1
|
Haake SM, Plosa EJ, Kropski JA, Venton LA, Reddy A, Bock F, Chang BT, Luna AJ, Nabukhotna K, Xu ZQ, Prather RA, Lee S, Tanjore H, Polosukhin VV, Viquez OM, Jones A, Luo W, Wilson MH, Rathmell WK, Massion PP, Pozzi A, Blackwell TS, Zent R. Ligand-independent integrin β1 signaling supports lung adenocarcinoma development. JCI Insight 2022; 7:e154098. [PMID: 35763345 PMCID: PMC9462485 DOI: 10.1172/jci.insight.154098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Integrins - the principal extracellular matrix (ECM) receptors of the cell - promote cell adhesion, migration, and proliferation, which are key events for cancer growth and metastasis. To date, most integrin-targeted cancer therapeutics have disrupted integrin-ECM interactions, which are viewed as critical for integrin functions. However, such agents have failed to improve cancer patient outcomes. We show that the highly expressed integrin β1 subunit is required for lung adenocarcinoma development in a carcinogen-induced mouse model. Likewise, human lung adenocarcinoma cell lines with integrin β1 deletion failed to form colonies in soft agar and tumors in mice. Mechanistically, we demonstrate that these effects do not require integrin β1-mediated adhesion to ECM but are dependent on integrin β1 cytoplasmic tail-mediated activation of focal adhesion kinase (FAK). These studies support a critical role for integrin β1 in lung tumorigenesis that is mediated through constitutive, ECM binding-independent signaling involving the cytoplasmic tail.
Collapse
Affiliation(s)
- Scott M. Haake
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | - Erin J. Plosa
- Division of Neonatology, Department of Pediatrics, Nashville, Tennessee, USA
| | - Jonathan A. Kropski
- Department of Veterans Affairs, Nashville, Tennessee, USA
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Lindsay A. Venton
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anupama Reddy
- Vindhya Data Science, Morrisville, North Carolina, USA
| | - Fabian Bock
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Betty T. Chang
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Allen J. Luna
- Division of Nephrology and Hypertension, Department of Medicine, and
| | | | - Zhi-Qi Xu
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rebecca A. Prather
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sharon Lee
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Harikrishna Tanjore
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Vasiliy V. Polosukhin
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Olga M. Viquez
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Angela Jones
- Vanderbilt Technologies for Advanced Genomics (VANTAGE), Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Wentian Luo
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Matthew H. Wilson
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - W. Kimryn Rathmell
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
| | - Pierre P. Massion
- Department of Veterans Affairs, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ambra Pozzi
- Department of Veterans Affairs, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Timothy S. Blackwell
- Department of Veterans Affairs, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Roy Zent
- Department of Veterans Affairs, Nashville, Tennessee, USA
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
- Division of Nephrology and Hypertension, Department of Medicine, and
| |
Collapse
|
2
|
Böttcher RT, Strohmeyer N, Aretz J, Fässler R. New insights into the phosphorylation of the threonine motif of the β1 integrin cytoplasmic domain. Life Sci Alliance 2022; 5:5/4/e202101301. [PMID: 34996844 PMCID: PMC8761493 DOI: 10.26508/lsa.202101301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 01/18/2023] Open
Abstract
Integrins require an activation step before ligand binding and signaling that is mediated by talin and kindlin binding to the β integrin cytosolic domain (β-tail). Conflicting reports exist about the contribution of phosphorylation of a conserved threonine motif in the β1-tail (β1-pT788/pT789) to integrin activation. We show that widely used and commercially available antibodies against β1-pT788/pT789 integrin do not detect specific β1-pT788/pT789 integrin signals in immunoblots of several human and mouse cell lysates but bind bi-phosphorylated threonine residues in numerous proteins, which were identified by mass spectrometry experiments. Furthermore, we found that fibroblasts and epithelial cells expressing the phospho-mimicking β1-TT788/789DD integrin failed to activate β1 integrins and displayed reduced integrin ligand binding, adhesion initiation and cell spreading. These cellular defects are specifically caused by the inability of kindlin to bind β1-tail polypeptides carrying a phosphorylated threonine motif or phospho-mimicking TT788/789DD substitutions. Our findings indicate that the double-threonine motif in β1-class integrins is not a major phosphorylation site but if phosphorylated would curb integrin function.
Collapse
Affiliation(s)
- Ralph T Böttcher
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nico Strohmeyer
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Jonas Aretz
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
3
|
Grimm TM, Dierdorf NI, Betz K, Paone C, Hauck CR. PPM1F controls integrin activity via a conserved phospho-switch. J Cell Biol 2020; 219:211512. [PMID: 33119040 PMCID: PMC7604772 DOI: 10.1083/jcb.202001057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/20/2020] [Accepted: 09/11/2020] [Indexed: 01/04/2023] Open
Abstract
Control of integrin activity is vital during development and tissue homeostasis, while derailment of integrin function contributes to pathophysiological processes. Phosphorylation of a conserved threonine motif (T788/T789) in the integrin β cytoplasmic domain increases integrin activity. Here, we report that T788/T789 functions as a phospho-switch, which determines the association with either talin and kindlin-2, the major integrin activators, or filaminA, an integrin activity suppressor. A genetic screen identifies the phosphatase PPM1F as the critical enzyme, which selectively and directly dephosphorylates the T788/T789 motif. PPM1F-deficient cell lines show constitutive integrin phosphorylation, exaggerated talin binding, increased integrin activity, and enhanced cell adhesion. These gain-of-function phenotypes are reverted by reexpression of active PPM1F, but not a phosphatase-dead mutant. Disruption of the ppm1f gene in mice results in early embryonic death at day E10.5. Together, PPM1F controls the T788/T789 phospho-switch in the integrin β1 cytoplasmic tail and constitutes a novel target to modulate integrin activity.
Collapse
Affiliation(s)
- Tanja M. Grimm
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| | - Nina I. Dierdorf
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| | - Karin Betz
- Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany,Lehrstuhl Zelluläre Chemie, Fachbereich Chemie, Universität Konstanz, Konstanz, Germany
| | - Christoph Paone
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| | - Christof R. Hauck
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany,Correspondence to Christof R. Hauck:
| |
Collapse
|
4
|
Activation and suppression of hematopoietic integrins in hemostasis and immunity. Blood 2020; 135:7-16. [DOI: 10.1182/blood.2019003336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Nolte and Margadant review the current understanding of the activation and inactivation of integrin receptors expressed by hematopoietic cells and the role of these conformational changes in modulating platelet and leukocyte function.
Collapse
|
5
|
Qiu Z, Sheesley P, Ahn JH, Yu EJ, Lee M. A Novel Mutation in an NPXY Motif of β Integrin Reveals Phenotypes Similar to him-4/hemicentin. Front Cell Dev Biol 2019; 7:247. [PMID: 31720287 PMCID: PMC6827421 DOI: 10.3389/fcell.2019.00247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/08/2019] [Indexed: 11/13/2022] Open
Abstract
Integrin, an αβ heterodimeric cell surface receptor for the extracellular matrix (ECM), carries two tyrosine phosphorylation motifs in the cytoplasmic tail of the β subunit. NPXY (Asn-Pro-x-Tyr) is a conserved tyrosine phosphorylation motif that binds to the phospho-tyrosine binding (PTB) domain. We generated a tyrosine to glutamic acid (E) mutation to modify tyrosine (Y) into a negatively charged amino NPXY in the βpat-3 integrin of Caenorhabditis elegans. The transgenic rescue animal displayed defects in gonad migration and tail morphology. Also, the mutant animals produced a high number of males, suggesting that the Y to E mutation in βpat-3 integrin causes a phenotype similar to that of Him mutant. Further analyses revealed that males of pat-3(Y804E) and him-4/hemicentin share additional phenotypes such as abnormal gonad and unsuccessful mating. A pat-3 transgenic rescue mutant with a non-polar phenylalanine (F) in NPXY, pat-3(Y792/804F), suppressed the high male number, defective mating, inviable zygote, and the abnormal gonad of him-4 mutants, indicating that Y to F mutation in both NPXY motifs suppressed the him-4 phenotypes. This finding supports the idea that the ECM determines the activation state in integrin NPXY motifs; him-4/hemicentin may directly or indirectly interact with integrins and maintain the NPXY non-charged. Our findings provide new insight into a suppressive role of an ECM molecule in integrin NPXY phosphorylation.
Collapse
Affiliation(s)
| | | | | | | | - Myeongwoo Lee
- Department of Biology, Baylor University, Waco, TX, United States
| |
Collapse
|
6
|
|
7
|
De Mets R, Wang I, Balland M, Oddou C, Moreau P, Fourcade B, Albiges-Rizo C, Delon A, Destaing O. Cellular tension encodes local Src-dependent differential β 1 and β 3 integrin mobility. Mol Biol Cell 2018; 30:181-190. [PMID: 30462575 PMCID: PMC6589565 DOI: 10.1091/mbc.e18-04-0253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Integrins are transmembrane receptors that have a pivotal role in mechanotransduction processes by connecting the extracellular matrix to the cytoskeleton. Although it is well established that integrin activation/inhibition cycles are due to highly dynamic interactions, whether integrin mobility depends on local tension and cytoskeletal organization remains surprisingly unclear. Using an original approach combining micropatterning on glass substrates to induce standardized local mechanical constraints within a single cell with temporal image correlation spectroscopy, we measured the mechanosensitive response of integrin mobility at the whole cell level and in adhesion sites under different mechanical constraints. Contrary to β1 integrins, high tension increases β3 integrin residence time in adhesive regions. Chimeric integrins and structure–function studies revealed that the ability of β3 integrins to specifically sense local tensional organization is mostly encoded by its cytoplasmic domain and is regulated by tuning the affinity of its NPXY domains through phosphorylation by Src family kinases.
