1
|
Vidi PA, Liu J, Bonin K, Bloom K. Closing the loops: chromatin loop dynamics after DNA damage. Nucleus 2025; 16:2438633. [PMID: 39720924 DOI: 10.1080/19491034.2024.2438633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/26/2024] Open
Abstract
Chromatin is a dynamic polymer in constant motion. These motions are heterogeneous between cells and within individual cell nuclei and are profoundly altered in response to DNA damage. The shifts in chromatin motions following genomic insults depend on the temporal and physical scales considered. They are also distinct in damaged and undamaged regions. In this review, we emphasize the role of chromatin tethering and loop formation in chromatin dynamics, with the view that pulsing loops are key contributors to chromatin motions. Chromatin tethers likely mediate micron-scale chromatin coherence predicted by polymer models and measured experimentally, and we propose that remodeling of the tethers in response to DNA breaks enables uncoupling of damaged and undamaged chromatin regions.
Collapse
Affiliation(s)
| | - Jing Liu
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
| | - Keith Bonin
- Department of Physics, Wake Forest University, Winston-Salem, NC, USA
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
2
|
Chen J, Zhang W, Ma Y, Yan X, Wang Y, Ouyang Q, Wu M, Yang G. Temporal and spatial dynamics of DNA double-strand break repair centers. DNA Repair (Amst) 2025; 149:103825. [PMID: 40101632 DOI: 10.1016/j.dnarep.2025.103825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/20/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Over the past two decades, there has been intense debate regarding whether DNA double-strand breaks (DSBs) maintain a relatively stable position or cluster in mammalian cells. The clustering of DSB and its spatiotemporal properties remain unclear. Here, we provided evidence supporting DSB clustering, using laser microirradiation to induce high-precision damage in cells. The probability of 53BP1 foci clustering varies with the distance between them. 53BP1 foci clustering occurs during the early phase of DNA damage response (DDR) and the repair phase, but not during the repair plateau phase. The clustering at different phases has distinct implications for DNA repair. Clustering accelerates the DSB repair process. These results demonstrate that the extent of 53BP1 foci clustering is influenced by both temporal and spatial factors. Such findings could enhance our understanding of the mechanism of DSB clustering and the DDR, ultimately contributing to the development of improved DNA repair therapies for various diseases.
Collapse
Affiliation(s)
- Junyi Chen
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, PR China
| | - Wenkang Zhang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, PR China
| | - Yuqi Ma
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, PR China
| | - Xueqing Yan
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, PR China
| | - Yugang Wang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, PR China
| | - Qi Ouyang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China
| | - Min Wu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, PR China
| | - Gen Yang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, PR China.
| |
Collapse
|
3
|
Bhat A, Bhan S, Kabiraj A, Pandita RK, Ramos KS, Nandi S, Sopori S, Sarkar PS, Dhar A, Pandita S, Kumar R, Das C, Tainer JA, Pandita TK. A predictive chromatin architecture nexus regulates transcription and DNA damage repair. J Biol Chem 2025; 301:108300. [PMID: 39947477 PMCID: PMC11931391 DOI: 10.1016/j.jbc.2025.108300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/16/2024] [Accepted: 01/16/2025] [Indexed: 03/28/2025] Open
Abstract
Genomes are blueprints of life essential for an organism's survival, propagation, and evolutionary adaptation. Eukaryotic genomes comprise of DNA, core histones, and several other nonhistone proteins, packaged into chromatin in the tiny confines of nucleus. Chromatin structural organization restricts transcription factors to access DNA, permitting binding only after specific chromatin remodeling events. The fundamental processes in living cells, including transcription, replication, repair, and recombination, are thus regulated by chromatin structure through ATP-dependent remodeling, histone variant incorporation, and various covalent histone modifications including phosphorylation, acetylation, and ubiquitination. These modifications, particularly involving histone variant H2AX, furthermore play crucial roles in DNA damage responses by enabling repair protein's access to damaged DNA. Chromatin also stabilizes the genome by regulating DNA repair mechanisms while suppressing damage from endogenous and exogenous sources. Environmental factors such as ionizing radiations induce DNA damage, and if repair is compromised, can lead to chromosomal abnormalities and gene amplifications as observed in several tumor types. Consequently, chromatin architecture controls the genome fidelity and activity: it orchestrates correct gene expression, genomic integrity, DNA repair, transcription, replication, and recombination. This review considers connecting chromatin organization to functional outcomes impacting transcription, DNA repair and genomic integrity as an emerging grand challenge for predictive molecular cell biology.
Collapse
Affiliation(s)
- Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Jammu and Kashmir, India.
| | - Sonali Bhan
- Centre for Molecular Biology, Central University of Jammu, Jammu and Kashmir, India
| | - Aindrila Kabiraj
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, BARC Training School Complex, Mumbai, Maharashtra, India
| | - Raj K Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA
| | - Keneth S Ramos
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA
| | - Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, BARC Training School Complex, Mumbai, Maharashtra, India
| | - Shreya Sopori
- Centre for Molecular Biology, Central University of Jammu, Jammu and Kashmir, India
| | - Parthas S Sarkar
- Department of Neurobiology and Neurology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Telangana, India
| | | | - Rakesh Kumar
- Department of Biotechnology, Shri Mata Vaishnav Devi University, Katra, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India; Homi Bhabha National Institute, BARC Training School Complex, Mumbai, Maharashtra, India.
| | - John A Tainer
- Department of Molecular & Cellular Oncology and Department of Cancer Biology, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Tej K Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA.
| |
Collapse
|
4
|
Pathikonda S, Tian L, Arava CM, Cheng SH, Lam YW. Radiation-induced rescue effect on human breast carcinoma cells is regulated by macrophages. Biochem Biophys Rep 2025; 41:101936. [PMID: 40007574 PMCID: PMC11850746 DOI: 10.1016/j.bbrep.2025.101936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/24/2024] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
The susceptibility of cancer cells to DNA damages is influenced by their microenvironment. For example, unirradiated neighbors of irradiated cells can produce signals that reduce DNA damages. This phenomenon, known as Radiation-Induced Rescue Effect (RIRE), has profound implications on the efficacy of radiotherapy. Using bystander cells co-cultured with mock-irradiated cells as a control, we demonstrated, for the first time, two types of RIRE. Conditioned medium from naïve by stander cells, i.e., cells not exposed to irradiated cells, could mitigate UV-induced DNA damages in human breast carcinoma MCF7 cells, as judged by phospho-H2AX and 53BP1 immunostaining. This protective effect could be further enhanced by the prior treatment of bystander cells with factors from UV-irradiated cells. We named the former effect "basal RIRE" and the latter "active RIRE" which were cell type-dependent. As bystanders, MCF7 showed a significant active RIRE, whereas THP1-derived macrophages showed a strong basal RIRE but no active RIRE. Interestingly, RIRE of macrophages could further be modulated by polarisation. The basal RIRE of macrophages was abolished by M1 polarisation, while M2 and Tumour Associated Macrophages (TAM) demonstrated pronounced basal and active RIRE. When mixtures of MCF7 cells and polarised macrophages were used as bystanders, the overall RIRE was dictated by macrophage phenotypes: RIRE was suppressed by M1 macrophages but significantly enhanced by M2 and TAM. This study shows a previously unappreciated role of the innate immune system in RIRE. Depending on polarised phenotypes, macrophages in the tumour microenvironment can interfere with the effectiveness of radiotherapy by adjusting the RIRE magnitudes.
Collapse
Affiliation(s)
- Spoorthy Pathikonda
- Departments of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region of China
| | - Li Tian
- Departments of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region of China
| | - Clement Manohar Arava
- Laboratoire Sciences et Méthodes Séparatives, Université de Rouen Normandie, Rouen, France
| | - Shuk Han Cheng
- Departments of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region of China
| | - Yun Wah Lam
- Departments of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region of China
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
5
|
Zhang S, Xie X, Zhang H, Zhao Z, Xia K, Song H, Li Q, Li M, Ge Z. Visualizing Reactive Oxygen Species-Induced DNA Damage Process in Higher-Ordered Origami Nanostructures. JACS AU 2025; 5:965-974. [PMID: 40017784 PMCID: PMC11863157 DOI: 10.1021/jacsau.4c01203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 03/01/2025]
Abstract
The genetic information on organisms is stored in the cell nucleus in the form of higher-ordered DNA structures. Here, we use DNA framework nanostructures (DFNs) to simulate the compaction and stacking density of nucleosome DNA for precise conformational and structure determination, particularly the dynamic structural changes, preferential reaction regions, and sites of DFNs during the reactive oxygen species (ROS) reaction process. By developing an atomic force microscopy-based single-particle analysis (SPA) data reconstruction method to collect and reanalyze imaging information, we demonstrate that the geometric morphology of DFNs constrains their reaction kinetics with ROS, where local mechanical stress and regional base distribution are two key factors affecting their kinetics. Furthermore, we plot the reaction process diagram for ROS and DFNs, showing the reaction process and intermediate products with individual activation energies. This SPA method offers new research tools and insights for studying the dynamic changes of highly folded and organized DNA structural domains within the nucleus and helps to reveal the key mechanisms behind their functional differences in topologically associating domains.
Collapse
Affiliation(s)
- Shuangye Zhang
- School
of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory,
Frontiers Science Center for Transformative Molecules, Zhangjiang
Institute for Advanced Study and National Center for Translational
Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaodong Xie
- School
of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory,
Frontiers Science Center for Transformative Molecules, Zhangjiang
Institute for Advanced Study and National Center for Translational
Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hairuo Zhang
- School
of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory,
Frontiers Science Center for Transformative Molecules, Zhangjiang
Institute for Advanced Study and National Center for Translational
Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziwei Zhao
- Shanghai
Artificial Intelligence Research Institute, Shanghai 200240, China
| | - Kai Xia
- Shanghai
Artificial Intelligence Research Institute, Shanghai 200240, China
| | - Haitao Song
- Shanghai
Artificial Intelligence Research Institute, Shanghai 200240, China
| | - Qian Li
- School
of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory,
Frontiers Science Center for Transformative Molecules, Zhangjiang
Institute for Advanced Study and National Center for Translational
Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingqiang Li
- School
of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory,
Frontiers Science Center for Transformative Molecules, Zhangjiang
Institute for Advanced Study and National Center for Translational
Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhilei Ge
- School
of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory,
Frontiers Science Center for Transformative Molecules, Zhangjiang
Institute for Advanced Study and National Center for Translational
Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
McPhee M, Dellaire G, Ridgway ND. Mechanisms for assembly of the nucleoplasmic reticulum. Cell Mol Life Sci 2024; 81:415. [PMID: 39367888 PMCID: PMC11455740 DOI: 10.1007/s00018-024-05437-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 10/07/2024]
Abstract
The nuclear envelope consists of an outer membrane connected to the endoplasmic reticulum, an inner membrane facing the nucleoplasm and a perinuclear space separating the two bilayers. The inner and outer nuclear membranes are physically connected at nuclear pore complexes that mediate selective communication and transfer of materials between the cytoplasm and nucleus. The spherical shape of the nuclear envelope is maintained by counterbalancing internal and external forces applied by cyto- and nucleo-skeletal networks, and the nuclear lamina and chromatin that underly the inner nuclear membrane. Despite its apparent rigidity, the nuclear envelope can invaginate to form an intranuclear membrane network termed the nucleoplasmic reticulum (NR) consisting of Type-I NR contiguous with the inner nuclear membrane and Type-II NR containing both the inner and outer nuclear membranes. The NR extends deep into the nuclear interior potentially facilitating communication and exchanges between the nuclear interior and the cytoplasm. This review details the evidence that NR intrusions that regulate cytoplasmic communication and genome maintenance are the result of a dynamic interplay between membrane biogenesis and remodelling, and physical forces exerted on the nuclear lamina derived from the cyto- and nucleo-skeletal networks.
Collapse
Affiliation(s)
- Michael McPhee
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, B3H4R2, Canada
| | - Graham Dellaire
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, B3H4R2, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, B3H4R2, Canada
| | - Neale D Ridgway
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS, B3H4R2, Canada.
