1
|
Qu L, Che H, Zhao J, Lu X, Ren Z, Wu Y, Liu Q, Guan H. NCAPD3 is a prognostic biomarker and is correlated with immune infiltrates in glioma. Histol Histopathol 2024; 39:1473-1484. [PMID: 38576381 DOI: 10.14670/hh-18-736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Non-SMC Condensin II Complex Subunit D3 (NCAPD3) has been linked with the genesis and progression of multiple human cancers. Nevertheless, the scientific value and molecular process of NCAPD3 in glioma remain unclear. We explored the level of NCAPD3 expression in pan-cancer by multiple online databases. And we focused on the level and prognostic value of NCAPD3 expression in glioma by immunohistochemistry (IHC) and survival analysis. Meanwhile, we verified the relationship between NCAPD3, biological function and immune infiltration in glioma by Linkedomics and SangerBox databases. The expression of NCAPD3 was increased in a variety of cancers, including glioma. Its high expression was strongly related to WHO grade (P=0.002) and programmed cell death ligand 1 (PD-L1) expression of glioma (P=0.001). Patients with a high level of NCAPD3 expression had a lower overall survival (OS) in glioma than patients with a low level of NCAPD3 expression. Multivariate statistical analyses showed NCAPD3 expression (P=0.040), WHO grade (P<0.001), 1p/19q codeletion (P<0.001), recurrence (P<0.001), age (P=0.023), and chemotherapy status (P=0.001) were meaningful independent prognostic factors in patients with glioma. Furthermore, bioinformatics analysis proved that NCAPD3 has been linked to immune infiltration in glioma. High level of NCAPD3 expression may serve as a promising prognostic biomarker and correlate with dendritic cell infiltration, representing a potential immunotherapy target in glioma.
Collapse
Affiliation(s)
- Linzhuo Qu
- Department of Neurology, Yanbian University Hospital, Yanji, China
| | - Huiying Che
- Department of General Medicine, Yanbian University Hospital, Yanji, China
| | - Jingyu Zhao
- Cancer Research Center, Yanbian University, Yanji, China
| | - Xin Lu
- Department of Neurology, Yanbian University Hospital, Yanji, China
| | - Zijun Ren
- Department of Neurology, Yanbian University Hospital, Yanji, China
| | - Yu Wu
- Department of Neurology, Yanbian University Hospital, Yanji, China
| | - Qian Liu
- Department of Neurology, Yanbian University Hospital, Yanji, China
| | - Hongjian Guan
- Department of Neurology, Yanbian University Hospital, Yanji, China.
| |
Collapse
|
2
|
Duong VT, Ha M, Kim J, Kim JY, Park S, Reshma KM, Han ME, Lee D, Kim YH, Oh SO. Recycling machinery of integrin coupled with focal adhesion turnover via RAB11-UNC13D-FAK axis for migration of pancreatic cancer cells. J Transl Med 2024; 22:800. [PMID: 39210440 PMCID: PMC11360766 DOI: 10.1186/s12967-024-05630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Recycling of integrin via endosomal vesicles is critical for the migration of cancer cells, which leads to the metastasis of pancreatic cancer and devastating cancer-related death. So, new diagnostic and therapeutic molecules which target the recycling of endosomal vesicles need to be developed. METHODS Public databases including TCGA, ICGC, GSE21501, GSE28735, and GENT are analyzed to derive diagnostic and therapeutic targets. To reveal biological roles and underlying mechanisms of molecular targets, various molecular biological experiments were conducted. RESULTS First, we identified UNC13D's overexpression in patients with pancreatic cancer (n = 824) and its prognostic significance and high hazard ratio (HR) in four independent pancreatic cancer cohorts (TCGA, n = 178, p = 0.014, HR = 3.629; ICGC, n = 91, p = 0.000, HR = 4.362; GSE21501, n = 102, p = 0.002, HR = 2.339; GSE28735, n = 45, p = 0.022, HR = 2.681). Additionally, its expression is associated with the clinicopathological progression of pancreatic cancer. Further biological studies have shown that UNC13D regulates the migration of pancreatic cancer cells by coupling the exocytosis of recycling endosomes with focal adhesion turnover via the regulation of FAK phosphorylation. Immunoprecipitation and immunocytochemistry showed the formation of the RAB11-UNC13D-FAK axis in endosomes during integrin recycling. We observed that UNC13D directly interacted with the FERM domain of FAK and regulated FAK phosphorylation in a calcium-dependent manner. Finally, we found co-expression of UNC13D and FAK showed the poorest survival (TCGA, p = 0.000; ICGC, p = 0.036; GSE28735, p = 0.006). CONCLUSIONS We highlight that UNC13D, a novel prognostic factor, promotes pancreatic cancer progression by coupling integrin recycling with focal adhesion turnover via the RAB11-UNC13D-FAK axis for the migration of pancreatic cancer cells.
Collapse
Affiliation(s)
- Van-Thanh Duong
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Mihyang Ha
- Department of Nuclear Medicine and Medical Research Institute, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Jayoung Kim
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Ji-Young Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Siyoung Park
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Khatun Mst Reshma
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Myoung-Eun Han
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea.
| |
Collapse
|
3
|
Yun D, Liang J, Wang X, Fan J, Wang X, Li J, Ren X, Liu J, Ren X, Zhang H, Shang G, Jin W, Chen L, Li T, Zhang C, Yu S, Yang X. TCAF2 drives glioma cellular migratory/invasion properties through STAT3 signaling. Mol Cell Biochem 2024; 479:1801-1815. [PMID: 38019450 PMCID: PMC11255011 DOI: 10.1007/s11010-023-04891-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/31/2023] [Indexed: 11/30/2023]
Abstract
Glioma is an intracranial tumor characterized by high mortality and recurrence rates. In the present study, the association of TRPM8 channel-associated factor 2 (TCAF2) in glioma was investigated using bioinformatics, showing significant relationships with age, WHO grade, IDH, and 1p/19q status, as well as being an independent predictor of prognosis. Immunohistochemistry of a glioma sample microarray showed markedly increased TCAF2 expression in glioblastoma relative to lower-grade glioma, with elevated expression predominating in the tumor center. Raised TCAF2 levels promote glioma cell migratory/invasion properties through the epithelial-to-mesenchymal transition-like (EMT-like) process, shown by Transwell and scratch assays and western blotting. It was further found that the effects of TCAF2 were mediated by the activation of STAT3. These results suggest that TCAF2 promotes glioma cell migration and invasion, rendering it a potential drug target in glioma therapy.
Collapse
Affiliation(s)
- Debo Yun
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
- Department of Neurosurgery, Nanchong Central Hospital, Nanchong, China
| | - Jianshen Liang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Xuya Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Jikang Fan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Xisen Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Jiabo Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Xiao Ren
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Jie Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Xiude Ren
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Hao Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Guanjie Shang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Wenzhe Jin
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Lei Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Tao Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Chen Zhang
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Shengping Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
- Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China.
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, Beijing, China.
| |
Collapse
|
4
|
Sonoi R, Kamihira M. A novel strategy to facilitate uniform epithelial cell maturation using liquid-liquid interfaces. Sci Rep 2024; 14:12314. [PMID: 38811617 PMCID: PMC11137049 DOI: 10.1038/s41598-024-63115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024] Open
Abstract
Epithelial tissue forms and maintains a critical barrier function in the body. A novel culture design aimed at promoting uniform maturation of epithelial cells using liquid materials is described. Culturing Madin-Darby canine kidney (MDCK) cells at the liquid-liquid interface yielded reduced migration and stimulated active cell growth. Similar to solid-liquid interfaces, cells cultured on a fibronectin-coated liquid-liquid interface exhibited active migration and growth, ultimately reaching a confluent state. These cells exhibited reduced stress fiber formation and adopted a cobblestone-like shape, which led to their even distribution in the culture vessel. To inhibit stress fiber formation and apoptosis, the exposure of cells on liquid-liquid interfaces to Y27632, a specific inhibitor of the Rho-associated protein kinase (ROCK), facilitated tight junction formation (frequency of ZO-2-positive cells, FZ = 0.73). In Y27632-exposed cells on the liquid-liquid interface, the value obtained by subtracting the standard deviation of the ratio of nucleus densities in each region that compartmentalized a culture vessel from 1, denoted as HLN, was 0.93 ± 0.01, indicated even cell distribution in the culture vessel at t = 72 h. The behavior of epithelial cells on liquid-liquid interfaces contributes to the promotion of their uniform maturation.
Collapse
Affiliation(s)
- Rie Sonoi
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan.
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
5
|
Qiao Y, Ji X, Guo H, Zheng W, Yao W. Complementary transcriptomic and proteomic analyses elucidate the toxicological molecular mechanisms of deoxynivalenol-induced contractile dysfunction in enteric smooth muscle cells. Food Chem Toxicol 2024; 186:114545. [PMID: 38403181 DOI: 10.1016/j.fct.2024.114545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Deoxynivalenol (DON) is one of the frequent Fusarium mycotoxins and poses a serious threat to public health worldwide. DON-induced weight loss is tightly connected with its ability to decrease feed intake by influencing gastrointestinal tract (GIT) motility. Our previous reports indicated that DON interfered with intestinal motility by injuring the contractility of enteric smooth muscle cells (SMC). Here, we further explored the potential mechanisms by employing a complementary method of transcriptomics and proteomics using the porcine enteric smooth muscle cell line (PISMC) as an experimental model. The transcriptomic and proteomic data uncover that the expression of numerous extracellular matrix (ECM) proteins and multiple integrin subunits were downregulated in PISMC under DON exposure, suppressing the ECM-integrin receptor interaction and its mediated signaling. Furthermore, DON treatment could depress actin polymerization, as reflected by the upregulated expression of Rho GTPase-activating proteins and cofilin in PISMC. Meanwhile, the expression levels of downstream contractile apparatus genes were significantly inhibited after challenge with DON. Taken together, the current results suggest that DON inhibits enteric SMC contractility by regulating the ECM-integrin-actin polymerization signaling pathway. Our findings provide novel insights into the potential mechanisms behind the DON toxicological effects in the GIT of humans and animals.
Collapse
Affiliation(s)
- Yu Qiao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Xu Ji
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Huiduo Guo
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, China
| | - Weijiang Zheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wen Yao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Key Lab of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
6
|
van Stalborch AMD, Clark AG, Sonnenberg A, Margadant C. Imaging and quantitative analysis of integrin-dependent cell-matrix adhesions. STAR Protoc 2023; 4:102473. [PMID: 37616164 PMCID: PMC10469561 DOI: 10.1016/j.xpro.2023.102473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/21/2023] [Accepted: 06/30/2023] [Indexed: 08/25/2023] Open
Abstract
Integrin-dependent cell-extracellular matrix adhesion is essential for wound healing, embryonic development, immunity, and tissue organization. Here, we present a protocol for the imaging and quantitative analysis of integrin-dependent cell-matrix adhesions. We describe steps for cell culture; virus preparation; lentiviral transduction; imaging with widefield, confocal, and total internal reflection fluorescence microscopy; and using a script for their quantitative analysis. We then detail procedures for analyzing adhesion dynamics by live-cell imaging and fluorescence recovery after photobleaching (FRAP). For complete details on the use and execution of this protocol, please refer to Margadant et al. (2012),1 van der Bijl et al. (2020),2 Amado-Azevedo et al. (2021).3.