Collapse
Affiliation(s)
- Richard De Mets
- Laboratoire interdisciplinaire de Physique, Université Grenoble Alpes et CNRS, 38402 Grenoble, Cedex, France
| | - Irene Wang
- Laboratoire interdisciplinaire de Physique, Université Grenoble Alpes et CNRS, 38402 Grenoble, Cedex, France
| | - Martial Balland
- Laboratoire interdisciplinaire de Physique, Université Grenoble Alpes et CNRS, 38402 Grenoble, Cedex, France
| | - Christiane Oddou
- Institut Albert Bonniot, Université Joseph Fourier, INSERM U823, CNRS ERL 5284, Grenoble Alpessite Santé, F38042 Grenoble Cedex 09, France
| | - Philippe Moreau
- Laboratoire interdisciplinaire de Physique, Université Grenoble Alpes et CNRS, 38402 Grenoble, Cedex, France
| | - Bertrand Fourcade
- Laboratoire interdisciplinaire de Physique, Université Grenoble Alpes et CNRS, 38402 Grenoble, Cedex, France
| | - Corinne Albiges-Rizo
- Institut Albert Bonniot, Université Joseph Fourier, INSERM U823, CNRS ERL 5284, Grenoble Alpessite Santé, F38042 Grenoble Cedex 09, France
| | - Antoine Delon
- Laboratoire interdisciplinaire de Physique, Université Grenoble Alpes et CNRS, 38402 Grenoble, Cedex, France
| | - Olivier Destaing
- Institut Albert Bonniot, Université Joseph Fourier, INSERM U823, CNRS ERL 5284, Grenoble Alpessite Santé, F38042 Grenoble Cedex 09, France
| |
Collapse
|
8
|
Pagani G, Gohlke H. On the contributing role of the transmembrane domain for subunit-specific sensitivity of integrin activation. Sci Rep 2018; 8:5733. [PMID: 29636500 PMCID: PMC5893634 DOI: 10.1038/s41598-018-23778-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/20/2018] [Indexed: 12/20/2022] Open
Abstract
Integrins are α/β heterodimeric transmembrane adhesion receptors. Evidence exists that their transmembrane domain (TMD) separates upon activation. Subunit-specific differences in activation sensitivity of integrins were reported. However, whether sequence variations in the TMD lead to differential TMD association has remained elusive. Here, we show by molecular dynamics simulations and association free energy calculations on TMDs of integrin αIIbβ3, αvβ3, and α5β1 that αIIbβ3 TMD is most stably associated; this difference is related to interaction differences across the TMDs. The order of TMD association stability is paralleled by the basal activity of these integrins, which suggests that TMD differences can have a decisive effect on integrin conformational free energies. We also identified a specific order of clasp disintegration upon TMD dissociation, which suggests that the closed state of integrins may comprise several microstates. Our results provide unprecedented insights into a possibly contributing role of TMD towards subunit-specific sensitivity of integrin activation.
Collapse
Affiliation(s)
- Giulia Pagani
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Holger Gohlke
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC) & Institute for Complex Systems - Structural Biochemistry (ICS 6), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
9
|
Izawa Y, Gu YH, Osada T, Kanazawa M, Hawkins BT, Koziol JA, Papayannopoulou T, Spatz M, Del Zoppo GJ. β1-integrin-matrix interactions modulate cerebral microvessel endothelial cell tight junction expression and permeability. J Cereb Blood Flow Metab 2018; 38:641-658. [PMID: 28787238 PMCID: PMC5888854 DOI: 10.1177/0271678x17722108] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Acutely following focal cerebral ischemia disruption of the microvessel blood-brain barrier allows transit of plasma proteins into the neuropil as edema formation that coincides with loss of microvessel endothelial β1-integrins. We extend previous findings to show that interference with endothelial β1-integrin-matrix adhesion by the monoclonal IgM Ha2/5 increases the permeability of primary cerebral microvascular endothelial cell monolayers through reorganization of claudin-5, occludin, and zonula occludens-1 (ZO-1) from inter-endothelial borders. Interference with β1-integrin-matrix adhesion initiates F-actin conformational changes that coincide with claudin-5 redistribution. β1-integrin-matrix interference simultaneously increases phosphorylation of myosin light chain (MLC), while inhibition of MLC kinase (MLCK) and Rho kinase (ROCK) abolishes the Ha2/5-dependent increased endothelial permeability by 6 h after β1-integrin-matrix interference. These observations are supported by concordant observations in the cortex of a high-quality murine conditional β1-integrin deletion construct. Together they support the hypothesis that detachment of β1-integrins from abluminal matrix ligands increases vascular endothelial permeability through reorganization of tight junction (TJ) proteins via altered F-actin conformation, and indicate that the β1-integrin-MLC signaling pathway is engaged when β1-integrin detachment occurs. These findings provide a novel approach to the research and treatment of cerebral disorders where the breakdown of the blood-brain barrier accounts for their progression and complication.
Collapse
Affiliation(s)
- Yoshikane Izawa
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,2 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Yu-Huan Gu
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Takashi Osada
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,2 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Masato Kanazawa
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,3 Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Brian T Hawkins
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,4 Discovery, Science, & Technology, RTI International, Research Triangle Park, NC, USA
| | - James A Koziol
- 5 Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Thalia Papayannopoulou
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Maria Spatz
- 6 Stroke Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Gregory J Del Zoppo
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,7 Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
10
|
Mathew S, Palamuttam RJ, Mernaugh G, Ramalingam H, Lu Z, Zhang MZ, Ishibe S, Critchley DR, Fässler R, Pozzi A, Sanders CR, Carroll TJ, Zent R. Talin regulates integrin β1-dependent and -independent cell functions in ureteric bud development. Development 2017; 144:4148-4158. [PMID: 28993400 DOI: 10.1242/dev.149914] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 09/28/2017] [Indexed: 12/20/2022]
Abstract
Kidney collecting system development requires integrin-dependent cell-extracellular matrix interactions. Integrins are heterodimeric transmembrane receptors consisting of α and β subunits; crucial integrins in the kidney collecting system express the β1 subunit. The β1 cytoplasmic tail has two NPxY motifs that mediate functions by binding to cytoplasmic signaling and scaffolding molecules. Talins, scaffolding proteins that bind to the membrane proximal NPxY motif, are proposed to activate integrins and to link them to the actin cytoskeleton. We have defined the role of talin binding to the β1 proximal NPxY motif in the developing kidney collecting system in mice that selectively express a Y-to-A mutation in this motif. The mice developed a hypoplastic dysplastic collecting system. Collecting duct cells expressing this mutation had moderate abnormalities in cell adhesion, migration, proliferation and growth factor-dependent signaling. In contrast, mice lacking talins in the developing ureteric bud developed kidney agenesis and collecting duct cells had severe cytoskeletal, adhesion and polarity defects. Thus, talins are essential for kidney collecting duct development through mechanisms that extend beyond those requiring binding to the β1 integrin subunit NPxY motif.
Collapse
Affiliation(s)
- Sijo Mathew
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Riya J Palamuttam
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Glenda Mernaugh
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Harini Ramalingam
- Department of Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhenwei Lu
- Center for Structure Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Molecular Physiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ming-Zhi Zhang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shuta Ishibe
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - David R Critchley
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, UK
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Molecular Physiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Veteran Affairs Hospital Nashville, TN 37212, USA
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Center for Structure Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Thomas J Carroll
- Department of Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA .,Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Veteran Affairs Hospital Nashville, TN 37212, USA
| |
Collapse
|
11
|
Abstract
Talin has emerged as the key cytoplasmic protein that mediates integrin adhesion to the extracellular matrix. In this Review, we draw on experiments performed in mammalian cells in culture and Drosophila to present evidence that talin is the most important component of integrin adhesion complexes. We describe how the properties of this adaptor protein enable it to orchestrate integrin adhesions. Talin forms the core of integrin adhesion complexes by linking integrins directly to actin, increasing the affinity of integrin for ligands (integrin activation) and recruiting numerous proteins. It regulates the strength of integrin adhesion, senses matrix rigidity, increases focal adhesion size in response to force and serves as a platform for the building of the adhesion structure. Finally, the mechano-sensitive structure of talin provides a paradigm for how proteins transduce mechanical signals to chemical signals.
Collapse
Affiliation(s)
- Benjamin Klapholz
- Dept of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Nicholas H Brown
- Dept of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
12
|
Lu Z, Mathew S, Chen J, Hadziselimovic A, Palamuttam R, Hudson BG, Fässler R, Pozzi A, Sanders CR, Zent R. Implications of the differing roles of the β1 and β3 transmembrane and cytoplasmic domains for integrin function. eLife 2016; 5. [PMID: 27929375 PMCID: PMC5207772 DOI: 10.7554/elife.18633] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 12/07/2016] [Indexed: 12/26/2022] Open
Abstract
Integrins are transmembrane receptors composed of α and β subunits. Although most integrins contain β1, canonical activation mechanisms are based on studies of the platelet integrin, αIIbβ3. Its inactive conformation is characterized by the association of the αIIb transmembrane and cytosolic domain (TM/CT) with a tilted β3 TM/CT that leads to activation when disrupted. We show significant structural differences between β1 and β3 TM/CT in bicelles. Moreover, the 'snorkeling' lysine at the TM/CT interface of β subunits, previously proposed to regulate αIIbβ3 activation by ion pairing with nearby lipids, plays opposite roles in β1 and β3 integrin function and in neither case is responsible for TM tilt. A range of affinities from almost no interaction to the relatively high avidity that characterizes αIIbβ3 is seen between various α subunits and β1 TM/CTs. The αIIbβ3-based canonical model for the roles of the TM/CT in integrin activation and function clearly does not extend to all mammalian integrins.
