of activin A receptor-like kinase-1/5 were used to analyze the possible pathogenesis. RESULTS FEOB could successfully induce the typical manifestations of LSCD, including corneal neovascularization, severe inflammation, and corneal opacity. In the FEOB group, goblet cells could be detected in the corneal epithelium by periodic acid-Schiff staining. The expression of cytokeratins was also different between the 2 groups. Furthermore, proliferating cell nuclear antigen immunohistochemical staining revealed the weak proliferation and differentiation ability of limbal epithelial stem cells in the FEOB group. Real-time PCRs, western blot, and immunohistochemical staining of activin A receptor-like kinase-1/activin A receptor-like kinase-5 in the FEOB group showed different expression patterns than those of the control group. CONCLUSIONS FEOB in rats induces ocular surface changes resembling LSCD in humans, representing a novel model of LSCD.
Collapse
|
10
|
Knipe RS, Nurunnabi M, Probst CK, Spinney JJ, Abe E, Bose RJC, Ha K, Logue A, Nguyen T, Servis R, Drummond M, Haring A, Brazee PL, Medoff BD, McCarthy JR. Myofibroblast-specific inhibition of the Rho kinase-MRTF-SRF pathway using nanotechnology for the prevention of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2023; 324:L190-L198. [PMID: 36625494 PMCID: PMC9925159 DOI: 10.1152/ajplung.00086.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 10/19/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Pulmonary fibrosis is characterized by the accumulation of myofibroblasts in the lung and progressive tissue scarring. Fibroblasts exist across a spectrum of states, from quiescence in health to activated myofibroblasts in the setting of injury. Highly activated myofibroblasts have a critical role in the establishment of fibrosis as the predominant source of type 1 collagen and profibrotic mediators. Myofibroblasts are also highly contractile cells and can alter lung biomechanical properties through tissue contraction. Inhibiting signaling pathways involved in myofibroblast activation could therefore have significant therapeutic value. One of the ways myofibroblast activation occurs is through activation of the Rho/myocardin-related transcription factor (MRTF)/serum response factor (SRF) pathway, which signals through intracellular actin polymerization. However, concerns surrounding the pleiotropic and ubiquitous nature of these signaling pathways have limited the translation of inhibitory drugs. Herein, we demonstrate a novel therapeutic antifibrotic strategy using myofibroblast-targeted nanoparticles containing a MTRF/SRF pathway inhibitor (CCG-1423), which has been shown to block myofibroblast activation in vitro. Myofibroblasts were preferentially targeted via the angiotensin 2 receptor, which has been shown to be selectively upregulated in animal and human studies. These nanoparticles were nontoxic and accumulated in lung myofibroblasts in the bleomycin-induced mouse model of pulmonary fibrosis, reducing the number of these activated cells and their production of profibrotic mediators. Ultimately, in a murine model of lung fibrosis, a single injection of these drugs containing targeted nanoagents reduced fibrosis as compared with control mice. This approach has the potential to deliver personalized therapy by precisely targeting signaling pathways in a cell-specific manner, allowing increased efficacy with reduced deleterious off-target effects.
Collapse
Affiliation(s)
- Rachel S Knipe
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Andrew M. Tager Fibrosis Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Md Nurunnabi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Andrew M. Tager Fibrosis Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Clemens K Probst
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Andrew M. Tager Fibrosis Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jillian J Spinney
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Andrew M. Tager Fibrosis Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Elizabeth Abe
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Andrew M. Tager Fibrosis Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Rajendran J C Bose
- Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, New York
| | - Khanh Ha
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, New York
| | - Amanda Logue
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Andrew M. Tager Fibrosis Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Trong Nguyen
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Andrew M. Tager Fibrosis Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Rachel Servis
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Matthew Drummond
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Andrew M. Tager Fibrosis Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Alexis Haring
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Andrew M. Tager Fibrosis Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Patricia L Brazee
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Andrew M. Tager Fibrosis Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Benjamin D Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Andrew M. Tager Fibrosis Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jason R McCarthy
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, New York
| |
Collapse
|
11
|
Kopecny LR, Lee BWH, Coroneo MT. A systematic review on the effects of ROCK inhibitors on proliferation and/or differentiation in human somatic stem cells: A hypothesis that ROCK inhibitors support corneal endothelial healing via acting on the limbal stem cell niche. Ocul Surf 2023; 27:16-29. [PMID: 36586668 DOI: 10.1016/j.jtos.2022.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Rho kinase inhibitors (ROCKi) have attracted growing multidisciplinary interest, particularly in Ophthalmology where the question as to how they promote corneal endothelial healing remains unresolved. Concurrently, stem cell biology has rapidly progressed in unravelling drivers of stem cell (SC) proliferation and differentiation, where mechanical niche factors and the actin cytoskeleton are increasingly recognized as key players. There is mounting evidence from the study of the peripheral corneal endothelium that supports the likelihood of an internal limbal stem cell niche. The possibility that ROCKi stimulate the endothelial SC niche has not been addressed. Furthermore, there is currently a paucity of data that directly evaluates whether ROCKi promotes corneal endothelial healing by acting on this limbal SC niche located near the transition zone. Therefore, we performed a systematic review examining the effects ROCKi on the proliferation and differentiation of human somatic SC, to provide insight into its effects on various human SC populations. An appraisal of electronic searches of four databases identified 1 in vivo and 58 in vitro studies (36 evaluated proliferation while 53 examined differentiation). Types of SC studied included mesenchymal (n = 32), epithelial (n = 11), epidermal (n = 8), hematopoietic and other (n = 8). The ROCK 1/2 selective inhibitor Y-27632 was used in almost all studies (n = 58), while several studies evaluated ≥2 ROCKi (n = 4) including fasudil, H-1152, and KD025. ROCKi significantly influenced human somatic SC proliferation in 81% of studies (29/36) and SC differentiation in 94% of studies (50/53). The present systemic review highlights that ROCKi are influential in regulating human SC proliferation and differentiation, and provides evidence to support the hypothesis that ROCKi promotes corneal endothelial division and maintenance via acting on the inner limbal SC niche.
Collapse
Affiliation(s)
- Lloyd R Kopecny
- School of Clinical Medicine, University of New South Wales, Sydney, Australia.
| | - Brendon W H Lee
- Department of Ophthalmology, School of Clinical Medicine, University of New South Wales, Level 2 South Wing, Edmund Blacket Building, Prince of Wales Hospital, Randwick, NSW, 2031, Australia
| | - Minas T Coroneo
- Department of Ophthalmology, Prince of Wales Hospital, Sydney, Australia
| |
Collapse
|
12
|
Yadunandanan Nair N, Samuel V, Ramesh L, Marib A, David DT, Sundararaman A. Actin cytoskeleton in angiogenesis. Biol Open 2022; 11:bio058899. [PMID: 36444960 PMCID: PMC9729668 DOI: 10.1242/bio.058899] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Actin, one of the most abundant intracellular proteins in mammalian cells, is a critical regulator of cell shape and polarity, migration, cell division, and transcriptional response. Angiogenesis, or the formation of new blood vessels in the body is a well-coordinated multi-step process. Endothelial cells lining the blood vessels acquire several new properties such as front-rear polarity, invasiveness, rapid proliferation and motility during angiogenesis. This is achieved by changes in the regulation of the actin cytoskeleton. Actin remodelling underlies the switch between the quiescent and angiogenic state of the endothelium. Actin forms endothelium-specific structures that support uniquely endothelial functions. Actin regulators at endothelial cell-cell junctions maintain the integrity of the blood-tissue barrier while permitting trans-endothelial leukocyte migration. This review focuses on endothelial actin structures and less-recognised actin-mediated endothelial functions. Readers are referred to other recent reviews for the well-recognised roles of actin in endothelial motility, barrier functions and leukocyte transmigration. Actin generates forces that are transmitted to the extracellular matrix resulting in vascular matrix remodelling. In this review, we attempt to synthesize our current understanding of the roles of actin in vascular morphogenesis. We speculate on the vascular bed specific differences in endothelial actin regulation and its role in the vast heterogeneity in endothelial morphology and function across the various tissues of our body.
Collapse
Affiliation(s)
- Nidhi Yadunandanan Nair
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Victor Samuel
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Lariza Ramesh
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Areeba Marib
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Deena T. David
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Ananthalakshmy Sundararaman
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| |
Collapse
|
13
|
A Novel CDH1 Variant Identified in a Chinese Family with Blepharocheilodontic Syndrome. Diagnostics (Basel) 2022; 12:diagnostics12122936. [PMID: 36552944 PMCID: PMC9777284 DOI: 10.3390/diagnostics12122936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
The goal of the current study was to identify the pathogenic gene variant in a Chinese family with Blepharocheilodontic (BCD) syndrome. Whole-exome sequencing (WES) and Sanger sequencing were used to identify the pathogenic gene variant. The harmfulness of the variant was predicted by bioinformatics. We identified a novel heterozygous missense variant c.1198G>A (p.Asp400Asn) in the CDH1 gene in the proband and his mother with BCD syndrome. The sequencing results of three healthy individuals in this family are wild type. This result is consistent with familial co-segregation. According to ReVe, REVEL, CADD, gnomAD, dbSNP, and the classification of pathogenic variants with the standards of the 2015 American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG), c.1198G>A (p.Asp400Asn) is predicted to be a likely pathogenic. We observed that variant c.1198G>A (p.Asp400Asn) was located in the extracellular cadherin-type repeats in CDH1. Amino acid sequence alignment of the CDH1 protein among multiple species showed that Asp400 was highly evolutionarily conserved. The conformational analysis showed that this variant might cause structural damage to the CDH1 protein. Phenotypic analysis revealed unique dental phenotypes in patients with BCD syndrome, such as oligodontia, conical-shaped teeth, and notching of the incisal edges. Our results broaden the variation spectrum of BCD syndrome and phenotype spectrum of CDH1, which can help with the clinical diagnosis, treatment, and genetic counseling in relation to BCD syndrome.
