1
|
Lim XR, Harraz OF. Mechanosensing by Vascular Endothelium. Annu Rev Physiol 2024; 86:71-97. [PMID: 37863105 PMCID: PMC10922104 DOI: 10.1146/annurev-physiol-042022-030946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Mechanical forces influence different cell types in our bodies. Among the earliest forces experienced in mammals is blood movement in the vascular system. Blood flow starts at the embryonic stage and ceases when the heart stops. Blood flow exposes endothelial cells (ECs) that line all blood vessels to hemodynamic forces. ECs detect these mechanical forces (mechanosensing) through mechanosensors, thus triggering physiological responses such as changes in vascular diameter. In this review, we focus on endothelial mechanosensing and on how different ion channels, receptors, and membrane structures detect forces and mediate intricate mechanotransduction responses. We further highlight that these responses often reflect collaborative efforts involving several mechanosensors and mechanotransducers. We close with a consideration of current knowledge regarding the dysregulation of endothelial mechanosensing during disease. Because hemodynamic disruptions are hallmarks of cardiovascular disease, studying endothelial mechanosensing holds great promise for advancing our understanding of vascular physiology and pathophysiology.
Collapse
Affiliation(s)
- Xin Rui Lim
- Department of Pharmacology, Larner College of Medicine and Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, Vermont, USA;
| | - Osama F Harraz
- Department of Pharmacology, Larner College of Medicine and Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, Vermont, USA;
| |
Collapse
|
2
|
Abalymov A, Pinchasik BE, Akasov RA, Lomova M, Parakhonskiy BV. Strategies for Anisotropic Fibrillar Hydrogels: Design, Cell Alignment, and Applications in Tissue Engineering. Biomacromolecules 2023; 24:4532-4552. [PMID: 37812143 DOI: 10.1021/acs.biomac.3c00503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Efficient cellular alignment in biomaterials presents a considerable challenge, demanding the refinement of appropriate material morphologies, while ensuring effective cell-surface interactions. To address this, biomaterials are continuously researched with diverse coatings, hydrogels, and polymeric surfaces. In this context, we investigate the influence of physicochemical parameters on the architecture of fibrillar hydrogels that significantly orient the topography of flexible hydrogel substrates, thereby fostering cellular adhesion and spatial organization. Our Review comprehensively assesses various techniques for aligning polymer fibrils within hydrogels, specifically interventions applied during and after the cross-linking process. These methodologies include mechanical strains, precise temperature modulation, controlled fluidic dynamics, and chemical modulators, as well as the use of magnetic and electric fields. We highlight the intrinsic appeal of these methodologies in fabricating cell-aligning interfaces and discuss their potential implications within the fields of biomaterials and tissue engineering, particularly concerning the pursuit of optimal cellular alignment.