Collapse
Affiliation(s)
- Zhenwei Lu
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States
| | - Sijo Mathew
- Division of Nephrology, Department of Medicine, Vanderbilt Medical Center, Nashville, United States
| | - Jiang Chen
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States
| | - Arina Hadziselimovic
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States
| | - Riya Palamuttam
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States
| | - Billy G Hudson
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States.,Division of Nephrology, Department of Medicine, Vanderbilt Medical Center, Nashville, United States.,Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, United States
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ambra Pozzi
- Division of Nephrology, Department of Medicine, Vanderbilt Medical Center, Nashville, United States.,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, United States.,Veterans Affairs Hospital, Nashville, United States.,Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, United States
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, United States
| | - Roy Zent
- Division of Nephrology, Department of Medicine, Vanderbilt Medical Center, Nashville, United States.,Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, United States.,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, United States.,Veterans Affairs Hospital, Nashville, United States
| |
Collapse
|
13
|
Rognoni E, Ruppert R, Fässler R. The kindlin family: functions, signaling properties and implications for human disease. J Cell Sci 2016; 129:17-27. [PMID: 26729028 DOI: 10.1242/jcs.161190] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The kindlin (or fermitin) family of proteins comprises three members (kindlin-1,-2 and -3) of evolutionarily conserved focal adhesion (FA) proteins, whose best-known task is to increase integrin affinity for a ligand (also referred as integrin activation) through binding of β-integrin tails. The consequence of kindlin-mediated integrin activation and integrin-ligand binding is cell adhesion, spreading and migration, assembly of the extracellular matrix (ECM), cell survival, proliferation and differentiation. Another hallmark of kindlins is their involvement in disease. Mutations in the KINDLIN-1 (also known as FERMT1) gene cause Kindler syndrome (KS)--in which mainly skin and intestine are affected, whereas mutations in the KINDLIN-3 (also known as FERMT3) gene cause leukocyte adhesion deficiency type III (LAD III), which is characterized by impaired extravasation of blood effector cells and severe, spontaneous bleedings. Also, aberrant expression of kindlins in various forms of cancer and in tissue fibrosis has been reported. Although the malfunctioning of integrins represent a major cause leading to kindlin-associated diseases, increasing evidence also point to integrin-independent functions of kindlins that play an important role in the pathogenesis of certain disease aspects. Furthermore, isoform-specific kindlin functions have been discovered, explaining, for example, why loss of kindlins differentially affects tissue stem cell homeostasis or tumor development. This Commentary focuses on new and isoform-specific kindlin functions in different tissues and discusses their potential role in disease development and progression.
Collapse
Affiliation(s)
- Emanuel Rognoni
- Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Raphael Ruppert
- Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Reinhard Fässler
- Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| |
Collapse
|
14
|
Liu J, Wang Z, Thinn AMM, Ma YQ, Zhu J. The dual structural roles of the membrane distal region of the α-integrin cytoplasmic tail during integrin inside-out activation. J Cell Sci 2015; 128:1718-31. [PMID: 25749862 DOI: 10.1242/jcs.160663] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 03/02/2015] [Indexed: 12/22/2022] Open
Abstract
Studies on the mechanism of integrin inside-out activation have been focused on the role of β-integrin cytoplasmic tails, which are relatively conserved and bear binding sites for the intracellular activators including talin and kindlin. Cytoplasmic tails for α-integrins share a conserved GFFKR motif at the membrane-proximal region and this forms a specific interface with the β-integrin membrane-proximal region to keep the integrin inactive. The α-integrin membrane-distal regions, after the GFFKR motif, are diverse both in length and sequence and their roles in integrin activation have not been well-defined. In this study, we report that the α-integrin cytoplasmic membrane-distal region contributes to maintaining integrin in the resting state and to integrin inside-out activation. Complete deletion of the α-integrin membrane-distal region diminished talin- and kindlin-mediated integrin ligand binding and conformational change. A proper length and suitable amino acids in α-integrin membrane-distal region was found to be important for integrin inside-out activation. Our data establish an essential role for the α-integrin cytoplasmic membrane-distal region in integrin activation and provide new insights into how talin and kindlin induce the high-affinity integrin conformation that is required for fully functional integrins.
Collapse
Affiliation(s)
- Jiafu Liu
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA
| | - Zhengli Wang
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Aye Myat Myat Thinn
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yan-Qing Ma
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jieqing Zhu
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI 53226, USA Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
15
|
Elloumi-Hannachi I, García JR, Shekeran A, García AJ. Contributions of the integrin β1 tail to cell adhesive forces. Exp Cell Res 2014; 332:212-22. [PMID: 25460334 DOI: 10.1016/j.yexcr.2014.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/14/2014] [Accepted: 11/15/2014] [Indexed: 12/30/2022]
Abstract
Integrin receptors connect the extracellular matrix to the cell cytoskeleton to provide essential forces and signals. To examine the contributions of the β1 integrin cytoplasmic tail to adhesive forces, we generated cell lines expressing wild-type and tail mutant β1 integrins in β1-null fibroblasts. Deletion of β1 significantly reduced cell spreading, focal adhesion assembly, and adhesive forces, and expression of human β1 (hβ1) integrin in these cells restored adhesive functions. Cells expressing a truncated tail mutant had impaired spreading, fewer and smaller focal adhesions, reduced integrin binding to fibronectin, and lower adhesion strength and traction forces compared to hβ1-expressing cells. All these metrics were equivalent to those for β1-null cells, demonstrating that the β1 tail is essential to these adhesive functions. Expression of the constitutively-active D759A hβ1 mutant restored many of these adhesive functions in β1-null cells, although with important differences when compared to wild-type β1. Even though there were no differences in integrin-fibronectin binding and adhesion strength between hβ1- and hβ1-D759A-expressing cells, hβ1-D759A-expressing cells assembled more but smaller adhesions than hβ1-expressing cells. Importantly, hβ1-D759A-expressing cells generated lower traction forces compared to hβ1-expressing cells. These differences between hβ1- and hβ1-D759A-expressing cells suggest that regulation of integrin activation is important for fine-tuning cell spreading, focal adhesion assembly, and traction force generation.
Collapse
Affiliation(s)
- Imen Elloumi-Hannachi
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - José R García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Asha Shekeran
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
16
|
Ellis SJ, Lostchuck E, Goult BT, Bouaouina M, Fairchild MJ, López-Ceballos P, Calderwood DA, Tanentzapf G. The talin head domain reinforces integrin-mediated adhesion by promoting adhesion complex stability and clustering. PLoS Genet 2014; 10:e1004756. [PMID: 25393120 PMCID: PMC4230843 DOI: 10.1371/journal.pgen.1004756] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/15/2014] [Indexed: 11/18/2022] Open
Abstract
Talin serves an essential function during integrin-mediated adhesion in linking integrins to actin via the intracellular adhesion complex. In addition, the N-terminal head domain of talin regulates the affinity of integrins for their ECM-ligands, a process known as inside-out activation. We previously showed that in Drosophila, mutating the integrin binding site in the talin head domain resulted in weakened adhesion to the ECM. Intriguingly, subsequent studies showed that canonical inside-out activation of integrin might not take place in flies. Consistent with this, a mutation in talin that specifically blocks its ability to activate mammalian integrins does not significantly impinge on talin function during fly development. Here, we describe results suggesting that the talin head domain reinforces and stabilizes the integrin adhesion complex by promoting integrin clustering distinct from its ability to support inside-out activation. Specifically, we show that an allele of talin containing a mutation that disrupts intramolecular interactions within the talin head attenuates the assembly and reinforcement of the integrin adhesion complex. Importantly, we provide evidence that this mutation blocks integrin clustering in vivo. We propose that the talin head domain is essential for regulating integrin avidity in Drosophila and that this is crucial for integrin-mediated adhesion during animal development. Cells are the building blocks of our bodies. How do cells rearrange to form three-dimensional body plans and maintain specific tissue structures? Specialized adhesion molecules on the cell surface mediate attachment between cells and their surrounding environment to hold tissues together. Our work uses the developing fruit fly embryo to demonstrate how such connections are regulated during tissue growth. Since the genes and molecules involved in this process are highly similar between flies and humans, we can also apply our findings to our understanding of how human tissues form and are maintained. We observe that, in late developing muscles, clusters of cell adhesion molecules concentrate together to create stronger attachments between muscle cells and tendon cells. This strengthening mechanism allows the fruit fly to accommodate increasing amounts of force imposed by larger, more active muscles. We identify specific genetic mutations that disrupt these strengthening mechanisms and lead to severe developmental defects during fly development. Our results illustrate how subtle fine-tuning of the connections between cells and their surrounding environment is important to form and maintain normal tissue structure across the animal kingdom.