- Department of Pediatrics, Atlantic Research Centre, Dalhousie University, Halifax, NS, B3H4R2, Canada.
| |
Collapse
|
7
|
Lascaux P, Hoslett G, Tribble S, Trugenberger C, Antičević I, Otten C, Torrecilla I, Koukouravas S, Zhao Y, Yang H, Aljarbou F, Ruggiano A, Song W, Peron C, Deangeli G, Domingo E, Bancroft J, Carrique L, Johnson E, Vendrell I, Fischer R, Ng AWT, Ngeow J, D'Angiolella V, Raimundo N, Maughan T, Popović M, Milošević I, Ramadan K. TEX264 drives selective autophagy of DNA lesions to promote DNA repair and cell survival. Cell 2024; 187:5698-5718.e26. [PMID: 39265577 DOI: 10.1016/j.cell.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/04/2024] [Accepted: 08/10/2024] [Indexed: 09/14/2024]
Abstract
DNA repair and autophagy are distinct biological processes vital for cell survival. Although autophagy helps maintain genome stability, there is no evidence of its direct role in the repair of DNA lesions. We discovered that lysosomes process topoisomerase 1 cleavage complexes (TOP1cc) DNA lesions in vertebrates. Selective degradation of TOP1cc by autophagy directs DNA damage repair and cell survival at clinically relevant doses of topoisomerase 1 inhibitors. TOP1cc are exported from the nucleus to lysosomes through a transient alteration of the nuclear envelope and independent of the proteasome. Mechanistically, the autophagy receptor TEX264 acts as a TOP1cc sensor at DNA replication forks, triggering TOP1cc processing by the p97 ATPase and mediating the delivery of TOP1cc to lysosomes in an MRE11-nuclease- and ATR-kinase-dependent manner. We found an evolutionarily conserved role for selective autophagy in DNA repair that enables cell survival, protects genome stability, and is clinically relevant for colorectal cancer patients.
Collapse
Affiliation(s)
- Pauline Lascaux
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Gwendoline Hoslett
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Sara Tribble
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Camilla Trugenberger
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Ivan Antičević
- DNA Damage Group, Laboratory for Molecular Ecotoxicology, Department for Marine and Environmental Research, Institute Ruđer Bošković, 10000 Zagreb, Croatia
| | - Cecile Otten
- DNA Damage Group, Laboratory for Molecular Ecotoxicology, Department for Marine and Environmental Research, Institute Ruđer Bošković, 10000 Zagreb, Croatia
| | - Ignacio Torrecilla
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Stelios Koukouravas
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Yichen Zhao
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Hongbin Yang
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Ftoon Aljarbou
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Annamaria Ruggiano
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Wei Song
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Cristiano Peron
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Giulio Deangeli
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 2PY, UK
| | - Enric Domingo
- Department of Oncology, Medical Sciences Division, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| | - James Bancroft
- Centre for Human Genetics, Nuffield Department of Medicine (NDM), University of Oxford, Oxford OX3 7BN, UK
| | - Loïc Carrique
- Division of Structural Biology, Centre for Human Genetics, Nuffield Department of Medicine (NDM), University of Oxford, Oxford OX3 7BN, UK
| | - Errin Johnson
- Dunn School Bioimaging Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Iolanda Vendrell
- Target Discovery Institute, Nuffield Department of Medicine (NDM), University of Oxford, Oxford OX3 7FZ, UK; Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine (NDM), University of Oxford, Oxford OX3 7FZ, UK
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine (NDM), University of Oxford, Oxford OX3 7FZ, UK; Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine (NDM), University of Oxford, Oxford OX3 7FZ, UK
| | - Alvin Wei Tian Ng
- Lee Kong Chian School of Medicine (LKCMedicine), Nanyang Technological University, Singapore 636921, Singapore
| | - Joanne Ngeow
- Lee Kong Chian School of Medicine (LKCMedicine), Nanyang Technological University, Singapore 636921, Singapore; Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore
| | - Vincenzo D'Angiolella
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, UK
| | - Nuno Raimundo
- Penn State College of Medicine, Department of Cellular and Molecular Physiology, Hershey, PA 17033, USA; Multidisciplinary Institute for Aging, Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra 3000-370, Portugal
| | - Tim Maughan
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK
| | - Marta Popović
- DNA Damage Group, Laboratory for Molecular Ecotoxicology, Department for Marine and Environmental Research, Institute Ruđer Bošković, 10000 Zagreb, Croatia
| | - Ira Milošević
- Centre for Human Genetics, Nuffield Department of Medicine (NDM), University of Oxford, Oxford OX3 7BN, UK; Multidisciplinary Institute for Aging, Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra 3000-370, Portugal
| | - Kristijan Ramadan
- The MRC Weatherall Institute of Molecular Medicine, Department of Oncology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK; Lee Kong Chian School of Medicine (LKCMedicine), Nanyang Technological University, Singapore 636921, Singapore.
| |
Collapse
|
8
|
Otarbayev D, Myung K. Exploring factors influencing choice of DNA double-strand break repair pathways. DNA Repair (Amst) 2024; 140:103696. [PMID: 38820807 DOI: 10.1016/j.dnarep.2024.103696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024]
Abstract
DNA double-strand breaks (DSBs) represent one of the most severe threats to genomic integrity, demanding intricate repair mechanisms within eukaryotic cells. A diverse array of factors orchestrates the complex choreography of DSB signaling and repair, encompassing repair pathways, such as non-homologous end-joining, homologous recombination, and polymerase-θ-mediated end-joining. This review looks into the intricate decision-making processes guiding eukaryotic cells towards a particular repair pathway, particularly emphasizing the processing of two-ended DSBs. Furthermore, we elucidate the transformative role of Cas9, a site-specific endonuclease, in revolutionizing our comprehension of DNA DSB repair dynamics. Additionally, we explore the burgeoning potential of Cas9's remarkable ability to induce sequence-specific DSBs, offering a promising avenue for precise targeting of tumor cells. Through this comprehensive exploration, we unravel the intricate molecular mechanisms of cellular responses to DSBs, shedding light on both fundamental repair processes and cutting-edge therapeutic strategies.
Collapse
Affiliation(s)
- Daniyar Otarbayev
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, South Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, South Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea.
| |
Collapse
|
9
|
León NY, Le TNU, Garvie A, Wong LH, Bagheri-Fam S, Harley VR. Y chromosome damage underlies testicular abnormalities in ATR-X syndrome. iScience 2024; 27:109629. [PMID: 38616920 PMCID: PMC11015497 DOI: 10.1016/j.isci.2024.109629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/27/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
ATR-X (alpha thalassemia, mental retardation, X-linked) syndrome features genital and testicular abnormalities including atypical genitalia and small testes with few seminiferous tubules. Our mouse model recapitulated the testicular defects when Atrx was deleted in Sertoli cells (ScAtrxKO) which displayed G2/M arrest and apoptosis. Here, we investigated the mechanisms underlying these defects. In control mice, Sertoli cells contain a single novel "GATA4 PML nuclear body (NB)" that contained the transcription factor GATA4, ATRX, DAXX, HP1α, and PH3 and co-localized with the Y chromosome short arm (Yp). ScAtrxKO mice contain single giant GATA4 PML-NBs with frequent DNA double-strand breaks (DSBs) in G2/M-arrested apoptotic Sertoli cells. HP1α and PH3 were absent from giant GATA4 PML-NBs indicating a failure in heterochromatin formation and chromosome condensation. Our data suggest that ATRX protects a Yp region from DNA damage, thereby preventing Sertoli cell death. We discuss Y chromosome damage/decondensation as a mechanism for testicular failure.
Collapse
Affiliation(s)
- Nayla Y. León
- Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Molecular & Translational Science, Monash University, Melbourne, VIC 3168, Australia
| | - Thanh Nha Uyen Le
- Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Molecular & Translational Science, Monash University, Melbourne, VIC 3168, Australia
| | - Andrew Garvie
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Lee H. Wong
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Stefan Bagheri-Fam
- Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Molecular & Translational Science, Monash University, Melbourne, VIC 3168, Australia
| | - Vincent R. Harley
- Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
- Department of Molecular & Translational Science, Monash University, Melbourne, VIC 3168, Australia
| |
Collapse
|
10
|
Seane EN, Nair S, Vandevoorde C, Joubert A. Mechanistic Sequence of Histone Deacetylase Inhibitors and Radiation Treatment: An Overview. Pharmaceuticals (Basel) 2024; 17:602. [PMID: 38794172 PMCID: PMC11124271 DOI: 10.3390/ph17050602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Histone deacetylases inhibitors (HDACis) have shown promising therapeutic outcomes in haematological malignancies such as leukaemia, multiple myeloma, and lymphoma, with disappointing results in solid tumours when used as monotherapy. As a result, combination therapies either with radiation or other deoxyribonucleic acid (DNA) damaging agents have been suggested as ideal strategy to improve their efficacy in solid tumours. Numerous in vitro and in vivo studies have demonstrated that HDACis can sensitise malignant cells to both electromagnetic and particle types of radiation by inhibiting DNA damage repair. Although the radiosensitising ability of HDACis has been reported as early as the 1990s, the mechanisms of radiosensitisation are yet to be fully understood. This review brings forth the various protocols used to sequence the administration of radiation and HDACi treatments in the different studies. The possible contribution of these various protocols to the ambiguity that surrounds the mechanisms of radiosensitisation is also highlighted.
Collapse
Affiliation(s)
- Elsie Neo Seane
- Department of Radiography, School of Health Care Sciences, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
- Department of Medical Imaging and Therapeutic Sciences, Faculty of Health and Wellness, Cape Peninsula University of Technology, Cape Town 7530, South Africa
- Radiation Biophysics Division, Separate Sector Cyclotron (SSC) Laboratory, iThemba LABS, Cape Town 7131, South Africa;
| | - Shankari Nair
- Radiation Biophysics Division, Separate Sector Cyclotron (SSC) Laboratory, iThemba LABS, Cape Town 7131, South Africa;
| | - Charlot Vandevoorde
- GSI Helmholtz Centre for Heavy Ion Research, Department of Biophysics, 64291 Darmstadt, Germany;
| | - Anna Joubert
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa;
| |
Collapse
|
11
|
Meschichi A, Rosa S. Plant chromatin on the move: an overview of chromatin mobility during transcription and DNA repair. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:953-962. [PMID: 36811211 DOI: 10.1111/tpj.16159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
It has become increasingly clear in recent years that chromosomes are highly dynamic entities. Chromatin mobility and re-arrangement are involved in many biological processes, including gene regulation and the maintenance of genome stability. Despite extensive studies on chromatin mobility in yeast and animal systems, up until recently, not much had been investigated at this level in plants. For plants to achieve proper growth and development, they need to respond rapidly and appropriately to environmental stimuli. Therefore, understanding how chromatin mobility can support plant responses may offer profound insights into the functioning of plant genomes. In this review, we discuss the state of the art related to chromatin mobility in plants, including the available technologies for their role in various cellular processes.
Collapse
Affiliation(s)
- Anis Meschichi
- Plant Biology Department, Swedish University of Agricultural Sciences (SLU), Almas Allé 5, Uppsala, Sweden
| | - Stefanie Rosa
- Plant Biology Department, Swedish University of Agricultural Sciences (SLU), Almas Allé 5, Uppsala, Sweden
| |
Collapse
|
12
|
Bacic L, Gaullier G, Mohapatra J, Mao G, Brackmann K, Panfilov M, Liszczak G, Sabantsev A, Deindl S. Asymmetric nucleosome PARylation at DNA breaks mediates directional nucleosome sliding by ALC1. Nat Commun 2024; 15:1000. [PMID: 38307862 PMCID: PMC10837151 DOI: 10.1038/s41467-024-45237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024] Open
Abstract
The chromatin remodeler ALC1 is activated by DNA damage-induced poly(ADP-ribose) deposited by PARP1/PARP2 and their co-factor HPF1. ALC1 has emerged as a cancer drug target, but how it is recruited to ADP-ribosylated nucleosomes to affect their positioning near DNA breaks is unknown. Here we find that PARP1/HPF1 preferentially initiates ADP-ribosylation on the histone H2B tail closest to the DNA break. To dissect the consequences of such asymmetry, we generate nucleosomes with a defined ADP-ribosylated H2B tail on one side only. The cryo-electron microscopy structure of ALC1 bound to such an asymmetric nucleosome indicates preferential engagement on one side. Using single-molecule FRET, we demonstrate that this asymmetric recruitment gives rise to directed sliding away from the DNA linker closest to the ADP-ribosylation site. Our data suggest a mechanism by which ALC1 slides nucleosomes away from a DNA break to render it more accessible to repair factors.