Collapse
Affiliation(s)
| | - Andrew G Clark
- Institute of Cell Biology and Immunology, Stuttgart Research Center Systems Biology, University of Stuttgart, 70569 Stuttgart, Germany; Center for Personalized Medicine, University of Tübingen, Tübingen, Germany
| | - Arnoud Sonnenberg
- The Netherlands Cancer Institute, 1066 CX Amsterdam, the Netherlands.
| | - Coert Margadant
- Institute of Biology, Leiden University, 2333 BE Leiden, the Netherlands.
| |
Collapse
|
7
|
Xu Y, Liu J, Song W, Wang Q, Sun X, Zhao Q, Huang Y, Li H, Peng Y, Yuan J, Ji B, Ren L. Biomimetic Convex Implant for Corneal Regeneration Through 3D Printing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205878. [PMID: 36775872 PMCID: PMC10104657 DOI: 10.1002/advs.202205878] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Blindness caused by corneal damage affects millions of people worldwide, and this number continues to rise. However, rapid epithelization and a stable epithelium process are the two biggest challenges for traditional corneal materials. These processes are related to corneal curvature, which is an important factor in determination of the corneal healing process and epithelial behavior during corneal damage. In this study, smooth 3D-printed convex corneal implants based on gelatin methacrylate and collagen are generated. As epithelium distribution and adhesion vary in different regions of the natural cornea, this work separates the surfaces into four regions and studies how cells sense topological cues on curvature. It is found that rabbit corneal epithelial cells (RCECs) seeded on steeper slope gradient surfaces on convex structures result in more aligned cell organization and tighter cell-substrate adhesion, which can also be verified through finite element simulation and signaling pathway analysis. In vivo transplantation of convex implants result in a better fit with adjacent tissue and stronger cell adhesion than flat implants, thereby accelerating corneal epithelialization and promoting collagen fibers and neural regeneration within 180 days. Taken together, printed convex corneal implants that facilitate corneal regeneration may offer a translational strategy for the treatment of corneal damage.
Collapse
Affiliation(s)
- Yingni Xu
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Jia Liu
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Wenjing Song
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Qianchun Wang
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001P. R. China
| | - Xiaomin Sun
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Qi Zhao
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Yongrui Huang
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Haochen Li
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Yuehai Peng
- National Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
- Guangzhou Proud Seeing Biotechnology Co., LtdGuangzhou510320P. R. China
| | - Jin Yuan
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510623P. R. China
| | - Baohua Ji
- Institute of Biomechanics and Applications, Department of Engineering MechanicsZhejiang UniversityHangzhou310027P. R. China
| | - Li Ren
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
- Bioland LaboratoryGuangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangzhou510005P. R. China
| |
Collapse
|
8
|
TRIM56 acts through the IQGAP1-CDC42 signaling axis to promote glioma cell migration and invasion. Cell Death Dis 2023; 14:178. [PMID: 36870986 PMCID: PMC9985612 DOI: 10.1038/s41419-023-05702-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
Diffuse invasion is an important factor leading to treatment resistance and a poor prognosis in gliomas. Herein, we found that expression of the tripartite motif containing 56 (TRIM56), a RING-finger domain containing E3 ubiquitin ligase, was markedly higher in glioma than in normal brain tissue, and was significantly correlated with malignant phenotypes and a poor prognosis. In vitro and in vivo experimental studies revealed that TRIM56 promoted the migration and invasion of glioma cells. Mechanistically, TRIM56 was transcriptionally regulated by SP1 and promoted the K48-K63-linked poly-ubiquitination transition of IQGAP1 at Lys-1230 by interacting with it, which in turn promoted CDC42 activation. This mechanism was confirmed to mediate glioma migration and invasion. In conclusion, our study provides insights into the mechanisms through which TRIM56 promotes glioma motility, i.e., by regulating IQGAP1 ubiquitination to promote CDC42 activation, which might be clinically targeted for the treatment of glioma.
Collapse
|
9
|
Hu P, Leyton L, Hagood JS, Barker TH. Thy-1-Integrin Interactions in cis and Trans Mediate Distinctive Signaling. Front Cell Dev Biol 2022; 10:928510. [PMID: 35733855 PMCID: PMC9208718 DOI: 10.3389/fcell.2022.928510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Thy-1 is a cell surface glycosylphosphatidylinositol (GPI)-anchored glycoprotein that bears a broad mosaic of biological roles across various cell types. Thy-1 displays strong physiological and pathological implications in development, cancer, immunity, and tissue fibrosis. Quite uniquely, Thy-1 is capable of mediating integrin-related signaling through direct trans- and cis-interaction with integrins. Both interaction types have shown distinctive roles, even when interacting with the same type of integrin, where binding in trans or in cis often yields divergent signaling events. In this review, we will revisit recent progress and discoveries of Thy-1–integrin interactions in trans and in cis, highlight their pathophysiological consequences and explore other potential binding partners of Thy-1 within the integrin regulation/signaling paradigm.
Collapse
Affiliation(s)
- Ping Hu
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, United States
| | - Lisette Leyton
- Cellular Communication Laboratory, Program of Cellular and Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile and Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - James S. Hagood
- Department of Pediatrics, Division of Pulmonology, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- Program for Rare and Interstitial Lung Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Thomas H. Barker
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, United States
- *Correspondence: Thomas H. Barker,
| |
Collapse
|
10
|
Campisi D, Desrues L, Dembélé KP, Mutel A, Parment R, Gandolfo P, Castel H, Morin F. The core autophagy protein ATG9A controls dynamics of cell protrusions and directed migration. J Cell Biol 2022; 221:e202106014. [PMID: 35180289 PMCID: PMC8932524 DOI: 10.1083/jcb.202106014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/09/2021] [Accepted: 12/08/2021] [Indexed: 01/18/2023] Open
Abstract
Chemotactic migration is a fundamental cellular behavior relying on the coordinated flux of lipids and cargo proteins toward the leading edge. We found here that the core autophagy protein ATG9A plays a critical role in the chemotactic migration of several human cell lines, including highly invasive glioma cells. Depletion of ATG9A protein altered the formation of large and persistent filamentous actin (F-actin)-rich lamellipodia that normally drive directional migration. Using live-cell TIRF microscopy, we demonstrated that ATG9A-positive vesicles are targeted toward the migration front of polarized cells, where their exocytosis correlates with protrusive activity. Finally, we found that ATG9A was critical for efficient delivery of β1 integrin to the leading edge and normal adhesion dynamics. Collectively, our data uncover a new function for ATG9A protein and indicate that ATG9A-positive vesicles are mobilized during chemotactic stimulation to facilitate expansion of the lamellipodium and its anchorage to the extracellular matrix.
Collapse
Affiliation(s)
- Daniele Campisi
- Normandie University, UNIROUEN, Institut national de la santé et de la recherche médicale U1239, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Laurence Desrues
- Normandie University, UNIROUEN, Institut national de la santé et de la recherche médicale U1239, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Kléouforo-Paul Dembélé
- Normandie University, UNIROUEN, Institut national de la santé et de la recherche médicale U1239, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Alexandre Mutel
- Normandie University, UNIROUEN, Institut national de la santé et de la recherche médicale U1239, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Renaud Parment
- Normandie University, UNIROUEN, Institut national de la santé et de la recherche médicale U1239, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Pierrick Gandolfo
- Normandie University, UNIROUEN, Institut national de la santé et de la recherche médicale U1239, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Hélène Castel
- Normandie University, UNIROUEN, Institut national de la santé et de la recherche médicale U1239, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Fabrice Morin
- Normandie University, UNIROUEN, Institut national de la santé et de la recherche médicale U1239, DC2N, Rouen, France
- Institute for Research and Innovation in Biomedicine, Rouen, France
| |
Collapse
|
11
|
Ma J, Bi L, Spurlin J, Lwigale P. Nephronectin-Integrin α8 signaling is required for proper migration of periocular neural crest cells during chick corneal development. eLife 2022; 11:74307. [PMID: 35238772 PMCID: PMC8916771 DOI: 10.7554/elife.74307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/02/2022] [Indexed: 11/19/2022] Open
Abstract
During development, cells aggregate at tissue boundaries to form normal tissue architecture of organs. However, how cells are segregated into tissue precursors remains largely unknown. Cornea development is a perfect example of this process whereby neural crest cells aggregate in the periocular region prior to their migration and differentiation into corneal cells. Our recent RNA-seq analysis identified upregulation of nephronectin (Npnt) transcripts during early stages of corneal development where its function has not been investigated. We found that Npnt mRNA and protein are expressed by various ocular tissues, including the migratory periocular neural crest (pNC), which also express the integrin alpha 8 (Itgα8) receptor. Knockdown of either Npnt or Itgα8 attenuated cornea development, whereas overexpression of Npnt resulted in cornea thickening. Moreover, overexpression of Npnt variants lacking RGD-binding sites did not affect corneal thickness. Neither the knockdown nor augmentation of Npnt caused significant changes in cell proliferation, suggesting that Npnt directs pNC migration into the cornea. In vitro analyses showed that Npnt promotes pNC migration from explanted periocular mesenchyme, which requires Itgα8, focal adhesion kinase, and Rho kinase. Combined, these data suggest that Npnt augments cell migration into the presumptive cornea extracellular matrix by functioning as a substrate for Itgα8-positive pNC cells.
Collapse
Affiliation(s)
- Justin Ma
- Department of Biosciences, Rice University, Houston, United States
| | - Lian Bi
- Department of Biosciences, Rice University, Houston, United States
| | - James Spurlin
- Department of Biosciences, Rice University, Houston, United States
| | - Peter Lwigale
- Department of Biosciences, Rice University, Houston, United States
| |
Collapse
|
12
|
Balcioglu HE, Harkes R, Danen EHJ, Schmidt T. Substrate rigidity modulates traction forces and stoichiometry of cell–matrix adhesions. J Chem Phys 2022; 156:085101. [DOI: 10.1063/5.0077004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In cell–matrix adhesions, integrin receptors and associated proteins provide a dynamic coupling of the extracellular matrix (ECM) to the cytoskeleton. This allows bidirectional transmission of forces between the ECM and the cytoskeleton, which tunes intracellular signaling cascades that control survival, proliferation, differentiation, and motility. The quantitative relationships between recruitment of distinct cell–matrix adhesion proteins and local cellular traction forces are not known. Here, we applied quantitative super-resolution microscopy to cell–matrix adhesions formed on fibronectin-stamped elastomeric pillars and developed an approach to relate the number of talin, vinculin, paxillin, and focal adhesion kinase (FAK) molecules to the local cellular traction force. We find that FAK recruitment does not show an association with traction-force application, whereas a ∼60 pN force increase is associated with the recruitment of one talin, two vinculin, and two paxillin molecules on a substrate with an effective stiffness of 47 kPa. On a substrate with a fourfold lower effective stiffness, the stoichiometry of talin:vinculin:paxillin changes to 2:12:6 for the same ∼60 pN traction force. The relative change in force-related vinculin recruitment indicates a stiffness-dependent switch in vinculin function in cell–matrix adhesions. Our results reveal a substrate-stiffness-dependent modulation of the relationship between cellular traction-force and the molecular stoichiometry of cell–matrix adhesions.
Collapse
Affiliation(s)
- Hayri E. Balcioglu
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Rolf Harkes
- Physics of Life Processes, Kamerlingh Onnes-Huygens Laboratory, Leiden University, Leiden, The Netherlands
| | - Erik H. J. Danen
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Thomas Schmidt
- Physics of Life Processes, Kamerlingh Onnes-Huygens Laboratory, Leiden University, Leiden, The Netherlands
| |
Collapse
|
13
|
Rens EG, Edelstein-Keshet L. Cellular Tango: how extracellular matrix adhesion choreographs Rac-Rho signaling and cell movement. Phys Biol 2021; 18. [PMID: 34544056 DOI: 10.1088/1478-3975/ac2888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/20/2021] [Indexed: 12/14/2022]
Abstract
The small GTPases Rac and Rho are known to regulate eukaryotic cell shape, promoting front protrusion (Rac) or rear retraction (Rho) of the cell edge. Such cell deformation changes the contact and adhesion of cell to the extracellular matrix (ECM), while ECM signaling through integrin receptors also affects GTPase activity. We develop and investigate a model for this three-way feedback loop in 1D and 2D spatial domains, as well as in a fully deforming 2D cell shapes with detailed adhesion-bond biophysics. The model consists of reaction-diffusion equations solved numerically with open-source software, Morpheus, and with custom-built cellular Potts model simulations. We find a variety of patterns and cell behaviors, including persistent polarity, flipped front-back cell polarity oscillations, spiral waves, and random protrusion-retraction. We show that the observed spatial patterns depend on the cell shape, and vice versa.