Collapse
|
14
|
Yasuda S, Sumioka T, Miyajima M, Iwanishi H, Morii T, Mochizuki N, Reinach PS, Kao WWY, Okada Y, Liu CY, Saika S. Anomaly of cornea and ocular adnexa in spinster homolog 2 (Spns2) knockout mice. Ocul Surf 2022; 26:111-127. [PMID: 35988880 DOI: 10.1016/j.jtos.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/26/2022] [Accepted: 08/13/2022] [Indexed: 10/15/2022]
Abstract
Spinster 2 (Spns2) is a transporter that pumps sphingosine-1-phosphate (S1P), a bioactive lipid mediator synthesized in the cytoplasm, out of cells into the inter cellular space. S1P is a signal that modulates cellular behavior during embryonic development, inflammation and tissue repair, etc. A Spns2-null (KO) mouse is born with failure of eyelid closure (eyelid-open-at birth; EOB) and develop corneal fibrosis in adulthood. It remains elusive whether corneal lesion is caused by exposure to keratitis (lagophthalmos) of EOB phenotype or the loss of Spns2 directly perturbs the corneal tissue morphogenesis and intra-eyelid structures. Therefore, we investigated differences between the cornea and ocular adnexa morphogenesis in KO and wild-type (WT) embryos and adults as well. The loss of Spns2 perturbs cornea morphogenesis during embryonic development as early as E16.5 besides EOB phenotype. Histology showed that the corneal stroma was thinner with less extracellular matrix accumulation, e.g., collagen and keratocan in the KO mouse. Epithelial stratification, expression of keratin 12 and formation of desmosomes and hemidesmosomes were also perturbed in these KO corneas. Lacking Spns2 impaired morphogenesis of the Meibomian glands and of orbicularis oculi muscles. KO glands were labeled for ELOVL4 and PPARγ and were Oil-Red O-positive, suggesting KO acinar cells possessed functionality as the glands. This is the first report on the roles of Spns2 in corneal and Meibomian gland morphogenesis. Corneal tissue destruction in an adult KO mouse might be due to not only lagophthalmos but also to an impaired morphogenesis of cornea, Meibomian glands, and orbicularis oculi muscle.
Collapse
Affiliation(s)
- Shingo Yasuda
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Japan; Indiana University School of Optometry, USA.
| | - Takayoshi Sumioka
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Japan
| | - Masayasu Miyajima
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Japan
| | - Hiroki Iwanishi
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Japan
| | - Tomoya Morii
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Japan
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, Japan
| | - Peter S Reinach
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Winston W Y Kao
- Crawley Vision Research Center & Ophthalmic Research Laboratory, Department of Ophthalmology, College of Medicine University of Cincinnati, USA
| | - Yuka Okada
- Deaprtment of Ophthalmology, Kihoku Hospital, Wakayama Medical University School of Medicine, Japan
| | | | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Japan
| |
Collapse
|
15
|
Pillay LM, Yano JJ, Davis AE, Butler MG, Ezeude MO, Park JS, Barnes KA, Reyes VL, Castranova D, Gore AV, Swift MR, Iben JR, Kenton MI, Stratman AN, Weinstein BM. In vivo dissection of Rhoa function in vascular development using zebrafish. Angiogenesis 2022; 25:411-434. [PMID: 35320450 DOI: 10.1007/s10456-022-09834-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 02/22/2022] [Indexed: 12/27/2022]
Abstract
The small monomeric GTPase RHOA acts as a master regulator of signal transduction cascades by activating effectors of cellular signaling, including the Rho-associated protein kinases ROCK1/2. Previous in vitro cell culture studies suggest that RHOA can regulate many critical aspects of vascular endothelial cell (EC) biology, including focal adhesion, stress fiber formation, and angiogenesis. However, the specific in vivo roles of RHOA during vascular development and homeostasis are still not well understood. In this study, we examine the in vivo functions of RHOA in regulating vascular development and integrity in zebrafish. We use zebrafish RHOA-ortholog (rhoaa) mutants, transgenic embryos expressing wild type, dominant negative, or constitutively active forms of rhoaa in ECs, pharmacological inhibitors of RHOA and ROCK1/2, and Rock1 and Rock2a/b dgRNP-injected zebrafish embryos to study the in vivo consequences of RHOA gain- and loss-of-function in the vascular endothelium. Our findings document roles for RHOA in vascular integrity, developmental angiogenesis, and vascular morphogenesis in vivo, showing that either too much or too little RHOA activity leads to vascular dysfunction.
Collapse
Affiliation(s)
- Laura M Pillay
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Joseph J Yano
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
- Department of Cell and Molecular Biology, University of Pennsylvania, 440 Curie Blvd, Philadelphia, PA, 19104, USA
| | - Andrew E Davis
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Matthew G Butler
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Megan O Ezeude
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Jong S Park
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Keith A Barnes
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Vanessa L Reyes
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Daniel Castranova
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Aniket V Gore
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Matthew R Swift
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - James R Iben
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Madeleine I Kenton
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
| | - Amber N Stratman
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Brant M Weinstein
- Division of Developmental Biology, National Institute of Child Health and Human Development, National Institutes of Health, 6 Center Dr. Bethesda, Bethesda, MD, 20892, USA.
| |
Collapse
|
16
|
Gordon DM, Cunningham D, Zender G, Lawrence PJ, Penaloza JS, Lin H, Fitzgerald-Butt SM, Myers K, Duong T, Corsmeier DJ, Gaither JB, Kuck HC, Wijeratne S, Moreland B, Kelly BJ, Garg V, White P, McBride KL. Exome sequencing in multiplex families with left-sided cardiac defects has high yield for disease gene discovery. PLoS Genet 2022; 18:e1010236. [PMID: 35737725 PMCID: PMC9258875 DOI: 10.1371/journal.pgen.1010236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/06/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022] Open
Abstract
Congenital heart disease (CHD) is a common group of birth defects with a strong genetic contribution to their etiology, but historically the diagnostic yield from exome studies of isolated CHD has been low. Pleiotropy, variable expressivity, and the difficulty of accurately phenotyping newborns contribute to this problem. We hypothesized that performing exome sequencing on selected individuals in families with multiple members affected by left-sided CHD, then filtering variants by population frequency, in silico predictive algorithms, and phenotypic annotations from publicly available databases would increase this yield and generate a list of candidate disease-causing variants that would show a high validation rate. In eight of the nineteen families in our study (42%), we established a well-known gene/phenotype link for a candidate variant or performed confirmation of a candidate variant’s effect on protein function, including variants in genes not previously described or firmly established as disease genes in the body of CHD literature: BMP10, CASZ1, ROCK1 and SMYD1. Two plausible variants in different genes were found to segregate in the same family in two instances suggesting oligogenic inheritance. These results highlight the need for functional validation and demonstrate that in the era of next-generation sequencing, multiplex families with isolated CHD can still bring high yield to the discovery of novel disease genes. Congenital heart disease is a common group of birth defects that are a leading cause of death in children under one year of age. There is strong evidence that genetics plays a role in causing congenital heart disease. While studies using individual cases have identified causative genes for those with a heart defect when accompanied by other birth defects or intellectual disabilities, for individuals who have only a heart defect without other problems, a genetic cause can be found in fewer than 10%. In this study, we enrolled families where there was more than one individual with a heart defect. This allowed us to take advantage of inheritance by searching for potential disease-causing genetic variants in common among all affected individuals in the family. Among 19 families studied, we were able to find a plausible disease-causing variant in eight of them and identified new genes that may cause or contribute to the presence of a heart defect. Two families had potential disease-causing variants in two different genes. We designed assays to test if the variants led to altered function of the protein coded by the gene, demonstrating a functional consequence that support the gene and variant as contributing to the heart defect. These findings show that studying families may be more effective than using individuals to find causes of heart defects. In addition, this family-based method suggests that changes in more than one gene may be required for a heart defect to occur.
Collapse
Affiliation(s)
- David M. Gordon
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - David Cunningham
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Gloria Zender
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Patrick J. Lawrence
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Jacqueline S. Penaloza
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Hui Lin
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Sara M. Fitzgerald-Butt
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Katherine Myers
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Tiffany Duong
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Donald J. Corsmeier
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Jeffrey B. Gaither
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Harkness C. Kuck
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Saranga Wijeratne
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Blythe Moreland
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Benjamin J. Kelly
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | | | - Vidu Garg
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (VG); (PW); (KLM)
| | - Peter White
- Computational Genomics Group, The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (VG); (PW); (KLM)
| | - Kim L. McBride
- Center for Cardiovascular Research and The Heart Center, Nationwide Children’s Hospital, Columbus, Ohio, United States of America
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (VG); (PW); (KLM)
| |
Collapse
|
17
|
Rho-associated, coiled-coil-containing protein kinase 1 regulates development of diabetic kidney disease via modulation of fatty acid metabolism. Kidney Int 2022; 102:536-545. [PMID: 35597365 DOI: 10.1016/j.kint.2022.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/08/2022] [Accepted: 04/06/2022] [Indexed: 11/20/2022]
Abstract
Dysregulation of fatty acid utilization is increasingly recognized as a significant component of diabetic kidney disease. Rho-associated, coiled-coil-containing protein kinase (ROCK) is activated in the diabetic kidney, and studies over the past decade have illuminated ROCK signaling as an essential pathway in diabetic kidney disease. Here, we confirmed the distinct role of ROCK1, an isoform of ROCK, in fatty acid metabolism using glomerular mesangial cells and ROCK1 knockout mice. Mesangial cells with ROCK1 deletion were protected from mitochondrial dysfunction and redox imbalance driven by transforming growth factor β, a cytokine upregulated in diabetic glomeruli. We found that high-fat diet-induced obese ROCK1 knockout mice exhibited reduced albuminuria and histological abnormalities along with the recovery of impaired fatty acid utilization and mitochondrial fragmentation. Mechanistically, we found that ROCK1 regulates the induction of critical mediators in fatty acid metabolism, including peroxisome proliferator-activated receptor gamma coactivator 1α, carnitine palmitoyltransferase 1, and widespread program-associated cellular metabolism. Thus, our findings highlight ROCK1 as an important regulator of energy homeostasis in mesangial cells in the overall pathogenesis of diabetic kidney disease.