Collapse
Affiliation(s)
- Anatolii Abalymov
- Science Medical Center, Saratov State University, 410012 Saratov, Russia
| | - Bat-El Pinchasik
- School of Mechanical Engineering, Faculty of Engineering, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Roman A Akasov
- Sechenov University and Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 101000 Moscow, Russia
| | - Maria Lomova
- Science Medical Center, Saratov State University, 410012 Saratov, Russia
| | - Bogdan V Parakhonskiy
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
3
|
Kizhatil K, Clark G, Sunderland D, Bhandari A, Horbal L, Balasubramanian R, John S. FYN regulates aqueous humor outflow and IOP through the phosphorylation of VE-cadherin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.04.556253. [PMID: 37886565 PMCID: PMC10602025 DOI: 10.1101/2023.09.04.556253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The exact sites and molecules that determine resistance to aqueous humor drainage and control intraocular pressure (IOP) need further elaboration. Proposed sites include the inner wall of Schlemms's canal and the juxtacanalicular trabecular meshwork ocular drainage tissues. The adherens junctions (AJs) of Schlemm's canal endothelial cells (SECs) must both preserve the blood-aqueous humor (AQH) barrier and be conducive to AQH drainage. How homeostatic control of AJ permeability in SC occurs and how such control impacts IOP is unclear. We hypothesized that mechano-responsive phosphorylation of the junctional molecule VE-CADHERIN (VEC) by SRC family kinases (SFKs) regulates the permeability of SEC AJs. We tested this by clamping IOP at either 16 mmHg, 25 mmHg, or 45 mmHg in mice and then measuring AJ permeability and VEC phosphorylation. We found that with increasing IOP: 1) SEC AJ permeability increased, 2) VEC phosphorylation was increased at tyrosine-658, and 3) SFKs were activated at the AJ. Among the two SFKs known to phosphorylate VEC, FYN, but not SRC, localizes to the SC. Furthermore, FYN mutant mice had decreased phosphorylation of VEC at SEC AJs, dysregulated IOP, and reduced AQH outflow. Together, our data demonstrate that increased IOP activates FYN in the inner wall of SC, leading to increased phosphorylation of AJ VEC and, thus, decreased resistance to AQH outflow. These findings support a crucial role of mechanotransduction signaling in IOP homeostasis within SC in response to IOP. These data strongly suggest that the inner wall of SC partially contributes to outflow resistance.
Collapse
|
4
|
Aitken C, Mehta V, Schwartz MA, Tzima E. Mechanisms of endothelial flow sensing. NATURE CARDIOVASCULAR RESEARCH 2023; 2:517-529. [PMID: 39195881 DOI: 10.1038/s44161-023-00276-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/14/2023] [Indexed: 08/29/2024]
Abstract
Fluid shear stress plays a key role in sculpting blood vessels during development, in adult vascular homeostasis and in vascular pathologies. During evolution, endothelial cells evolved several mechanosensors that convert physical forces into biochemical signals, a process termed mechanotransduction. This Review discusses our understanding of endothelial flow sensing and suggests important questions for future investigation.
Collapse
Affiliation(s)
- Claire Aitken
- Wellcome Centre for Human Genetics, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Vedanta Mehta
- Wellcome Centre for Human Genetics, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, and Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Ellie Tzima
- Wellcome Centre for Human Genetics, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
5
|
Ju Z, Thomas TN, Chiu YJ, Yamanouchi S, Yoshida Y, Abe JI, Takahashi A, Wang J, Fujiwara K, Hada M. Adaptation and Changes in Actin Dynamics and Cell Motility as Early Responses of Cultured Mammalian Cells to Altered Gravitational Vector. Int J Mol Sci 2022; 23:6127. [PMID: 35682810 PMCID: PMC9181735 DOI: 10.3390/ijms23116127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Cultured mammalian cells have been shown to respond to microgravity (μG), but the molecular mechanism is still unknown. The study we report here is focused on molecular and cellular events that occur within a short period of time, which may be related to gravity sensing by cells. Our assumption is that the gravity-sensing mechanism is activated as soon as cells are exposed to any new gravitational environment. To study the molecular events, we exposed cells to simulated μG (SμG) for 15 min, 30 min, 1 h, 2 h, 4 h, and 8 h using a three-dimensional clinostat and made cell lysates, which were then analyzed by reverse phase protein arrays (RPPAs) using a panel of 453 different antibodies. By comparing the RPPA data from cells cultured at 1G with those of cells under SμG, we identified a total of 35 proteomic changes in the SμG samples and found that 20 of these changes took place, mostly transiently, within 30 min. In the 4 h and 8 h samples, there were only two RPPA changes, suggesting that the physiology of these cells is practically indistinguishable from that of cells cultured at 1 G. Among the proteins involved in the early proteomic changes were those that regulate cell motility and cytoskeletal organization. To see whether changes in gravitational environment indeed activate cell motility, we flipped the culture dish upside down (directional change in gravity vector) and studied cell migration and actin cytoskeletal organization. We found that compared with cells grown right-side up, upside-down cells transiently lost stress fibers and rapidly developed lamellipodia, which was supported by increased activity of Ras-related C3 botulinum toxin substrate 1 (Rac1). The upside-down cells also increased their migratory activity. It is possible that these early molecular and cellular events play roles in gravity sensing by mammalian cells. Our study also indicated that these early responses are transient, suggesting that cells appear to adapt physiologically to a new gravitational environment.