Collapse
Affiliation(s)
- Luka Bacic
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Guillaume Gaullier
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
- Department of Chemistry - Ångström, Uppsala University, 75120, Uppsala, Sweden
| | - Jugal Mohapatra
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Guanzhong Mao
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Klaus Brackmann
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Mikhail Panfilov
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Glen Liszczak
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Anton Sabantsev
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden.
| | - Sebastian Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden.
| |
Collapse
|
13
|
Wang LH, Wei S, Yuan Y, Zhong MJ, Wang J, Yan ZX, Zhou K, Luo T, Liang L, Bian XW. KPT330 promotes the sensitivity of glioblastoma to olaparib by retaining SQSTM1 in the nucleus and disrupting lysosomal function. Autophagy 2024; 20:295-310. [PMID: 37712615 PMCID: PMC10813631 DOI: 10.1080/15548627.2023.2252301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023] Open
Abstract
ABBREVIATIONS AO: acridine orange; ATM: ATM serine/threonine kinase; CHEK1: checkpoint kinase 1; CHEK2: checkpoint kinase 2; CI: combination index; DMSO: dimethyl sulfoxide; DSBs: double-strand breaks; GBM: glioblastoma; HR: homologous recombination; H2AX: H2A.X variant histone; IHC: immunohistochemistry; LAPTM4B: lysosomal protein transmembrane 4 beta; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PARP: poly(ADP-ribose) polymerase; RAD51: RAD51 recombinase; SQSTM1: sequestosome 1; SSBs: single-strand breaks; RNF168: ring finger protein 168; XPO1: exportin 1.
Collapse
Affiliation(s)
- Li-Hong Wang
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| | - Sen Wei
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| | - Ye Yuan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| | - Ming-Jun Zhong
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu610000, China
| | - Jiao Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| | - Ze-Xuan Yan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| | - Kai Zhou
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tao Luo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| | - Li Liang
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing400038, China
| |
Collapse
|
14
|
Gómez-González B, Aguilera A. Break-induced RNA-DNA hybrids (BIRDHs) in homologous recombination: friend or foe? EMBO Rep 2023; 24:e57801. [PMID: 37818834 DOI: 10.15252/embr.202357801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
Double-strand breaks (DSBs) are the most harmful DNA lesions, with a strong impact on cell proliferation and genome integrity. Depending on cell cycle stage, DSBs are preferentially repaired by non-homologous end joining or homologous recombination (HR). In recent years, numerous reports have revealed that DSBs enhance DNA-RNA hybrid formation around the break site. We call these hybrids "break-induced RNA-DNA hybrids" (BIRDHs) to differentiate them from sporadic R-loops consisting of DNA-RNA hybrids and a displaced single-strand DNA occurring co-transcriptionally in intact DNA. Here, we review and discuss the most relevant data about BIRDHs, with a focus on two main questions raised: (i) whether BIRDHs form by de novo transcription after a DSB or by a pre-existing nascent RNA in DNA regions undergoing transcription and (ii) whether they have a positive role in HR or are just obstacles to HR accidentally generated as an intrinsic risk of transcription. We aim to provide a comprehensive view of the exciting and yet unresolved questions about the source and impact of BIRDHs in the cell.
Collapse
Affiliation(s)
- Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC, Seville, Spain
| |
Collapse
|
15
|
García Fernández F, Huet S, Miné-Hattab J. Multi-Scale Imaging of the Dynamic Organization of Chromatin. Int J Mol Sci 2023; 24:15975. [PMID: 37958958 PMCID: PMC10649806 DOI: 10.3390/ijms242115975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Chromatin is now regarded as a heterogeneous and dynamic structure occupying a non-random position within the cell nucleus, where it plays a key role in regulating various functions of the genome. This current view of chromatin has emerged thanks to high spatiotemporal resolution imaging, among other new technologies developed in the last decade. In addition to challenging early assumptions of chromatin being regular and static, high spatiotemporal resolution imaging made it possible to visualize and characterize different chromatin structures such as clutches, domains and compartments. More specifically, super-resolution microscopy facilitates the study of different cellular processes at a nucleosome scale, providing a multi-scale view of chromatin behavior within the nucleus in different environments. In this review, we describe recent imaging techniques to study the dynamic organization of chromatin at high spatiotemporal resolution. We also discuss recent findings, elucidated by these techniques, on the chromatin landscape during different cellular processes, with an emphasis on the DNA damage response.
Collapse
Affiliation(s)
- Fabiola García Fernández
- Laboratory of Computational and Quantitative Biology, CNRS, Institut de Biologie Paris-Seine, Sorbonne Université, 75005 Paris, France;
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, BIOSIT-UMS 3480, 35000 Rennes, France;
- Institut Universitaire de France, 75231 Paris, France
| | - Judith Miné-Hattab
- Laboratory of Computational and Quantitative Biology, CNRS, Institut de Biologie Paris-Seine, Sorbonne Université, 75005 Paris, France;
| |
Collapse
|
16
|
Gasser SM, Stutz F. SUMO in the regulation of DNA repair and transcription at nuclear pores. FEBS Lett 2023; 597:2833-2850. [PMID: 37805446 DOI: 10.1002/1873-3468.14751] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
Two related post-translational modifications, the covalent linkage of Ubiquitin and the Small Ubiquitin-related MOdifier (SUMO) to lysine residues, play key roles in the regulation of both DNA repair pathway choice and transcription. Whereas ubiquitination is generally associated with proteasome-mediated protein degradation, the impact of sumoylation has been more mysterious. In the cell nucleus, sumoylation effects are largely mediated by the relocalization of the modified targets, particularly in response to DNA damage. This is governed in part by the concentration of SUMO protease at nuclear pores [Melchior, F et al. (2003) Trends Biochem Sci 28, 612-618; Ptak, C and Wozniak, RW (2017) Adv Exp Med Biol 963, 111-126]. We review here the roles of sumoylation in determining genomic locus positioning relative to the nuclear envelope and to nuclear pores, to facilitate repair and regulate transcription.
Collapse
Affiliation(s)
- Susan M Gasser
- Department of Fundamental Microbiology, University of Lausanne, Switzerland
- ISREC Foundation, Agora Cancer Research Center, Lausanne, Switzerland
| | - Françoise Stutz
- Department of Molecular and Cellular Biology, University of Geneva, Switzerland
| |
Collapse
|
17
|
Moon JI, Kim WJ, Kim KT, Kim HJ, Shin HR, Yoon H, Park SG, Park MS, Cho YD, Kim PJ, Ryoo HM. Foci-Xpress: Automated and Fast Nuclear Foci Counting Tool. Int J Mol Sci 2023; 24:14465. [PMID: 37833912 PMCID: PMC10572366 DOI: 10.3390/ijms241914465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
In the nucleus, distinct, discrete spots or regions called "foci" have been identified, each harboring a specific molecular function. Accurate and efficient quantification of these foci is essential for understanding cellular dynamics and signaling pathways. In this study, we present an innovative automated image analysis method designed to precisely quantify subcellular foci within the cell nucleus. Manual foci counting methods can be tedious and time-consuming. To address these challenges, we developed an open-source software that automatically counts the number of foci from the indicated image files. We compared the foci counting efficiency, velocity, accuracy, and convenience of Foci-Xpress with those of other conventional methods in foci-induced models. We can adjust the brightness of foci to establish a threshold. The Foci-Xpress method was significantly faster than other conventional methods. Its accuracy was similar to that of conventional methods. The most significant strength of Foci-Xpress is automation, which eliminates the need for analyzing equipment while counting. This enhanced throughput facilitates comprehensive statistical analyses and supports robust conclusions from experiments. Furthermore, automation completely rules out biases caused by researchers, such as manual errors or daily variations. Thus, Foci-Xpress is a convincing, convenient, and easily accessible focus-counting tool for cell biologists.
Collapse
Affiliation(s)
- Jae-I Moon
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-Omics Center, Seoul National University, Seoul 08826, Republic of Korea; (J.-I.M.); (W.-J.K.); (K.-T.K.); (H.-J.K.); (H.-R.S.); (H.Y.); (S.G.P.); (M.-S.P.)
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Woo-Jin Kim
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-Omics Center, Seoul National University, Seoul 08826, Republic of Korea; (J.-I.M.); (W.-J.K.); (K.-T.K.); (H.-J.K.); (H.-R.S.); (H.Y.); (S.G.P.); (M.-S.P.)
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki-Tae Kim
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-Omics Center, Seoul National University, Seoul 08826, Republic of Korea; (J.-I.M.); (W.-J.K.); (K.-T.K.); (H.-J.K.); (H.-R.S.); (H.Y.); (S.G.P.); (M.-S.P.)
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Jung Kim
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-Omics Center, Seoul National University, Seoul 08826, Republic of Korea; (J.-I.M.); (W.-J.K.); (K.-T.K.); (H.-J.K.); (H.-R.S.); (H.Y.); (S.G.P.); (M.-S.P.)
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye-Rim Shin
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-Omics Center, Seoul National University, Seoul 08826, Republic of Korea; (J.-I.M.); (W.-J.K.); (K.-T.K.); (H.-J.K.); (H.-R.S.); (H.Y.); (S.G.P.); (M.-S.P.)
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Heein Yoon
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-Omics Center, Seoul National University, Seoul 08826, Republic of Korea; (J.-I.M.); (W.-J.K.); (K.-T.K.); (H.-J.K.); (H.-R.S.); (H.Y.); (S.G.P.); (M.-S.P.)
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Gwa Park
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-Omics Center, Seoul National University, Seoul 08826, Republic of Korea; (J.-I.M.); (W.-J.K.); (K.-T.K.); (H.-J.K.); (H.-R.S.); (H.Y.); (S.G.P.); (M.-S.P.)
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Sang Park
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-Omics Center, Seoul National University, Seoul 08826, Republic of Korea; (J.-I.M.); (W.-J.K.); (K.-T.K.); (H.-J.K.); (H.-R.S.); (H.Y.); (S.G.P.); (M.-S.P.)
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Dan Cho
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea;
| | - Pil-Jong Kim
- Department of Biomedical Knowledge Engineering Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental Multi-Omics Center, Seoul National University, Seoul 08826, Republic of Korea; (J.-I.M.); (W.-J.K.); (K.-T.K.); (H.-J.K.); (H.-R.S.); (H.Y.); (S.G.P.); (M.-S.P.)
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
18
|
Canoy RJ, Shmakova A, Karpukhina A, Lomov N, Tiukacheva E, Kozhevnikova Y, André F, Germini D, Vassetzky Y. Specificity of cancer-related chromosomal translocations is linked to proximity after the DNA double-strand break and subsequent selection. NAR Cancer 2023; 5:zcad049. [PMID: 37750169 PMCID: PMC10518054 DOI: 10.1093/narcan/zcad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/01/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
Most cancer-related chromosomal translocations appear to be cell type specific. It is currently unknown why different chromosomal translocations occur in different cells. This can be due to either the occurrence of particular translocations in specific cell types or adaptive survival advantage conferred by translocations only in specific cells. We experimentally addressed this question by double-strand break (DSB) induction at MYC, IGH, AML and ETO loci in the same cell to generate chromosomal translocations in different cell lineages. Our results show that any translocation can potentially arise in any cell type. We have analyzed different factors that could affect the frequency of the translocations, and only the spatial proximity between gene loci after the DSB induction correlated with the resulting translocation frequency, supporting the 'breakage-first' model. Furthermore, upon long-term culture of cells with the generated chromosomal translocations, only oncogenic MYC-IGH and AML-ETO translocations persisted over a 60-day period. Overall, the results suggest that chromosomal translocation can be generated after DSB induction in any type of cell, but whether the cell with the translocation would persist in a cell population depends on the cell type-specific selective survival advantage that the chromosomal translocation confers to the cell.