Collapse
|
18
|
A Soft Zwitterionic Hydrogel as Potential Coating on a Polyimide Surface to Reduce Foreign Body Reaction to Intraneural Electrodes. Molecules 2022; 27:molecules27103126. [PMID: 35630604 PMCID: PMC9147366 DOI: 10.3390/molecules27103126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
Invasive intraneural electrodes can control advanced neural-interfaced prostheses in human amputees. Nevertheless, in chronic implants, the progressive formation of a fibrotic capsule can gradually isolate the electrode surface from the surrounding tissue leading to loss of functionality. This is due to a nonspecific inflammatory response called foreign-body reaction (FBR). The commonly used poly(ethylene glycol) (PEG)-based low-fouling coatings of implantable devices can be easily encapsulated and are susceptible to oxidative damage in long-term in vivo applications. Recently, sulfobetaine-based zwitterionic hydrogels have emerged as an important class of robust ultra-low fouling biomaterials, holding great potential to mitigate FBR. The aim of this proof-of-principle in vitro work was to assess whether the organic zwitterionic—poly(sulfobetaine methacrylate) [poly(SBMA)]—hydrogel could be a suitable coating for Polyimide (PI)-based intraneural electrodes to reduce FBR. We first synthesized and analyzed the hydrogel through a mechanical characterization (i.e., Young’s modulus). Then, we demonstrated reduced adhesion and activation of fibrogenic and pro-inflammatory cells (i.e., human myofibroblasts and macrophages) on the hydrogel compared with PEG-coated and polystyrene surfaces using cell viability assays, confocal fluorescence microscopy and high-content analysis of oxidative stress production. Interestingly, we successfully coated PI surfaces with a thin film of the hydrogel through covalent bond and demonstrated its high hydrophilicity via water contact angle measurement. Importantly, we showed the long-term release of an anti-fibrotic drug (i.e., Everolimus) from the hydrogel. Because of the low stiffness, biocompatibility, high hydration and ultra-low fouling characteristics, our zwitterionic hydrogel could be envisioned as long-term diffusion-based delivery system for slow and controlled anti-inflammatory and anti-fibrotic drug release in vivo.
Collapse
|
19
|
ROCK ‘n TOR: An Outlook on Keratinocyte Stem Cell Expansion in Regenerative Medicine via Protein Kinase Inhibition. Cells 2022; 11:cells11071130. [PMID: 35406693 PMCID: PMC8997668 DOI: 10.3390/cells11071130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
Keratinocyte stem cells play a fundamental role in homeostasis and repair of stratified epithelial tissues. Transplantation of cultured keratinocytes autografts provides a landmark example of successful cellular therapies by restoring durable integrity in stratified epithelia lost to devastating tissue conditions. Despite the overall success of such procedures, failures still occur in case of paucity of cultured stem cells in therapeutic grafts. Strategies aiming at a further amplification of stem cells during keratinocyte ex vivo expansion may thus extend the applicability of these treatments to subjects in which endogenous stem cells pools are depauperated by aging, trauma, or disease. Pharmacological targeting of stem cell signaling pathways is recently emerging as a powerful strategy for improving stem cell maintenance and/or amplification. Recent experimental data indicate that pharmacological inhibition of two prominent keratinocyte signaling pathways governed by apical mTOR and ROCK protein kinases favor stem cell maintenance and/or amplification ex vivo and may improve the effectiveness of stem cell-based therapeutic procedures. In this review, we highlight the pathophysiological roles of mTOR and ROCK in keratinocyte biology and evaluate existing pre-clinical data on the effects of their inhibition in epithelial stem cell expansion for transplantation purposes.
Collapse
|
20
|
Zhao R, Trainor PA. Epithelial to mesenchymal transition during mammalian neural crest cell delamination. Semin Cell Dev Biol 2022; 138:54-67. [PMID: 35277330 DOI: 10.1016/j.semcdb.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 11/18/2022]
Abstract
Epithelial to mesenchymal transition (EMT) is a well-defined cellular process that was discovered in chicken embryos and described as "epithelial to mesenchymal transformation" [1]. During EMT, epithelial cells lose their epithelial features and acquire mesenchymal character with migratory potential. EMT has subsequently been shown to be essential for both developmental and pathological processes including embryo morphogenesis, wound healing, tissue fibrosis and cancer [2]. During the past 5 years, interest and study of EMT especially in cancer biology have increased exponentially due to the implied role of EMT in multiple aspects of malignancy such as cell invasion, survival, stemness, metastasis, therapeutic resistance and tumor heterogeneity [3]. Since the process of EMT in embryogenesis and cancer progression shares similar phenotypic changes, core transcription factors and molecular mechanisms, it has been proposed that the initiation and development of carcinoma could be attributed to abnormal activation of EMT factors usually required for normal embryo development. Therefore, developmental EMT mechanisms, whose timing, location, and tissue origin are strictly regulated, could prove useful for uncovering new insights into the phenotypic changes and corresponding gene regulatory control of EMT under pathological conditions. In this review, we initially provide an overview of the phenotypic and molecular mechanisms involved in EMT and discuss the newly emerging concept of epithelial to mesenchymal plasticity (EMP). Then we focus on our current knowledge of a classic developmental EMT event, neural crest cell (NCC) delamination, highlighting key differences in our understanding of NCC EMT between mammalian and non-mammalian species. Lastly, we highlight available tools and future directions to advance our understanding of mammalian NCC EMT.
Collapse
Affiliation(s)
- Ruonan Zhao
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
21
|
Ribba AS, Fraboulet S, Sadoul K, Lafanechère L. The Role of LIM Kinases during Development: A Lens to Get a Glimpse of Their Implication in Pathologies. Cells 2022; 11:cells11030403. [PMID: 35159213 PMCID: PMC8834001 DOI: 10.3390/cells11030403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 12/24/2022] Open
Abstract
The organization of cell populations within animal tissues is essential for the morphogenesis of organs during development. Cells recognize three-dimensional positions with respect to the whole organism and regulate their cell shape, motility, migration, polarization, growth, differentiation, gene expression and cell death according to extracellular signals. Remodeling of the actin filaments is essential to achieve these cell morphological changes. Cofilin is an important binding protein for these filaments; it increases their elasticity in terms of flexion and torsion and also severs them. The activity of cofilin is spatiotemporally inhibited via phosphorylation by the LIM domain kinases 1 and 2 (LIMK1 and LIMK2). Phylogenetic analysis indicates that the phospho-regulation of cofilin has evolved as a mechanism controlling the reorganization of the actin cytoskeleton during complex multicellular processes, such as those that occur during embryogenesis. In this context, the main objective of this review is to provide an update of the respective role of each of the LIM kinases during embryonic development.
Collapse
|
22
|
Shi J, Wei L. Rho Kinases in Embryonic Development and Stem Cell Research. Arch Immunol Ther Exp (Warsz) 2022; 70:4. [PMID: 35043239 PMCID: PMC8766376 DOI: 10.1007/s00005-022-00642-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022]
Abstract
The Rho-associated coiled-coil containing kinases (ROCKs or Rho kinases) belong to the AGC (PKA/PKG/PKC) family of serine/threonine kinases and are major downstream effectors of small GTPase RhoA, a key regulator of actin-cytoskeleton reorganization. The ROCK family contains two members, ROCK1 and ROCK2, which share 65% overall identity and 92% identity in kinase domain. ROCK1 and ROCK2 were assumed to be functionally redundant, based largely on their major common activators, their high degree kinase domain homology, and study results from overexpression with kinase constructs or chemical inhibitors. ROCK signaling research has expanded to all areas of biology and medicine since its discovery in 1996. The rapid advance is befitting ROCK’s versatile functions in modulating various cell behavior, such as contraction, adhesion, migration, proliferation, polarity, cytokinesis, and differentiation. The rapid advance is noticeably driven by an extensive linking with clinical medicine, including cardiovascular abnormalities, aberrant immune responsive, and cancer development and metastasis. The rapid advance during the past decade is further powered by novel biotechnologies including CRISPR-Cas and single cell omics. Current consensus, derived mainly from gene targeting and RNA interference approaches, is that the two ROCK isoforms have overlapping and distinct cellular, physiological and pathophysiology roles. In this review, we present an overview of the milestone discoveries in ROCK research. We then focus on the current understanding of ROCK signaling in embryonic development, current research status using knockout and knockin mouse models, and stem cell research.
Collapse
Affiliation(s)
- Jianjian Shi
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, 1044 West Walnut Street, R4-370, Indianapolis, IN, 46202-5225, USA.
| | - Lei Wei
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, 1044 West Walnut Street, R4-370, Indianapolis, IN, 46202-5225, USA.
| |
Collapse
|
23
|
Weber AJ, Adamson AB, Greathouse KM, Andrade JP, Freeman CD, Seo JV, Rae RJ, Walker CK, Herskowitz JH. Conditional deletion of ROCK2 induces anxiety-like behaviors and alters dendritic spine density and morphology on CA1 pyramidal neurons. Mol Brain 2021; 14:169. [PMID: 34794469 PMCID: PMC8600782 DOI: 10.1186/s13041-021-00878-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/04/2021] [Indexed: 12/25/2022] Open
Abstract
Rho-associated kinase isoform 2 (ROCK2) is an attractive drug target for several neurologic disorders. A critical barrier to ROCK2-based research and therapeutics is the lack of a mouse model that enables investigation of ROCK2 with spatial and temporal control of gene expression. To overcome this, we generated ROCK2fl/fl mice. Mice expressing Cre recombinase in forebrain excitatory neurons (CaMKII-Cre) were crossed with ROCK2fl/fl mice (Cre/ROCK2fl/fl), and the contribution of ROCK2 in behavior as well as dendritic spine morphology in the hippocampus, medial prefrontal cortex (mPFC), and basolateral amygdala (BLA) was examined. Cre/ROCK2fl/fl mice spent reduced time in the open arms of the elevated plus maze and increased time in the dark of the light-dark box test compared to littermate controls. These results indicated that Cre/ROCK2fl/fl mice exhibited anxiety-like behaviors. To examine dendritic spine morphology, individual pyramidal neurons in CA1 hippocampus, mPFC, and the BLA were targeted for iontophoretic microinjection of fluorescent dye, followed by high-resolution confocal microscopy and neuronal 3D reconstructions for morphometry analysis. In dorsal CA1, Cre/ROCK2fl/fl mice displayed significantly increased thin spine density on basal dendrites and reduced mean spine head volume across all spine types on apical dendrites. In ventral CA1, Cre/ROCK2fl/fl mice exhibited significantly increased spine length on apical dendrites. Spine density and morphology were comparable in the mPFC and BLA between both genotypes. These findings suggest that neuronal ROCK2 mediates spine density and morphology in a compartmentalized manner among CA1 pyramidal cells, and that in the absence of ROCK2 these mechanisms may contribute to anxiety-like behaviors.