Collapse
Affiliation(s)
- Zhenlin Ju
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Tamlyn N. Thomas
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.N.T.); (J.-i.A.)
- Aab Cardiovascular Research Institute, University of Rochester Medical School, Rochester, NY 14642, USA;
| | - Yi-Jen Chiu
- Aab Cardiovascular Research Institute, University of Rochester Medical School, Rochester, NY 14642, USA;
| | - Sakuya Yamanouchi
- Gunma University Heavy Ion Medical Center, Maebashi 371-8511, Japan; (S.Y.); (Y.Y.); (A.T.)
| | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center, Maebashi 371-8511, Japan; (S.Y.); (Y.Y.); (A.T.)
| | - Jun-ichi Abe
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.N.T.); (J.-i.A.)
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, Maebashi 371-8511, Japan; (S.Y.); (Y.Y.); (A.T.)
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Keigi Fujiwara
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (T.N.T.); (J.-i.A.)
| | - Megumi Hada
- Radiation Institute for Science & Engineering, Prairie View A&M University, Prairie View, TX 77446, USA;
| |
Collapse
|
6
|
Keen AN, Payne LA, Mehta V, Rice A, Simpson LJ, Pang KL, del Rio Hernandez A, Reader JS, Tzima E. Eukaryotic initiation factor 6 regulates mechanical responses in endothelial cells. J Cell Biol 2022; 221:e202005213. [PMID: 35024764 PMCID: PMC8763864 DOI: 10.1083/jcb.202005213] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/11/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022] Open
Abstract
The repertoire of extratranslational functions of components of the protein synthesis apparatus is expanding to include control of key cell signaling networks. However, very little is known about noncanonical functions of members of the protein synthesis machinery in regulating cellular mechanics. We demonstrate that the eukaryotic initiation factor 6 (eIF6) modulates cellular mechanobiology. eIF6-depleted endothelial cells, under basal conditions, exhibit unchanged nascent protein synthesis, polysome profiles, and cytoskeleton protein expression, with minimal effects on ribosomal biogenesis. In contrast, using traction force and atomic force microscopy, we show that loss of eIF6 leads to reduced stiffness and force generation accompanied by cytoskeletal and focal adhesion defects. Mechanistically, we show that eIF6 is required for the correct spatial mechanoactivation of ERK1/2 via stabilization of an eIF6-RACK1-ERK1/2-FAK mechanocomplex, which is necessary for force-induced remodeling. These results reveal an extratranslational function for eIF6 and a novel paradigm for how mechanotransduction, the cellular cytoskeleton, and protein translation constituents are linked.