Collapse
Affiliation(s)
- Stephanie J. Ellis
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Emily Lostchuck
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Mohamed Bouaouina
- Department of Pharmacology, Yale University, New Haven, Connecticut, United States of America
- Carnegie Mellon University Qatar, Education City, Doha, Qatar
| | - Michael J. Fairchild
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Pablo López-Ceballos
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - David A. Calderwood
- Department of Pharmacology, Yale University, New Haven, Connecticut, United States of America
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
17
|
Ferraris GMS, Schulte C, Buttiglione V, De Lorenzi V, Piontini A, Galluzzi M, Podestà A, Madsen CD, Sidenius N. The interaction between uPAR and vitronectin triggers ligand-independent adhesion signalling by integrins. EMBO J 2014; 33:2458-72. [PMID: 25168639 DOI: 10.15252/embj.201387611] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The urokinase-type plasminogen activator receptor (uPAR) is a non-integrin vitronectin (VN) cell adhesion receptor linked to the plasma membrane by a glycolipid anchor. Through structure-function analyses of uPAR, VN and integrins, we document that uPAR-mediated cell adhesion to VN triggers a novel type of integrin signalling that is independent of integrin-matrix engagement. The signalling is fully active on VN mutants deficient in integrin binding site and is also efficiently transduced by integrins deficient in ligand binding. Although integrin ligation is dispensable, signalling is crucially dependent upon an active conformation of the integrin and its association with intracellular adaptors such as talin. This non-canonical integrin signalling is not restricted to uPAR as it poses no structural constraints to the receptor mediating cell attachment. In contrast to canonical integrin signalling, where integrins form direct mechanical links between the ECM and the cytoskeleton, the molecular mechanism enabling the crosstalk between non-integrin adhesion receptors and integrins is dependent upon membrane tension. This suggests that for this type of signalling, the membrane represents a critical component of the molecular clutch.
Collapse
Affiliation(s)
| | - Carsten Schulte
- Unit of Cell Matrix Signalling, IFOM the FIRC Institute of Molecular Oncology, Milan, Italy Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa), University of Milan, Milan, Italy
| | - Valentina Buttiglione
- Unit of Cell Matrix Signalling, IFOM the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Valentina De Lorenzi
- Unit of Cell Matrix Signalling, IFOM the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Andrea Piontini
- Unit of Cell Matrix Signalling, IFOM the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Massimiliano Galluzzi
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa), University of Milan, Milan, Italy
| | - Alessandro Podestà
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa), University of Milan, Milan, Italy
| | - Chris D Madsen
- Unit of Cell Matrix Signalling, IFOM the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Nicolai Sidenius
- Unit of Cell Matrix Signalling, IFOM the FIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
18
|
Müller MA, Brunie L, Bächer AS, Kessler H, Gottschalk KE, Reuning U. Cytoplasmic salt bridge formation in integrin αvß3 stabilizes its inactive state affecting integrin-mediated cell biological effects. Cell Signal 2014; 26:2493-503. [PMID: 25041847 DOI: 10.1016/j.cellsig.2014.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/09/2014] [Indexed: 02/01/2023]
Abstract
Heterodimeric integrin receptors are mediators of cell adhesion, motility, invasion, proliferation, and survival. By this, they are crucially involved in (tumor) cell biological behavior. Integrins trigger signals bidirectionally across cell membranes: by outside-in, following binding of protein ligands of the extracellular matrix, and by inside-out, where proteins are recruited to ß-integrin cytoplasmic tails resulting in conformational changes leading to increased integrin binding affinity and integrin activation. Computational modeling and experimental/mutational approaches imply that associations of integrin transmembrane domains stabilize the low-affinity integrin state. Moreover, a cytoplasmic interchain salt bridge is discussed to contribute to a tight clasp of the α/ß-membrane-proximal regions; however, its existence and physiological relevance for integrin activation are still a controversial issue. In order to further elucidate the functional role of salt bridge formation, we designed mutants of the tumor biologically relevant integrin αvß3 by mutually exchanging the salt bridge forming amino acid residues on each chain (αvR995D and ß3D723R). Following transfection of human ovarian cancer cells with different combinations of wild type and mutated integrin chains, we showed that loss of salt bridge formation strengthened αvß3-mediated adhesion to vitronectin, provoked recruitment of cytoskeletal proteins, such as talin, and induced integrin signaling, ultimately resulting in enhanced cell migration, proliferation, and activation of integrin-related signaling molecules. These data support the notion of a functional relevance of integrin cytoplasmic salt bridge disruption during integrin activation.
Collapse
Affiliation(s)
- Martina A Müller
- Clinical Research Unit, Dept. for Obstetrics & Gynecology, Technische Universitaet München, Munich, Germany
| | - Leonora Brunie
- Clinical Research Unit, Dept. for Obstetrics & Gynecology, Technische Universitaet München, Munich, Germany
| | - Anne-Sophie Bächer
- Clinical Research Unit, Dept. for Obstetrics & Gynecology, Technische Universitaet München, Munich, Germany
| | - Horst Kessler
- Institute for Advanced Study and Centre of Integrated Protein Science, Department Chemie, Technische Universitaet München, Garching, Germany; Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Ute Reuning
- Clinical Research Unit, Dept. for Obstetrics & Gynecology, Technische Universitaet München, Munich, Germany.
| |
Collapse
|
19
|
Schiefermeier N, Scheffler JM, de Araujo MEG, Stasyk T, Yordanov T, Ebner HL, Offterdinger M, Munck S, Hess MW, Wickström SA, Lange A, Wunderlich W, Fässler R, Teis D, Huber LA. The late endosomal p14-MP1 (LAMTOR2/3) complex regulates focal adhesion dynamics during cell migration. ACTA ACUST UNITED AC 2014; 205:525-40. [PMID: 24841562 PMCID: PMC4033770 DOI: 10.1083/jcb.201310043] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Late endosomes locally regulate cell migration by transporting the p14–MP1 scaffold complex to the vicinity of focal adhesions. Cell migration is mediated by the dynamic remodeling of focal adhesions (FAs). Recently, an important role of endosomal signaling in regulation of cell migration was recognized. Here, we show an essential function for late endosomes carrying the p14–MP1 (LAMTOR2/3) complex in FA dynamics. p14–MP1-positive endosomes move to the cell periphery along microtubules (MTs) in a kinesin1- and Arl8b-dependent manner. There they specifically target FAs to regulate FA turnover, which is required for cell migration. Using genetically modified fibroblasts from p14-deficient mice and Arl8b-depleted cells, we demonstrate that MT plus end–directed traffic of p14–MP1-positive endosomes triggered IQGAP1 disassociation from FAs. The release of IQGAP was required for FA dynamics. Taken together, our results suggest that late endosomes contribute to the regulation of cell migration by transporting the p14–MP1 scaffold complex to the vicinity of FAs.
Collapse
Affiliation(s)
- Natalia Schiefermeier
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, AustriaDivision of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Julia M Scheffler
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Mariana E G de Araujo
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Taras Stasyk
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Teodor Yordanov
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Hannes L Ebner
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, AustriaDivision of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Martin Offterdinger
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Sebastian Munck
- VIB Center for the Biology of Disease, KU Leuven, 3000 Leuven, Belgium
| | - Michael W Hess
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Sara A Wickström
- Paul Gerson Unna group "Skin Homeostasis and Ageing", Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Anika Lange
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Winfried Wunderlich
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria Oncotyrol, 6020 Innsbruck, Austria
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - David Teis
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Lukas A Huber
- Division of Cell Biology and Division of Neurobiochemistry/Biooptics, Biocenter, Department of Physiology and Medical Physics, Division of Physiology, Department of Traumatology, Center of Operative Medicine, and Division of Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| |
Collapse
|
20
|
Tian X, Kim JJ, Monkley SM, Gotoh N, Nandez R, Soda K, Inoue K, Balkin DM, Hassan H, Son SH, Lee Y, Moeckel G, Calderwood DA, Holzman LB, Critchley DR, Zent R, Reiser J, Ishibe S. Podocyte-associated talin1 is critical for glomerular filtration barrier maintenance. J Clin Invest 2014; 124:1098-113. [PMID: 24531545 PMCID: PMC3934159 DOI: 10.1172/jci69778] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/05/2013] [Indexed: 12/28/2022] Open
Abstract
Podocytes are specialized actin-rich epithelial cells that line the kidney glomerular filtration barrier. The interface between the podocyte and the glomerular basement membrane requires integrins, and defects in either α3 or β1 integrin, or the α3β1 ligand laminin result in nephrotic syndrome in murine models. The large cytoskeletal protein talin1 is not only pivotal for integrin activation, but also directly links integrins to the actin cytoskeleton. Here, we found that mice lacking talin1 specifically in podocytes display severe proteinuria, foot process effacement, and kidney failure. Loss of talin1 in podocytes caused only a modest reduction in β1 integrin activation, podocyte cell adhesion, and cell spreading; however, the actin cytoskeleton of podocytes was profoundly altered by the loss of talin1. Evaluation of murine models of glomerular injury and patients with nephrotic syndrome revealed that calpain-induced talin1 cleavage in podocytes might promote pathogenesis of nephrotic syndrome. Furthermore, pharmacologic inhibition of calpain activity following glomerular injury substantially reduced talin1 cleavage, albuminuria, and foot process effacement. Collectively, these findings indicate that podocyte talin1 is critical for maintaining the integrity of the glomerular filtration barrier and provide insight into the pathogenesis of nephrotic syndrome.