Collapse
Affiliation(s)
- Elisabeth G Rens
- Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands.,Department of Mathematics, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
14
|
Dong C, Li X, Yang J, Yuan D, Zhou Y, Zhang Y, Shi G, Zhang R, Liu J, Fu P, Sun M. PPFIBP1 induces glioma cell migration and invasion through FAK/Src/JNK signaling pathway. Cell Death Dis 2021; 12:827. [PMID: 34480020 PMCID: PMC8417031 DOI: 10.1038/s41419-021-04107-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive brain tumor, with a 5-year survival ratio <5%. Invasive growth is a major determinant of the poor prognosis in GBM. In this study, we demonstrate that high expression of PPFIA binding protein 1 (PPFIBP1) correlates with remarkable invasion and poor prognosis of GBM patients. Using scratch and transwell assay, we find that the invasion and migration of GBM cells are promoted by overexpression of PPFIBP1, while inhibited by knockdown of PPFIBP1. Then, we illustrate that overexpression of PPFIBP1 facilitates glioma cell infiltration and reduces survival in xenograft models. Next, RNA-Seq and GO enrichment analysis reveal that PPFIBP1 regulates differentially expressed gene clusters involved in the Wnt and adhesion-related signaling pathways. Furthermore, we demonstrate that PPFIBP1 activates focal adhesion kinase (FAK), Src, c-Jun N-terminal kinase (JNK), and c-Jun, thereby enhancing Matrix metalloproteinase (MMP)-2 expression probably through interacting with SRCIN1 (p140Cap). Finally, inhibition of phosphorylation of Src and FAK significantly reversed the augmentation of invasion and migration caused by PPFIBP1 overexpression in GBM cells. In conclusion, these findings uncover a novel mechanism of glioma invasion and identify PPFIBP1 as a potential therapeutic target of glioma.
Collapse
Affiliation(s)
- Caihua Dong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Xinying Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jiao Yang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yuanshuai Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Yina Zhang
- Neurological Department, Helios-Amper Clinic Dachau, Dachau, Germany
| | - Guohua Shi
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Ruobing Zhang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Jianping Liu
- Integrated Cardio Metabolic Centre, Karolinska Institute, Huddinge, Sweden
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Minxuan Sun
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
| |
Collapse
|
15
|
Modulation of lung cytoskeletal remodeling, RXR based metabolic cascades and inflammation to achieve redox homeostasis during extended exposures to lowered pO 2. Apoptosis 2021; 26:431-446. [PMID: 34002323 DOI: 10.1007/s10495-021-01679-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Extended exposure to low pO2 has multiple effects on signaling cascades. Despite multiple exploratory studies, omics studies elucidating the signaling cascades essential for surviving extended low pO2 exposures are lacking. In this study, we simulated low pO2 (PB = 40 kPa; 7620 m) exposure in male Sprague-Dawley rats for 3, 7 and 14 days. Redox stress assays and proteomics based network biology were performed using lungs and plasma. We observed that redox homeostasis was achieved after day 3 of exposure. We investigated the causative events for this. Proteo-bioinformatics analysis revealed STAT3 to be upstream of lung cytoskeletal processes and systemic lipid metabolism (RXR) derived inflammatory processes, which were the key events. Thus, during prolonged low pO2 exposure, particularly those involving slowly decreasing pressures, redox homeostasis is achieved but energy metabolism is perturbed and this leads to an immune/inflammatory signaling impetus after third day of exposure. We found that an interplay of lung cytoskeletal elements, systemic energy metabolism and inflammatory proteins aid in achieving redox homeostasis and surviving extended low pO2 exposures. Qualitative perturbations to cytoskeletal stability and innate immunity/inflammation were also observed during extended low pO2 exposure in humans exposed to 14,000 ft for 7, 14 and 21 days.
Collapse
|
16
|
Malek S, Köster DV. The Role of Cell Adhesion and Cytoskeleton Dynamics in the Pathogenesis of the Ehlers-Danlos Syndromes and Hypermobility Spectrum Disorders. Front Cell Dev Biol 2021; 9:649082. [PMID: 33968931 PMCID: PMC8097055 DOI: 10.3389/fcell.2021.649082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/22/2021] [Indexed: 12/26/2022] Open
Abstract
The Ehlers-Danlos syndromes (EDS) are a group of 13 disorders, clinically defined through features of joint hypermobility, skin hyperextensibility, and tissue fragility. Most subtypes are caused by mutations in genes affecting the structure or processing of the extracellular matrix (ECM) protein collagen. The Hypermobility Spectrum Disorders (HSDs) are clinically indistinguishable disorders, but are considered to lack a genetic basis. The pathogenesis of all these disorders, however, remains poorly understood. Genotype-phenotype correlations are limited, and findings of aberrant collagen fibrils are inconsistent and associate poorly with the subtype and severity of the disorder. The defective ECM, however, also has consequences for cellular processes. EDS/HSD fibroblasts exhibit a dysfunctional phenotype including impairments in cell adhesion and cytoskeleton organization, though the pathological significance of this has remained unclear. Recent advances in our understanding of fibroblast mechanobiology suggest these changes may actually reflect features of a pathomechanism we herein define. This review departs from the traditional view of EDS/HSD, where pathogenesis is mediated by the structurally defective ECM. Instead, we propose EDS/HSD may be a disorder of membrane-bound collagen, and consider how aberrations in cell adhesion and cytoskeleton dynamics could drive the abnormal properties of the connective tissue, and be responsible for the pathogenesis of EDS/HSD.
Collapse
Affiliation(s)
- Sabeeha Malek
- Division of Biomedical Sciences, Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Darius V Köster
- Division of Biomedical Sciences, Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
17
|
Ludwig BS, Kessler H, Kossatz S, Reuning U. RGD-Binding Integrins Revisited: How Recently Discovered Functions and Novel Synthetic Ligands (Re-)Shape an Ever-Evolving Field. Cancers (Basel) 2021; 13:1711. [PMID: 33916607 PMCID: PMC8038522 DOI: 10.3390/cancers13071711] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Integrins have been extensively investigated as therapeutic targets over the last decades, which has been inspired by their multiple functions in cancer progression, metastasis, and angiogenesis as well as a continuously expanding number of other diseases, e.g., sepsis, fibrosis, and viral infections, possibly also Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). Although integrin-targeted (cancer) therapy trials did not meet the high expectations yet, integrins are still valid and promising targets due to their elevated expression and surface accessibility on diseased cells. Thus, for the future successful clinical translation of integrin-targeted compounds, revisited and innovative treatment strategies have to be explored based on accumulated knowledge of integrin biology. For this, refined approaches are demanded aiming at alternative and improved preclinical models, optimized selectivity and pharmacological properties of integrin ligands, as well as more sophisticated treatment protocols considering dose fine-tuning of compounds. Moreover, integrin ligands exert high accuracy in disease monitoring as diagnostic molecular imaging tools, enabling patient selection for individualized integrin-targeted therapy. The present review comprehensively analyzes the state-of-the-art knowledge on the roles of RGD-binding integrin subtypes in cancer and non-cancerous diseases and outlines the latest achievements in the design and development of synthetic ligands and their application in biomedical, translational, and molecular imaging approaches. Indeed, substantial progress has already been made, including advanced ligand designs, numerous elaborated pre-clinical and first-in-human studies, while the discovery of novel applications for integrin ligands remains to be explored.
Collapse
Affiliation(s)
- Beatrice S. Ludwig
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
| | - Horst Kessler
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technical University Munich, 81675 Munich, Germany;
- Department of Chemistry, Institute for Advanced Study, Technical University Munich, 85748 Garching, Germany;
| | - Ute Reuning
- Clinical Research Unit, Department of Obstetrics and Gynecology, University Hospital Klinikum Rechts der Isar, Technical University Munich, 81675 Munich, Germany
| |
Collapse
|
18
|
Zuidema A, Wang W, Sonnenberg A. Crosstalk between Cell Adhesion Complexes in Regulation of Mechanotransduction. Bioessays 2020; 42:e2000119. [PMID: 32830356 DOI: 10.1002/bies.202000119] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/27/2020] [Indexed: 01/03/2023]
Abstract
Physical forces regulate numerous biological processes during development, physiology, and pathology. Forces between the external environment and intracellular actin cytoskeleton are primarily transmitted through integrin-containing focal adhesions and cadherin-containing adherens junctions. Crosstalk between these complexes is well established and modulates the mechanical landscape of the cell. However, integrins and cadherins constitute large families of adhesion receptors and form multiple complexes by interacting with different ligands, adaptor proteins, and cytoskeletal filaments. Recent findings indicate that integrin-containing hemidesmosomes oppose force transduction and traction force generation by focal adhesions. The cytolinker plectin mediates this crosstalk by coupling intermediate filaments to the actin cytoskeleton. Similarly, cadherins in desmosomes might modulate force generation by adherens junctions. Moreover, mechanotransduction can be influenced by podosomes, clathrin lattices, and tetraspanin-enriched microdomains. This review discusses mechanotransduction by multiple integrin- and cadherin-based cell adhesion complexes, which together with the associated cytoskeleton form an integrated network that allows cells to sense, process, and respond to their physical environment.
Collapse
Affiliation(s)
- Alba Zuidema
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Wei Wang
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Arnoud Sonnenberg
- Division of Cell Biology I, The Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| |
Collapse
|
19
|
Reciprocal integrin/integrin antagonism through kindlin-2 and Rho GTPases regulates cell cohesion and collective migration. Matrix Biol 2020; 93:60-78. [PMID: 32450218 DOI: 10.1016/j.matbio.2020.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
Abstract
Collective cell behaviour during embryogenesis and tissue repair requires the coordination of intercellular junctions, cytoskeleton-dependent shape changes controlled by Rho GTPases, and integrin-dependent cell-matrix adhesion. Many different integrins are simultaneously expressed during wound healing, embryonic development, and sprouting angiogenesis, suggesting that there is extensive integrin/integrin cross-talk to regulate cell behaviour. Here, we show that fibronectin-binding β1 and β3 integrins do not act synergistically, but rather antagonize each other during collective cell processes in neuro-epithelial cells, placental trophoblasts, and endothelial cells. Reciprocal β1/β3 antagonism controls RhoA activity in a kindlin-2-dependent manner, balancing cell spreading, contractility, and intercellular adhesion. In this way, reciprocal β1/β3 antagonism controls cell cohesion and cellular plasticity to switch between extreme and opposing states, including epithelial versus mesenchymal-like phenotypes and collective versus individual cell migration. We propose that integrin/integrin antagonism is a universal mechanism to effectuate social cellular interactions, important for tissue morphogenesis, endothelial barrier function, trophoblast invasion, and sprouting angiogenesis.
Collapse
|
20
|
Adhesion and growth factor receptor crosstalk mechanisms controlling cell migration. Essays Biochem 2020; 63:553-567. [PMID: 31551325 DOI: 10.1042/ebc20190025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 12/30/2022]
Abstract
Cell migration requires cells to sense and interpret an array of extracellular signals to precisely co-ordinate adhesion dynamics, local application of mechanical force, polarity signalling and cytoskeletal dynamics. Adhesion receptors and growth factor receptors (GFRs) exhibit functional and signalling characteristics that individually contribute to cell migration. Integrins transmit bidirectional mechanical forces and transduce long-range intracellular signals. GFRs are fast acting and highly sensitive signalling machines that initiate signalling cascades to co-ordinate global cellular processes. Syndecans are microenvironment sensors that regulate GTPases to control receptor trafficking, cytoskeletal remodelling and adhesion dynamics. However, an array of crosstalk mechanisms exists, which co-ordinate and integrate the functions of the different receptor families. Here we discuss the nature of adhesion receptor and GFR crosstalk mechanisms. The unifying theme is that efficient cell migration requires precise spatial and temporal co-ordination of receptor crosstalk. However, a higher order of complexity emerges; whereby multiple crosstalk mechanisms are integrated and subject to both positive and negative feedbacks. Exquisite and sensitive control of these mechanisms ensures that mechanical forces and pro-migratory signals are triggered in the right place and at the right time during cell migration. Finally, we discuss the challenges, and potential therapeutic benefits, associated with deciphering this complexity.