Collapse
Affiliation(s)
- Audrey J Weber
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Ashley B Adamson
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Kelsey M Greathouse
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Julia P Andrade
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Cameron D Freeman
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Jung Vin Seo
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Rosaria J Rae
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Courtney K Walker
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Jeremy H Herskowitz
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA.
| |
Collapse
|
24
|
Savoldi IR, Ibelli AMG, Cantão ME, Peixoto JDO, Pires MP, Mores MAZ, Lagos EB, Lopes JS, Zanella R, Ledur MC. A joint analysis using exome and transcriptome data identifiescandidate polymorphisms and genes involved with umbilical hernia in pigs. BMC Genomics 2021; 22:818. [PMID: 34773987 PMCID: PMC8590244 DOI: 10.1186/s12864-021-08138-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/29/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Umbilical Hernia (UH) is characterized by the passage of part of the intestine through the umbilical canal forming the herniary sac. There are several potential causes that can lead to the umbilical hernia such as bacterial infections, management conditions and genetic factors. Since the genetic components involved with UH are poorly understood, this study aimed to identify polymorphisms and genes associated with the manifestation of umbilical hernia in pigs using exome and transcriptome sequencing in a case and control design. RESULTS In the exome sequencing, 119 variants located in 58 genes were identified differing between normal and UH-affected pigs, and in the umbilical ring transcriptome, 46 variants were identified, located in 27 genes. Comparing the two methodologies, we obtained 34 concordant variants between the exome and transcriptome analyses, which were located in 17 genes, distributed in 64 biological processes (BP). Among the BP involved with UH it is possible to highlight cell adhesion, cell junction regulation, embryonic morphogenesis, ion transport, muscle contraction, within others. CONCLUSIONS We have generated the first exome sequencing related to normal and umbilical hernia-affected pigs, which allowed us to identify several variants possibly involved with this disorder. Many of those variants present in the DNA were confirmed with the RNA-Seq results. The combination of both exome and transcriptome sequencing approaches allowed us to better understand the complex molecular mechanisms underlying UH in pigs and possibly in other mammals, including humans. Some variants found in genes and other regulatory regions are highlighted as strong candidates to the development of UH in pigs and should be further investigated.
Collapse
Affiliation(s)
- Igor Ricardo Savoldi
- Programa de Pós-Graduação em Zootecnia, Universidade do Estado de Santa Catarina, UDESC-Oeste, Chapecó, SC 89815-630 Brazil
| | - Adriana Mércia Guaratini Ibelli
- Embrapa Suínos e Aves, 321, Concórdia, SC 89715-899 Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, PR 85040-167 Brazil
| | | | - Jane de Oliveira Peixoto
- Embrapa Suínos e Aves, 321, Concórdia, SC 89715-899 Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro-Oeste, Guarapuava, PR 85040-167 Brazil
| | - Michele Porto Pires
- Instituto Catarinense de Sanidade Agropecuária, Florianópolis, SC 88034001 Brazil
| | | | - Essamai Brizola Lagos
- Programa de Pós-Graduação em Zootecnia, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR Brazil 84030-900
| | | | - Ricardo Zanella
- Universidade de Passo Fundo, Passo Fundo, RS 99052-900 Brazil
- Programa de Mestrado em BioExperimentação, Universidade de Passo Fundo, Passo Fundo, RS 99052-900 Brazil
| | - Mônica Corrêa Ledur
- Programa de Pós-Graduação em Zootecnia, Universidade do Estado de Santa Catarina, UDESC-Oeste, Chapecó, SC 89815-630 Brazil
- Embrapa Suínos e Aves, 321, Concórdia, SC 89715-899 Brazil
| |
Collapse
|
25
|
Singh A, Behl T, Sehgal A, Singh S, Sharma N, Mani V, Alsubayiel AM, Bhatia S, Al-Harrasi A, Bungau S. Exploring the therapeutic promise of targeting Rho kinase in rheumatoid arthritis. Inflammopharmacology 2021; 29:1641-1651. [PMID: 34704172 DOI: 10.1007/s10787-021-00884-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/10/2021] [Indexed: 01/28/2023]
Abstract
Rheumatoid arthritis (RA) is a prevalent systemic autoimmune disease caused by dysregulated inflammatory reactions, T lymphocyte invasion into the joints, and articular thickening. Immune cells, primarily tumor necrosis factor-alpha (TNF-α) and chemokines (interleukin or IL-1), which are predominantly generated by activated macrophages cells, have also been involved with the pathogenesis of rheumatoid arthritis. Rho GTPases are integral factors of biochemical cascades utilized by antigens, and also by cellular receptors, cytokines, and chemokines, to modulate inflammatory reactions, according to growing data. The Rho family is a group of G proteins that govern a variety of biological and physiological activities such as mobility, actin stress fiber production, growth, and polarity. Research suggests that the Rho A and Rho-associated coiled-coil kinase (ROCK) regulatory cascade could be essential in several autoimmune conditions, including RA. ROCK is activated in the synovial of rheumatoid arthritis patients, while the blocking of ROCK with fasudil could also decrease IL-6, TNF-α, and IL-1. This review covers current developments in understanding the overactivation of Rho enzyme activity in RA suppressed by ROCK inhibitors which can be utilized for the treatment of autoimmune disease. We offer an outline of the function of ROCK inhibitors in immune cells and discuss findings which emphasize the rising participation of this category of kinases within the pathological process of autoimmune disorders. Assuming the potential ability of ROCK as a therapeutic, we define approaches that might be used to inhibit Rho kinase activity in rheumatoid disorders.
Collapse
Affiliation(s)
- Anuja Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Amal M Alsubayiel
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Saurabh Bhatia
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman.,School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
26
|
Oya R, Tsukamoto O, Sato T, Kato H, Matsuoka K, Oshima K, Kamakura T, Ohta Y, Imai T, Takashima S, Inohara H. Phosphorylation of MYL12 by Myosin Light Chain Kinase Regulates Cellular Shape Changes in Cochlear Hair Cells. J Assoc Res Otolaryngol 2021; 22:425-441. [PMID: 33877471 PMCID: PMC8329122 DOI: 10.1007/s10162-021-00796-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/11/2021] [Indexed: 10/21/2022] Open
Abstract
The organ of Corti is an auditory organ located in the cochlea, comprising hair cells (HCs) and other supporting cells. Cellular shape changes of HCs are important for the development of auditory epithelia and hearing function. It was previously observed that HCs and inner sulcus cells (ISCs) demonstrate cellular shape changes similar to the apical constriction of the neural epithelia. Apical constriction is induced via actomyosin cable contraction in the apical junctional complex and necessary for the physiological function of the epithelium. Actomyosin cable contraction is mainly regulated by myosin regulatory light chain (MRLC) phosphorylation by myosin light chain kinase (MLCK). However, MRLC and MLCK isoforms expressed in HCs and ISCs are unknown. Hence, we investigated the expression patterns and roles of MRLCs and MLCKs in HCs. Droplet digital PCR revealed that HCs expressed MYL12A/B and MYL9, which are non-muscle MRLC and smooth muscle MLCK (smMLCK), respectively. Immunofluorescence staining throughout the organ of Corti demonstrated that only MYL12 was expressed in the apical portion of HCs, whereas MYL12 and MYL9 were expressed on ISCs. In addition, purified MYL12B was phosphorylated by smMLCK in vitro, and the harvested HCs contained phosphorylated MYL12. Furthermore, accompanied by the expansion of the cell area of outer HCs, MYL12 phosphorylation was reduced by ML-7, which is an inhibitor of smMLCK. In conclusion, MYL12 phosphorylation by smMLCK contributed to the apical constriction-like cellular shape change of HCs possibly relating to the development of auditory epithelia and hearing function.
Collapse
Affiliation(s)
- Ryohei Oya
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Osaka, Japan
| | - Osamu Tsukamoto
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Osaka, Japan
| | - Takashi Sato
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hisakazu Kato
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Osaka, Japan
| | - Ken Matsuoka
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Osaka, Japan
| | - Kazuo Oshima
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takefumi Kamakura
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yumi Ohta
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takao Imai
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Osaka, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
27
|
Pütz S, Barthel LS, Frohn M, Metzler D, Barham M, Pryymachuk G, Trunschke O, Lubomirov LT, Hescheler J, Chalovich JM, Neiss WF, Koch M, Schroeter MM, Pfitzer G. Caldesmon ablation in mice causes umbilical herniation and alters contractility of fetal urinary bladder smooth muscle. J Gen Physiol 2021; 153:212279. [PMID: 34115104 PMCID: PMC8203487 DOI: 10.1085/jgp.202012776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
The actin-, myosin-, and calmodulin-binding protein caldesmon (CaD) is expressed in two splice isoforms: h-CaD, which is an integral part of the actomyosin domain of smooth muscle cells, and l-CaD, which is widely expressed and is involved in many cellular functions. Despite extensive research for many years, CaD's in vivo function has remained elusive. To explore the role of CaD in smooth muscle contraction in vivo, we generated a mutant allele that ablates both isoforms. Heterozygous animals were viable and had a normal life span, but homozygous mutants died perinatally, likely because of a persistent umbilical hernia. The herniation was associated with hypoplastic and dysmorphic abdominal wall muscles. We assessed mechanical parameters in isometrically mounted longitudinal strips of E18.5 urinary bladders and in ring preparations from abdominal aorta using wire myography. Ca2+ sensitivity was higher and relaxation rate was slower in Cald1−/− compared with Cald1+/+ skinned bladder strips. However, we observed no change in the content and phosphorylation of regulatory proteins of the contractile apparatus and myosin isoforms known to affect these contractile parameters. Intact fibers showed no difference in actin and myosin content, regardless of genotype, although KCl-induced force tended to be lower in homozygous and higher in heterozygous mutants than in WTs. Conversely, in skinned fibers, myosin content and maximal force were significantly lower in Cald1−/− than in WTs. In KO abdominal aortas, resting and U46619 elicited force were lower than in WTs. Our results are consistent with the notion that CaD impacts smooth muscle function dually by (1) acting as a molecular brake on contraction and (2) maintaining the structural integrity of the contractile machinery. Most importantly, CaD is essential for resolution of the physiological umbilical hernia and ventral body wall closure.