Collapse
Affiliation(s)
- Adam N. Keen
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Luke A. Payne
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Vedanta Mehta
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alistair Rice
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK
| | - Lisa J. Simpson
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kar Lai Pang
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Armando del Rio Hernandez
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK
| | - John S. Reader
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ellie Tzima
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Nakano S, Nishikawa M, Kobayashi T, Harlin EW, Ito T, Sato K, Sugiyama T, Yamakawa H, Nagase T, Ueda H. The Rho guanine nucleotide exchange factor PLEKHG1 is activated by interaction with and phosphorylation by Src family kinase member FYN. J Biol Chem 2022; 298:101579. [PMID: 35031323 PMCID: PMC8819033 DOI: 10.1016/j.jbc.2022.101579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 01/01/2023] Open
Abstract
Rho family small GTPases (Rho) regulate various cell motility processes by spatiotemporally controlling the actin cytoskeleton. Some Rho-specific guanine nucleotide exchange factors (RhoGEFs) are regulated via tyrosine phosphorylation by Src family tyrosine kinase (SFK). We also previously reported that PLEKHG2, a RhoGEF for the GTPases Rac1 and Cdc42, is tyrosine-phosphorylated by SRC. However, the details of the mechanisms by which SFK regulates RhoGEFs are not well understood. In this study, we found for the first time that PLEKHG1, which has very high homology to the Dbl and pleckstrin homology domains of PLEKHG2, activates Cdc42 following activation by FYN, a member of the SFK family. We also show that this activation of PLEKHG1 by FYN requires interaction between these two proteins and FYN-induced tyrosine phosphorylation of PLEKHG1. We also found that the region containing the Src homology 3 and Src homology 2 domains of FYN is required for this interaction. Finally, we demonstrated that tyrosine phosphorylation of Tyr-720 and Tyr-801 in PLEKHG1 is important for the activation of PLEKHG1. These results suggest that FYN is a regulator of PLEKHG1 and may regulate cell morphology through Rho signaling via the interaction with and tyrosine phosphorylation of PLEKHG1.
Collapse
Affiliation(s)
- Shun Nakano
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Masashi Nishikawa
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | | | - Eka Wahyuni Harlin
- Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan
| | - Takuya Ito
- Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan
| | - Katsuya Sato
- Department of Molecular Pathobiochemistry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tsuyoshi Sugiyama
- Faculty of Pharmacy, Gifu University of Medical Science, Kani, Gifu, Japan
| | | | | | - Hiroshi Ueda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan; Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan.
| |
Collapse
|
8
|
Mishchenko EL, Mishchenko AM, Ivanisenko VA. Mechanosensitive molecular interactions in atherogenic regions of the arteries: development of atherosclerosis. Vavilovskii Zhurnal Genet Selektsii 2021; 25:552-561. [PMID: 34595377 PMCID: PMC8453358 DOI: 10.18699/vj21.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 11/30/2022] Open
Abstract
A terrible disease of the cardiovascular system, atherosclerosis, develops in the areas of bends and
branches of arteries, where the direction and modulus of the blood flow velocity vector change, and consequently
so does the mechanical effect on endothelial cells in contact with the blood flow. The review focuses on topical
research studies on the development of atherosclerosis – mechanobiochemical events that transform the proatherogenic
mechanical stimulus of blood flow – low and low/oscillatory arterial wall shear stress in the chains of biochemical
reactions in endothelial cells, leading to the expression of specific proteins that cause the progression
of the pathological process. The stages of atherogenesis, systemic risk factors for atherogenesis and its important
hemodynamic factor, low and low/oscillatory wall shear stress exerted by blood flow on the endothelial cells lining
the arterial walls, have been described. The interactions of cell adhesion molecules responsible for the development
of atherosclerosis under low and low/oscillating shear stress conditions have been demonstrated. The activation
of the regulator of the expression of cell adhesion molecules, the transcription factor NF-κB, and the factors
regulating its activation under these conditions have been described. Mechanosensitive signaling pathways leading
to the expression of NF-κB in endothelial cells have been described. Studies of the mechanobiochemical signaling
pathways and interactions involved in the progression of atherosclerosis provide valuable information for the
development of approaches that delay or block the development of this disease.
Key words: atherogenesis; shear stress; transcription factor NF-κB; RelA expression; mechanosensitive receptors;
cell adhesion molecules; signaling pathways; mechanotransduction.