Collapse
|
21
|
Kłopocka W, Korczyński J, Pomorski P. Cytoskeleton and Nucleotide Signaling in Glioma C6 Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:109-128. [PMID: 32034711 DOI: 10.1007/978-3-030-30651-9_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This chapter describes signaling pathways, stimulated by the P2Y2 nucleotide receptor (P2Y2R), that regulate cellular processes dependent on actin cytoskeleton dynamics in glioma C6 cells. P2Y2R coupled with G-proteins, in response to ATP or UTP, regulates the level of iphosphatidylinositol-4,5-bisphosphate (PIP2) which modulates a variety of actin binding proteins and is involved in calcium response and activates Rac1 and RhoA proteins. The RhoA/ROCK signaling pathway plays an important role in contractile force generation needed for the assembly of stress fibers, focal adhesions and for tail retraction during cell migration. Blocking of this pathway by a specific Rho-kinase inhibitor induces changes in F-actin organization and cell shape and decreases the level of phosphorylated myosin II and cofilin. In glioma C6 cells these changes are reversed after UTP stimulation of P2Y2R. Signaling pathways responsible for this compensation are calcium signaling which regulates MLC kinase activation via calmodulin, and the Rac1/PAK/LIMK cascade. Stimulation of the Rac1 mediated pathway via Go proteins needs additional interaction between αvβ5 integrins and P2Y2Rs. Calcium free medium, or growing of the cells in suspension, prevents Gαo activation by P2Y2 receptors. Rac1 activation is necessary for cofilin phosphorylation as well as integrin activation needed for focal complexes formation and stabilization of lamellipodium. Inhibition of positive Rac1 regulation prevents glioma C6 cells from recovery of control cell like morphology.
Collapse
Affiliation(s)
- Wanda Kłopocka
- Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University, Warsaw, Poland.
| | - Jarosław Korczyński
- M. Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Pomorski
- M. Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
22
|
Young J, Hua X, Somsel H, Reichart F, Kessler H, Spatz JP. Integrin Subtypes and Nanoscale Ligand Presentation Influence Drug Sensitivity in Cancer Cells. NANO LETTERS 2020; 20:1183-1191. [PMID: 31908168 PMCID: PMC7020138 DOI: 10.1021/acs.nanolett.9b04607] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Cancer cell-matrix interactions have been shown to enhance cancer cell survival via the activation of pro-survival signaling pathways. These pathways are initiated at the site of interaction, i.e., integrins, and thus, their inhibition has been the target of therapeutic strategies. Individual roles for fibronectin-binding integrin subtypes αvβ3 and α5β1 have been shown for various cellular processes; however, a systematic comparison of their function in adhesion-dependent chemoresistance is lacking. Here, we utilize integrin subtype-specific peptidomimetics for αvβ3 and α5β1, both as blocking agents on fibronectin-coated surfaces and as surface-immobilized adhesion sites, in order to parse out their role in breast cancer cell survival. Block copolymer micelle nanolithography is utilized to immobilize peptidomimetics onto highly ordered gold nanoparticle arrays with biologically relevant interparticle spacings (35, 50, or 70 nm), thereby providing a platform for ascertaining the dependence of ligand spacing in chemoprotection. We show that several cellular properties-morphology, focal adhesion formation, and migration-are intricately linked to both the integrin subtype and their nanospacing. Importantly, we show that chemotherapeutic drug sensitivity is highly dependent on both parameters, with smaller ligand spacing generally hindering survival. Furthermore, we identify ligand type-specific patterns of drug sensitivity, with enhanced chemosurvival when cells engage αvβ3 vs α5β1 on fibronectin; however, this is heavily reliant on nanoscale spacing, as the opposite is observed when ligands are spaced at 70 nm. These data imply that even nanoscale alterations in extracellular matrix properties have profound effects on cancer cell survival and can thus inform future therapies and drug testing platforms.
Collapse
Affiliation(s)
- Jennifer
L. Young
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany
- Department
of Biophysical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| | - Ximeng Hua
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany
- Department
of Biophysical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| | - Heidi Somsel
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany
- Department
of Biophysical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| | - Florian Reichart
- Department
of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Horst Kessler
- Department
of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Joachim P. Spatz
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, 69120 Heidelberg, Germany
- Department
of Biophysical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
- E-mail: . Phone: +49 6221 486-420
| |
Collapse
|
23
|
Contractile myosin rings and cofilin-mediated actin disassembly orchestrate ECM nanotopography sensing. Biomaterials 2020; 232:119683. [PMID: 31927180 DOI: 10.1016/j.biomaterials.2019.119683] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/22/2019] [Accepted: 12/12/2019] [Indexed: 12/24/2022]
Abstract
The nanotopography and nanoscale geometry of the extra-cellular matrix (ECM) are important regulators of cell adhesion, motility and fate decision. However, unlike the sensing of matrix mechanics and ECM density, the molecular processes regulating the direct sensing of the ECM nanotopography and nanoscale geometry are not well understood. Here, we use nanotopographical patterns generated via electrospun nanofibre lithography (ENL) to investigate the mechanisms of nanotopography sensing by cells. We observe the dysregulation of actin dynamics, resulting in the surprising formation of actin foci. This alteration of actin organisation is regulated by myosin contractility but independent of adapter proteins such as vinculin. This process is highly dependent on differential integrin expression as β3 integrin expressing cells, more sensitive to nanopattern dimensions than β1 integrin expressing cells, also display increased perturbation of actin assembly and actin foci formation. We propose that, in β3 integrin expressing cells, contractility results in the destabilisation of nanopatterned actin networks, collapsing into foci and sequestering regulators of actin dynamics such as cofilin that orchestrate disassembly. Therefore, in contrast to the sensing of substrate mechanics and ECM ligand density, which are directly orchestrated by focal adhesion assembly, we propose that nanotopography sensing is regulated by a long-range sensing mechanism, remote from focal adhesions and mediated by the actin architecture.
Collapse
|
24
|
Zhu K, Takada Y, Nakajima K, Sun Y, Jiang J, Zhang Y, Zeng Q, Takada Y, Zhao M. Expression of integrins to control migration direction of electrotaxis. FASEB J 2019; 33:9131-9141. [PMID: 31116572 PMCID: PMC6662972 DOI: 10.1096/fj.201802657r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 04/15/2019] [Indexed: 02/05/2023]
Abstract
Proper control of cell migration is critically important in many biologic processes, such as wound healing, immune surveillance, and development. Much progress has been made in the initiation of cell migration; however, little is known about termination and sometimes directional reversal. During active cell migration, as in wound healing, development, and immune surveillance, the integrin expression profile undergoes drastic changes. Here, we uncovered the extensive regulatory and even opposing roles of integrins in directional cell migration in electric fields (EFs), a potentially important endogenous guidance mechanism. We established cell lines that stably express specific integrins and determined their responses to applied EFs with a high throughput screen. Expression of specific integrins drove cells to migrate to the cathode or to the anode or to lose migration direction. Cells expressing αMβ2, β1, α2, αIIbβ3, and α5 migrated to the cathode, whereas cells expressing β3, α6, and α9 migrated to the anode. Cells expressing α4, αV, and α6β4 lost directional electrotaxis. Manipulation of α9 molecules, one of the molecular directional switches, suggested that the intracellular domain is critical for the directional reversal. These data revealed an unreported role for integrins in controlling stop, go, and reversal activity of directional migration of mammalian cells in EFs, which might ensure that cells reach their final destination with well-controlled speed and direction.-Zhu, K., Takada, Y., Nakajima, K., Sun, Y., Jiang, J., Zhang, Y., Zeng, Q., Takada, Y., Zhao, M. Expression of integrins to control migration direction of electrotaxis.
Collapse
Affiliation(s)
- Kan Zhu
- Department of Dermatology, School of Medicine, University of California–Davis, Sacramento, California, USA
- Institute for Regenerative Cures, University of California–Davis, Sacramento, California, USA
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Surgery Research, Third Military Medical University, Chongqing, China
| | - Yoko Takada
- Department of Dermatology, School of Medicine, University of California–Davis, Sacramento, California, USA
| | - Kenichi Nakajima
- Department of Dermatology, School of Medicine, University of California–Davis, Sacramento, California, USA
- Institute for Regenerative Cures, University of California–Davis, Sacramento, California, USA
| | - Yaohui Sun
- Department of Dermatology, School of Medicine, University of California–Davis, Sacramento, California, USA
- Institute for Regenerative Cures, University of California–Davis, Sacramento, California, USA
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Surgery Research, Third Military Medical University, Chongqing, China
| | - Yan Zhang
- Department of Dermatology, School of Medicine, University of California–Davis, Sacramento, California, USA
- Institute for Regenerative Cures, University of California–Davis, Sacramento, California, USA
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Qunli Zeng
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Yoshikazu Takada
- Department of Dermatology, School of Medicine, University of California–Davis, Sacramento, California, USA
| | - Min Zhao
- Department of Dermatology, School of Medicine, University of California–Davis, Sacramento, California, USA
- Institute for Regenerative Cures, University of California–Davis, Sacramento, California, USA
- Department of Ophthalmology and Vision Science, School of Medicine, University of California–Davis, Sacramento, California, USA
| |
Collapse
|
25
|
Liu T, Zhou L, Li D, Andl T, Zhang Y. Cancer-Associated Fibroblasts Build and Secure the Tumor Microenvironment. Front Cell Dev Biol 2019; 7:60. [PMID: 31106200 PMCID: PMC6492564 DOI: 10.3389/fcell.2019.00060] [Citation(s) in RCA: 305] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/05/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor cells reside in a highly complex and heterogeneous tumor microenvironment (TME), which is composed of a myriad of genetically stable non-cancer cells, including fibroblasts, immune cells, endothelial cells, and epithelial cells, and a tumor-specific extracellular matrix (ECM). Cancer-associated fibroblasts (CAFs), as an abundant and active stromal cell population in the TME, function as the signaling center and remodeling machine to aid the creation of a desmoplastic tumor niche. Although there is no denial that the TME and CAFs may have anti-tumor effects as well, a great deal of findings reported in recent years have convincingly revealed the tumor-promoting effects of CAFs and CAF-derived ECM proteins, enzymes, chemical factors and other downstream effectors. While there is growing enthusiasm for the development of CAF-targeting therapies, a better understanding of the complexities of CAF-ECM and CAF-cancer cell interactions is necessary before novel therapeutic strategies targeting the malignant tumor “soil” can be successfully implemented in the clinic.
Collapse
Affiliation(s)
- Tianyi Liu
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| | - Linli Zhou
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| | - Danni Li
- College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, China
| | - Thomas Andl
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, United States
| | - Yuhang Zhang
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
26
|
Meshik X, O’Neill PR, Gautam N. Physical Plasma Membrane Perturbation Using Subcellular Optogenetics Drives Integrin-Activated Cell Migration. ACS Synth Biol 2019; 8:498-510. [PMID: 30764607 DOI: 10.1021/acssynbio.8b00356] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cells experience physical deformations to the plasma membrane that can modulate cell behaviors like migration. Understanding the molecular basis for how physical cues affect dynamic cellular responses requires new approaches that can physically perturb the plasma membrane with rapid, reversible, subcellular control. Here we present an optogenetic approach based on light-inducible dimerization that alters plasma membrane properties by recruiting cytosolic proteins at high concentrations to a target site. Surprisingly, this polarized accumulation of proteins in a cell induces directional amoeboid migration in the opposite direction. Consistent with known effects of constraining high concentrations of proteins to a membrane in vitro, there is localized curvature and tension decrease in the plasma membrane. Integrin activity, sensitive to mechanical forces, is activated in this region. Localized mechanical activation of integrin with optogenetics allowed simultaneous imaging of the molecular and cellular response, helping uncover a positive feedback loop comprising SFK- and ERK-dependent RhoA activation, actomyosin contractility, rearward membrane flow, and membrane tension decrease underlying this mode of cell migration.