Collapse
Affiliation(s)
- Sandra Pütz
- Institute of Vegetative Physiology, Center of Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Lisa Sophie Barthel
- Institute of Vegetative Physiology, Center of Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Marina Frohn
- Institute of Vegetative Physiology, Center of Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Doris Metzler
- Institute of Vegetative Physiology, Center of Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Mohammed Barham
- Institute of Anatomy I, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Galyna Pryymachuk
- Institute of Anatomy I, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Oliver Trunschke
- Institute of Vegetative Physiology, Center of Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Lubomir T Lubomirov
- Institute of Vegetative Physiology, Center of Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Jürgen Hescheler
- Institute of Neurophysiology, Center of Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Joseph M Chalovich
- Department of Biochemistry & Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, NC
| | - Wolfram F Neiss
- Institute of Anatomy I, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mechthild M Schroeter
- Institute of Vegetative Physiology, Center of Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Gabriele Pfitzer
- Institute of Vegetative Physiology, Center of Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
28
|
Ligand-induced conformational rearrangements regulate the switch between membrane-proximal and distal functions of Rho kinase 2. Commun Biol 2020; 3:721. [PMID: 33247217 PMCID: PMC7699638 DOI: 10.1038/s42003-020-01450-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022] Open
Abstract
Rho-associated protein kinase 2 (ROCK2) is a membrane-anchored, long, flexible, multidomain, multifunctional protein. Its functions can be divided into two categories: membrane-proximal and membrane-distal. A recent study concluded that membrane-distal functions require the fully extended conformation, and this conclusion was supported by electron microscopy. The present solution small-angle X-ray scattering (SAXS) study revealed that ROCK2 population is a dynamic mixture of folded and partially extended conformers. Binding of RhoA to the coiled-coil domain shifts the equilibrium towards the partially extended state. Enzyme activity measurements suggest that the binding of natural protein substrates to the kinase domain breaks up the interaction between the N-terminal kinase and C-terminal regulatory domains, but smaller substrate analogues do not. The present study reveals the dynamic behaviour of this long, dimeric molecule in solution, and our structural model provides a mechanistic explanation for a set of membrane-proximal functions while allowing for the existence of an extended conformation in the case of membrane-distal functions. Using small-angle X-ray scattering, Hajdú et al. show that Rho-associated protein kinase 2 population is a mixture of folded and partially extended conformers. They find that the binding of natural protein substrates to the kinase domain breaks up the interaction between the N-terminal kinase and C-terminal regulatory domains. This study identifies a dynamic behavior of this long, dimeric molecule in solution.
Collapse
|
29
|
Duess JW, Gosemann JH, Puri P, Thompson J. Teratogenesis in the chick embryo following post-gastrulation exposure to Y-27632 -effect of Y-27632 on embryonic development. Toxicol Appl Pharmacol 2020; 409:115277. [PMID: 33049266 DOI: 10.1016/j.taap.2020.115277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/04/2020] [Accepted: 10/07/2020] [Indexed: 01/08/2023]
Abstract
The pyridine derivative Y-27632 inhibits Rho-associated coiled-coil-containing protein kinase (ROCK) signaling, which is involved in numerous developmental processes during embryogenesis, primarily by controlling actin-cytoskeleton assembly and cell contractility. Somite formation requires rearrangement of the cytoskeleton and assists in major morphological mechanisms, including ventral body wall formation. Administration of Y-27632 impairs cytoskeletal arrangements in post-gastrulation chick embryos leading to ventral body wall defects (VBWD) at later stages of development. The aim of this study was to investigate the effect of Y-27632 on somite development in post-gastrulation chick embryos during early embryogenesis. After 60 h incubation, embryos in shell-less culture were treated with Y-27632 or vehicle for controls. Following administration, abnormality rates were assessed. In treatment groups, embryos showed a kinked longitudinal body axis. Western blot confirmed impaired ROCK downstream signaling by decreased expression of phosphorylated cofilin-2. Histology, Lysotracker studies and RT-PCR demonstrated increased cell death in somites, the neural tube and the ectoderm. RT-PCR and Western blot of factors known to be involved during somitogenesis revealed reduced expression in the treatment group compared to controls. We hypothesize that administration of Y-27632 disrupts somite development causing axial kinking and embryo malformation, which may lead to VBWD.
Collapse
Affiliation(s)
- Johannes W Duess
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany; National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Jan-Hendrik Gosemann
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany; National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jennifer Thompson
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin 12, Ireland; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
30
|
Matoba K, Takeda Y, Nagai Y, Sekiguchi K, Yokota T, Utsunomiya K, Nishimura R. The Physiology, Pathology, and Therapeutic Interventions for ROCK Isoforms in Diabetic Kidney Disease. Front Pharmacol 2020; 11:585633. [PMID: 33101039 PMCID: PMC7545791 DOI: 10.3389/fphar.2020.585633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/07/2020] [Indexed: 01/14/2023] Open
Abstract
Rho-associated coiled-coil-containing protein kinase (ROCK) is a serine/threonine kinase that was originally identified as RhoA interacting protein. A diverse array of cellular functions, including migration, proliferation, and phenotypic modulation, are orchestrated by ROCK through a mechanism involving cytoskeletal rearrangement. Mammalian cells express two ROCK isoforms: ROCK1 (Rho-kinase β/ROKβ) and ROCK2 (Rho-kinase α/ROKα). While both isoforms have structural similarities and are widely expressed across multiple tissues, investigations in gene knockout animals and cell-based studies have revealed distinct functions of ROCK1 and ROCK2. With respect to the kidney, inhibiting ROCK activity has proven effective for the preventing diabetic kidney disease (DKD) in both type 1 and type 2 diabetic rodent models. However, despite significant progress in the understanding of the renal ROCK biology over the past decade, the pathogenic roles of the ROCK isoforms is only beginning to be elucidated. Recent studies have demonstrated the involvement of renal ROCK1 in mitochondrial dynamics and cellular transdifferentiation, whereas ROCK2 activation leads to inflammation, fibrosis, and cell death in the diabetic kidney. This review provides a conceptual framework for dissecting the molecular underpinnings of ROCK-driven renal injury, focusing on the differences between ROCK1 and ROCK2.
Collapse
Affiliation(s)
- Keiichiro Matoba
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yusuke Takeda
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yosuke Nagai
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kensuke Sekiguchi
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Tamotsu Yokota
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazunori Utsunomiya
- Center for Preventive Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Rimei Nishimura
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
31
|
Nunes KP, Webb RC. New insights into RhoA/Rho-kinase signaling: a key regulator of vascular contraction. Small GTPases 2020; 12:458-469. [PMID: 32970516 DOI: 10.1080/21541248.2020.1822721] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
While Rho-signalling controlling vascular contraction is a canonical mechanism, with the modern approaches used in research, we are advancing our understanding and details into this pathway are often uncovered. RhoA-mediated Rho-kinase is the major regulator of vascular smooth muscle cells and a key player manoeuvring other functions in these cells. The discovery of new interactions, such as oxidative stress and hydrogen sulphide with Rho signalling are emerging addition not only in the physiology of the smooth muscle, but especially in the pathophysiology of vascular diseases. Likewise, the interplay between ageing and Rho-kinase in the vasculature has been recently considered. Importantly, in smooth muscle contraction, this pathway may also be affected by sex hormones, and consequently, sex-differences. This review provides an overview of Rho signalling mediating vascular contraction and focuses on recent topics discussed in the literature affecting this pathway such as ageing, sex differences and oxidative stress.
Collapse
Affiliation(s)
- Kenia Pedrosa Nunes
- Laboratory of Vascular Physiology, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - R Clinton Webb
- Department of Cell Biology and Anatomy, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
32
|
Hildyard JCW, Crawford AH, Rawson F, Riddell DO, Harron RCM, Piercy RJ. Single-transcript multiplex in situ hybridisation reveals unique patterns of dystrophin isoform expression in the developing mammalian embryo. Wellcome Open Res 2020; 5:76. [PMID: 32724863 PMCID: PMC7372313 DOI: 10.12688/wellcomeopenres.15762.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2020] [Indexed: 12/24/2022] Open
Abstract
Background: The dystrophin gene has multiple isoforms: full-length dystrophin (dp427) is principally known for its expression in skeletal and cardiac muscle, but is also expressed in the brain, and several internal promoters give rise to shorter, N-terminally truncated isoforms with wider tissue expression patterns (dp260 in the retina, dp140 in the brain and dp71 in many tissues). These isoforms are believed to play unique cellular roles both during embryogenesis and in adulthood, but their shared sequence identity at both mRNA and protein levels makes study of distinct isoforms challenging by conventional methods. Methods: RNAscope is a novel in-situ hybridisation technique that offers single-transcript resolution and the ability to multiplex, with different target sequences assigned to distinct fluorophores. Using probes designed to different regions of the dystrophin transcript (targeting 5', central and 3' sequences of the long dp427 mRNA), we can simultaneously detect and distinguish multiple dystrophin mRNA isoforms at sub-cellular histological levels. We have used these probes in healthy and dystrophic canine embryos to gain unique insights into isoform expression and distribution in the developing mammal. Results: Dp427 is found in developing muscle as expected, apparently enriched at nascent myotendinous junctions. Endothelial and epithelial surfaces express dp71 only. Within the brain and spinal cord, all three isoforms are expressed in spatially distinct regions: dp71 predominates within proliferating germinal layer cells, dp140 within maturing, migrating cells and dp427 appears within more established cell populations. Dystrophin is also found within developing bones and teeth, something previously unreported, and our data suggests orchestrated involvement of multiple isoforms in formation of these tissues. Conclusions: Overall, shorter isoforms appear associated with proliferation and migration, and longer isoforms with terminal lineage commitment: we discuss the distinct structural contributions and transcriptional demands suggested by these findings.
Collapse
Affiliation(s)
- John C. W. Hildyard
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Abbe H. Crawford
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Faye Rawson
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Dominique O. Riddell
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Rachel C. M. Harron
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Richard J. Piercy
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| |
Collapse
|
33
|
Matoba K, Takeda Y, Nagai Y, Kanazawa Y, Kawanami D, Yokota T, Utsunomiya K, Nishimura R. ROCK Inhibition May Stop Diabetic Kidney Disease. JMA J 2020; 3:154-163. [PMID: 33150249 PMCID: PMC7590381 DOI: 10.31662/jmaj.2020-0014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease and is strongly associated with cardiovascular mortality. Given the pandemic of obesity and diabetes, the elucidation of the molecular underpinnings of DKD and establishment of effective therapy are urgently required. Studies over the past decade have identified the activated renin-angiotensin system (RAS) and hemodynamic changes as important therapeutic targets. However, given the residual risk observed in patients treated with RAS inhibitors and/or sodium glucose co-transporter 2 inhibitors, the involvement of other molecular machinery is likely, and the elucidation of such pathways represents fertile ground for the development of novel strategies. Rho-kinase (ROCK) is a serine/threonine kinase that is under the control of small GTPase protein Rho. Many fundamental cellular processes, including migration, proliferation, and survival are orchestrated by ROCK through a mechanism involving cytoskeletal reorganization. From a pathological standpoint, several analyses provide compelling evidence supporting the hypothesis that ROCK is an important regulator of DKD that is highly pertinent to cardiovascular disease. In cell-based studies, ROCK is activated in response to a diverse array of external stimuli associated with diabetes, and renal ROCK activity is elevated in the context of type 1 and 2 diabetes. Experimental studies have demonstrated the efficacy of pharmacological or genetic inhibition of ROCK in the prevention of diabetes-related histological and functional abnormalities in the kidney. Through a bird’s eye view of ROCK in renal biology, the present review provides a conceptual framework that may be widely applicable to the pathological processes of multiple organs and illustrate novel therapeutic promise in diabetology.