Collapse
Affiliation(s)
- Xuefei Tian
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Jin Ju Kim
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Susan M. Monkley
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Nanami Gotoh
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Ramiro Nandez
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Keita Soda
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Kazunori Inoue
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Daniel M. Balkin
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Hossam Hassan
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Sung Hyun Son
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Yashang Lee
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Gilbert Moeckel
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - David A. Calderwood
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Lawrence B. Holzman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - David R. Critchley
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Roy Zent
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Jochen Reiser
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Shuta Ishibe
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Miami, Miami, Florida, USA.
Department of Biochemistry, University of Leicester, Leicester, United Kingdom.
Department of Cell Biology,
Howard Hughes Medical Institute,
Program in Cellular Neuroscience, Neurodegeneration, and Repair,
Department of Pathology, and
Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA.
Department of Internal Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Medicine, Vanderbilt University and Veterans Affairs Hospital, Nashville, Tennessee, USA.
Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
21
|
Abstract
Integrins are heterodimeric cell surface adhesion receptors essential for multicellular life. They connect cells to the extracellular environment and transduce chemical and mechanical signals to and from the cell. Intracellular proteins that bind the integrin cytoplasmic tail regulate integrin engagement of extracellular ligands as well as integrin localization and trafficking. Cytoplasmic integrin-binding proteins also function downstream of integrins, mediating links to the cytoskeleton and to signaling cascades that impact cell motility, growth, and survival. Here, we review key integrin-interacting proteins and their roles in regulating integrin activity, localization, and signaling.
Collapse
Affiliation(s)
- Elizabeth M Morse
- Department of Cell Biology and ‡Department of Pharmacology, Yale University School of Medicine , 333 Cedar Street, New Haven, Connecticut 06520, United States
| | | | | |
Collapse
|
22
|
Meves A, Stremmel C, Böttcher RT, Fässler R. β1 integrins with individually disrupted cytoplasmic NPxY motifs are embryonic lethal but partially active in the epidermis. J Invest Dermatol 2013; 133:2722-2731. [PMID: 23702582 PMCID: PMC4535429 DOI: 10.1038/jid.2013.232] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/10/2013] [Accepted: 04/23/2013] [Indexed: 12/24/2022]
Abstract
β1 Integrin adhesion is believed to require binding of talins and kindlins to the membrane proximal and distal NPxY motifs of the β1 cytoplasmic tail, respectively. To test this hypothesis, we substituted the membrane proximal and distal tyrosines (Y) of the β1 tail with alanine (A) residues (β1 Y783A; β1 Y795A) in the germline of mice. We report that β1 Y783A or β1 Y795A substitutions blocked talin or kindlin binding, respectively, and led to β1 null-like peri-implantation lethality. Expression of β1 Y783A or β1 Y795A in the epidermis, however, resulted in skin blister and hair follicle phenotypes that were considerably milder than those observed with β1 integrin gene deletion or a β1 double Y-to-A substitution (β1 YY783/795AA). In culture, defects in adhesion, spreading, and migration were more severe with the β1 Y783A than with the β1 Y795A substitution despite markedly reduced β1 Y795A integrin surface levels owing to diminished protein stability. We conclude that regulation of β1 integrin adhesion through talins and kindlins may differ substantially between stably adherent keratinocytes and cells of the developing embryo, and that β1 cytoplasmic NPxY motifs contribute individually and independent of each other to β1 function in keratinocytes.
Collapse
Affiliation(s)
- Alexander Meves
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota, USA.
| | - Christopher Stremmel
- Department of Molecular Medicine, Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Ralph T Böttcher
- Department of Molecular Medicine, Max Planck Institute for Biochemistry, Martinsried, Germany
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute for Biochemistry, Martinsried, Germany
| |
Collapse
|
23
|
Duperret EK, Ridky TW. Focal adhesion complex proteins in epidermis and squamous cell carcinoma. Cell Cycle 2013; 12:3272-85. [PMID: 24036537 DOI: 10.4161/cc.26385] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Focal adhesions (FAs) are large, integrin-containing, multi-protein assemblies spanning the plasma membrane that link the cellular cytoskeleton to surrounding extracellular matrix. They play critical roles in adhesion and cell signaling and are major regulators of epithelial homeostasis, tissue response to injury, and tumorigenesis. Most integrin subunits and their associated FA proteins are expressed in skin, and murine genetic models have provided insight into the functional roles of FAs in normal and neoplastic epidermis. Here, we discuss the roles of these proteins in normal epidermal proliferation, adhesion, wound healing, and cancer. While many downstream signaling mechanisms remain unclear, the critically important roles of FAs are highlighted by the development of therapeutics targeting FAs for human cancer.
Collapse
|
24
|
Bouvard D, Pouwels J, De Franceschi N, Ivaska J. Integrin inactivators: balancing cellular functions in vitro and in vivo. Nat Rev Mol Cell Biol 2013; 14:430-42. [DOI: 10.1038/nrm3599] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Aneuploidy facilitates oncogenic transformation via specific genetic alterations, including Twist2 upregulation. Carcinogenesis 2013; 34:2000-9. [DOI: 10.1093/carcin/bgt171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
26
|
Rainero E, Norman JC. Late endosomal and lysosomal trafficking during integrin-mediated cell migration and invasion: cell matrix receptors are trafficked through the late endosomal pathway in a way that dictates how cells migrate. Bioessays 2013; 35:523-32. [PMID: 23605698 DOI: 10.1002/bies.201200160] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recently it has become clear that trafficking of integrins to late endosomes is key to the regulation of integrin expression and function during cell migration. Here we discuss the molecular machinery that dictates whether integrins are sorted to recycling endosomes or are targeted to late endosomes and lysosomes. Integrins and other receptors that are sorted to late endosomes are not necessarily degraded and, under certain circumstances, can be spared destruction and returned to the cell surface to drive cell migration and invasion. We will discuss how the exchange of adhesion receptors and other key regulators of cell migration between late endosomes/lysosomes and the plasma membrane can promote dynamic turnover of adhesions during cell migration.
Collapse
Affiliation(s)
- Elena Rainero
- Beatson Institute for Cancer, Research, Garscube Estate, Bearsden, Glasgow, UK
| | | |
Collapse
|
27
|
Yates LA, Füzéry AK, Bonet R, Campbell ID, Gilbert RJC. Biophysical analysis of Kindlin-3 reveals an elongated conformation and maps integrin binding to the membrane-distal β-subunit NPXY motif. J Biol Chem 2012; 287:37715-31. [PMID: 22989875 PMCID: PMC3488048 DOI: 10.1074/jbc.m112.415208] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 09/17/2012] [Indexed: 11/24/2022] Open
Abstract
Kindlin-3, a 75-kDa protein, has been shown to be critical for hemostasis, immunity, and bone metabolism via its role in integrin activation. The Kindlin family is hallmarked by a FERM domain comprised of F1, F2, and F3 subdomains together with an N-terminal F0 domain and a pleckstrin homology domain inserted in the F2 domain. Recombinant Kindlin-3 was cloned, expressed, and purified, and its domain organization was studied by x-ray scattering and other techniques to reveal an extended conformation. This unusual elongated structure is similar to that found in the paralogue Talin head domain. Analytical ultracentrifugation experiments indicated that Kindlin-3 forms a ternary complex with the Talin and β-integrin cytoplasmic tails. NMR showed that Kindlin-3 specifically recognizes the membrane-distal tail NPXY motif in both the β(1A) and β(1D) isoforms, although the interaction is stronger with β(1A). An upstream Ser/Thr cluster in the tails also plays a critical role. Overall these data support current biological, clinical, and mutational data on Kindlin-3/β-tail binding and provide novel insights into the overall conformation and interactions of Kindlin-3.
Collapse
Affiliation(s)
- Luke A. Yates
- From the Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, United Kingdom and
| | - Anna K. Füzéry
- the Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Roman Bonet
- the Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Iain D. Campbell
- the Department of Biochemistry, South Parks Road, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Robert J. C. Gilbert
- From the Division of Structural Biology, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, United Kingdom and
| |
Collapse
|
28
|
Numb/Numbl-Opo antagonism controls retinal epithelium morphogenesis by regulating integrin endocytosis. Dev Cell 2012; 23:782-95. [PMID: 23041384 DOI: 10.1016/j.devcel.2012.09.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 06/04/2012] [Accepted: 09/06/2012] [Indexed: 12/25/2022]
Abstract
Polarized trafficking of adhesion receptors plays a pivotal role in controlling cellular behavior during morphogenesis. Particularly, clathrin-dependent endocytosis of integrins has long been acknowledged as essential for cell migration. However, little is known about the contribution of integrin trafficking to epithelial tissue morphogenesis. Here we show how the transmembrane protein Opo, previously described for its essential role during optic cup folding, plays a fundamental role in this process. Through interaction with the PTB domain of the clathrin adaptors Numb and Numbl via an integrin-like NPxF motif, Opo antagonizes Numb/Numbl function and acts as a negative regulator of integrin endocytosis in vivo. Accordingly, numb/numbl gain-of-function experiments in teleost embryos mimic the retinal malformations observed in opo mutants. We propose that developmental regulator Opo enables polarized integrin localization by modulating Numb/Numbl, thus directing the basal constriction that shapes the vertebrate retina epithelium.