Collapse
|
27
|
Wilson BJ, Allen JL, Caswell PT. Vesicle trafficking pathways that direct cell migration in 3D matrices and in vivo. Traffic 2018; 19:899-909. [PMID: 30054969 PMCID: PMC6282850 DOI: 10.1111/tra.12605] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022]
Abstract
Cell migration is a vital process in development and disease, and while the mechanisms that control motility are relatively well understood on two-dimensional surfaces, the control of cell migration in three dimensions (3D) and in vivo has only recently begun to be understood. Vesicle trafficking pathways have emerged as a key regulatory element in migration and invasion, with the endocytosis and recycling of cell surface cargos, including growth factor and chemokine receptors, adhesion receptors and membrane-associated proteases, being of major importance. We highlight recent advances in our understanding of how endocytic trafficking controls the availability and local activity of these cargoes to influence the movement of cells in 3D matrix and in developing organisms. In particular, we discuss how endocytic trafficking of different receptor classes spatially restricts signals and activity, usually to the leading edge of invasive cells.
Collapse
Affiliation(s)
- Beverley J. Wilson
- Wellcome Trust Centre for Cell‐Matrix Research, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Jennifer L. Allen
- Wellcome Trust Centre for Cell‐Matrix Research, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| | - Patrick T. Caswell
- Wellcome Trust Centre for Cell‐Matrix Research, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUK
| |
Collapse
|
28
|
Bi J, Wang R, Zeng X. Lipid rafts regulate the lamellipodia formation of melanoma A375 cells via actin cytoskeleton-mediated recruitment of β1 and β3 integrin. Oncol Lett 2018; 16:6540-6546. [PMID: 30405793 PMCID: PMC6202517 DOI: 10.3892/ol.2018.9466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/16/2018] [Indexed: 01/08/2023] Open
Abstract
Lipid rafts, distinct liquid-ordered plasma membrane microdomains, have been shown to regulate tumor cell migration by internalizing and recycling cell-surface proteins. The present study reports that lipid rafts are a prerequisite for lamellipodia formation, which is the first step in the processes of tumor cell migration. The results from the wound-healing assay and immunostaining indicated that lipid rafts were asymmetrically distributed to the leading edge of migrating melanoma A375 cells during lamellipodia formation. When the integrity of lipids rafts was disrupted, lamellipodia formation was inhibited. The investigation of possible molecular mechanisms indicated that lipid rafts recruited β1 and β3 integrins, two important adhesion proteins for cell migration, to the lamellipodia. However, the different distribution characteristics of β1 and β3 integrins implied disparate functions in lamellipodia formation. Further immunostaining experiments showed that the actin cytoskeleton was responsible for lipid raft-mediated β1 and β3 integrin distribution in the lamellipodia. Together, these findings provide novel insights into the regulation of lipid rafts in lamellipodia formation, and suggest that lipid rafts may be novel and attractive targets for cancer therapy.
Collapse
Affiliation(s)
- Jiajia Bi
- Synthetic Biology Engineering Lab of Henan Province, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Ruifei Wang
- Key Laboratory for Microorganisms and Functional Molecules, College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Xianlu Zeng
- Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| |
Collapse
|
29
|
Regulation of cofilin phosphorylation in glomerular podocytes by testis specific kinase 1 (TESK1). Sci Rep 2018; 8:12286. [PMID: 30115939 PMCID: PMC6095849 DOI: 10.1038/s41598-018-30115-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 07/20/2018] [Indexed: 12/14/2022] Open
Abstract
Expression of a constitutively active Rho A (V14Rho) in podocytes in vivo induces albuminuria and foot process (FP) effacement. These effects may be mediated by the Rho A effector Rho kinase (ROK); but inhibition of ROK with Y27632 failed to attenuate albuminuria or FP effacement in V14Rho mice. ROK activates LIM kinases (LIMKs), which phosphorylate and inhibit the actin depolymerizing factor cofilin 1 (CFL1). Sustained phosphorylation of CFL1 is implicated in human nephrotic diseases, but Y27632 did not inhibit phosphorylation of CFL1 in vivo, despite effective ROK inhibition. CFL1 is also phosphorylated by testis-specific kinase 1 (TESK1) on the same serine residue. TESK1 was expressed in podocytes, and, similar to the in vivo situation, Y27632 had little effect on phospho-CFL1 (pCFL1) levels in cultured podocytes. In contrast, Y27632 reduced pCFL1 levels in TESK1 knockout (KO) cells. ROK inhibition enhanced podocyte motility but, the motility promoting effect of Y27632 was absent in TESK1 KO podocytes. Thus, TESK1 regulates podocyte cytoskeletal dynamics in glomerular podocytes and may play an important role in regulating glomerular filtration barrier integrity in glomerular disease processes.
Collapse
|
30
|
Fibronectin amyloid-like aggregation alters its extracellular matrix incorporation and promotes a single and sparsed cell migration. Exp Cell Res 2018; 371:104-121. [PMID: 30076804 DOI: 10.1016/j.yexcr.2018.07.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 07/05/2018] [Accepted: 07/29/2018] [Indexed: 12/14/2022]
Abstract
Fibronectin (Fn) is an extracellular matrix (ECM) multifunctional glycoprotein essential for regulating cells behaviors. Within ECM, Fn is found as polymerized fibrils. Apart from fibrils, Fn could also form other kind of supramolecular assemblies such as aggregates. To gain insight into the impact of Fn aggregates on cell behavior, we generated several Fn oligomeric assemblies. These assemblies displayed various amyloid-like properties but were not cytotoxic. In presence of the more amyloid-like structured assemblies of Fn, the cell-ECM networks were altered and the cell shapes shifted toward extended mesenchymal morphologies. Additionnaly, the Fn amyloid-like aggregates promoted a single-cell and sparsed migration of SKOV3 cancer cells, which was associated with a relocalization of αv integrins from plasma membrane to perinuclear vesicles. These data pointed out that the features of supramolecular Fn assemblies could represent a higher level of fine-tuning cell phenotype, and especially migration of cancer cells.
Collapse
|
31
|
Bowers DT, Brown JL. Nanofibers as Bioinstructive Scaffolds Capable of Modulating Differentiation through Mechanosensitive Pathways for Regenerative Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018; 5:22-29. [PMID: 31179378 DOI: 10.1007/s40883-018-0076-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bioinstructive scaffolds encode information in the physical shape and size of materials to direct cell responses. Electrospinning nanofibers is a process that offers control over scaffold architecture and fiber diameter, while providing extended linear length of fibers. This review summarizes tissue engineering literature that has utilized nanofiber scaffolds to direct stem cell differentiation for various tissues including musculoskeletal, vascular, immunological and nervous system tissues. Nanofibers are also considered for their extracellular matrix mimetic characteristics that can preserve stem cell differentiation capacity. These topics are considered in the context of focal adhesion and integrin signaling. Regenerative engineering will be enhanced by construction of scaffolds encoded with shape information to cause an attached cell to create the intended tissue at that region. Nanofibers are likely to be a bioinstructive scaffold in future regenerative engineering development as we pursue the Grand Challenges of engineering tissues.
Collapse
|
32
|
Nagel M, Winklbauer R. PDGF-A suppresses contact inhibition during directional collective cell migration. Development 2018; 145:dev.162651. [PMID: 29884673 DOI: 10.1242/dev.162651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 05/25/2018] [Indexed: 12/15/2022]
Abstract
The leading-edge mesendoderm (LEM) of the Xenopus gastrula moves as an aggregate by collective migration. However, LEM cells on fibronectin in vitro show contact inhibition of locomotion by quickly retracting lamellipodia upon mutual contact. We found that a fibronectin-integrin-syndecan module acts between p21-activated kinase 1 upstream and ephrin B1 downstream to promote the contact-induced collapse of lamellipodia. To function in this module, fibronectin has to be present as puncta on the surface of LEM cells. To overcome contact inhibition in LEM cell aggregates, PDGF-A deposited in the endogenous substratum of LEM migration blocks the fibronectin-integrin-syndecan module at the integrin level. This stabilizes lamellipodia preferentially in the direction of normal LEM movement and supports cell orientation and the directional migration of the coherent LEM cell mass.
Collapse
Affiliation(s)
- Martina Nagel
- University of Toronto, Department of Cell and Systems Biology, 25 Harbord Street, Toronto M5S 3G5, ON, Canada
| | - Rudolf Winklbauer
- University of Toronto, Department of Cell and Systems Biology, 25 Harbord Street, Toronto M5S 3G5, ON, Canada
| |
Collapse
|
33
|
Huang Y, Winklbauer R. Cell migration in the Xenopus gastrula. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e325. [PMID: 29944210 DOI: 10.1002/wdev.325] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 12/17/2022]
Abstract
Xenopus gastrulation movements are in large part based on the rearrangement of cells by differential cell-on-cell migration within multilayered tissues. Different patterns of migration-based cell intercalation drive endoderm and mesoderm internalization and their positioning along their prospective body axes. C-cadherin, fibronectin, integrins, and focal contact components are expressed in all gastrula cells and play putative roles in cell-on-cell migration, but their actual functions in this respect are not yet understood. The gastrula can be subdivided into two motility domains, and in the vegetal, migratory domain, two modes of cell migration are discerned. Vegetal endoderm cells show ingression-type migration, a variant of amoeboid migration characterized by the lack of locomotory protrusions and by macropinocytosis as a mechanism of trailing edge resorption. Mesendoderm and prechordal mesoderm cells use lamellipodia in a mesenchymal mode of migration. Gastrula cell motility can be dissected into traits, such as cell polarity, adhesion, mobility, or protrusive activity, which are controlled separately yet in complex, combinatorial ways. Cells can instantaneously switch between different combinations of traits, showing plasticity as they respond to substratum properties. This article is categorized under: Early Embryonic Development > Gastrulation and Neurulation.
Collapse
Affiliation(s)
- Yunyun Huang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Yang CT, Li JM, Chu WK, Chow SE. Downregulation of lumican accelerates lung cancer cell invasion through p120 catenin. Cell Death Dis 2018; 9:414. [PMID: 29549325 PMCID: PMC5856799 DOI: 10.1038/s41419-017-0212-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 01/29/2023]
Abstract
The overexpression of lumican has been found in lung cancer cells; however, the functional role of lumican in lung cancer cells remains unclear. In this study, we found lumican functioned as a tubulin-binding protein and the depletion of lumican by transfection with its specific shRNA increased lung cancer cell invasion. Such alterations led to morphological changes and actin cytoskeleton remodeling, including the induction of membrane ruffling or protrusion and stress fiber formation, correlated with the increased activities of Rac and Rho. The downregulation of lumican was also implicated in macrophage-conditioned media (maCM)-induced cell invasion. Immunofluorescence images and immunoprecipitation assays revealed the co-localization of p120-catenin (p120ctn) and lumican. Reduction in the levels of p120ctn induced membrane ruffling and the activation of the Rho family, which accelerated cell invasion. Our data indicated that lumican is associated with microtubule-modulated p120ctn signaling, providing important insights into lung cancer progression.
Collapse
Affiliation(s)
- Cheng-Ta Yang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, No. 5 Fu-Hsing Street, Guishan District, Taoyuan, Taiwan
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, No. 259, Wen-Hwa 1st Road, Guishan District, Taoyuan, Taiwan
| | - Jhy-Ming Li
- Department of Surgery, Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital, No. 6, West Section, Chiapu Road, Putzu City, Chiayi, Taiwan
| | - Wing-Keung Chu
- Department of Physiology, College of Medicine, Chang Gung University, No. 259, Wen-Hwa 1st, Guishan District, Taoyuan, Taiwan
| | - Shu-Er Chow
- Department of Nature Science, Center for General Studies, Chang Gung University, No. 259, Wen-Hwa 1st, Guishan District, Taoyuan, Taiwan.