Collapse
Affiliation(s)
- Reynand Jay Canoy
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
- Institute of Human Genetics, National Institutes of Health, University of the Philippines Manila, 1000 Manila, The Philippines
| | - Anna Shmakova
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
- Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization ‘National Cardiology Research Center’ of the Ministry of Health of the Russian Federation, 127994 Moscow, Russia
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| | - Anna Karpukhina
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| | - Nikolai Lomov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Eugenia Tiukacheva
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| | - Yana Kozhevnikova
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
| | - Franck André
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
| | - Diego Germini
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
| | - Yegor Vassetzky
- UMR 9018, CNRS, Univ. Paris-Sud, Université Paris Saclay, Institut Gustave Roussy, F-94805 Villejuif, France
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia
| |
Collapse
|
19
|
Gaggioli V, Lo CSY, Reverón-Gómez N, Jasencakova Z, Domenech H, Nguyen H, Sidoli S, Tvardovskiy A, Uruci S, Slotman JA, Chai Y, Gonçalves JGSCS, Manolika EM, Jensen ON, Wheeler D, Sridharan S, Chakrabarty S, Demmers J, Kanaar R, Groth A, Taneja N. Dynamic de novo heterochromatin assembly and disassembly at replication forks ensures fork stability. Nat Cell Biol 2023; 25:1017-1032. [PMID: 37414849 PMCID: PMC10344782 DOI: 10.1038/s41556-023-01167-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/16/2023] [Indexed: 07/08/2023]
Abstract
Chromatin is dynamically reorganized when DNA replication forks are challenged. However, the process of epigenetic reorganization and its implication for fork stability is poorly understood. Here we discover a checkpoint-regulated cascade of chromatin signalling that activates the histone methyltransferase EHMT2/G9a to catalyse heterochromatin assembly at stressed replication forks. Using biochemical and single molecule chromatin fibre approaches, we show that G9a together with SUV39h1 induces chromatin compaction by accumulating the repressive modifications, H3K9me1/me2/me3, in the vicinity of stressed replication forks. This closed conformation is also favoured by the G9a-dependent exclusion of the H3K9-demethylase JMJD1A/KDM3A, which facilitates heterochromatin disassembly upon fork restart. Untimely heterochromatin disassembly from stressed forks by KDM3A enables PRIMPOL access, triggering single-stranded DNA gap formation and sensitizing cells towards chemotherapeutic drugs. These findings may help in explaining chemotherapy resistance and poor prognosis observed in patients with cancer displaying elevated levels of G9a/H3K9me3.
Collapse
Affiliation(s)
- Vincent Gaggioli
- Department of Molecular Genetics, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Calvin S Y Lo
- Department of Molecular Genetics, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Nazaret Reverón-Gómez
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zuzana Jasencakova
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Heura Domenech
- Department of Molecular Genetics, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Hong Nguyen
- Department of Molecular Genetics, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Simone Sidoli
- Department of Biochemistry & Molecular Biology, VILLUM Centre for Bioanalytical Sciences and Centre for Epigenetics, University of Southern Denmark, Odense, Denmark
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andrey Tvardovskiy
- Department of Biochemistry & Molecular Biology, VILLUM Centre for Bioanalytical Sciences and Centre for Epigenetics, University of Southern Denmark, Odense, Denmark
- Institute of Functional Epigenetics (IFE), Helmholtz Zentrum Munchen, Neuherberg, Germany
| | - Sidrit Uruci
- Department of Molecular Genetics, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Johan A Slotman
- Department of Pathology, Erasmus Optical Imaging Centre, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Yi Chai
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | | | - Eleni Maria Manolika
- Department of Molecular Genetics, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Ole N Jensen
- Department of Biochemistry & Molecular Biology, VILLUM Centre for Bioanalytical Sciences and Centre for Epigenetics, University of Southern Denmark, Odense, Denmark
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sriram Sridharan
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Jeroen Demmers
- Proteomics Center and Department of Biochemistry, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Oncode Institute, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research (CPR), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nitika Taneja
- Department of Molecular Genetics, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| |
Collapse
|
20
|
Liu Y, Cottle WT, Ha T. Mapping cellular responses to DNA double-strand breaks using CRISPR technologies. Trends Genet 2023; 39:560-574. [PMID: 36967246 PMCID: PMC11062594 DOI: 10.1016/j.tig.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/15/2023]
Abstract
DNA double-strand breaks (DSBs) are one of the most genotoxic DNA lesions, driving a range of pathological defects from cancers to immunodeficiencies. To combat genomic instability caused by DSBs, evolution has outfitted cells with an intricate protein network dedicated to the rapid and accurate repair of these lesions. Pioneering studies have identified and characterized many crucial repair factors in this network, while the advent of genome manipulation tools like clustered regularly interspersed short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) has reinvigorated interest in DSB repair mechanisms. This review surveys the latest methodological advances and biological insights gained by utilizing Cas9 as a precise 'damage inducer' for the study of DSB repair. We highlight rapidly inducible Cas9 systems that enable synchronized and efficient break induction. When combined with sequencing and genome-specific imaging approaches, inducible Cas9 systems greatly expand our capability to spatiotemporally characterize cellular responses to DSB at specific genomic coordinates, providing mechanistic insights that were previously unobtainable.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - W Taylor Cottle
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA; Howard Hughes Medical Institute, Baltimore, MD, USA.
| |
Collapse
|
21
|
Huang J, Wu C, Kloeber JA, Gao H, Gao M, Zhu Q, Chang Y, Zhao F, Guo G, Luo K, Dai H, Liu S, Huang Q, Kim W, Zhou Q, Zhu S, Wu Z, Tu X, Yin P, Deng M, Wang L, Yuan J, Lou Z. SLFN5-mediated chromatin dynamics sculpt higher-order DNA repair topology. Mol Cell 2023; 83:1043-1060.e10. [PMID: 36854302 PMCID: PMC10467573 DOI: 10.1016/j.molcel.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 12/23/2022] [Accepted: 02/01/2023] [Indexed: 03/02/2023]
Abstract
Repair of DNA double-strand breaks (DSBs) elicits three-dimensional (3D) chromatin topological changes. A recent finding reveals that 53BP1 assembles into a 3D chromatin topology pattern around DSBs. How this formation of a higher-order structure is configured and regulated remains enigmatic. Here, we report that SLFN5 is a critical factor for 53BP1 topological arrangement at DSBs. Using super-resolution imaging, we find that SLFN5 binds to 53BP1 chromatin domains to assemble a higher-order microdomain architecture by driving damaged chromatin dynamics at both DSBs and deprotected telomeres. Mechanistically, we propose that 53BP1 topology is shaped by two processes: (1) chromatin mobility driven by the SLFN5-LINC-microtubule axis and (2) the assembly of 53BP1 oligomers mediated by SLFN5. In mammals, SLFN5 deficiency disrupts the DSB repair topology and impairs non-homologous end joining, telomere fusions, class switch recombination, and sensitivity to poly (ADP-ribose) polymerase inhibitor. We establish a molecular mechanism that shapes higher-order chromatin topologies to safeguard genomic stability.
Collapse
Affiliation(s)
- Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chenming Wu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jake A Kloeber
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; Medical Scientist Training Program, Mayo Clinic, Rochester, MN 55905, USA
| | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Ming Gao
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Qian Zhu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yiming Chang
- Jinzhou Medical University, Shanghai East Hospital, Shanghai 200120, China
| | - Fei Zhao
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Guijie Guo
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kuntian Luo
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Haiming Dai
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Sijia Liu
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Qiru Huang
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Wootae Kim
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Qin Zhou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Shouhai Zhu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Zheming Wu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xinyi Tu
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ping Yin
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Min Deng
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jian Yuan
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200092, China.
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
22
|
Yang JH, Brandão HB, Hansen AS. DNA double-strand break end synapsis by DNA loop extrusion. Nat Commun 2023; 14:1913. [PMID: 37024496 PMCID: PMC10079674 DOI: 10.1038/s41467-023-37583-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
DNA double-strand breaks (DSBs) occur every cell cycle and must be efficiently repaired. Non-homologous end joining (NHEJ) is the dominant pathway for DSB repair in G1-phase. The first step of NHEJ is to bring the two DSB ends back into proximity (synapsis). Although synapsis is generally assumed to occur through passive diffusion, we show that passive diffusion is unlikely to produce the synapsis speed observed in cells. Instead, we hypothesize that DNA loop extrusion facilitates synapsis. By combining experimentally constrained simulations and theory, we show that a simple loop extrusion model constrained by previous live-cell imaging data only modestly accelerates synapsis. Instead, an expanded loop extrusion model with targeted loading of loop extruding factors (LEFs), a small portion of long-lived LEFs, and LEF stabilization by boundary elements and DSB ends achieves fast synapsis with near 100% efficiency. We propose that loop extrusion contributes to DSB repair by mediating fast synapsis.
Collapse
Affiliation(s)
- Jin H Yang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02142, USA
| | - Hugo B Brandão
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02142, USA.
- Illumina Inc., San Diego, CA, 92122, USA.
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02142, USA.
| |
Collapse
|
23
|
Joseph FM, Young NL. Histone variant-specific post-translational modifications. Semin Cell Dev Biol 2023; 135:73-84. [PMID: 35277331 PMCID: PMC9458767 DOI: 10.1016/j.semcdb.2022.02.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 01/12/2023]
Abstract
Post-translational modifications (PTMs) of histones play a key role in DNA-based processes and contribute to cell differentiation and gene function by adding an extra layer of regulation. Variations in histone sequences within each family of histones expands the chromatin repertoire and provide further mechanisms for regulation and signaling. While variants are known to be present in certain genomic loci and carry out important functions, much remains unknown about variant-specific PTMs and their role in regulating chromatin. This ambiguity is in part due to the limited technologies and appropriate reagents to identify and quantitate variant-specific PTMs. Nonetheless, histone variants are an integral portion of the chromatin system and the understanding of their modifications and resolving how PTMs function differently on specific variants is paramount to the advancement of the field. Here we review the current knowledge on post-translational modifications specific to histone variants, with an emphasis on well-characterized PTMs of known function. While not every possible PTM is addressed, we present key variant-specific PTMs and what is known about their function and mechanisms in convenient reference tables.
Collapse
Affiliation(s)
- Faith M Joseph
- Translational Biology and Molecular Medicine Graduate Program, USA
| | - Nicolas L Young
- Translational Biology and Molecular Medicine Graduate Program, USA; Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
24
|
Komaki Y, Ono S, Okuya T, Ibuki Y. Glucose starvation impairs NER and γ-H2AX after UVB irradiation. Toxicol In Vitro 2023; 86:105503. [DOI: 10.1016/j.tiv.2022.105503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/12/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022]
|
25
|
Erenpreisa J, Giuliani A, Yoshikawa K, Falk M, Hildenbrand G, Salmina K, Freivalds T, Vainshelbaum N, Weidner J, Sievers A, Pilarczyk G, Hausmann M. Spatial-Temporal Genome Regulation in Stress-Response and Cell-Fate Change. Int J Mol Sci 2023; 24:2658. [PMID: 36769000 PMCID: PMC9917235 DOI: 10.3390/ijms24032658] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 02/04/2023] Open
Abstract
Complex functioning of the genome in the cell nucleus is controlled at different levels: (a) the DNA base sequence containing all relevant inherited information; (b) epigenetic pathways consisting of protein interactions and feedback loops; (c) the genome architecture and organization activating or suppressing genetic interactions between different parts of the genome. Most research so far has shed light on the puzzle pieces at these levels. This article, however, attempts an integrative approach to genome expression regulation incorporating these different layers. Under environmental stress or during cell development, differentiation towards specialized cell types, or to dysfunctional tumor, the cell nucleus seems to react as a whole through coordinated changes at all levels of control. This implies the need for a framework in which biological, chemical, and physical manifestations can serve as a basis for a coherent theory of gene self-organization. An international symposium held at the Biomedical Research and Study Center in Riga, Latvia, on 25 July 2022 addressed novel aspects of the abovementioned topic. The present article reviews the most recent results and conclusions of the state-of-the-art research in this multidisciplinary field of science, which were delivered and discussed by scholars at the Riga symposium.