Collapse
|
29
|
Assembly and disassembly of cell matrix adhesions. Curr Opin Cell Biol 2012; 24:569-81. [DOI: 10.1016/j.ceb.2012.06.010] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/12/2012] [Accepted: 06/28/2012] [Indexed: 11/22/2022]
|
30
|
Bouaouina M, Jani K, Long JY, Czerniecki S, Morse EM, Ellis SJ, Tanentzapf G, Schöck F, Calderwood DA. Zasp regulates integrin activation. J Cell Sci 2012; 125:5647-57. [PMID: 22992465 DOI: 10.1242/jcs.103291] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Integrins are heterodimeric adhesion receptors that link the extracellular matrix (ECM) to the cytoskeleton. Binding of the scaffold protein, talin, to the cytoplasmic tail of β-integrin causes a conformational change of the extracellular domains of the integrin heterodimer, thus allowing high-affinity binding of ECM ligands. This essential process is called integrin activation. Here we report that the Z-band alternatively spliced PDZ-motif-containing protein (Zasp) cooperates with talin to activate α5β1 integrins in mammalian tissue culture and αPS2βPS integrins in Drosophila. Zasp is a PDZ-LIM-domain-containing protein mutated in human cardiomyopathies previously thought to function primarily in assembly and maintenance of the muscle contractile machinery. Notably, Zasp is the first protein shown to co-activate α5β1 integrins with talin and appears to do so in a manner distinct from known αIIbβ3 integrin co-activators.
Collapse
Affiliation(s)
- Mohamed Bouaouina
- Departments of Pharmacology and Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Legate KR, Montag D, Böttcher RT, Takahashi S, Fässler R. Comparative phenotypic analysis of the two major splice isoforms of phosphatidylinositol phosphate kinase type Iγ in vivo. J Cell Sci 2012; 125:5636-46. [PMID: 22976293 DOI: 10.1242/jcs.102145] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Localized production of polyphosphoinositides is critical for their signaling function. To examine the biological relevance of specific pools of phosphatidylinositol 4,5-bisphosphate we compared the consequences of genetically ablating all isoforms of phosphatidylinositol phosphate (PIP) kinase type Iγ (PIPKIγ), encoded by the gene Pip5k1c, versus ablation of a specific splice isoform, PIPKIγ_i2, with respect to three reported PIPKIγ functions. Ablation of PIPKIγ_i2 caused a neuron-specific endocytosis defect similar to that found in PIPKIγ(-/-) mice, while agonist-induced calcium signaling was reduced in PIPKIγ(-/-) cells, but was not affected in the absence of PIPKIγ_i2. A reported contribution of PIPKIγ to epithelial integrity was not evident in PIPKIγ(-/-) mice. Given that mice lacking PIPKIγ_i2 live a normal lifespan whereas PIPKIγ(-/-) mice die shortly after birth, we propose that PIPKIγ-mediated metabotropic calcium signaling may represent an essential function of PIPKIγ, whereas functions specific to the PIPKIγ_i2 splice isoform are not essential for survival.
Collapse
Affiliation(s)
- Kyle R Legate
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, 82152 Germany
| | | | | | | | | |
Collapse
|
32
|
Margadant C, Kreft M, de Groot DJ, Norman JC, Sonnenberg A. Distinct roles of talin and kindlin in regulating integrin α5β1 function and trafficking. Curr Biol 2012; 22:1554-63. [PMID: 22795696 DOI: 10.1016/j.cub.2012.06.060] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/31/2012] [Accepted: 06/22/2012] [Indexed: 11/16/2022]
Abstract
BACKGROUND Integrins are heterodimeric αβ transmembrane receptors that play key roles in cellular physiology and pathology. Accumulating data indicate that the two NPxY motifs in the cytoplasmic domain of the β1 subunit synergistically promote integrin activation through the binding of talin and kindlin. However, it is unclear how the individual motifs regulate integrin function and trafficking. RESULTS To investigate how the two NPxY motifs individually control integrin α5β1 function and trafficking, we introduced Y > A mutations in either motif. Disruption of the membrane-proximal NPxY completely prevented α5β1-induced morphological changes, cell scattering and migration, and fibronectin fibrillogenesis. In addition, it reduced α5β1 internalization but not its recycling. In contrast, disruption of the membrane-distal NPxY promoted degradation of α5β1 in late endosomes/lysosomes but did not prevent α5β1-dependent cell scattering, migration, or fibronectin fibrillogenesis. Whereas depletion of either talin-1 or kindlin-2 reduced α5β1 binding to fibronectin and cell adhesion, talin-1 depletion recapitulated the loss-of-function phenotype of the membrane-proximal NPxY mutation, whereas kindlin-2 depletion induced α5β1 accumulation in lysosomes and degradation. CONCLUSIONS The two NPxY motifs of β1 play distinct and separable roles in controlling the function and trafficking of α5β1. Whereas talin binding to the membrane-proximal NPxY is crucial for connecting α5β1 to the actin cytoskeleton and thus permit the tension required for fibronectin fibrillogenesis and cell migration, kindlin binding to the membrane-distal NPxY is dispensable for these events but regulates α5β1 surface expression and degradation.
Collapse
Affiliation(s)
- Coert Margadant
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
33
|
β1 integrin NPXY motifs regulate kidney collecting-duct development and maintenance by induced-fit interactions with cytosolic proteins. Mol Cell Biol 2012; 32:4080-91. [PMID: 22869523 DOI: 10.1128/mcb.00568-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Loss of β1 integrin expression inhibits renal collecting-system development. Two highly conserved NPXY motifs in the distal β1 tail regulate integrin function by associating with phosphtyrosine binding (PTB) proteins, such as talin and kindlin. Here, we define the roles of these two tyrosines in collecting-system development and delineate the structural determinants of the distal β1 tail using nuclear magnetic resonance (NMR). Mice carrying alanine mutations have moderate renal collecting-system developmental abnormalities relative to β1-null mice. Phenylalanine mutations did not affect renal collecting-system development but increased susceptibility to renal injury. NMR spectra in bicelles showed the distal β1 tail is disordered and does not interact with the model membrane surface. Alanine or phenylalanine mutations did not alter β1 structure or interactions between α and β1 subunit transmembrane/cytoplasmic domains; however, they did decrease talin and kindlin binding. Thus, these studies highlight the fact that the functional roles of the NPXY motifs are organ dependent. Moreover, the β1 cytoplasmic tail, in the context of the adjacent transmembrane domain in bicelles, is significantly different from the more ordered, membrane-associated β3 integrin tail. Finally, tyrosine mutations of β1 NPXY motifs induce phenotypes by disrupting their interactions with critical integrin binding proteins like talins and kindlins.
Collapse
|
34
|
Pouwels J, Nevo J, Pellinen T, Ylänne J, Ivaska J. Negative regulators of integrin activity. J Cell Sci 2012; 125:3271-80. [PMID: 22822081 DOI: 10.1242/jcs.093641] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Integrins are heterodimeric transmembrane adhesion receptors composed of α- and β-subunits. They are ubiquitously expressed and have key roles in a number of important biological processes, such as development, maintenance of tissue homeostasis and immunological responses. The activity of integrins, which indicates their affinity towards their ligands, is tightly regulated such that signals inside the cell cruicially regulate the switching between active and inactive states. An impaired ability to activate integrins is associated with many human diseases, including bleeding disorders and immune deficiencies, whereas inappropriate integrin activation has been linked to inflammatory disorders and cancer. In recent years, the molecular details of integrin 'inside-out' activation have been actively investigated. Binding of cytoplasmic proteins, such as talins and kindlins, to the cytoplasmic tail of β-integrins is widely accepted as being the crucial step in integrin activation. By contrast, much less is known with regard to the counteracting mechanism involved in switching integrins into an inactive conformation. In this Commentary, we aim to discuss the known mechanisms of integrin inactivation and the molecules involved.
Collapse
Affiliation(s)
- Jeroen Pouwels
- Centre for Biotechnology, University of Turku, Turku, Finland
| | | | | | | | | |
Collapse
|
35
|
Böttcher RT, Stremmel C, Meves A, Meyer H, Widmaier M, Tseng HY, Fässler R. Sorting nexin 17 prevents lysosomal degradation of β1 integrins by binding to the β1-integrin tail. Nat Cell Biol 2012; 14:584-92. [DOI: 10.1038/ncb2501] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/10/2012] [Indexed: 02/08/2023]
|
36
|
West XZ, Meller N, Malinin NL, Deshmukh L, Meller J, Mahabeleshwar GH, Weber ME, Kerr BA, Vinogradova O, Byzova TV. Integrin β3 crosstalk with VEGFR accommodating tyrosine phosphorylation as a regulatory switch. PLoS One 2012; 7:e31071. [PMID: 22363548 PMCID: PMC3281915 DOI: 10.1371/journal.pone.0031071] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 01/01/2012] [Indexed: 02/05/2023] Open
Abstract
Integrins mediate cell adhesion, migration, and survival by connecting intracellular machinery with the surrounding extracellular matrix. Previous studies demonstrated the importance of the interaction between β3 integrin and VEGF type 2 receptor (VEGFR2) in VEGF-induced angiogenesis. Here we present in vitro evidence of the direct association between the cytoplasmic tails (CTs) of β3 and VEGFR2. Specifically, the membrane-proximal motif around 801YLSI in VEGFR2 mediates its binding to non-phosphorylated β3CT, accommodating an α-helical turn in integrin bound conformation. We also show that Y747 phosphorylation of β3 enhances the above interaction. To demonstrate the importance of β3 phosphorylation in endothelial cell functions, we synthesized β3CT-mimicking Y747 phosphorylated and unphosphorylated membrane permeable peptides. We show that a peptide containing phospho-Y747 but not F747 significantly inhibits VEGF-induced signaling and angiogenesis. Moreover, phospho-Y747 peptide exhibits inhibitory effect only in WT but not in β3 integrin knock-out or β3 integrin knock-in cells expressing β3 with two tyrosines substituted for phenylalanines, demonstrating its specificity. Importantly, these peptides have no effect on fibroblast growth factor receptor signaling. Collectively these data provide novel mechanistic insights into phosphorylation dependent cross-talk between integrin and VEGFR2.