Collapse
Affiliation(s)
- E L Mishchenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | - V A Ivanisenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
9
|
Guo Y, Mei F, Huang Y, Ma S, Wei Y, Zhang X, Xu M, He Y, Heng BC, Chen L, Deng X. Matrix stiffness modulates tip cell formation through the p-PXN-Rac1-YAP signaling axis. Bioact Mater 2021; 7:364-376. [PMID: 34466738 PMCID: PMC8379356 DOI: 10.1016/j.bioactmat.2021.05.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/05/2021] [Accepted: 05/19/2021] [Indexed: 01/01/2023] Open
Abstract
Endothelial tip cell outgrowth of blood-vessel sprouts marks the initiation of angiogenesis which is critical in physiological and pathophysiological procedures. However, how mechanical characteristics of extracellular matrix (ECM) modulates tip cell formation has been largely neglected. In this study, we found enhanced CD31 expression in the stiffening outer layer of hepatocellular carcinoma than in surrounding soft tissues. Stiffened matrix promoted sprouting from endothelial cell (EC) spheroids and upregulated expressions of tip cell-enriched genes in vitro. Moreover, tip cells showed increased cellular stiffness, more actin cytoskeleton organization and enhanced YAP nuclear transfer than stalk and phalanx ECs. We further uncovered that substrate stiffness regulates FAK and Paxillin phosphorylation in focal adhesion of ECs promoting Rac1 transition from inactive to active state. YAP is subsequently activated and translocated into nucleus, leading to increased tip cell specification. p-Paxillin can also loosen the intercellular connection which also facilitates tip cell specification. Collectively our present study shows that matrix stiffness modulates tip cell formation through p-PXN-Rac1-YAP signaling axis, shedding light on the role of mechanotransduction in tip cell formation. This is of special significance in biomaterial design and treatment of some pathological situations. Mechanotransduction is implicated in angiogenesis and tip cell formation. Tip cells showed different mechanical properties from stalk and phalanx ECs. Paxillin, Rac1 and YAP might be novel treatment targets for some diseases. Material stiffness affects tip cell specification.
Collapse
Affiliation(s)
- Yaru Guo
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Feng Mei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ying Huang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Siqin Ma
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xuehui Zhang
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, PR China
- Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Mingming Xu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Ying He
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
- Corresponding author. Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, 100081, PR China
- Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
- Corresponding author. Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|
10
|
Dessalles CA, Leclech C, Castagnino A, Barakat AI. Integration of substrate- and flow-derived stresses in endothelial cell mechanobiology. Commun Biol 2021; 4:764. [PMID: 34155305 PMCID: PMC8217569 DOI: 10.1038/s42003-021-02285-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 06/02/2021] [Indexed: 02/05/2023] Open
Abstract
Endothelial cells (ECs) lining all blood vessels are subjected to large mechanical stresses that regulate their structure and function in health and disease. Here, we review EC responses to substrate-derived biophysical cues, namely topography, curvature, and stiffness, as well as to flow-derived stresses, notably shear stress, pressure, and tensile stresses. Because these mechanical cues in vivo are coupled and are exerted simultaneously on ECs, we also review the effects of multiple cues and describe burgeoning in vitro approaches for elucidating how ECs integrate and interpret various mechanical stimuli. We conclude by highlighting key open questions and upcoming challenges in the field of EC mechanobiology.
Collapse
Affiliation(s)
- Claire A Dessalles
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, Palaiseau, France
| | - Claire Leclech
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, Palaiseau, France
| | - Alessia Castagnino
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, Palaiseau, France
| | - Abdul I Barakat
- LadHyX, CNRS, Ecole polytechnique, Institut polytechnique de Paris, Palaiseau, France.