Collapse
Affiliation(s)
| | - Alessandro Giuliani
- Istituto Superiore di Sanita Environment and Health Department, 00161 Roma, Italy
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Martin Falk
- Institute of Biophysics, The Czech Academy of Sciences, 612 65 Brno, Czech Republic
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Georg Hildenbrand
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
- Faculty of Engineering, University of Applied Science Aschaffenburg, 63743 Aschaffenburg, Germany
| | - Kristine Salmina
- Latvian Biomedicine Research and Study Centre, LV1067 Riga, Latvia
| | - Talivaldis Freivalds
- Institute of Cardiology and Regenerative Medicine, University of Latvia, LV1004 Riga, Latvia
| | - Ninel Vainshelbaum
- Latvian Biomedicine Research and Study Centre, LV1067 Riga, Latvia
- Doctoral Study Program, University of Latvia, LV1004 Riga, Latvia
| | - Jonas Weidner
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Aaron Sievers
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
- Institute for Human Genetics, University Hospital Heidelberg, 69117 Heidelberg, Germany
| | - Götz Pilarczyk
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Michael Hausmann
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
26
|
Effectiveness of Flattening-Filter-Free versus Flattened Beams in V79 and Glioblastoma Patient-Derived Stem-like Cells. Int J Mol Sci 2023; 24:ijms24021107. [PMID: 36674623 PMCID: PMC9861147 DOI: 10.3390/ijms24021107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Literature data on the administration of conventional high-dose beams with (FF) or without flattening filters (FFF) show conflicting results on biological effects at the cellular level. To contribute to this field, we irradiated V79 Chinese hamster lung fibroblasts and two patient-derived glioblastoma stem-like cell lines (GSCs-named #1 and #83) using a clinical 10 MV accelerator with FF (at 4 Gy/min) and FFF (at two dose rates 4 and 24 Gy/min). Cell killing and DNA damage induction, determined using the γ-H2AX assay, and gene expression were studied. No significant differences in the early survival of V79 cells were observed as a function of dose rates and FF or FFF beams, while a trend of reduction in late survival was observed at the highest dose rate with the FFF beam. GSCs showed similar survival levels as a function of dose rates, both delivered in the FFF regimen. The amount of DNA damage measured for both dose rates after 2 h was much higher in line #1 than in line #83, with statistically significant differences between the two dose rates only in line #83. The gene expression analysis of the two GSC lines indicates gene signatures mimicking the prognosis of glioblastoma (GBM) patients derived from a public database. Overall, the results support the current use of FFF and highlight the possibility of identifying patients with candidate gene signatures that could benefit from irradiation with FFF beams at a high dose rate.
Collapse
|
27
|
Zhang FL, Yang SY, Liao L, Zhang TM, Zhang YL, Hu SY, Deng L, Huang MY, Andriani L, Ma XY, Shao ZM, Li DQ. Dynamic SUMOylation of MORC2 orchestrates chromatin remodelling and DNA repair in response to DNA damage and drives chemoresistance in breast cancer. Theranostics 2023; 13:973-990. [PMID: 36793866 PMCID: PMC9925317 DOI: 10.7150/thno.79688] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023] Open
Abstract
Rationale: SUMOylation regulates a plethora of biological processes, and its inhibitors are currently under investigation in clinical trials as anticancer agents. Thus, identifying new targets with site-specific SUMOylation and defining their biological functions will not only provide new mechanistic insights into the SUMOylation signaling but also open an avenue for developing new strategy for cancer therapy. MORC family CW-type zinc finger 2 (MORC2) is a newly identified chromatin-remodeling enzyme with an emerging role in the DNA damage response (DDR), but its regulatory mechanism remains enigmatic. Methods: In vivo and in vitro SUMOylation assays were used to determine the SUMOylation levels of MORC2. Overexpression and knockdown of SUMO-associated enzymes were used to detect their effects on MORC2 SUMOylation. The effect of dynamic MORC2 SUMOylation on the sensitivity of breast cancer cells to chemotherapeutic drugs was examined through in vitro and in vivo functional assays. Immunoprecipitation, GST pull-down, MNase, and chromatin segregation assays were used to explore the underlying mechanisms. Results: Here, we report that MORC2 is modified by small ubiquitin-like modifier 1 (SUMO1) and SUMO2/3 at lysine 767 (K767) in a SUMO-interacting motif dependent manner. MORC2 SUMOylation is induced by SUMO E3 ligase tripartite motif containing 28 (TRIM28) and reversed by deSUMOylase sentrin-specific protease 1 (SENP1). Intriguingly, SUMOylation of MORC2 is decreased at the early stage of DNA damage induced by chemotherapeutic drugs that attenuate the interaction of MORC2 with TRIM28. MORC2 deSUMOylation induces transient chromatin relaxation to enable efficient DNA repair. At the relatively late stage of DNA damage, MORC2 SUMOylation is restored, and SUMOylated MORC2 interacts with protein kinase CSK21 (casein kinase II subunit alpha), which in turn phosphorylates DNA-PKcs (DNA-dependent protein kinase catalytic subunit), thus promoting DNA repair. Notably, expression of a SUMOylation-deficient mutant MORC2 or administration of SUMO inhibitor enhances the sensitivity of breast cancer cells to DNA-damaging chemotherapeutic drugs. Conclusions: Collectively, these findings uncover a novel regulatory mechanism of MORC2 by SUMOylation and reveal the intricate dynamics of MORC2 SUMOylation important for proper DDR. We also propose a promising strategy to sensitize MORC2-driven breast tumors to chemotherapeutic drugs by inhibition of the SUMO pathway.
Collapse
Affiliation(s)
- Fang-Lin Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shao-Ying Yang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Li Liao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tai-Mei Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yin-Ling Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shu-Yuan Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ling Deng
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Min-Ying Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lisa Andriani
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiao-Yan Ma
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhi-Min Shao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Da-Qiang Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Viushkov VS, Lomov NA, Rubtsov MA, Vassetzky YS. Visualizing the Genome: Experimental Approaches for Live-Cell Chromatin Imaging. Cells 2022; 11:cells11244086. [PMID: 36552850 PMCID: PMC9776900 DOI: 10.3390/cells11244086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Over the years, our vision of the genome has changed from a linear molecule to that of a complex 3D structure that follows specific patterns and possesses a hierarchical organization. Currently, genomics is becoming "four-dimensional": our attention is increasingly focused on the study of chromatin dynamics over time, in the fourth dimension. Recent methods for visualizing the movements of chromatin loci in living cells by targeting fluorescent proteins can be divided into two groups. The first group requires the insertion of a special sequence into the locus of interest, to which proteins that recognize the sequence are recruited (e.g., FROS and ParB-INT methods). In the methods of the second approach, "programmed" proteins are targeted to the locus of interest (i.e., systems based on CRISPR/Cas, TALE, and zinc finger proteins). In the present review, we discuss these approaches, examine their strengths and weaknesses, and identify the key scientific problems that can be studied using these methods.
Collapse
Affiliation(s)
- Vladimir S. Viushkov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Nikolai A. Lomov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Mikhail A. Rubtsov
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Biochemistry, Center for Industrial Technologies and Entrepreneurship, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435 Moscow, Russia
| | - Yegor S. Vassetzky
- CNRS UMR9018, Université Paris-Saclay, Gustave Roussy, 94805 Villejuif, France
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Correspondence:
| |
Collapse
|
29
|
Abstract
Genomic DNA is organized three-dimensionally in the nucleus as chromatin. Recent accumulating evidence has demonstrated that chromatin organizes into numerous dynamic domains in higher eukaryotic cells, which act as functional units of the genome. These compacted domains facilitate DNA replication and gene regulation. Undamaged chromatin is critical for healthy cells to function and divide. However, the cellular genome is constantly threatened by many sources of DNA damage (e.g., radiation). How do cells maintain their genome integrity when subjected to DNA damage? This chapter describes how the compact state of chromatin safeguards the genome from radiation damage and chemical attacks. Together with recent genomics data, our finding suggests that DNA compaction, such as chromatin domain formation, plays a critical role in maintaining genome integrity. But does the formation of such domains limit DNA accessibility inside the domain and hinder the recruitment of repair machinery to the damaged site(s) during DNA repair? To approach this issue, we first describe a sensitive imaging method to detect changes in chromatin states in living cells (single-nucleosome imaging/tracking). We then use this method to explain how cells can overcome potential recruiting difficulties; cells can decompact chromatin domains following DNA damage and temporarily increase chromatin motion (∼DNA accessibility) to perform efficient DNA repair. We also speculate on how chromatin compaction affects DNA damage-resistance in the clinical setting.
Collapse
Affiliation(s)
- Katsuhiko Minami
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan; Department of Genetics, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Shizuoka, Japan
| | - Shiori Iida
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan; Department of Genetics, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Shizuoka, Japan
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan; Department of Genetics, School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Shizuoka, Japan.
| |
Collapse
|
30
|
Furia L, Pelicci S, Scanarini M, Pelicci PG, Faretta M. From Double-Strand Break Recognition to Cell-Cycle Checkpoint Activation: High Content and Resolution Image Cytometry Unmasks 53BP1 Multiple Roles in DNA Damage Response and p53 Action. Int J Mol Sci 2022; 23:10193. [PMID: 36077590 PMCID: PMC9456172 DOI: 10.3390/ijms231710193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
53BP1 protein has been isolated in-vitro as a putative p53 interactor. From the discovery of its engagement in the DNA-Damage Response (DDR), its role in sustaining the activity of the p53-regulated transcriptional program has been frequently under-evaluated, even in the case of a specific response to numerous DNA Double-Strand Breaks (DSBs), i.e., exposure to ionizing radiation. The localization of 53BP1 protein constitutes a key to decipher the network of activities exerted in response to stress. We present here an automated-microscopy for image cytometry protocol to analyze the evolution of the DDR, and to demonstrate how 53BP1 moved from damaged sites, where the well-known interaction with the DSB marker γH2A.X takes place, to nucleoplasm, interacting with p53, and enhancing the transcriptional regulation of the guardian of the genome protein. Molecular interactions have been quantitatively described and spatiotemporally localized at the highest spatial resolution by a simultaneous analysis of the impairment of the cell-cycle progression. Thanks to the high statistical sampling of the presented protocol, we provide a detailed quantitative description of the molecular events following the DSBs formation. Single-Molecule Localization Microscopy (SMLM) Analysis finally confirmed the p53-53BP1 interaction on the tens of nanometers scale during the distinct phases of the response.