- Department of Otolaryngology, Head and Neck Surgery, Chang Gung Memorial Hospital, No. 5 Fu-Hsing Street, Guishan District, Taoyuan, Taiwan.
| |
Collapse
|
35
|
Bonan S, Albrengues J, Grasset E, Kuzet SE, Nottet N, Bourget I, Bertero T, Mari B, Meneguzzi G, Gaggioli C. Membrane-bound ICAM-1 contributes to the onset of proinvasive tumor stroma by controlling acto-myosin contractility in carcinoma-associated fibroblasts. Oncotarget 2018; 8:1304-1320. [PMID: 27901489 PMCID: PMC5352056 DOI: 10.18632/oncotarget.13610] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022] Open
Abstract
Acto-myosin contractility in carcinoma-associated fibroblasts leads to assembly of the tumor extracellular matrix. The pro-inflammatory cytokine LIF governs fibroblast activation in cancer by regulating the myosin light chain 2 activity. So far, however, how LIF mediates cytoskeleton contractility remains unknown. Using phenotypic screening assays based on knock-down of LIF-dependent genes in fibroblasts, we identified the glycoprotein ICAM-1 as a crucial regulator of stroma fibroblast proinvasive matrix remodeling. We demonstrate that the membrane-bound ICAM-1 isoform is necessary and sufficient to promote inflammation-dependent extracellular matrix contraction, which favors cancer cell invasion. Indeed, ICAM-1 mediates generation of acto-myosin contractility downstream of the Src kinases in stromal fibroblasts. Moreover, acto-myosin contractility regulates ICAM-1 expression by establishing a positive feedback signaling. Thus, targeting stromal ICAM-1 might constitute a possible therapeutic mean to counteract tumor cell invasion and dissemination.
Collapse
Affiliation(s)
- Stephanie Bonan
- INSERM U1081, CNRS UMR7284, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia Antipolis, Medical School, F-06107, Nice, France
| | - Jean Albrengues
- INSERM U1081, CNRS UMR7284, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia Antipolis, Medical School, F-06107, Nice, France
| | - Eloise Grasset
- INSERM U1081, CNRS UMR7284, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia Antipolis, Medical School, F-06107, Nice, France
| | - Sanya-Eduarda Kuzet
- INSERM U1081, CNRS UMR7284, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia Antipolis, Medical School, F-06107, Nice, France
| | - Nicolas Nottet
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), CNRS UMR7275, Sophia-Antipolis, France
| | - Isabelle Bourget
- INSERM U1081, CNRS UMR7284, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia Antipolis, Medical School, F-06107, Nice, France
| | - Thomas Bertero
- INSERM U1081, CNRS UMR7284, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia Antipolis, Medical School, F-06107, Nice, France
| | - Bernard Mari
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), CNRS UMR7275, Sophia-Antipolis, France
| | - Guerrino Meneguzzi
- INSERM U1081, CNRS UMR7284, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia Antipolis, Medical School, F-06107, Nice, France
| | - Cedric Gaggioli
- INSERM U1081, CNRS UMR7284, Institute for Research on Cancer and Aging, Nice (IRCAN), University of Nice Sophia Antipolis, Medical School, F-06107, Nice, France
| |
Collapse
|
36
|
Seetharaman S, Etienne-Manneville S. Integrin diversity brings specificity in mechanotransduction. Biol Cell 2018; 110:49-64. [DOI: 10.1111/boc.201700060] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/08/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Shailaja Seetharaman
- Institut Pasteur Paris CNRS UMR3691; Cell Polarity; Migration and Cancer Unit; Equipe Labellisée Ligue Contre le Cancer; Paris Cedex 15 France
- Université Paris Descartes, Sorbonne Paris Cité; Paris 75006 France
| | - Sandrine Etienne-Manneville
- Institut Pasteur Paris CNRS UMR3691; Cell Polarity; Migration and Cancer Unit; Equipe Labellisée Ligue Contre le Cancer; Paris Cedex 15 France
| |
Collapse
|
37
|
Burgos-Bravo F, Figueroa NL, Casanova-Morales N, Quest AFG, Wilson CAM, Leyton L. Single-molecule measurements of the effect of force on Thy-1/αvβ3-integrin interaction using nonpurified proteins. Mol Biol Cell 2017; 29:326-338. [PMID: 29212879 PMCID: PMC5996956 DOI: 10.1091/mbc.e17-03-0133] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 10/10/2017] [Accepted: 12/01/2017] [Indexed: 12/11/2022] Open
Abstract
Single-molecule measurements combined with a novel mathematical strategy were applied to accurately characterize how bimolecular interactions respond to mechanical force, especially when protein purification is not possible. Specifically, we studied the effect of force on Thy-1/αvβ3 integrin interaction, a mediator of neuron-astrocyte communication. Thy-1 and αvβ3 integrin mediate bidirectional cell-to-cell communication between neurons and astrocytes. Thy-1/αvβ3 interactions stimulate astrocyte migration and the retraction of neuronal prolongations, both processes in which internal forces are generated affecting the bimolecular interactions that maintain cell–cell adhesion. Nonetheless, how the Thy-1/αvβ3 interactions respond to mechanical cues is an unresolved issue. In this study, optical tweezers were used as a single-molecule force transducer, and the Dudko-Hummer-Szabo model was applied to calculate the kinetic parameters of Thy-1/αvβ3 dissociation. A novel experimental strategy was implemented to analyze the interaction of Thy-1-Fc with nonpurified αvβ3-Fc integrin, whereby nonspecific rupture events were corrected by using a new mathematical approach. This methodology permitted accurately estimating specific rupture forces for Thy-1-Fc/αvβ3-Fc dissociation and calculating the kinetic and transition state parameters. Force exponentially accelerated Thy-1/αvβ3 dissociation, indicating slip bond behavior. Importantly, nonspecific interactions were detected even for purified proteins, highlighting the importance of correcting for such interactions. In conclusion, we describe a new strategy to characterize the response of bimolecular interactions to forces even in the presence of nonspecific binding events. By defining how force regulates Thy-1/αvβ3 integrin binding, we provide an initial step towards understanding how the neuron–astrocyte pair senses and responds to mechanical cues.
Collapse
Affiliation(s)
- Francesca Burgos-Bravo
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Studies of Exercise, Metabolism and Cancer, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| | - Nataniel L Figueroa
- Physics Department, Pontificia Universidad Católica de Chile, 782-0436 Santiago, Chile
| | - Nathalie Casanova-Morales
- Biochemistry and Molecular Biology Department, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 838-0494 Santiago, Chile
| | - Andrew F G Quest
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Center for Studies of Exercise, Metabolism and Cancer, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| | - Christian A M Wilson
- Biochemistry and Molecular Biology Department, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 838-0494 Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile .,Advanced Center for Chronic Diseases (ACCDiS), Center for Studies of Exercise, Metabolism and Cancer, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Santiago, Chile
| |
Collapse
|
38
|
Belyanina IV, Zamay TN, Zamay GS, Zamay SS, Kolovskaya OS, Ivanchenko TI, Denisenko VV, Kirichenko AK, Glazyrin YE, Garanzha IV, Grigorieva VV, Shabanov AV, Veprintsev DV, Sokolov AE, Sadovskii VM, Gargaun A, Berezovski MV, Kichkailo AS. In Vivo Cancer Cells Elimination Guided by Aptamer-Functionalized Gold-Coated Magnetic Nanoparticles and Controlled with Low Frequency Alternating Magnetic Field. Am J Cancer Res 2017; 7:3326-3337. [PMID: 28900513 PMCID: PMC5595135 DOI: 10.7150/thno.17089] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 05/29/2017] [Indexed: 12/22/2022] Open
Abstract
Biomedical applications of magnetic nanoparticles under the influence of a magnetic field have been proved useful beyond expectations in cancer therapy. Magnetic nanoparticles are effective heat mediators, drug nanocarriers, and contrast agents; various strategies have been suggested to selectively target tumor cancer cells. Our study presents magnetodynamic nanotherapy using DNA aptamer-functionalized 50 nm gold-coated magnetic nanoparticles exposed to a low frequency alternating magnetic field for selective elimination of tumor cells in vivo. The cell specific DNA aptamer AS-14 binds to the fibronectin protein in Ehrlich carcinoma hence helps deliver the gold-coated magnetic nanoparticles to the mouse tumor. Applying an alternating magnetic field of 50 Hz at the tumor site causes the nanoparticles to oscillate and pull the fibronectin proteins and integrins to the surface of the cell membrane. This results in apoptosis followed by necrosis of tumor cells without heating the tumor, adjacent healthy cells and tissues. The aptamer-guided nanoparticles and the low frequency alternating magnetic field demonstrates a unique non-invasive nanoscalpel technology for precise cancer surgery at the single cell level.
Collapse
|
39
|
Bi JJ, Li J, Cheng BF, Yang HJ, Ding QQ, Wang RF, Chen SJ, Feng ZW. NCAM affects directional lamellipodia formation of BMSCs via β1 integrin signal-mediated cofilin activity. Mol Cell Biochem 2017; 435:175-183. [PMID: 28536952 DOI: 10.1007/s11010-017-3066-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 05/05/2017] [Indexed: 12/20/2022]
Abstract
The neural cell adhesion molecule (NCAM), a key member of the immunoglobulin-like CAM family, was reported to regulate the migration of bone marrow-derived mesenchymal stem cells (BMSCs). However, the detailed cellular behaviors including lamellipodia formation in the initial step of directional migration remain largely unknown. In the present study, we reported that NCAM affects the lamellipodia formation of BMSCs. Using BMSCs from Ncam knockout mice we found that Ncam deficiency significantly impaired the migration and the directional lamellipodia formation of BMSCs. Further studies revealed that Ncam knockout decreased the activity of cofilin, an actin-cleaving protein, which was involved in directional protrusions. To explore the molecular mechanisms involved, we examined protein tyrosine phosphorylation levels in Ncam knockout BMSCs by phosphotyrosine peptide array analyses, and found that the tyrosine phosphorylation level of β1 integrin, a protein upstream of cofilin, was greatly upregulated in Ncam-deficient BMSCs. Notably, by blocking the function of β1 integrin with RGD peptide or ROCK inhibitor, the cofilin activity and directional lamellipodia formation of Ncam knockout BMSCs could be rescued. Finally, we found that the effect of NCAM on tyrosine phosphorylation of β1 integrin was independent of the fibroblast growth factor receptor. These results indicated that NCAM regulates directional lamellipodia formation of BMSCs through β1 integrin signal-mediated cofilin activity.
Collapse
Affiliation(s)
- Jia-Jia Bi
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China
| | - Jing Li
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China
| | - Bin-Feng Cheng
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China
| | - Hai-Jie Yang
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China
| | - Qiong-Qiong Ding
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China
| | - Rui-Fei Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Su-Juan Chen
- School of Life Sciences and Technology, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China.
| | - Zhi-Wei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, 453003, Henan, China.
| |
Collapse
|
40
|
Montenegro CF, Casali BC, Lino RLB, Pachane BC, Santos PK, Horwitz AR, Selistre-de-Araujo HS, Lamers ML. Inhibition of αvβ3 integrin induces loss of cell directionality of oral squamous carcinoma cells (OSCC). PLoS One 2017; 12:e0176226. [PMID: 28437464 PMCID: PMC5402964 DOI: 10.1371/journal.pone.0176226] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/08/2017] [Indexed: 11/23/2022] Open
Abstract
The connective tissue formed by extracellular matrix (ECM) rich in fibronectin and collagen consists a barrier that cancer cells have to overpass to reach blood vessels and then a metastatic site. Cell adhesion to fibronectin is mediated by αvβ3 and α5β1 integrins through an RGD motif present in this ECM protein, thus making these receptors key targets for cell migration studies. Here we investigated the effect of an RGD disintegrin, DisBa-01, on the migration of human fibroblasts (BJ) and oral squamous cancer cells (OSCC, SCC25) on a fibronectin-rich environment. Time-lapse images were acquired on fibronectin-coated glass-bottomed dishes. Migration speed and directionality analysis indicated that OSCC cells, but not fibroblasts, showed significant decrease in both parameters in the presence of DisBa-01 (1μM and 2μM). Integrin expression levels of the α5, αv and β3 subunits were similar in both cell lines, while β1 subunit is present in lower levels on the cancer cells. Next, we examined whether the effects of DisBa-01 were related to changes in adhesion properties by using paxillin immunostaining and total internal reflection fluorescence TIRF microscopy. OSCCs in the presence of DisBa-01 showed increased adhesion sizes and number of maturing adhesion. The same parameters were analyzed usingβ3-GFP overexpressing cells and showed that β3 overexpression restored cell migration velocity and the number of maturing adhesion that were altered by DisBa-01. Surface plasmon resonance analysis showed that DisBa-01 has 100x higher affinity for αvβ3 integrin than forα5β1 integrin. In conclusion, our results suggest that the αvβ3 integrin is the main receptor involved in cell directionality and its blockage may be an interesting alternative against metastasis.