Collapse
Affiliation(s)
- Keiichiro Matoba
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yusuke Takeda
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yosuke Nagai
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasushi Kanazawa
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Daiji Kawanami
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Tamotsu Yokota
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazunori Utsunomiya
- Center for Preventive Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Rimei Nishimura
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
34
|
Hildyard JCW, Crawford AH, Rawson F, Riddell DO, Harron RCM, Piercy RJ. Single-transcript multiplex in situ hybridisation reveals unique patterns of dystrophin isoform expression in the developing mammalian embryo. Wellcome Open Res 2020; 5:76. [PMID: 32724863 PMCID: PMC7372313 DOI: 10.12688/wellcomeopenres.15762.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2020] [Indexed: 07/30/2023] Open
Abstract
Background: The dystrophin gene has multiple isoforms: full-length dystrophin (dp427) is principally known for its expression in skeletal and cardiac muscle, but is also expressed in the brain, and several internal promoters give rise to shorter, N-terminally truncated isoforms with wider tissue expression patterns (dp260 in the retina, dp140 in the brain and dp71 in many tissues). These isoforms are believed to play unique cellular roles both during embryogenesis and in adulthood, but their shared sequence identity at both mRNA and protein levels makes study of distinct isoforms challenging by conventional methods. Methods: RNAscope is a novel in-situ hybridisation technique that offers single-transcript resolution and the ability to multiplex, with different target sequences assigned to distinct fluorophores. Using probes designed to different regions of the dystrophin transcript (targeting 5', central and 3' sequences of the long dp427 mRNA), we can simultaneously detect and distinguish multiple dystrophin mRNA isoforms at sub-cellular histological levels. We have used these probes in healthy and dystrophic canine embryos to gain unique insights into isoform expression and distribution in the developing mammal. Results: Dp427 is found in developing muscle as expected, apparently enriched at nascent myotendinous junctions. Endothelial and epithelial surfaces express dp71 only. Within the brain and spinal cord, all three isoforms are expressed in spatially distinct regions: dp71 predominates within proliferating germinal layer cells, dp140 within maturing, migrating cells and dp427 appears within more established cell populations. Dystrophin is also found within developing bones and teeth, something previously unreported, and our data suggests orchestrated involvement of multiple isoforms in formation of these tissues. Conclusions: Overall, shorter isoforms appear associated with proliferation and migration, and longer isoforms with terminal lineage commitment: we discuss the distinct structural contributions and transcriptional demands suggested by these findings.
Collapse
Affiliation(s)
- John C. W. Hildyard
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Abbe H. Crawford
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Faye Rawson
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Dominique O. Riddell
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Rachel C. M. Harron
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| | - Richard J. Piercy
- Department of Clinical Science and Services, Royal Veterinary College, London, Camden, London, NW1 0TU, UK
| |
Collapse
|
35
|
LeBlanc S, Naveen D, Haan E, Barnett C, Rawlings L, Roscioli T, Poplawski N. CDH1-related blepharocheilodontic syndrome is associated with diffuse gastric cancer risk. Am J Med Genet A 2020; 182:1780-1784. [PMID: 32302040 DOI: 10.1002/ajmg.a.61601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/29/2022]
Abstract
We report the first case of diffuse gastric cancer in an individual with familial blepharocheilodontic syndrome (BCD) due to a germline CDH1 likely pathogenic variant. To date, other BCD affected relatives are nonpenetrant for diffuse gastric cancer posing challenges to counseling regarding gastric and breast cancer surveillance, and preventative total gastrectomy.
Collapse
Affiliation(s)
- Shannon LeBlanc
- Paediatric and Reproductive Genetics Unit, Women's and Children's Hospital, Adelaide, South Australia, Australia.,Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Dildeepa Naveen
- Metabolic Unit, Women's and Children's Hospital, Adelaide, South Australia, Australia
| | - Eric Haan
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Christopher Barnett
- Paediatric and Reproductive Genetics Unit, Women's and Children's Hospital, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Lesley Rawlings
- Genetics & Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
| | - Tony Roscioli
- Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, New South Wales, Australia.,New South Wales Health Pathology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Nicola Poplawski
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
36
|
Targeting Redox Imbalance as an Approach for Diabetic Kidney Disease. Biomedicines 2020; 8:biomedicines8020040. [PMID: 32098346 PMCID: PMC7167917 DOI: 10.3390/biomedicines8020040] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetic kidney disease (DKD) is a worldwide public health problem. It is the leading cause of end-stage renal disease and is associated with increased mortality from cardiovascular complications. The tight interactions between redox imbalance and the development of DKD are becoming increasingly evident. Numerous cascades, including the polyol and hexosamine pathways have been implicated in the oxidative stress of diabetes patients. However, the precise molecular mechanism by which oxidative stress affects the progression of DKD remains to be elucidated. Given the limited therapeutic options for DKD, it is essential to understand how oxidants and antioxidants are controlled in diabetes and how oxidative stress impacts the progression of renal damage. This review aims to provide an overview of the current status of knowledge regarding the pathological roles of oxidative stress in DKD. Finally, we summarize recent therapeutic approaches to preventing DKD with a focus on the anti-oxidative effects of newly developed anti-hyperglycemic agents.
Collapse
|
37
|
Iida A, Wang Z, Hondo E, Sehara-Fujisawa A. Generation and evaluation of a transgenic zebrafish for tissue-specific expression of a dominant-negative Rho-associated protein kinase-2. Biochem Biophys Res Commun 2020; 525:S0006-291X(20)30323-5. [PMID: 32067738 DOI: 10.1016/j.bbrc.2020.02.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 02/09/2020] [Indexed: 12/28/2022]
Abstract
The Ras homologous (Rho) proteins are a family of small GTPases, which regulate the cytoskeleton and are related to stress fibers and focal adhesion. The Rho-associated protein kinases (ROCK) constitute part of the Rho effectors that regulate cell shape and movement via phosphorylation of the myosin light chain and actin depolymerizing factor/cofilin. ROCK members are widely expressed and play roles in various cell types during vertebrate development and morphogenesis; therefore, ROCK-knockout animals exhibit multiple defects mostly initiated at the embryonic stage. Analyzing the distinct roles of ROCK in cell shape and movement during the embryonic stages using live mammalian models is difficult. Here, we inhibited the Rho/ROCK pathway in zebrafish, which is a small fish that can be conveniently used as a developmental animal model in place of mammals. To inhibit the Rho/ROCK pathway, we designed a dominant-negative ROCK-2 (dnROCK-2) that lacked the kinase domain and was under the control of an upstream activation sequence (UAS). To evaluate the effects of expression of dnROCK-2, transgenic zebrafish lines were generated by mating strains expressing the construct with counterpart strains expressing the Gal4 activator in target tissues. In this study, we crossed the dnROCK-2-expressing line with two such Gal4-expressing lines; (1) SAGFF(LF)73A for expression in the whole body, and (2) Tg(fli1a: Gal4FF)ubs4 for endothelial cell-specific expression. The phenotypes of the fish obtained were observed by fluorescent stereomicroscopy or confocal microscopy. Overexpression of dnROCK-2 in the whole body resulted in an inhibition of development, notably in cephalic formation, at 1-day post-fertilization (dpf). Confocal microscopy revealed that Hensen's zone became unclear in the trunk muscle fibers expressing dnROCK-2. Endothelial cell-specific expression of dnROCK-2 caused abnormalities in cardiovascular formation at 2-dpf. These results suggest that dnROCK-2 can act as a dominant negative construct of the Rho/ROCK pathway to affect regulation of the cytoskeleton. This construct could be a convenient tool to investigate the function of ROCK members in other vertebrate cell types.
Collapse
Affiliation(s)
- Atsuo Iida
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan; Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Shogo-in Kawahara-cho 53, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Zi Wang
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Shogo-in Kawahara-cho 53, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Eiichi Hondo
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Atsuko Sehara-Fujisawa
- Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Shogo-in Kawahara-cho 53, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
38
|
ROCK and RHO Playlist for Preimplantation Development: Streaming to HIPPO Pathway and Apicobasal Polarity in the First Cell Differentiation. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2020; 229:47-68. [PMID: 29177764 DOI: 10.1007/978-3-319-63187-5_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In placental mammalian development, the first cell differentiation produces two distinct lineages that emerge according to their position within the embryo: the trophectoderm (TE, placenta precursor) differentiates in the surface, while the inner cell mass (ICM, fetal body precursor) forms inside. Here, we discuss how such position-dependent lineage specifications are regulated by the RHOA subfamily of small GTPases and RHO-associated coiled-coil kinases (ROCK). Recent studies in mouse show that activities of RHO/ROCK are required to promote TE differentiation and to concomitantly suppress ICM formation. RHO/ROCK operate through the HIPPO signaling pathway, whose cell position-specific modulation is central to establishing unique gene expression profiles that confer cell fate. In particular, activities of RHO/ROCK are essential in outside cells to promote nuclear localization of transcriptional co-activators YAP/TAZ, the downstream effectors of HIPPO signaling. Nuclear localization of YAP/TAZ depends on the formation of apicobasal polarity in outside cells, which requires activities of RHO/ROCK. We propose models of how RHO/ROCK regulate lineage specification and lay out challenges for future investigations to deepen our understanding of the roles of RHO/ROCK in preimplantation development. Finally, as RHO/ROCK may be inhibited by certain pharmacological agents, we discuss their potential impact on human preimplantation development in relation to fertility preservation in women.