Collapse
Affiliation(s)
- Laura Furia
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Simone Pelicci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Mirco Scanarini
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Mario Faretta
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy
| |
Collapse
|
31
|
Mołoń M, Stępień K, Kielar P, Vasileva B, Lozanska B, Staneva D, Ivanov P, Kula-Maximenko M, Molestak E, Tchórzewski M, Miloshev G, Georgieva M. Actin-Related Protein 4 and Linker Histone Sustain Yeast Replicative Ageing. Cells 2022; 11:cells11172754. [PMID: 36078161 PMCID: PMC9454676 DOI: 10.3390/cells11172754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Ageing is accompanied by dramatic changes in chromatin structure organization and genome function. Two essential components of chromatin, the linker histone Hho1p and actin-related protein 4 (Arp4p), have been shown to physically interact in Saccharomyces cerevisiae cells, thus maintaining chromatin dynamics and function, as well as genome stability and cellular morphology. Disrupting this interaction has been proven to influence the stability of the yeast genome and the way cells respond to stress during chronological ageing. It has also been proven that the abrogated interaction between these two chromatin proteins elicited premature ageing phenotypes. Alterations in chromatin compaction have also been associated with replicative ageing, though the main players are not well recognized. Based on this knowledge, here, we examine how the interaction between Hho1p and Arp4p impacts the ageing of mitotically active yeast cells. For this purpose, two sets of strains were used—haploids (WT(n), arp4, hho1Δ and arp4 hho1Δ) and their heterozygous diploid counterparts (WT(2n), ARP4/arp4, HHO1/hho1Δ and ARP4 HHO1/arp4 hho1Δ)—for the performance of extensive morphological and physiological analyses during replicative ageing. These analyses included a comparative examination of the yeast cells’ chromatin structure, proliferative and reproductive potential, and resilience to stress, as well as polysome profiles and chemical composition. The results demonstrated that the haploid chromatin mutants arp4 and arp4 hho1Δ demonstrated a significant reduction in replicative and total lifespan. These findings lead to the conclusion that the importance of a healthy interaction between Arp4p and Hho1p in replicative ageing is significant. This is proof of the concomitant importance of Hho1p and Arp4p in chronological and replicative ageing.
Collapse
Affiliation(s)
- Mateusz Mołoń
- Department of Biochemistry and Cell Biology, Institute of Biology and Biotechnology, University of Rzeszow, 35-601 Rzeszow, Poland
- Correspondence: (M.M.); (M.G.)
| | - Karolina Stępień
- Department of Biochemistry and Cell Biology, Institute of Biology and Biotechnology, University of Rzeszow, 35-601 Rzeszow, Poland
| | - Patrycja Kielar
- Department of Biochemistry and Cell Biology, Institute of Biology and Biotechnology, University of Rzeszow, 35-601 Rzeszow, Poland
| | - Bela Vasileva
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, 1123 Sofia, Bulgaria
| | - Bonka Lozanska
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, 1123 Sofia, Bulgaria
| | - Dessislava Staneva
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, 1123 Sofia, Bulgaria
| | - Penyo Ivanov
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, 1123 Sofia, Bulgaria
| | - Monika Kula-Maximenko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 30-239 Kraków, Poland
| | - Eliza Molestak
- Department of Molecular Biology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - Marek Tchórzewski
- Department of Molecular Biology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - George Miloshev
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, 1123 Sofia, Bulgaria
| | - Milena Georgieva
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, 1123 Sofia, Bulgaria
- Correspondence: (M.M.); (M.G.)
| |
Collapse
|
32
|
Liu Q, Liu P, Ji T, Zheng L, Shen C, Ran S, Liu J, Zhao Y, Niu Y, Wang T, Dong J. The histone methyltransferase SUVR2 promotes DSB repair via chromatin remodeling and liquid-liquid phase separation. MOLECULAR PLANT 2022; 15:1157-1175. [PMID: 35610973 DOI: 10.1016/j.molp.2022.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Maintaining genomic integrity and stability is particularly important for stem cells, which are at the top of the cell lineage origin. Here, we discovered that the plant-specific histone methyltransferase SUVR2 maintains the genome integrity of the root tip stem cells through chromatin remodeling and liquid-liquid phase separation (LLPS) when facing DNA double-strand breaks (DSBs). The histone methyltransferase SUVR2 (MtSUVR2) has histone methyltransferase activity and catalyzes the conversion of histone H3 lysine 9 monomethylation (H3K9me1) to H3K9me2/3 in vitro and in Medicago truncatula. Under DNA damage, the proportion of heterochromatin decreased and the level of DSB damage marker γ-H2AX increased in suvr2 mutants, indicating that MtSUVR2 promotes the compaction of the chromatin structure through H3K9 methylation modification to protect DNA from damage. Interestingly, MtSUVR2 was induced by DSBs to phase separate and form droplets to localize at the damage sites, and this was confirmed by immunofluorescence and fluorescence recovery after photobleaching experiments. The IDR1 and low-complexity domain regions of MtSUVR2 determined its phase separation in the nucleus, whereas the IDR2 region determined the interaction with the homologous recombinase MtRAD51. Furthermore, we found that MtSUVR2 drove the phase separation of MtRAD51 to form "DNA repair bodies," which could enhance the stability of MtRAD51 proteins to facilitate error-free homologous recombination repair of stem cells. Taken together, our study reveals that chromatin remodeling-associated proteins participate in DNA repair through LLPS.
Collapse
Affiliation(s)
- Qianwen Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Peng Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tuo Ji
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lihua Zheng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chen Shen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shasha Ran
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jinling Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yafei Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiding Niu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
33
|
Kim JM. Molecular Link between DNA Damage Response and Microtubule Dynamics. Int J Mol Sci 2022; 23:ijms23136986. [PMID: 35805981 PMCID: PMC9266319 DOI: 10.3390/ijms23136986] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Microtubules are major components of the cytoskeleton that play important roles in cellular processes such as intracellular transport and cell division. In recent years, it has become evident that microtubule networks play a role in genome maintenance during interphase. In this review, we highlight recent advances in understanding the role of microtubule dynamics in DNA damage response and repair. We first describe how DNA damage checkpoints regulate microtubule organization and stability. We then highlight how microtubule networks are involved in the nuclear remodeling following DNA damage, which leads to changes in chromosome organization. Lastly, we discuss how microtubule dynamics participate in the mobility of damaged DNA and promote consequent DNA repair. Together, the literature indicates the importance of microtubule dynamics in genome organization and stability during interphase.
Collapse
Affiliation(s)
- Jung Min Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 58128, Korea
| |
Collapse
|
34
|
Rawal CC, Butova NL, Mitra A, Chiolo I. An Expanding Toolkit for Heterochromatin Repair Studies. Genes (Basel) 2022; 13:genes13030529. [PMID: 35328082 PMCID: PMC8955653 DOI: 10.3390/genes13030529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/04/2022] Open
Abstract
Pericentromeric heterochromatin is mostly composed of repetitive DNA sequences prone to aberrant recombination. Cells have developed highly specialized mechanisms to enable ‘safe’ homologous recombination (HR) repair while preventing aberrant recombination in this domain. Understanding heterochromatin repair responses is essential to understanding the critical mechanisms responsible for genome integrity and tumor suppression. Here, we review the tools, approaches, and methods currently available to investigate double-strand break (DSB) repair in pericentromeric regions, and also suggest how technologies recently developed for euchromatin repair studies can be adapted to characterize responses in heterochromatin. With this ever-growing toolkit, we are witnessing exciting progress in our understanding of how the ‘dark matter’ of the genome is repaired, greatly improving our understanding of genome stability mechanisms.
Collapse
|
35
|
García Fernández F, Fabre E. The Dynamic Behavior of Chromatin in Response to DNA Double-Strand Breaks. Genes (Basel) 2022; 13:genes13020215. [PMID: 35205260 PMCID: PMC8872016 DOI: 10.3390/genes13020215] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
The primary functions of the eukaryotic nucleus as a site for the storage, retrieval, and replication of information require a highly dynamic chromatin organization, which can be affected by the presence of DNA damage. In response to double-strand breaks (DSBs), the mobility of chromatin at the break site is severely affected and, to a lesser extent, that of other chromosomes. The how and why of such movement has been widely studied over the last two decades, leading to different mechanistic models and proposed potential roles underlying both local and global mobility. Here, we review the state of the knowledge on current issues affecting chromatin mobility upon DSBs, and highlight its role as a crucial step in the DNA damage response (DDR).
Collapse
Affiliation(s)
- Fabiola García Fernández
- Institut Curie, CNRS UMR3664, Sorbonne Université, F-75005 Paris, France
- Correspondence: (F.G.F.); (E.F.)
| | - Emmanuelle Fabre
- Génomes Biologie Cellulaire et Thérapeutiques, CNRS UMR7212, INSERM U944, Université de Paris, F-75010 Paris, France
- Correspondence: (F.G.F.); (E.F.)
| |
Collapse
|
36
|
Vicar T, Gumulec J, Kolar R, Kopecna O, Pagacova E, Falkova I, Falk M. DeepFoci: Deep learning-based algorithm for fast automatic analysis of DNA double-strand break ionizing radiation-induced foci. Comput Struct Biotechnol J 2022; 19:6465-6480. [PMID: 34976305 PMCID: PMC8668444 DOI: 10.1016/j.csbj.2021.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 11/26/2022] Open
Abstract
DNA double-strand breaks (DSBs), marked by ionizing radiation-induced (repair) foci (IRIFs), are the most serious DNA lesions and are dangerous to human health. IRIF quantification based on confocal microscopy represents the most sensitive and gold-standard method in radiation biodosimetry and allows research on DSB induction and repair at the molecular and single-cell levels. In this study, we introduce DeepFoci - a deep learning-based fully automatic method for IRIF counting and morphometric analysis. DeepFoci is designed to work with 3D multichannel data (trained for 53BP1 and γH2AX) and uses U-Net for nucleus segmentation and IRIF detection, together with maximally stable extremal region-based IRIF segmentation. The proposed method was trained and tested on challenging datasets consisting of mixtures of nonirradiated and irradiated cells of different types and IRIF characteristics - permanent cell lines (NHDFs, U-87) and primary cell cultures prepared from tumors and adjacent normal tissues of head and neck cancer patients. The cells were dosed with 0.5-8 Gy γ-rays and fixed at multiple (0-24 h) postirradiation times. Under all circumstances, DeepFoci quantified the number of IRIFs with the highest accuracy among current advanced algorithms. Moreover, while the detection error of DeepFoci remained comparable to the variability between two experienced experts, the software maintained its sensitivity and fidelity across dramatically different IRIF counts per nucleus. In addition, information was extracted on IRIF 3D morphometric features and repair protein colocalization within IRIFs. This approach allowed multiparameter IRIF categorization of single- or multichannel data, thereby refining the analysis of DSB repair processes and classification of patient tumors, with the potential to identify specific cell subclones. The developed software improves IRIF quantification for various practical applications (radiotherapy monitoring, biodosimetry, etc.) and opens the door to advanced DSB focus analysis and, in turn, a better understanding of (radiation-induced) DNA damage and repair.
Collapse
Key Words
- 53BP1, P53-binding protein 1
- Biodosimetry
- CNN, convolutional neural network
- Confocal Microscopy
- Convolutional Neural Network
- DNA Damage and Repair
- DSB, DNA double-strand break
- Deep Learning
- FOV, field of view
- GUI, graphical user interface
- IRIF, ionizing radiation-induced (repair) foci
- Image Analysis
- Ionizing Radiation-Induced Foci (IRIFs)
- MSER, maximally stable extremal region (algorithm)
- Morphometry
- NHDFs, normal human dermal fibroblasts
- RAD51, DNA repair protein RAD51 homolog 1
- U-87, U-87 glioblastoma cell line
- γH2AX, histone H2AX phosphorylated at serine 139
Collapse
Affiliation(s)
- Tomas Vicar
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3058/10, Brno, Czech Republic.,Czech Academy of Sciences, Institute of Biophysics, v.v.i, Department of Cell Biology and Radiobiology, Kralovopolska 135, Brno, Czech Republic.,Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Jaromir Gumulec
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Radim Kolar
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3058/10, Brno, Czech Republic
| | - Olga Kopecna
- Czech Academy of Sciences, Institute of Biophysics, v.v.i, Department of Cell Biology and Radiobiology, Kralovopolska 135, Brno, Czech Republic
| | - Eva Pagacova
- Czech Academy of Sciences, Institute of Biophysics, v.v.i, Department of Cell Biology and Radiobiology, Kralovopolska 135, Brno, Czech Republic
| | - Iva Falkova
- Czech Academy of Sciences, Institute of Biophysics, v.v.i, Department of Cell Biology and Radiobiology, Kralovopolska 135, Brno, Czech Republic
| | - Martin Falk
- Czech Academy of Sciences, Institute of Biophysics, v.v.i, Department of Cell Biology and Radiobiology, Kralovopolska 135, Brno, Czech Republic
| |
Collapse
|
37
|
Martinez-Pastor B, Silveira GG, Clarke TL, Chung D, Gu Y, Cosentino C, Davidow LS, Mata G, Hassanieh S, Salsman J, Ciccia A, Bae N, Bedford MT, Megias D, Rubin LL, Efeyan A, Dellaire G, Mostoslavsky R. Assessing kinetics and recruitment of DNA repair factors using high content screens. Cell Rep 2021; 37:110176. [PMID: 34965416 PMCID: PMC8763642 DOI: 10.1016/j.celrep.2021.110176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 10/08/2021] [Accepted: 12/04/2021] [Indexed: 11/30/2022] Open
Abstract
Repair of genetic damage is coordinated in the context of chromatin, so cells dynamically modulate accessibility at DNA breaks for the recruitment of DNA damage response (DDR) factors. The identification of chromatin factors with roles in DDR has mostly relied on loss-of-function screens while lacking robust high-throughput systems to study DNA repair. In this study, we have developed two high-throughput systems that allow the study of DNA repair kinetics and the recruitment of factors to double-strand breaks in a 384-well plate format. Using a customized gain-of-function open-reading frame library ("ChromORFeome" library), we identify chromatin factors with putative roles in the DDR. Among these, we find the PHF20 factor is excluded from DNA breaks, affecting DNA repair by competing with 53BP1 recruitment. Adaptable for genetic perturbations, small-molecule screens, and large-scale analysis of DNA repair, these resources can aid our understanding and manipulation of DNA repair.