Collapse
Affiliation(s)
- Xiaoxia Z. West
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Nahum Meller
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Nikolay L. Malinin
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Lalit Deshmukh
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, United States of America
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Julia Meller
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ganapati H. Mahabeleshwar
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- University Hospitals Harrington-McLaughlin Heart & Vascular Institute and Case Cardiovascular Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Malory E. Weber
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Bethany A. Kerr
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Olga Vinogradova
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail: (OV); (TVB)
| | - Tatiana V. Byzova
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail: (OV); (TVB)
| |
Collapse
|
37
|
Maiguel D, Faridi MH, Wei C, Kuwano Y, Balla KM, Hernandez D, Barth CJ, Lugo G, Donnelly M, Nayer A, Moita LF, Schürer S, Traver D, Ruiz P, Vazquez-Padron RI, Ley K, Reiser J, Gupta V. Small molecule-mediated activation of the integrin CD11b/CD18 reduces inflammatory disease. Sci Signal 2011; 4:ra57. [PMID: 21900205 DOI: 10.1126/scisignal.2001811] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The integrin CD11b/CD18 (also known as Mac-1), which is a heterodimer of the α(M) (CD11b) and β(2) (CD18) subunits, is critical for leukocyte adhesion and migration and for immune functions. Blocking integrin-mediated leukocyte adhesion, although beneficial in experimental models, has had limited success in treating inflammatory diseases in humans. Here, we used an alternative strategy of inhibiting leukocyte recruitment by activating CD11b/CD18 with small-molecule agonists, which we term leukadherins. These compounds increased the extent of CD11b/CD18-dependent cell adhesion of transfected cells and of primary human and mouse neutrophils, which resulted in decreased chemotaxis and transendothelial migration. Leukadherins also decreased leukocyte recruitment and reduced arterial narrowing after injury in rats. Moreover, compared to a known integrin antagonist, leukadherins better preserved kidney function in a mouse model of experimental nephritis. Leukadherins inhibited leukocyte recruitment by increasing leukocyte adhesion to the inflamed endothelium, which was reversed with a blocking antibody. Thus, we propose that pharmacological activation of CD11b/CD18 offers an alternative therapeutic approach for inflammatory diseases.
Collapse
Affiliation(s)
- Dony Maiguel
- Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cytokinesis failure due to derailed integrin traffic induces aneuploidy and oncogenic transformation in vitro and in vivo. Oncogene 2011; 31:3597-606. [PMID: 22120710 PMCID: PMC3419982 DOI: 10.1038/onc.2011.527] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aneuploidy is frequently detected in solid tumors but the mechanisms regulating the generation of aneuploidy and their relevance in cancer initiation remain under debate and are incompletely characterized. Spatial and temporal regulation of integrin traffic is critical for cell migration and cytokinesis. Impaired integrin endocytosis, because of the loss of Rab21 small GTPase or mutations in the integrin β-subunit cytoplasmic tail, induces failure of cytokinesis in vitro. Here, we describe that repeatedly failed cytokinesis, because of impaired traffic, is sufficient to trigger the generation of aneuploid cells, which display characteristics of oncogenic transformation in vitro and are tumorigenic in vivo. Furthermore, in an in vivo mouse xenograft model, non-transformed cells with impaired integrin traffic formed tumors with a long latency. More detailed investigation of these tumors revealed that the tumor cells were aneuploid. Therefore, abnormal integrin traffic was linked with generation of aneuploidy and cell transformation also in vivo. In human prostate and ovarian cancer samples, downregulation of Rab21 correlates with increased malignancy. Loss-of-function experiments demonstrate that long-term depletion of Rab21 is sufficient to induce chromosome number aberrations in normal human epithelial cells. These data are the first to demonstrate that impaired integrin traffic is sufficient to induce conversion of non-transformed cells to tumorigenic cells in vitro and in vivo.
Collapse
|
39
|
Margadant C, Monsuur HN, Norman JC, Sonnenberg A. Mechanisms of integrin activation and trafficking. Curr Opin Cell Biol 2011; 23:607-14. [PMID: 21924601 DOI: 10.1016/j.ceb.2011.08.005] [Citation(s) in RCA: 230] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 08/18/2011] [Indexed: 01/01/2023]
Abstract
Integrin adhesion receptors are essential for the normal function of most multicellular organisms, and defective integrin activation or integrin signaling is associated with an array of pathological conditions. Integrins are regulated by conformational changes, clustering, and trafficking, and regulatory mechanisms differ strongly between individual integrins and between cell types. Whereas integrins in circulating blood cells are activated by an inside-out-induced conformational change that favors high-affinity ligand binding, β1-integrins in adherent cells can be activated by force or clustering. In addition, endocytosis and recycling play an important role in the regulation of integrin turnover and integrin redistribution in adherent cells, especially during dynamic processes such as cell migration and invasion. Integrin trafficking is strongly regulated by their cytoplasmic tails, and the mechanisms are now being identified.
Collapse
Affiliation(s)
- Coert Margadant
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
40
|
Beta1 integrin cytoplasmic tyrosines promote skin tumorigenesis independent of their phosphorylation. Proc Natl Acad Sci U S A 2011; 108:15213-8. [PMID: 21876123 DOI: 10.1073/pnas.1105689108] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
β1 integrin tyrosine phosphorylation by oncogenic kinases, such as Src, has been predicted to induce tumorigenesis by disrupting adhesion and modifying integrin signaling. We directly tested this hypothesis by subjecting mice with "nonphosphorylatable" tyrosine-to-phenylalanine substitutions in the conserved β1 cytoplasmic tail NPxY motifs to a model of cutaneous carcinogenesis in the presence or absence of elevated Src activity. We found that hydrophobic phenylalanine substitutions of both tyrosines diminished the binding of tail-interacting proteins, including talins and kindlins, resulting in reduced β1-mediated adhesion, focal adhesion kinase (FAK) signaling, and epidermal progenitor cell-derived skin tumors. However, increased Src activity drove tumor formation independent of the phenylalanine substitutions by enhancing FAK activity, which in turn maintained the epidermal progenitor state and blocked keratinocyte differentiation. We conclude that a Src/FAK signaling unit inhibits differentiation to promote tumorigenesis downstream of β1 integrin and independent of β1 integrin tyrosine phosphorylation.
Collapse
|
41
|
Brunner M, Millon-Frémillon A, Chevalier G, Nakchbandi IA, Mosher D, Block MR, Albigès-Rizo C, Bouvard D. Osteoblast mineralization requires beta1 integrin/ICAP-1-dependent fibronectin deposition. ACTA ACUST UNITED AC 2011; 194:307-22. [PMID: 21768292 PMCID: PMC3144405 DOI: 10.1083/jcb.201007108] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
ICAP-1 prevents recruitment of kindlin-2 to β1 integrin to control
dynamics of fibrillar adhesion sites, fibronectin deposition, and osteoblast
mineralization during bone formation. The morphogenetic and differentiation events required for bone formation are
orchestrated by diffusible and insoluble factors that are localized within the
extracellular matrix. In mice, the deletion of ICAP-1, a modulator of β1
integrin activation, leads to severe defects in osteoblast proliferation,
differentiation, and mineralization and to a delay in bone formation. Deposition
of fibronectin and maturation of fibrillar adhesions, adhesive structures that
accompany fibronectin deposition, are impaired upon ICAP-1 loss, as are type I
collagen deposition and mineralization. Expression of β1 integrin with a
mutated binding site for ICAP-1 recapitulates the ICAP-1–null phenotype.
Follow-up experiments demonstrated that ICAP-1 negatively regulates kindlin-2
recruitment onto the β1 integrin cytoplasmic domain, whereas an excess of
kindlin-2 binding has a deleterious effect on fibrillar adhesion formation.
These results suggest that ICAP-1 works in concert with kindlin-2 to control the
dynamics of β1 integrin–containing fibrillar adhesions and,
thereby, regulates fibronectin deposition and osteoblast mineralization.
Collapse
Affiliation(s)
- Molly Brunner
- Equipe 1 Dynamique des Systèmes d'Adhérence et Différenciation Cellulaire, Institut National de la Santé et de la Recherche Médicale U823, Institut Albert Bonniot, 38042 Grenoble, Cedex 09, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Al-Awqati Q. Terminal differentiation in epithelia: the role of integrins in hensin polymerization. Annu Rev Physiol 2011; 73:401-12. [PMID: 20936943 DOI: 10.1146/annurev-physiol-012110-142253] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epithelia, the most abundant cell type, differentiate to protoepithelia from stem cells by developing apical and basolateral membrane domains and form sheets of cells connected by junctions. Following this differentiation step, the cells undergo a second step (terminal differentiation), during which they acquire a mature phenotype, which unlike the protoepithelial one is tissue and organ specific. An extracellular matrix (ECM) protein termed hensin (DMBT1) mediates this differentiation step in the kidney intercalated cells. Although hensin is secreted as a soluble monomer, it requires polymerization and deposition in the ECM to become active. The polymerization step is mediated by the activation of inside-out signaling by integrins and by the secretion of two proteins: cypA (a cis-trans prolyl isomerase) and galectin 3.