Collapse
|
39
|
Identification of novel functions of the ROCK2-specific inhibitor KD025 by bioinformatics analysis. Gene 2020; 737:144474. [PMID: 32057928 DOI: 10.1016/j.gene.2020.144474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022]
Abstract
Rho-associated protein kinases (ROCKs) have various cellular functions, which include actin cytoskeleton remodeling and vesicular trafficking, and there are two major mammalian ROCK isotypes, namely, ROCK1 (ROKβ) and ROCK2 (ROKα). The ROCK2-specific inhibitor KD025 (SLx-2119) is currently undergoing phase II clinical trials, but its cellular functions have not been fully explored. In this study, we investigated the functions of KD025 at the genomics level by bioinformatics analysis using the GSE8686 microarray dataset from the NCBI GEO database, in three different primary human cell lines. An initial microarray analysis conducted by Boerma et al. focused on the effects of KD025 on cell adhesion and blood coagulation, but did not provide comprehensive information on the functions of KD025. Our analysis of differentially expressed genes (DEGs) showed ~70% coincidence with Boerma et al.'s findings, and newly identified that CCND1, CXCL2, NT5E, and SMOX were differentially expressed by KD025. However, due to low numbers of co-regulated DEGs, we were unable to extract the functions of KD025 with significance. To overcome this limitation, we used gene set enrichment analysis (GSEA) and the heatmap hierarchical clustering method. We confirmed KD025 regulated inflammation and adipogenesis pathways, as previously reported experimentally. In addition, we found KD025 has novel regulatory functions on various pathways, including oxidative phosphorylation, WNT signaling, angiogenesis, and KRAS signaling. Further studies are required to systematically characterize these newly identified functions of KD025.
Collapse
|
40
|
Sharma P, Roy K. ROCK-2-selective targeting and its therapeutic outcomes. Drug Discov Today 2020; 25:446-455. [DOI: 10.1016/j.drudis.2019.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/08/2019] [Accepted: 11/30/2019] [Indexed: 01/21/2023]
|
41
|
Zhang JG, Zhou HM, Zhang X, Mu W, Hu JN, Liu GL, Li Q. Hypoxic induction of vasculogenic mimicry in hepatocellular carcinoma: role of HIF-1 α, RhoA/ROCK and Rac1/PAK signaling. BMC Cancer 2020; 20:32. [PMID: 31931758 PMCID: PMC6958789 DOI: 10.1186/s12885-019-6501-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 12/26/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Vasculogenic mimicry (VM), defined as a capability of aggressive tumor Cells to mimic embryonic vasculogenic networks, caused poor prognosis in hepatocellular carcinoma (HCC). Rho kinases (ROCK), p21-activated kinase (PAK), hypoxia or epithelial-mesenchymal transition (EMT) contributed to the VM potential. However, the details underlying these biological behaviors have not been completely elucidated. METHODS Kaplan-Meier analysis was conducted to predict relationship with hypoxia Inducible factor (HIF-1α), EMT related markers: Vimentin and patient prognosis. CD34/periodic acid-Schiff (PAS) double staining was examined to differentiate VM-positive (VM+) and VM-negative (VM-) samples. Cells were cultured under controlled hypoxic environments (1% O2) or normoxic conditions. The effect of hypoxia on RhoA/ROCK, Rac1/PAK and EMT were evaluated by real time-qPCR and western blot. HIF-1α small interfering RNA (siRNA), overexpressed or short hairpin RNA (shRNA) of ROCK and kinase inhibitors were used to explore the effect of HIF-1α, RhoA/ROCK, Rac1/PAK and Vimentin on VM. RESULTS HIF-1α or Vimentin was upregulated in VM+ HCC tissues, compared to non-cancerous tissues (P < 0.01), and patients with high expression of HIF-1α or Vimentin had worse prognosis (P < 0.001). We showed hypoxia induced RhoA/ROCK and Rac1/PAK signaling transduction, and EMT could be repressed by HIF-1α siRNA. Notably, RhoA/ROCK or Rac1/PAK stabilized HIF-1α in hypoxia, whereas HIF-1α did not significantly altered RhoA/ROCK or Rac1/PAK signaling in hypoxia. Moreover, we found distinct roles of ROCK1, ROCK2 and PAK in regulating Vimentin phosphorylation. CONCLUSIONS RhoA/ROCK and Rac/PAK signaling played crucial roles in hypoxia-induced VM via Ser72 and Ser56 Vimentin phosphorylation in HCC.
Collapse
Affiliation(s)
- Ji-Gang Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, Shanghai, 200080, People's Republic of China
| | - He-Ming Zhou
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, Shanghai, 200080, People's Republic of China
| | - Xue Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, Shanghai, 200080, People's Republic of China
| | - Wan Mu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, Shanghai, 200080, People's Republic of China
| | - Juan-Ni Hu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, Shanghai, 200080, People's Republic of China
| | - Gao-Lin Liu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, Shanghai, 200080, People's Republic of China.
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
42
|
Greathouse KM, Henderson BW, Gentry EG, Herskowitz JH. Fasudil or genetic depletion of ROCK1 or ROCK2 induces anxiety-like behaviors. Behav Brain Res 2019; 373:112083. [PMID: 31302146 PMCID: PMC6693674 DOI: 10.1016/j.bbr.2019.112083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022]
Abstract
Twenty-nine protein kinase inhibitors have been used to treat human diseases. Out of these, two are Rho-associated protein kinase (ROCK) 1 and 2 inhibitors. The ROCKs heavily influence neuronal architecture and structural plasticity, and ROCKs are putative drug targets for various brain disorders. While the pan-ROCK inhibitor Fasudil has been clinically approved to treat hypertension, heart failure, glaucoma, spinal cord injury, and stroke, a barrier to progress on this therapeutic avenue is the lack of experimental comparisons between pharmacologic and genetic manipulation of ROCKs. Our study begins to address this question using parallel approaches to study behavior in mice that were treated with Fasudil or were heterozygous for ROCK1 or ROCK2. Adult mice treated with Fasudil for thirty days displayed reduced time spent in the open arms of the elevated plus maze, whereas activity in the open field was more analogous to mock-treated animals. Both male and female adult ROCK1+/- and ROCK2+/- mice exhibited reduced time spent in open arms of the elevated plus maze compared to littermate controls. However, ROCK1 or ROCK2 heterozygosity did not alter performance in the open field or Y-maze. These results indicate that chronic treatment with Fasudil induces anxiety-like behaviors that are likely the consequence of ROCK1 and/or ROCK2 inhibition. Our findings may have implications for several ongoing clinical trials using Fasudil or other ROCK-based therapeutics.
Collapse
Affiliation(s)
- Kelsey M Greathouse
- Center for Neurodegeneration and Experimental Therapeutics and Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Benjamin W Henderson
- Center for Neurodegeneration and Experimental Therapeutics and Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Erik G Gentry
- Center for Neurodegeneration and Experimental Therapeutics and Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Jeremy H Herskowitz
- Center for Neurodegeneration and Experimental Therapeutics and Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States.
| |
Collapse
|
43
|
Knipe RS, Probst CK, Lagares D, Franklin A, Spinney JJ, Brazee PL, Grasberger P, Zhang L, Black KE, Sakai N, Shea BS, Liao JK, Medoff BD, Tager AM. The Rho Kinase Isoforms ROCK1 and ROCK2 Each Contribute to the Development of Experimental Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2019; 58:471-481. [PMID: 29211497 DOI: 10.1165/rcmb.2017-0075oc] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pulmonary fibrosis is thought to result from dysregulated wound repair after repetitive lung injury. Many cellular responses to injury involve rearrangements of the actin cytoskeleton mediated by the two isoforms of the Rho-associated coiled-coil-forming protein kinase (ROCK), ROCK1 and ROCK2. In addition, profibrotic mediators such as transforming growth factor-β, thrombin, and lysophosphatidic acid act through receptors that activate ROCK. Inhibition of ROCK activation may be a potent therapeutic strategy for human pulmonary fibrosis. Pharmacological inhibition of ROCK using nonselective ROCK inhibitors has been shown to prevent fibrosis in animal models; however, the specific roles of each ROCK isoform are poorly understood. Furthermore, the pleiotropic effects of this kinase have raised concerns about on-target adverse effects of ROCK inhibition such as hypotension. Selective inhibition of one isoform might be a better-tolerated strategy. In the present study, we used a genetic approach to determine the roles of ROCK1 and ROCK2 in a mouse model of bleomycin-induced pulmonary fibrosis. Using ROCK1- or ROCK2-haploinsufficient mice, we found that reduced expression of either ROCK1 or ROCK2 was sufficient to protect them from bleomycin-induced pulmonary fibrosis. In addition, we found that both isoforms contribute to the profibrotic responses of epithelial cells, endothelial cells, and fibroblasts. Interestingly, ROCK1- and ROCK2-haploinsufficient mice exhibited similar protection from bleomycin-induced vascular leak, myofibroblast differentiation, and fibrosis; however, ROCK1-haploinsufficient mice demonstrated greater attenuation of epithelial cell apoptosis. These findings suggest that selective inhibition of either ROCK isoform has the potential to be an effective therapeutic strategy for pulmonary fibrosis.