Collapse
Affiliation(s)
- Barbara Martinez-Pastor
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain.
| | - Giorgia G Silveira
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Thomas L Clarke
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Dudley Chung
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Yuchao Gu
- School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Claudia Cosentino
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Lance S Davidow
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Gadea Mata
- Confocal Microscopy Unit, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Sylvana Hassanieh
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA
| | - Jayme Salsman
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Alberto Ciccia
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Narkhyun Bae
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Mark T Bedford
- Department of Epigenetics & Molecular Carcinogenesis, M.D.Anderson Cancer Center, University of Texas, Smithville, TX 78957, USA
| | - Diego Megias
- Confocal Microscopy Unit, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Alejo Efeyan
- Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid 28029, Spain
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada.
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
38
|
Newman H, Catt S, Vining B, Vollenhoven B, Horta F. DNA repair and response to sperm DNA damage in oocytes and embryos, and the potential consequences in ART: a systematic review. Mol Hum Reprod 2021; 28:6483093. [PMID: 34954800 DOI: 10.1093/molehr/gaab071] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Sperm DNA damage is considered a predictive factor for the clinical outcomes of patients undergoing ART. Laboratory evidence suggests that zygotes and developing embryos have adopted specific response and repair mechanisms to repair DNA damage of paternal origin. We have conducted a systematic review in accordance with guidelines from Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) to identify and review the maternal mechanisms used to respond and repair sperm DNA damage during early embryonic development, how these mechanisms operate and their potential clinical implications. The literature search was conducted in Ovid MEDLINE and Embase databases until May 2021. Out of 6297 articles initially identified, 36 studies were found to be relevant through cross referencing and were fully extracted. The collective evidence in human and animal models indicate that the early embryo has the capacity to repair DNA damage within sperm by activating maternally driven mechanisms throughout embryonic development. However, this capacity is limited and likely declines with age. The link between age and decreased DNA repair capacity could explain decreased oocyte quality in older women, poor reproductive outcomes in idiopathic cases, and patients who present high sperm DNA damage. Ultimately, further understanding mechanisms underlying the maternal repair of sperm DNA damage could lead to the development of targeted therapies to decrease sperm DNA damage, improved oocyte quality to combat incoming DNA insults or lead to development of methodologies to identify individual spermatozoa without DNA damage.
Collapse
Affiliation(s)
- H Newman
- Education Program in Reproduction & Development, Department of Obstetrics and Gynecology, Monash University, Melbourne, VIC 3168, Australia
| | - S Catt
- Education Program in Reproduction & Development, Department of Obstetrics and Gynecology, Monash University, Melbourne, VIC 3168, Australia
| | - B Vining
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia.,Department of Molecular and Translational Science, Monash University, Melbourne, VIC, 3800, Australia
| | - B Vollenhoven
- Education Program in Reproduction & Development, Department of Obstetrics and Gynecology, Monash University, Melbourne, VIC 3168, Australia.,Monash IVF, Melbourne, VIC, 3168, Australia.,Women's and Newborn Program, Monash Health, VIC, 3169, Australia
| | - F Horta
- Education Program in Reproduction & Development, Department of Obstetrics and Gynecology, Monash University, Melbourne, VIC 3168, Australia.,Monash IVF, Melbourne, VIC, 3168, Australia
| |
Collapse
|
39
|
Caragine CM, Kanellakopoulos N, Zidovska A. Mechanical stress affects dynamics and rheology of the human genome. SOFT MATTER 2021; 18:107-116. [PMID: 34874386 DOI: 10.1039/d1sm00983d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Material properties of the genome are critical for proper cellular function - they directly affect timescales and length scales of DNA transactions such as transcription, replication and DNA repair, which in turn impact all cellular processes via the central dogma of molecular biology. Hence, elucidating the genome's rheology in vivo may help reveal physical principles underlying the genome's organization and function. Here, we present a novel noninvasive approach to study the genome's rheology and its response to mechanical stress in form of nuclear injection in live human cells. Specifically, we use Displacement Correlation Spectroscopy to map nucleus-wide genomic motions pre/post injection, during which we deposit rheological probes inside the cell nucleus. While the genomic motions inform on the bulk rheology of the genome pre/post injection, the probe's motion informs on the local rheology of its surroundings. Our results reveal that mechanical stress of injection leads to local as well as nucleus-wide changes in the genome's compaction, dynamics and rheology. We find that the genome pre-injection exhibits subdiffusive motions, which are coherent over several micrometers. In contrast, genomic motions post-injection become faster and uncorrelated, moreover, the genome becomes less compact and more viscous across the entire nucleus. In addition, we use the injected particles as rheological probes and find the genome to condense locally around them, mounting a local elastic response. Taken together, our results show that mechanical stress alters both dynamics and material properties of the genome. These changes are consistent with those observed upon DNA damage, suggesting that the genome experiences similar effects during the injection process.
Collapse
Affiliation(s)
- Christina M Caragine
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY 10003, USA.
| | - Nikitas Kanellakopoulos
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY 10003, USA.
| | - Alexandra Zidovska
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY 10003, USA.
| |
Collapse
|
40
|
Sebastian R, Aladjem MI, Oberdoerffer P. Encounters in Three Dimensions: How Nuclear Topology Shapes Genome Integrity. Front Genet 2021; 12:746380. [PMID: 34745220 PMCID: PMC8566435 DOI: 10.3389/fgene.2021.746380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Almost 25 years ago, the phosphorylation of a chromatin component, histone H2AX, was discovered as an integral part of the DNA damage response in eukaryotes. Much has been learned since then about the control of DNA repair in the context of chromatin. Recent technical and computational advances in imaging, biophysics and deep sequencing have led to unprecedented insight into nuclear organization, highlighting the impact of three-dimensional (3D) chromatin structure and nuclear topology on DNA repair. In this review, we will describe how DNA repair processes have adjusted to and in many cases adopted these organizational features to ensure accurate lesion repair. We focus on new findings that highlight the importance of chromatin context, topologically associated domains, phase separation and DNA break mobility for the establishment of repair-conducive nuclear environments. Finally, we address the consequences of aberrant 3D genome maintenance for genome instability and disease.
Collapse
Affiliation(s)
- Robin Sebastian
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Philipp Oberdoerffer
- Division of Cancer Biology, National Cancer Institute, NIH, Rockville, MD, United States
| |
Collapse
|
41
|
Ortega P, Gómez-González B, Aguilera A. Heterogeneity of DNA damage incidence and repair in different chromatin contexts. DNA Repair (Amst) 2021; 107:103210. [PMID: 34416542 DOI: 10.1016/j.dnarep.2021.103210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 11/18/2022]
Abstract
It has been long known that some regions of the genome are more susceptible to damage and mutagenicity than others. Recent advances have determined a critical role of chromatin both in the incidence of damage and in its repair. Thus, chromatin arises as a guardian of the stability of the genome, which is altered in cancer cells. In this review, we focus into the mechanisms by which chromatin influences the occurrence and repair of the most cytotoxic DNA lesions, double-strand breaks, in particular at actively transcribed chromatin or related to DNA replication.
Collapse
Affiliation(s)
- Pedro Ortega
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain.
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain; Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
42
|
Novo CL. A Tale of Two States: Pluripotency Regulation of Telomeres. Front Cell Dev Biol 2021; 9:703466. [PMID: 34307383 PMCID: PMC8300013 DOI: 10.3389/fcell.2021.703466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/08/2021] [Indexed: 01/01/2023] Open
Abstract
Inside the nucleus, chromatin is functionally organized and maintained as a complex three-dimensional network of structures with different accessibility such as compartments, lamina associated domains, and membraneless bodies. Chromatin is epigenetically and transcriptionally regulated by an intricate and dynamic interplay of molecular processes to ensure genome stability. Phase separation, a process that involves the spontaneous organization of a solution into separate phases, has been proposed as a mechanism for the timely coordination of several cellular processes, including replication, transcription and DNA repair. Telomeres, the repetitive structures at the end of chromosomes, are epigenetically maintained in a repressed heterochromatic state that prevents their recognition as double-strand breaks (DSB), avoiding DNA damage repair and ensuring cell proliferation. In pluripotent embryonic stem cells, telomeres adopt a non-canonical, relaxed epigenetic state, which is characterized by a low density of histone methylation and expression of telomere non-coding transcripts (TERRA). Intriguingly, this telomere non-canonical conformation is usually associated with chromosome instability and aneuploidy in somatic cells, raising the question of how genome stability is maintained in a pluripotent background. In this review, we will explore how emerging technological and conceptual developments in 3D genome architecture can provide novel mechanistic perspectives for the pluripotent epigenetic paradox at telomeres. In particular, as RNA drives the formation of LLPS, we will consider how pluripotency-associated high levels of TERRA could drive and coordinate phase separation of several nuclear processes to ensure genome stability. These conceptual advances will provide a better understanding of telomere regulation and genome stability within the highly dynamic pluripotent background.
Collapse
Affiliation(s)
- Clara Lopes Novo
- The Francis Crick Institute, London, United Kingdom
- Imperial College London, London, United Kingdom
| |
Collapse
|
43
|
Fijen C, Rothenberg E. The evolving complexity of DNA damage foci: RNA, condensates and chromatin in DNA double-strand break repair. DNA Repair (Amst) 2021; 105:103170. [PMID: 34256335 DOI: 10.1016/j.dnarep.2021.103170] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/08/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Formation of biomolecular condensates is increasingly recognized as a mechanism employed by cells to deal with stress and to optimize enzymatic reactions. Recent studies have characterized several DNA repair foci as phase-separated condensates, behaving like liquid droplets. Concomitantly, the apparent importance of long non-coding RNAs and RNA-binding proteins for the repair of double-strand breaks has raised many questions about their exact contribution to the repair process. Here we discuss how RNA molecules can participate in condensate formation and how RNA-binding proteins can act as molecular scaffolds. We furthermore summarize our current knowledge about how properties of condensates can influence the choice of repair pathway (homologous recombination or non-homologous end joining) and identify the open questions in this field of emerging importance.
Collapse
Affiliation(s)
- Carel Fijen
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, USA.