Collapse
Affiliation(s)
- Cyntia F. Montenegro
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, São Carlos, São Paulo, Brazil, CEP
| | - Bruna C. Casali
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, São Carlos, São Paulo, Brazil, CEP
| | - Rafael L. B. Lino
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, São Carlos, São Paulo, Brazil, CEP
| | - Bianca C. Pachane
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, São Carlos, São Paulo, Brazil, CEP
| | - Patty K. Santos
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, São Carlos, São Paulo, Brazil, CEP
| | - Alan R. Horwitz
- Department of Cell Biology, University of Virginia, School of Medicine, Charlottesville, Virginia, United States of America
| | - Heloisa S. Selistre-de-Araujo
- Department of Physiological Sciences, Center of Biological and Health Science, Federal University of São Carlos, Rod. Washington Luis, São Carlos, São Paulo, Brazil, CEP
- * E-mail:
| | - Marcelo L. Lamers
- Department of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, Porto Alegre, RS, Brazil, CEP
| |
Collapse
|
41
|
Di Cio S, Bøggild TML, Connelly J, Sutherland DS, Gautrot JE. Differential integrin expression regulates cell sensing of the matrix nanoscale geometry. Acta Biomater 2017; 50:280-292. [PMID: 27940195 DOI: 10.1016/j.actbio.2016.11.069] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/28/2022]
Abstract
The nanoscale geometry and topography of the extra-cellular matrix (ECM) is an important parameter controlling cell adhesion and phenotype. Similarly, integrin expression and the geometrical maturation of adhesions they regulate have been correlated with important changes in cell spreading and phenotype. However, how integrin expression controls the nanoscale sensing of the ECM geometry is not clearly understood. Here we develop a new nanopatterning technique, electrospun nanofiber lithography (ENL), which allows the production of a quasi-2D fibrous nanopattern with controlled dimensions (250-1000nm) and densities. ENL relies on electrospun fibres to act as a mask for the controlled growth of protein-resistant polymer brushes. SEM, AFM and immunofluorescence imaging were used to characterise the resulting patterns and the adsorption of the extra-cellular matrix protein fibronectin to the patterned fibres. The control of adhesion formation was studied, as well as the remodelling and deposition of novel matrix. Cell spreading was found to be regulated by the size of fibres, similarly to previous observations made on circular nanopatterns. However, cell shape and polarity were more significantly affected. These changes correlated with important cytoskeleton reorganisation, with a gradual decrease in stress fibre formation as the pattern dimensions decrease. Finally, the differential expression of αvβ3 and α5β1 integrins in engineered cell lines was found to be an important mediator of cell sensing of the nanoscale geometry of the ECM. STATEMENT OF SIGNIFICANCE The novel nanofiber patterns developed in this study, via ENL, mimic the geometry and continuity of natural matrices found in the stroma of tissues, whilst preserving a quasi-2D character (to facilitate imaging and for comparison with other 2D systems such as micropatterned monolayers and circular nanopatches generated by colloidal lithography). These results demonstrate that the nanoscale geometry of the ECM plays an important role in regulating cell adhesion and that this is modulated by integrin expression. This is an important finding as it implies that the knowledge of the biochemical context underlying the integrin-mediated adhesive machinery of specific cell types should allow better design of biomaterials and biointerfaces. Indeed, changes in integrin expression are often associated with the control of cell proliferation and differentiation.
Collapse
Affiliation(s)
- Stefania Di Cio
- Institute of Bioengineering, Queen Mary, University of London, Mile End Road, London E1 4NS, UK; School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | - Thea M L Bøggild
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark
| | - John Connelly
- Institute of Bioengineering, Queen Mary, University of London, Mile End Road, London E1 4NS, UK; Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, 4 Newark Street, London E1 2AT, UK
| | | | - Julien E Gautrot
- Institute of Bioengineering, Queen Mary, University of London, Mile End Road, London E1 4NS, UK; School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
42
|
Integrin-Dependent Regulation of Small GTPases: Role in Cell Migration. J Indian Inst Sci 2017. [DOI: 10.1007/s41745-016-0010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Rose M, Kloten V, Noetzel E, Gola L, Ehling J, Heide T, Meurer SK, Gaiko-Shcherbak A, Sechi AS, Huth S, Weiskirchen R, Klaas O, Antonopoulos W, Lin Q, Wagner W, Veeck J, Gremse F, Steitz J, Knüchel R, Dahl E. ITIH5 mediates epigenetic reprogramming of breast cancer cells. Mol Cancer 2017; 16:44. [PMID: 28231808 PMCID: PMC5322623 DOI: 10.1186/s12943-017-0610-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/30/2017] [Indexed: 02/07/2023] Open
Abstract
Background Extracellular matrix (ECM) is known to maintain epithelial integrity. In carcinogenesis ECM degradation triggers metastasis by controlling migration and differentiation including cancer stem cell (CSC) characteristics. The ECM-modulator inter- α-trypsin inhibitor heavy chain family member five (ITIH5) was recently identified as tumor suppressor potentially involved in impairing breast cancer progression but molecular mechanisms underlying its function are still elusive. Methods ITIH5 expression was analyzed using the public TCGA portal. ITIH5-overexpressing single-cell clones were established based on T47D and MDA-MB-231 cell lines. Colony formation, growth, apoptosis, migration, matrix adhesion, traction force analyses and polarization of tumor cells were studied in vitro. Tumor-initiating characteristics were analyzed by generating a metastasis mouse model. To identify ITIH5-affected pathways we utilized genome wide gene expression and DNA methylation profiles. RNA-interference targeting the ITIH5-downstream regulated gene DAPK1 was used to confirm functional involvement. Results ITIH5 loss was pronounced in breast cancer subtypes with unfavorable prognosis like basal-type tumors. Functionally, cell and colony formation was impaired after ITIH5 re-expression in both cell lines. In a metastasis mouse model, ITIH5 expressing MDA-MB-231 cells almost completely failed to initiate lung metastases. In these metastatic cells ITIH5 modulated cell-matrix adhesion dynamics and altered biomechanical cues. The profile of integrin receptors was shifted towards β1-integrin accompanied by decreased Rac1 and increased RhoA activity in ITIH5-expressing clones while cell polarization and single-cell migration was impaired. Instead ITIH5 expression triggered the formation of epithelial-like cell clusters that underwent an epigenetic reprogramming. 214 promoter regions potentially marked with either H3K4 and /or H3K27 methylation showed a hyper- or hypomethylated DNA configuration due to ITIH5 expression finally leading to re-expression of the tumor suppressor DAPK1. In turn, RNAi-mediated knockdown of DAPK1 in ITIH5-expressing MDA-MB-231 single-cell clones clearly restored cell motility. Conclusions Our results provide evidence that ITIH5 triggers a reprogramming of breast cancer cells with known stem CSC properties towards an epithelial-like phenotype through global epigenetic changes effecting known tumor suppressor genes like DAPK1. Therewith, ITIH5 may represent an ECM modulator in epithelial breast tissue mediating suppression of tumor initiating cancer cell characteristics which are thought being responsible for the metastasis of breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0610-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael Rose
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Vera Kloten
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Erik Noetzel
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Lukas Gola
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Josef Ehling
- Department of Experimental Molecular Imaging (ExMI), Helmholtz Institute for Biomedical Engineering, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Timon Heide
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Steffen K Meurer
- Experimental Gene Therapy and Clinical Chemistry, Institute of Molecular Pathobiochemistry, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Aljona Gaiko-Shcherbak
- Institute of Complex Systems, ICS-7: Biomechanics, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Antonio S Sechi
- Institute for Biomedical Engineering-Cell Biology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Sebastian Huth
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Ralf Weiskirchen
- Experimental Gene Therapy and Clinical Chemistry, Institute of Molecular Pathobiochemistry, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Oliver Klaas
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Wiebke Antonopoulos
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Qiong Lin
- Institute for Biomedical Engineering-Cell Biology, Medical Faculty of the RWTH Aachen University, Aachen, Germany.,Helmholtz-Institute for Biomedical Engineering-Stem Cell Biology and Cellular Engineering, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Wolfgang Wagner
- Institute for Biomedical Engineering-Cell Biology, Medical Faculty of the RWTH Aachen University, Aachen, Germany.,Helmholtz-Institute for Biomedical Engineering-Stem Cell Biology and Cellular Engineering, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Jürgen Veeck
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany.,Division of Medical Oncology, Department of Internal Medicine, Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Felix Gremse
- Department of Experimental Molecular Imaging (ExMI), Helmholtz Institute for Biomedical Engineering, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Julia Steitz
- Institute for Laboratory Animal Science, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Ruth Knüchel
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany
| | - Edgar Dahl
- Institute of Pathology, Medical Faculty of the RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
44
|
Ju JA, Godet I, Ye IC, Byun J, Jayatilaka H, Lee SJ, Xiang L, Samanta D, Lee MH, Wu PH, Wirtz D, Semenza GL, Gilkes DM. Hypoxia Selectively Enhances Integrin α 5β 1 Receptor Expression in Breast Cancer to Promote Metastasis. Mol Cancer Res 2017; 15:723-734. [PMID: 28213554 DOI: 10.1158/1541-7786.mcr-16-0338] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/05/2017] [Accepted: 01/26/2017] [Indexed: 01/16/2023]
Abstract
Metastasis is the leading cause of breast cancer mortality. Previous studies have implicated hypoxia-induced changes in the composition and stiffness of the extracellular matrix (ECM) in the metastatic process. Therefore, the contribution of potential ECM-binding receptors in this process was explored. Using a bioinformatics approach, the expression of all integrin receptor subunits, in two independent breast cancer patient datasets, were analyzed to determine whether integrin status correlates with a validated hypoxia-inducible gene signature. Subsequently, a large panel of breast cancer cell lines was used to validate that hypoxia induces the expression of integrins that bind to collagen (ITGA1, ITGA11, ITGB1) and fibronectin (ITGA5, ITGB1). Hypoxia-inducible factors (HIF-1 and HIF-2) are directly required for ITGA5 induction under hypoxic conditions, which leads to enhanced migration and invasion of single cells within a multicellular 3D tumor spheroid but did not affect migration in a 2D microenvironment. ITGB1 expression requires HIF-1α, but not HIF-2α, for hypoxic induction in breast cancer cells. ITGA5 (α5 subunit) is required for metastasis to lymph nodes and lungs in breast cancer models, and high ITGA5 expression in clinical biopsies is associated with an increased risk of mortality.Implications: These results reveal that targeting ITGA5 using inhibitors that are currently under consideration in clinical trials may be beneficial for patients with hypoxic tumors. Mol Cancer Res; 15(6); 723-34. ©2017 AACR.