Collapse
Affiliation(s)
- Qais Al-Awqati
- Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
43
|
Pines M, Fairchild MJ, Tanentzapf G. Distinct regulatory mechanisms control integrin adhesive processes during tissue morphogenesis. Dev Dyn 2011; 240:36-51. [PMID: 21089076 DOI: 10.1002/dvdy.22488] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cell adhesion must be precisely regulated to enable both dynamic morphogenetic processes and the subsequent transition to stable tissue maintenance. Integrins link the intracellular cytoskeleton and extracellular matrix, relaying bidirectional signals across the plasma membrane. In vitro studies have demonstrated that multiple mechanisms control integrin-mediated adhesion; however, their roles during development are poorly understood. We used mutations that activate or deactivate specific functions of vertebrate β-integrins in vitro to investigate how perturbing Drosophila βPS-integrin regulation in developing embryos regulation affects tissue morphogenesis and maintenance. We found that morphogenetic processes use various β-integrin regulatory mechanisms to differing degrees and that conformational changes associated with outside-in activation are essential for developmental integrin functions. Long-term adhesion is also sensitive to integrin dysregulation, suggesting integrins must be continuously regulated to support stable tissue maintenance. Altogether, in vivo phenotypic analyses allowed us to identify the importance of various β-integrin regulatory mechanisms during different morphogenetic processes.
Collapse
Affiliation(s)
- Mary Pines
- Department of Cellular and Physiological Sciences, University of British Columbia, Life Sciences Institute, Vancouver, BC, Canada
| | | | | |
Collapse
|
44
|
Schmidt S, Nakchbandi I, Ruppert R, Kawelke N, Hess MW, Pfaller K, Jurdic P, Fässler R, Moser M. Kindlin-3-mediated signaling from multiple integrin classes is required for osteoclast-mediated bone resorption. ACTA ACUST UNITED AC 2011; 192:883-97. [PMID: 21357746 PMCID: PMC3051823 DOI: 10.1083/jcb.201007141] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Loss of kindlin-3 impairs activation of β1, β2, and β3 integrin classes, resulting in osteopetrotic defects in osteoclast adhesion and spreading. The blood cell–specific kindlin-3 protein is required to activate leukocyte and platelet integrins. In line with this function, mutations in the KINDLIN-3 gene in man cause immunodeficiency and severe bleeding. Some patients also suffer from osteopetrosis, but the underlying mechanism leading to abnormal bone turnover is unknown. Here we show that kindlin-3–deficient mice develop severe osteopetrosis because of profound adhesion and spreading defects in bone-resorbing osteoclasts. Mechanistically, loss of kindlin-3 impairs the activation of β1, β2, and β3 integrin classes expressed on osteoclasts, which in turn abrogates the formation of podosomes and sealing zones required for bone resorption. In agreement with these findings, genetic ablation of all integrin classes abolishes the development of podosomes, mimicking kindlin-3 deficiency. Although loss of single integrin classes gives rise to podosomes, their resorptive activity is impaired. These findings show that osteoclasts require their entire integrin repertoire to be regulated by kindlin-3 to orchestrate bone homeostasis.
Collapse
Affiliation(s)
- Sarah Schmidt
- Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Anthis NJ, Campbell ID. The tail of integrin activation. Trends Biochem Sci 2011; 36:191-8. [PMID: 21216149 DOI: 10.1016/j.tibs.2010.11.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/29/2010] [Accepted: 11/30/2010] [Indexed: 12/13/2022]
Abstract
Integrins are essential adhesion receptors found on the surfaces of all metazoan cells. As regulators of cell migration and extracellular matrix assembly, these membrane-spanning heterodimers are critical for embryonic development, tissue repair and immune responses. Signals transmitted by integrins from outside to inside the cell promote cell survival and proliferation, but integrin affinity for extracellular ligands can also be controlled by intracellular cues. This bidirectional signaling is mediated by the short cytoplasmic tails of the two integrin subunits. Recent structural and functional studies of various integrin fragments and complexes between the cytoplasmic tails and intracellular proteins, such as talin, have provided new insight into the signaling processes centered around the tails, particularly inside-out integrin activation.
Collapse
Affiliation(s)
- Nicholas J Anthis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | | |
Collapse
|
46
|
Abstract
Integrin adhesion receptors are essential for the development and functioning of multicellular animals. Integrins mediate cell adhesion to the extracellular matrix and to counter-receptors on adjacent cells, and the ability of integrins to bind extracellular ligands is regulated in response to intracellular signals that act on the short cytoplasmic tails of integrin subunits. Integrin activation, the rapid conversion of integrin receptors from low to high affinity, requires binding of talin to integrin β tails and, once bound, talin provides a connection from activated integrins to the actin cytoskeleton. A wide range of experimental approaches have contributed to the current understanding of the importance of talin in integrin signaling. Here, we describe two methods that have been central to our investigations of talin; a biochemical assay that has allowed characterization of interactions between integrin cytoplasmic tails and talin, and a fluorescent-activated cell-sorting procedure to assess integrin activation in cultured cells expressing talin domains, mutants, dominant negative constructs, or shRNA.
Collapse
Affiliation(s)
- Mohamed Bouaouina
- Department of Pharmacology and Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, CT, USA
| | | | | |
Collapse
|
47
|
Pinon P, Wehrle-Haller B. Integrins: versatile receptors controlling melanocyte adhesion, migration and proliferation. Pigment Cell Melanoma Res 2010; 24:282-94. [PMID: 21087420 DOI: 10.1111/j.1755-148x.2010.00806.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
From the onset of melanocyte specification from the neural crest, throughout their migration during embryogenesis and until they reside in their niche in the basal keratinocyte layer, melanocytes interact in dynamic ways with the extracellular environment of the growing embryo. To recognize and to adhere to their environment, melanocytes depend on heterodimeric cell surface receptors of the family of integrins. In addition to the control of adhesive interactions between melanocytes and the extracellular matrix scaffold secreted by fibroblasts and keratinocytes, the integrin receptors allow cells also to sense the mechanical condition of the extracellular environment, responding by intracellular signaling, triggering cell survival, proliferation or migration events. In this review, we summarize the recently emerged concepts that explain integrin-dependent adhesion and how this adhesion system interfaces with integrin-dependent signaling events. The gained information will help to understand melanocyte behavior in pathological situations such as melanoma growth and metastasis formation.
Collapse
Affiliation(s)
- Perrine Pinon
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, Medical School, Geneva, Switzerland
| | | |
Collapse
|
48
|
Xu X, Ahn JH, Tam P, Yu EJ, Batra S, Cram EJ, Lee M. Analysis of conserved residues in the betapat-3 cytoplasmic tail reveals important functions of integrin in multiple tissues. Dev Dyn 2010; 239:763-72. [PMID: 20063417 DOI: 10.1002/dvdy.22205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Integrin cytoplasmic tails contain motifs that link extracellular information to cell behavior such as cell migration and contraction. To investigate the cell functions mediated by the conserved motifs, we created mutations in the Caenorhabditis elegans betapat-3 cytoplasmic tail. The beta1D (799FK800), NPXY, tryptophan (784W), and threonine (797TT798) motifs were disrupted to identify their functions in vivo. Animals expressing integrins with disrupted NPXY motifs were viable, but displayed distal tip cell migration and ovulation defects. The conserved threonines were required for gonad migration and contraction as well as tail morphogenesis, whereas disruption of the beta1D and tryptophan motifs produced only mild defects. To abolish multiple conserved motifs, a beta1C-like variant, which results in a frameshift, was constructed. The betapat-3(beta1C) transgenic animals showed cold-sensitive larval arrests and defective muscle structure and gonad migration and contraction. Our study suggests that the conserved NPXY and TT motifs play important roles in the tissue-specific function of integrin.
Collapse
Affiliation(s)
- Xiaojian Xu
- Department of Biology, Baylor University, Waco, Texas, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Nevo J, Mai A, Tuomi S, Pellinen T, Pentikäinen OT, Heikkilä P, Lundin J, Joensuu H, Bono P, Ivaska J. Mammary-derived growth inhibitor (MDGI) interacts with integrin α-subunits and suppresses integrin activity and invasion. Oncogene 2010; 29:6452-63. [DOI: 10.1038/onc.2010.376] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
50
|
Shattil SJ, Kim C, Ginsberg MH. The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 2010; 11:288-300. [PMID: 20308986 PMCID: PMC3929966 DOI: 10.1038/nrm2871] [Citation(s) in RCA: 778] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell-directed changes in the ligand-binding affinity ('activation') of integrins regulate cell adhesion and migration, extracellular matrix assembly and mechanotransduction, thereby contributing to embryonic development and diseases such as atherothrombosis and cancer. Integrin activation comprises triggering events, intermediate signalling events and, finally, the interaction of integrins with cytoplasmic regulators, which changes an integrin's affinity for its ligands. The first two events involve diverse interacting signalling pathways, whereas the final steps are immediately proximal to integrins, thus enabling integrin-focused therapeutic strategies. Recent progress provides insight into the structure of integrin transmembrane domains, and reveals how the final steps of integrin activation are mediated by integrin-binding proteins such as talins and kindlins.
Collapse
Affiliation(s)
- Sanford J Shattil
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | | | | |
Collapse
|