Collapse
Affiliation(s)
- Rachel S Knipe
- 1 Division of Pulmonary and Critical Care Medicine.,2 The Andrew M. Tager Fibrosis Research Center, and.,3 Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Clemens K Probst
- 1 Division of Pulmonary and Critical Care Medicine.,2 The Andrew M. Tager Fibrosis Research Center, and.,3 Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - David Lagares
- 1 Division of Pulmonary and Critical Care Medicine.,2 The Andrew M. Tager Fibrosis Research Center, and.,3 Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Alicia Franklin
- 1 Division of Pulmonary and Critical Care Medicine.,2 The Andrew M. Tager Fibrosis Research Center, and.,3 Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jillian J Spinney
- 1 Division of Pulmonary and Critical Care Medicine.,2 The Andrew M. Tager Fibrosis Research Center, and.,3 Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Patricia L Brazee
- 4 Division of Pulmonary Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Paula Grasberger
- 1 Division of Pulmonary and Critical Care Medicine.,2 The Andrew M. Tager Fibrosis Research Center, and.,3 Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Linlin Zhang
- 5 Division of Cardiology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Katharine E Black
- 1 Division of Pulmonary and Critical Care Medicine.,2 The Andrew M. Tager Fibrosis Research Center, and.,3 Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Norihiko Sakai
- 6 Division of Nephrology and.,7 Division of Blood Purification, Kanazawa University Hospital, Kanazawa, Japan; and
| | - Barry S Shea
- 8 Division of Pulmonary, Critical Care and Sleep Medicine, Rhode Island Hospital and Alpert Medical School, Providence, Rhode Island
| | - James K Liao
- 5 Division of Cardiology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Benjamin D Medoff
- 1 Division of Pulmonary and Critical Care Medicine.,2 The Andrew M. Tager Fibrosis Research Center, and.,3 Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrew M Tager
- 1 Division of Pulmonary and Critical Care Medicine.,2 The Andrew M. Tager Fibrosis Research Center, and.,3 Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
44
|
Discovery of (S)-6-methoxy-chroman-3-carboxylic acid (4-pyridin-4-yl-phenyl)-amide as potent and isoform selective ROCK2 inhibitors. Bioorg Med Chem 2019; 27:1382-1390. [DOI: 10.1016/j.bmc.2019.02.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 01/22/2023]
|
45
|
Bailey KE, MacGowan GA, Tual-Chalot S, Phillips L, Mohun TJ, Henderson DJ, Arthur HM, Bamforth SD, Phillips HM. Disruption of embryonic ROCK signaling reproduces the sarcomeric phenotype of hypertrophic cardiomyopathy. JCI Insight 2019; 5:125172. [PMID: 30835717 PMCID: PMC6538384 DOI: 10.1172/jci.insight.125172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Sarcomeric disarray is a hallmark of gene mutations in patients with hypertrophic cardiomyopathy (HCM). However, it is unknown when detrimental sarcomeric changes first occur and whether they originate in the developing embryonic heart. Furthermore, Rho kinase (ROCK) is a serine/threonine protein kinase that is critical for regulating the function of several sarcomeric proteins, and therefore, our aim was to determine whether disruption of ROCK signaling during the earliest stages of heart development would disrupt the integrity of sarcomeres, altering heart development and function. Using a mouse model in which the function of ROCK is specifically disrupted in embryonic cardiomyocytes, we demonstrate a progressive cardiomyopathy that first appeared as sarcomeric disarray during cardiogenesis. This led to abnormalities in the structure of the embryonic ventricular wall and compensatory cardiomyocyte hypertrophy during fetal development. This sarcomeric disruption and hypertrophy persisted throughout adult life, triggering left ventricular concentric hypertrophy with systolic dysfunction, and reactivation of fetal gene expression and cardiac fibrosis, all typical features of HCM. Taken together, our findings establish a mechanism for the developmental origin of the sarcomeric phenotype of HCM and suggest that variants in the ROCK genes or disruption of ROCK signaling could, in part, contribute to its pathogenesis. Disruption of ROCK activity in embryonic cardiomyocytes revealed a developmental origin for hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Kate E Bailey
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Guy A MacGowan
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Simon Tual-Chalot
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lauren Phillips
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Deborah J Henderson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Helen M Arthur
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Simon D Bamforth
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Helen M Phillips
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
46
|
Yan J, Pan Y, Zheng X, Zhu C, Zhang Y, Shi G, Yao L, Chen Y, Xu N. Comparative Study of ROCK1 and ROCK2 in Hippocampal Spine Formation and Synaptic Function. Neurosci Bull 2019; 35:649-660. [PMID: 30826947 DOI: 10.1007/s12264-019-00351-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 11/23/2018] [Indexed: 01/14/2023] Open
Abstract
Rho-associated kinases (ROCKs) are serine-threonine protein kinases that act downstream of small Rho GTPases to regulate the dynamics of the actin cytoskeleton. Two ROCK isoforms (ROCK1 and ROCK2) are expressed in the mammalian central nervous system. Although ROCK activity has been implicated in synapse formation, whether the distinct ROCK isoforms have different roles in synapse formation and function in vivo is not clear. Here, we used a genetic approach to address this long-standing question. Both Rock1+/- and Rock2+/- mice had impaired glutamatergic transmission, reduced spine density, and fewer excitatory synapses in hippocampal CA1 pyramidal neurons. In addition, both Rock1+/- and Rock2+/- mice showed deficits in long-term potentiation at hippocampal CA1 synapses and were impaired in spatial learning and memory based on the water maze and contextual fear conditioning tests. However, the spine morphology of CA1 pyramidal neurons was altered only in Rock2+/- but not Rock1+/- mice. In this study we compared the roles of ROCK1 and ROCK2 in synapse formation and function in vivo for the first time. Our results provide a better understanding of the functions of distinct ROCK isoforms in synapse formation and function.
Collapse
Affiliation(s)
- Jinglan Yan
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Youcan Pan
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.,Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaoyan Zheng
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chuanan Zhu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yu Zhang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Guoqi Shi
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lin Yao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yongjun Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China. .,Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, 510515, China.
| | - Nenggui Xu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
47
|
Zhang JG, Zhang DD, Liu Y, Hu JN, Zhang X, Li L, Mu W, Zhu GH, Li Q, Liu GL. RhoC/ROCK2 promotes vasculogenic mimicry formation primarily through ERK/MMPs in hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1113-1125. [PMID: 30779947 DOI: 10.1016/j.bbadis.2018.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/06/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022]
Abstract
Vasculogenic mimicry (VM) results in the formation of an alternative circulatory system that can improve the blood supply to multiple malignant tumors, including hepatocellular carcinoma (HCC). However, the potential mechanisms of RhoC/ROCK in VM have not yet been investigated in HCC. Here, RhoC expression was upregulated in HCC tissues, especially the VM-positive (VM+) group, compared to noncancerous tissues (P < 0.01), and patients with high expression of RhoC had shorter survival times (P < 0.001). The knockdown of RhoC via short hairpin RNA (shRNA) in SK-Hep-1 cells significantly decreased VM formation and cell motility. In contrast, cell motility and VM formation were remarkably enhanced when RhoC was overexpressed in HepG2 cells. To further assess the potential role of ROCK1 and ROCK2 on VM, we stably knocked down ROCK1 or ROCK2 in MHCC97H cells. Compared to ROCK1 shRNA, ROCK2 shRNA could largely affect VM formation, cell motility and the key VM factors, as well as the epithelial-mesenchymal transition (EMT) markers in vitro and in vivo. Moreover, p-ERK, p-MEK, p-FAK, p-paxillin, MT1-MMP and MMP2 levels were clearly altered following the overexpression of RhoC, but ROCK2 shRNA had little effect on the expression of p-FAK, which indicated that RhoC regulates FAK/paxillin signaling, but not through ROCK2. In conclusion, our results show that RhoC/ROCK2 may have a major effect on VM in HCC via ERK/MMPs signaling and might be a potential therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Ji-Gang Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China
| | - Dan-Dan Zhang
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai 200092, PR China
| | - Ying Liu
- Department of Clinical Pharmacy, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, 200032 Shanghai, PR China
| | - Juan-Ni Hu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China
| | - Xue Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China
| | - Li Li
- Department of Pharmacy, The Eighth Affiliated Hospital of Sun Yat-Sen University, No 3025, Nanhai Road, 518033 Shenzhen, PR China
| | - Wan Mu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China
| | - Guan-Hua Zhu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China.
| | - Gao-Lin Liu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, Shanghai 200080, PR China.
| |
Collapse
|
48
|
Saberi P, Forouzanfar M, Nasr-Esfahani MH. ROCK Inhibitor During Hypothermic Storage Improves Re-Expansion Rate and Quality of Goat Blastocysts. Biopreserv Biobank 2018; 16:451-457. [DOI: 10.1089/bio.2018.0003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pariya Saberi
- Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Mohsen Forouzanfar
- Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
49
|
Greathouse KM, Boros BD, Deslauriers JF, Henderson BW, Curtis KA, Gentry EG, Herskowitz JH. Distinct and complementary functions of rho kinase isoforms ROCK1 and ROCK2 in prefrontal cortex structural plasticity. Brain Struct Funct 2018; 223:4227-4241. [PMID: 30196430 PMCID: PMC6252131 DOI: 10.1007/s00429-018-1748-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/04/2018] [Indexed: 12/13/2022]
Abstract
Rho-associated protein kinases (ROCK) 1 and 2 are attractive drug targets for a range of neurologic disorders; however, a critical barrier to ROCK-based therapeutics is ambiguity over whether there are isoform-specific roles for ROCKs in neuronal structural plasticity. Here, we used a genetics approach to address this long-standing question by analyzing both male and female adult ROCK1+/- and ROCK2+/- mice compared to littermate controls. Individual pyramidal neurons in the medial prefrontal cortex (mPFC) were targeted for iontophoretic microinjection of fluorescent dye, followed by high-resolution confocal microscopy and neuronal 3D reconstructions for morphometry analysis. Increased apical and basal dendritic length and intersections were observed in ROCK1+/- but not ROCK2+/- mice. Although dendritic spine densities were comparable among genotypes, apical spine length was decreased in ROCK1+/- but increased in ROCK2+/- mice. Spine head and neck diameter were reduced similarly in ROCK1+/- and ROCK2+/- mice; however, certain spine morphologic subclasses were more affected than others in a genotype-dependent manner. Biochemical analyses of ROCK substrates in synaptic fractions revealed that phosphorylation of LIM kinase and cofilin were reduced in ROCK1+/- and ROCK2+/- mice, while phosphorylation of myosin light chain was decreased exclusively in ROCK1+/- mice. Collectively, these observations implicate ROCK1 as a novel regulatory factor of neuronal dendritic structure and detail distinct and complementary roles of ROCKs in mPFC dendritic spine structure.
Collapse
Affiliation(s)
- Kelsey M Greathouse
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, 35294, USA
| | - Benjamin D Boros
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, 35294, USA
| | - Josue F Deslauriers
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, 35294, USA
| | - Benjamin W Henderson
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, 35294, USA
| | - Kendall A Curtis
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, 35294, USA
| | - Erik G Gentry
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, 35294, USA
| | - Jeremy H Herskowitz
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL, 35294, USA.
| |
Collapse
|
50
|
Liu J, Wada Y, Katsura M, Tozawa H, Erwin N, Kapron CM, Bao G, Liu J. Rho-Associated Coiled-Coil Kinase (ROCK) in Molecular Regulation of Angiogenesis. Am J Cancer Res 2018; 8:6053-6069. [PMID: 30613282 PMCID: PMC6299434 DOI: 10.7150/thno.30305] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023] Open
Abstract
Identified as a major downstream effector of the small GTPase RhoA, Rho-associated coiled-coil kinase (ROCK) is a versatile regulator of multiple cellular processes. Angiogenesis, the process of generating new capillaries from the pre-existing ones, is required for the development of various diseases such as cancer, diabetes and rheumatoid arthritis. Recently, ROCK has attracted attention for its crucial role in angiogenesis, making it a promising target for new therapeutic approaches. In this review, we summarize recent advances in understanding the role of ROCK signaling in regulating the permeability, migration, proliferation and tubulogenesis of endothelial cells (ECs), as well as its functions in non-ECs which constitute the pro-angiogenic microenvironment. The therapeutic potential of ROCK inhibitors in angiogenesis-related diseases is also discussed.
Collapse
|