Collapse
Affiliation(s)
- Julia A Ju
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Inês Godet
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - I Chae Ye
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Jungmin Byun
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Hasini Jayatilaka
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Sun Joo Lee
- Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lisha Xiang
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Debangshu Samanta
- Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Meng Horng Lee
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Denis Wirtz
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland
| | - Gregg L Semenza
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniele M Gilkes
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
45
|
Tanja Mierke C. Physical role of nuclear and cytoskeletal confinements in cell migration mode selection and switching. AIMS BIOPHYSICS 2017. [DOI: 10.3934/biophy.2017.4.615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
46
|
Xing M, Peterman MC, Davis RL, Oegema K, Shiau AK, Field SJ. GOLPH3 drives cell migration by promoting Golgi reorientation and directional trafficking to the leading edge. Mol Biol Cell 2016; 27:3828-3840. [PMID: 27708138 PMCID: PMC5170606 DOI: 10.1091/mbc.e16-01-0005] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 09/14/2016] [Accepted: 09/30/2016] [Indexed: 12/19/2022] Open
Abstract
The GOLPH3 oncogene functions in Golgi trafficking. GOLPH3 promotes cell migration, which is important in cancer. GOLPH3, by linking the Golgi to F-actin, promotes both Golgi reorientation and forward trafficking, which together drive trafficking to the leading edge. These findings provide insight into how GOLPH3 drives cell migration. The mechanism of directional cell migration remains an important problem, with relevance to cancer invasion and metastasis. GOLPH3 is a common oncogenic driver of human cancers, and is the first oncogene that functions at the Golgi in trafficking to the plasma membrane. Overexpression of GOLPH3 is reported to drive enhanced cell migration. Here we show that the phosphatidylinositol-4-phosphate/GOLPH3/myosin 18A/F-actin pathway that is critical for Golgi–to–plasma membrane trafficking is necessary and limiting for directional cell migration. By linking the Golgi to the actin cytoskeleton, GOLPH3 promotes reorientation of the Golgi toward the leading edge. GOLPH3 also promotes reorientation of lysosomes (but not other organelles) toward the leading edge. However, lysosome function is dispensable for migration and the GOLPH3 dependence of lysosome movement is indirect, via GOLPH3’s effect on the Golgi. By driving reorientation of the Golgi to the leading edge and driving forward trafficking, particularly to the leading edge, overexpression of GOLPH3 drives trafficking to the leading edge of the cell, which is functionally important for directional cell migration. Our identification of a novel pathway for Golgi reorientation controlled by GOLPH3 provides new insight into the mechanism of directional cell migration with important implications for understanding GOLPH3’s role in cancer.
Collapse
Affiliation(s)
- Mengke Xing
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Marshall C Peterman
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Robert L Davis
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093
| | - Karen Oegema
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093
| | - Andrew K Shiau
- Small Molecule Discovery Program, Ludwig Institute for Cancer Research, La Jolla, CA 92093
| | - Seth J Field
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
47
|
Persistence of fan-shaped keratocytes is a matrix-rigidity-dependent mechanism that requires α 5β 1 integrin engagement. Sci Rep 2016; 6:34141. [PMID: 27678055 PMCID: PMC5039689 DOI: 10.1038/srep34141] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/05/2016] [Indexed: 12/27/2022] Open
Abstract
Despite the importance of matrix rigidity on cell functions, many aspects of the mechanosensing process in highly migratory cells remain elusive. Here, we studied the migration of highly motile keratocytes on culture substrates with similar biochemical properties and rigidities spanning the range between soft tissues (~kPa) and stiff culture substrates (~GPa). We show that morphology, polarization and persistence of motile keratocytes are regulated by the matrix stiffness over seven orders of magnitude, without changing the cell spreading area. Increasing the matrix rigidity leads to more F-actin in the lamellipodia and to the formation of mature contractile actomyosin fibers that control the cell rear retraction. Keratocytes remain rounded and form nascent adhesions on compliant substrates, whereas large and uniformly distributed focal adhesions are formed on fan-shaped keratocytes migrating on rigid surfaces. By combining poly-L-lysine, fibronectin and vitronectin coatings with selective blocking of αvβ3 or α5β1 integrins, we show that αVβ3 integrins permit the spreading of keratocytes but are not sufficient for polarization and rigidity sensing that require the engagement of α5β1 integrins. Our study demonstrates a matrix rigidity-dependent regulation of the directional persistence in motile keratocytes and refines the role of αvβ3 and α5β1 integrins in the molecular clutch model.
Collapse
|
48
|
Abstract
Integrins are a family of heterodimeric receptors that bind to components of the extracellular matrix and influence cellular processes as varied as proliferation and migration. These effects are achieved by tight spatiotemporal control over intracellular signalling pathways, including those that mediate cytoskeletal reorganisation. The ability of integrins to bind to ligands is governed by integrin conformation, or activity, and this is widely acknowledged to be an important route to the regulation of integrin function. Over the last 15 years, however, the pathways that regulate endocytosis and recycling of integrins have emerged as major players in controlling integrin action, and studying integrin trafficking has revealed fresh insight into the function of this fascinating class of extracellular matrix receptors, in particular in the context of cell migration and invasion. Here, we review our current understanding of the contribution of integrin trafficking to cell motility.
Collapse
Affiliation(s)
- Nikki R Paul
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK
| | - Guillaume Jacquemet
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK
| | - Patrick T Caswell
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK.
| |
Collapse
|
49
|
Hollanders K, Hove IV, Sergeys J, Bergen TV, Lefevere E, Kindt N, Castermans K, Vandewalle E, van Pelt J, Moons L, Stalmans I. AMA0428, A Potent Rock Inhibitor, Attenuates Early and Late Experimental Diabetic Retinopathy. Curr Eye Res 2016; 42:260-272. [PMID: 27399806 DOI: 10.1080/02713683.2016.1183030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE Diabetic retinopathy (DR) is characterized by an early stage of inflammation and vessel leakage, and an advanced vasoproliferative stage. Also, neurodegeneration might play an important role in disease pathogenesis. The aim of this study was to investigate the effect of the Rho kinase (ROCK) inhibitor, AMA0428, on these processes. METHODS The response to ROCK inhibition by AMA0428 (1 µg) was studied in vivo using the murine model for streptozotocin (STZ)-induced diabetes, focusing on early non-proliferative DR features and the oxygen-induced retinopathy (OIR) model to investigate proliferative DR. Intravitreal (IVT) administration of AMA0428 was compared with murine anti-VEGF-R2 antibody (DC101, 6.2 µg) and placebo (H2O/PEG; 1C8). Outcome was assessed by analyzing leukostasis using fluorescein isothiocyanate coupled concanavalin A (FITC-ConA) and vessel leakage (bovine serum albumin conjugated with fluorescein isothiocyanate; FITC-BSA)/neovascularization and neurodegeneration by immunohistological approaches (hematoxylin and eosin (H&E), terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL), Brn3a). ELISA and Western blotting were employed to unravel the consequences of ROCK inhibition (1 µM AMA0428) on myosin phosphatase target protein (MYPT)-1 phosphorylation, endothelial nitric oxide synthase (eNOS) phosphorylation, and vascular endothelial growth factor (VEGF) levels in retinas of diabetic mice, on NF-κβ activity and ICAM-1 expression in endothelial cells (ECs). RESULTS In vivo, AMA0428 significantly reduced vessel leakage and neovascularization, respectively, in the STZ and OIR model, comparable to DC101 therapy. Additionally, the ROCK inhibitor decreased neurodegeneration in both models and inhibited leukostasis by 30% (p < 0.05) in the STZ model (p < 0.05), while DC101 had no positive effect on the outcome of these latter processes. ROCK activity was upregulated in the diabetic retina and AMA0428 administration resulted in decreased phospho-MYPT-1, enhanced phospho-eNOS, and reduced VEGF levels. In vitro, AMA0428 interfered with NF-κβ activity, thereby inhibiting ICAM-1 expression in ECs. CONCLUSIONS Targeting ROCK with AMA0428 effectively attenuated outcome in an early DR model (STZ) and a late vasoproliferative retinopathy model (OIR). These findings make AMA0428 a promising candidate with an additional anti-inflammatory and neuroprotective benefit for DR patients, as compared with anti-VEGF treatment.
Collapse
Affiliation(s)
- Karolien Hollanders
- a Department of Ophthalmology , KU Leuven-University of Leuven , Leuven , Belgium.,b Department of Ophthalmology , University Hospitals Ghent , Ghent , Belgium
| | - Inge Van Hove
- a Department of Ophthalmology , KU Leuven-University of Leuven , Leuven , Belgium.,c Department of Biology, KU Leuven-University of Leuven , Leuven , Belgium
| | - Jurgen Sergeys
- a Department of Ophthalmology , KU Leuven-University of Leuven , Leuven , Belgium.,c Department of Biology, KU Leuven-University of Leuven , Leuven , Belgium
| | - Tine Van Bergen
- a Department of Ophthalmology , KU Leuven-University of Leuven , Leuven , Belgium
| | - Evy Lefevere
- a Department of Ophthalmology , KU Leuven-University of Leuven , Leuven , Belgium.,c Department of Biology, KU Leuven-University of Leuven , Leuven , Belgium
| | | | | | - Evelien Vandewalle
- a Department of Ophthalmology , KU Leuven-University of Leuven , Leuven , Belgium.,e Department of Ophthalmology , University Hospitals Leuven, KU Leuven-University of Leuven , Leuven , Belgium
| | - Jos van Pelt
- f Department of Hepatology , University Hospitals Leuven, KU Leuven-University of Leuven , Leuven , Belgium
| | - Lieve Moons
- c Department of Biology, KU Leuven-University of Leuven , Leuven , Belgium
| | - Ingeborg Stalmans
- a Department of Ophthalmology , KU Leuven-University of Leuven , Leuven , Belgium.,e Department of Ophthalmology , University Hospitals Leuven, KU Leuven-University of Leuven , Leuven , Belgium
| |
Collapse
|
50
|
Zhang F, Nance E, Alnasser Y, Kannan R, Kannan S. Microglial migration and interactions with dendrimer nanoparticles are altered in the presence of neuroinflammation. J Neuroinflammation 2016; 13:65. [PMID: 27004516 PMCID: PMC4802843 DOI: 10.1186/s12974-016-0529-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/13/2016] [Indexed: 12/11/2022] Open
Abstract
Background Microglial cells have been implicated in neuroinflammation-mediated injury in the brain, including neurodevelopmental disorders such as cerebral palsy (CP) and autism. Pro-inflammatory activation of microglial cells results in the impairment of their neuroprotective functions, leading to an exaggerated, ongoing immune dysregulation that can persist long after the initial insult. We have previously shown that dendrimer-mediated delivery of an anti-inflammatory agent can attenuate inflammation in a rabbit model of maternal inflammation-induced CP and significantly improve the motor phenotype, due to the ability of the dendrimer to selectively localize in activated microglia. Methods To elucidate the interactions between dendrimers and microglia, we created an organotypic whole-hemisphere brain slice culture model from newborn rabbits with and without exposure to inflammation in utero. We then used this model to analyze the dynamics of microglial migration and their interactions with dendrimers in the presence of neuroinflammation. Results Microglial cells in animals with CP had an amoeboid morphology and impaired cell migration, demonstrated by decreased migration distance and velocity when compared to cells in healthy, age-matched controls. However, this decreased migration was associated with a greater, more rapid dendrimer uptake compared to microglial cells from healthy controls. Conclusions This study demonstrates that maternal intrauterine inflammation is associated with impaired microglial function and movement in the newborn brain. This microglial impairment may play a role in the development of ongoing brain injury and CP in the offspring. Increased uptake of dendrimers by the “impaired” microglia can be exploited to deliver drugs specifically to these cells and modulate their functions. Host tissue and target cell characteristics are important aspects to be considered in the design and evaluation of targeted dendrimer-based nanotherapeutics for improved and sustained efficacy. This ex vivo model also provides a rapid screening tool for evaluation of the effects of various therapies on microglial function. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0529-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fan Zhang
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Elizabeth Nance
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Present address: Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Yossef Alnasser
- Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Rangaramanujam Kannan
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.,Hugo Moser Research Center, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
| | - Sujatha Kannan
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA. .,Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA. .,Hugo Moser Research Center, Kennedy Krieger Institute, Baltimore, MD, 21205, USA. .,Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|