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, USA.
| |
Collapse
|
44
|
Tang FR, Liu L, Wang H, Ho KJN, Sethi G. Spatiotemporal dynamics of γH2AX in the mouse brain after acute irradiation at different postnatal days with special reference to the dentate gyrus of the hippocampus. Aging (Albany NY) 2021; 13:15815-15832. [PMID: 34162763 PMCID: PMC8266370 DOI: 10.18632/aging.203202] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022]
Abstract
Gamma H2A histone family member X (γH2AX) is a molecular marker of aging and disease. However, radiosensitivity of the different brain cells, including neurons, glial cells, cells in cerebrovascular system, epithelial cells in pia mater, ependymal cells lining the ventricles of the brain in immature animals at different postnatal days remains unknown. Whether radiation-induced γH2AX foci in immature brain persist in adult animals still needs to be investigated. Hence, using a mouse model, we showed an extensive postnatal age-dependent induction of γH2AX foci in different brain regions at 1 day after whole body gamma irradiation with 5Gy at postnatal day 3 (P3), P10 and P21. P3 mouse brain epithelial cells in pia mater, glial cells in white matter and cells in cerebrovascular system were more radiosensitive at one day after radiation exposure than those from P10 and P21 mice. Persistent DNA damage foci (PDDF) were consistently demonstrated in the brain at 120 days and 15 months after irradiation at P3, P10 and P21, and these mice had shortened lifespan compared to the age-matched control. Our results suggest that early life irradiation-induced PDDF at later stages of animal life may be related to the brain aging and shortened life expectancy of irradiated animals.
Collapse
Affiliation(s)
- Feng Ru Tang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| | - Lian Liu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Hong Wang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| | - Kimberly Jen Ni Ho
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| |
Collapse
|
45
|
Lulli M, Del Coco L, Mello T, Sukowati C, Madiai S, Gragnani L, Forte P, Fanizzi FP, Mazzocca A, Rombouts K, Galli A, Carloni V. DNA Damage Response Protein CHK2 Regulates Metabolism in Liver Cancer. Cancer Res 2021; 81:2861-2873. [PMID: 33762357 DOI: 10.1158/0008-5472.can-20-3134] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/15/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022]
Abstract
Defective mitosis with chromosome missegregation can have a dramatic effect on genome integrity by causing DNA damage, activation of the DNA damage response (DDR), and chromosomal instability. Although this is an energy-dependent process, mechanisms linking DDR to cellular metabolism are unknown. Here we show that checkpoint kinase 2 (CHK2), a central effector of DDR, regulates cellular energy production by affecting glycolysis and mitochondrial functions. Patients with hepatocellular carcinoma (HCC) had increased CHK2 mRNA in blood, which was associated with elevated tricarboxylic acid cycle (TCA) metabolites. CHK2 controlled expression of succinate dehydrogenase (SDH) and intervened with mitochondrial functions. DNA damage and CHK2 promoted SDH activity marked by increased succinate oxidation through the TCA cycle; this was confirmed in a transgenic model of HCC with elevated DNA damage. Mitochondrial analysis identified CHK2-controlled expression of SDH as key in sustaining reactive oxygen species production. Cells with DNA damage and elevated CHK2 relied significantly on glycolysis for ATP production due to dysfunctional mitochondria, which was abolished by CHK2 knockdown. This represents a vulnerability created by the DNA damage response that could be exploited for development of new therapies. SIGNIFICANCE: This study uncovers a link between a central effector of DNA damage response, CHK2, and cellular metabolism, revealing potential therapeutic strategies for targeting hepatocellular carcinoma.
Collapse
Affiliation(s)
- Matteo Lulli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", General Pathology Unit, University of Florence, Florence, Italy
| | - Laura Del Coco
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento, Lecce, Italy
| | - Tommaso Mello
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Gastroenterology Unit, University of Florence, Florence, Italy
| | - Caecilia Sukowati
- Fondazione Italiana Fegato, AREA Science Park, Trieste, Italy, Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Stefania Madiai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Laura Gragnani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paolo Forte
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Gastroenterology Unit, University of Florence, Florence, Italy
| | - Francesco Paolo Fanizzi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento, Lecce, Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB), Bari, Italy
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari, School of Medicine, Bari, Italy
| | - Krista Rombouts
- University College London (UCL) Institute for Liver & Digestive Health, London, United Kingdom
| | - Andrea Galli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Gastroenterology Unit, University of Florence, Florence, Italy
| | - Vinicio Carloni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
46
|
Ramsden DA, Nussenzweig A. Mechanisms driving chromosomal translocations: lost in time and space. Oncogene 2021; 40:4263-4270. [PMID: 34103687 PMCID: PMC8238880 DOI: 10.1038/s41388-021-01856-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/07/2021] [Accepted: 05/21/2021] [Indexed: 02/05/2023]
Abstract
Translocations arise when an end of one chromosome break is mistakenly joined to an end from a different chromosome break. Since translocations can lead to developmental disease and cancer, it is important to understand the mechanisms leading to these chromosome rearrangements. We review how characteristics of the sources and the cellular responses to chromosome breaks contribute to the accumulation of multiple chromosome breaks at the same moment in time. We also discuss the important role for chromosome break location; how translocation potential is impacted by the location of chromosome breaks both within chromatin and within the nucleus, as well as the effect of altered mobility of chromosome breaks. A common theme in work addressing both temporal and spatial contributions to translocation is that there is no shortage of examples of factors that promote translocation in one context, but have no impact or the opposite impact in another. Accordingly, a clear message for future work on translocation mechanism is that unlike normal DNA metabolic pathways, it isn't easily modeled as a simple, linear pathway that is uniformly followed regardless of differing cellular contexts.
Collapse
Affiliation(s)
- Dale A. Ramsden
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Correspondence:
| | - Andre Nussenzweig
- Laboratory of Genome Integrity, National Institutes of Health, Bethesda, United States
| |
Collapse
|
47
|
Levone BR, Lenzken SC, Antonaci M, Maiser A, Rapp A, Conte F, Reber S, Mechtersheimer J, Ronchi AE, Mühlemann O, Leonhardt H, Cardoso MC, Ruepp MD, Barabino SM. FUS-dependent liquid-liquid phase separation is important for DNA repair initiation. J Cell Biol 2021; 220:e202008030. [PMID: 33704371 PMCID: PMC7953258 DOI: 10.1083/jcb.202008030] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/17/2021] [Accepted: 02/04/2021] [Indexed: 12/17/2022] Open
Abstract
RNA-binding proteins (RBPs) are emerging as important effectors of the cellular DNA damage response (DDR). The RBP FUS is implicated in RNA metabolism and DNA repair, and it undergoes reversible liquid-liquid phase separation (LLPS) in vitro. Here, we demonstrate that FUS-dependent LLPS is necessary for the initiation of the DDR. Using laser microirradiation in FUS-knockout cells, we show that FUS is required for the recruitment to DNA damage sites of the DDR factors KU80, NBS1, and 53BP1 and of SFPQ, another RBP implicated in the DDR. The relocation of KU80, NBS1, and SFPQ is similarly impaired by LLPS inhibitors, or LLPS-deficient FUS variants. We also show that LLPS is necessary for efficient γH2AX foci formation. Finally, using superresolution structured illumination microscopy, we demonstrate that the absence of FUS impairs the proper arrangement of γH2AX nanofoci into higher-order clusters. These findings demonstrate the early requirement for FUS-dependent LLPS in the activation of the DDR and the proper assembly of DSB repair complexes.
Collapse
Affiliation(s)
- Brunno R. Levone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Silvia C. Lenzken
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Marco Antonaci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Andreas Maiser
- Department of Biology II, Center for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Alexander Rapp
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Francesca Conte
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Stefan Reber
- UK Dementia Research Institute, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Jonas Mechtersheimer
- UK Dementia Research Institute, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Antonella E. Ronchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Heinrich Leonhardt
- Department of Biology II, Center for Integrated Protein Science Munich, Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - M. Cristina Cardoso
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Marc-David Ruepp
- UK Dementia Research Institute, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Silvia M.L. Barabino
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
48
|
|
49
|
Fortuny A, Chansard A, Caron P, Chevallier O, Leroy O, Renaud O, Polo SE. Imaging the response to DNA damage in heterochromatin domains reveals core principles of heterochromatin maintenance. Nat Commun 2021; 12:2428. [PMID: 33893291 PMCID: PMC8065061 DOI: 10.1038/s41467-021-22575-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/17/2021] [Indexed: 02/02/2023] Open
Abstract
Heterochromatin is a critical chromatin compartment, whose integrity governs genome stability and cell fate transitions. How heterochromatin features, including higher-order chromatin folding and histone modifications associated with transcriptional silencing, are maintained following a genotoxic stress challenge is unknown. Here, we establish a system for targeting UV damage to pericentric heterochromatin in mammalian cells and for tracking the heterochromatin response to UV in real time. We uncover profound heterochromatin compaction changes during repair, orchestrated by the UV damage sensor DDB2, which stimulates linker histone displacement from chromatin. Despite massive heterochromatin unfolding, heterochromatin-specific histone modifications and transcriptional silencing are maintained. We unveil a central role for the methyltransferase SETDB1 in the maintenance of heterochromatic histone marks after UV. SETDB1 coordinates histone methylation with new histone deposition in damaged heterochromatin, thus protecting cells from genome instability. Our data shed light on fundamental molecular mechanisms safeguarding higher-order chromatin integrity following DNA damage.
Collapse
Affiliation(s)
- Anna Fortuny
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France
| | - Audrey Chansard
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France
| | - Pierre Caron
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France
| | - Odile Chevallier
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France
| | - Olivier Leroy
- Cell and Tissue Imaging Facility, UMR3215 PICT-IBiSA, Institut Curie, Paris, France
| | - Olivier Renaud
- Cell and Tissue Imaging Facility, UMR3215 PICT-IBiSA, Institut Curie, Paris, France
| | - Sophie E Polo
- Epigenetics and Cell Fate Centre, UMR7216 CNRS, Université de Paris, Paris, France.
| |
Collapse
|
50
|
García Fernández F, Lemos B, Khalil Y, Batrin R, Haber JE, Fabre E. Modified chromosome structure caused by phosphomimetic H2A modulates the DNA damage response by increasing chromatin mobility in yeast. J Cell Sci 2021; 134:jcs.258500. [PMID: 33622771 DOI: 10.1242/jcs.258500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/23/2022] Open
Abstract
In budding yeast and mammals, double-strand breaks (DSBs) trigger global chromatin mobility together with rapid phosphorylation of histone H2A over an extensive region of the chromatin. To assess the role of H2A phosphorylation in this response to DNA damage, we have constructed strains where H2A has been mutated to the phosphomimetic H2A-S129E. We show that mimicking H2A phosphorylation leads to an increase in global chromatin mobility in the absence of DNA damage. The intrinsic chromatin mobility of H2A-S129E is not due to downstream checkpoint activation, histone degradation or kinetochore anchoring. Rather, the increased intrachromosomal distances observed in the H2A-S129E mutant are consistent with chromatin structural changes. Strikingly, in this context the Rad9-dependent checkpoint becomes dispensable. Moreover, increased chromatin dynamics in the H2A-S129E mutant correlates with improved DSB repair by non-homologous end joining and a sharp decrease in interchromosomal translocation rate. We propose that changes in chromosomal conformation due to H2A phosphorylation are sufficient to modulate the DNA damage response and maintain genome integrity.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Fabiola García Fernández
- Institut de recherche Saint-Louis (IRSL), Université de Paris, INSERM U944, CNRS UMR7212, Genome and Cell Biology of Diseases Unit, F-75010 Paris, France
| | - Brenda Lemos
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| | - Yasmine Khalil
- Institut de recherche Saint-Louis (IRSL), Université de Paris, INSERM U944, CNRS UMR7212, Genome and Cell Biology of Diseases Unit, F-75010 Paris, France
| | - Renaud Batrin
- Institut de recherche Saint-Louis (IRSL), Université de Paris, INSERM U944, CNRS UMR7212, Genome and Cell Biology of Diseases Unit, F-75010 Paris, France
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| | - Emmanuelle Fabre
- Institut de recherche Saint-Louis (IRSL), Université de Paris, INSERM U944, CNRS UMR7212, Genome and Cell Biology of Diseases Unit, F-75010 Paris, France
| |
Collapse
|