| |
Collapse
|
11
|
Xia L, Zhang B, Sun Y, Chen B, Yu Z. Analysis of Syk/PECAM-1 signaling pathway in low shear stress induced atherosclerosis based on ultrasound imaging. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 201:105953. [PMID: 33571923 DOI: 10.1016/j.cmpb.2021.105953] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE Low shear stress (LSS) has been demonstrated to be involved in function of vascular endothelial cells. Here we tested the hypothesis that activation of Syk played an important in LSS-induced atherosclerosis via PECAM-1 signaling pathway. METHODS In vitro, primary human umbilical vein endothelial cells (HUVECs) were stimulated with parallel plate flow chamber system for 12h under normal shear stress (NSS, 15dyne/cm2), LSS (5dyne/cm2) and high shear stress (HSS, 25dyne/cm2), respectively, followed by inflammatory response analysis. In vivo, animal models of rat fed atherogenic diet were treated with LSS stimulation by constricting abdominal aorta with a blunted needle (0.6mm in diameter). The spatial distribution of WSS of blood vessels was generated by WSS quantitative analysis software through color Doppler flow imaging with a high-frequency small animal ultrasound system. Small molecule R406, a well-demonstrated Syk inhibitor, was applied to animals as well as HUVEC cells. RESULTS In vivo, comparison with the control group was performed, the mean value of WSS distribution of blood vessels was lower in LSS model rat. LSS promoted expression of phosphorylated PECAM-1 (p-PECAM-1) and Syk in LSS model rats. Compared with control group, endothelial cells of the abdominal aorta become less elongated and more polygonal in LSS group, and had a slender shape in LSS with R406 group. In vitro, LSS increased the expression of p-PECAM-1, Syk and NF-κB in HUVECs. Inhibition of Syk attenuated LSS-induced inflammatory response. CONCLUSIONS Activation of Syk resulted in LSS-induced inflammatory response via PECAM-1 signaling pathway both in vitro and in vivo. Syk might be involved in morphological changes of ECs under the influence of LSS.
Collapse
Affiliation(s)
- Lianghua Xia
- Department of Ultrasound in Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Bo Zhang
- Department of Ultrasound in Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yuqing Sun
- Department of Ultrasound in Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Bingguan Chen
- Department of Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zuoren Yu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Tanaka K, Joshi D, Timalsina S, Schwartz MA. Early events in endothelial flow sensing. Cytoskeleton (Hoboken) 2021; 78:217-231. [PMID: 33543538 DOI: 10.1002/cm.21652] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/15/2022]
Abstract
Responses of vascular and lymphatic endothelial cells (ECs) to fluid shear stress (FSS) from blood or lymphatic fluid flow govern the development, physiology, and diseases of these structures. Extensive research has characterized the signaling, gene expression and cytoskeletal pathways that mediate effects on EC phenotype and vascular morphogenesis. But the primary mechanisms by which ECs transduce the weak forces from flow into biochemical signals are less well understood. This review covers recent advances in our understanding of the immediate mechanisms of FSS mechanotransduction, integrating results from different disciplines, addressing their roles in development, physiology and disease, and suggesting important questions for future work.
Collapse
Affiliation(s)
- Keiichiro Tanaka
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Divyesh Joshi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Sushma Timalsina
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA.,Department of Cell Biology, Yale University, New Haven, Connecticut, USA.,Department of Biomedical engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
13
|
Zhu Z, Shen Y, Chen Y, Shi H, Shi Y. The exosome of platelet endothelial cell adhesion molecule-1 (PECAM1) protein: A potential risking star in high blood pressure patients (HBPP). Medicine (Baltimore) 2021; 100:e21370. [PMID: 33530152 PMCID: PMC7850734 DOI: 10.1097/md.0000000000021370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/18/2020] [Indexed: 01/05/2023] Open
Abstract
A number of studies have demonstrated that exosomes were involved in important physiological and pathological processes through cell-to-cell communication in cardiovascular disease, which contained nucleic acids, proteins, and lipid contents. In our study, we found that the protein platelet endothelial cell adhesion molecule-1 (PECAM1) was an extracellular vesicle in the blood of high blood pressure patients (HBPP).Isolated the vesicles from the blood of HBPP and health examiners and detected its size and morphology with nanoparticle tracking analysis, then we identified its surface protein CD63, CD81, and the protein expression of PECAM1 in the exosome with western blot. Furthermore, we analyzed the correlation between the expression of PECAM1 and the high blood degree with linear regression analysis.Our results showed that the morphology of extracellular vesicles was more evident in high blood pressure groups than healthy controls, and the protein expression of PECAM1 was also abundant in the vesicles of HBPP, however, there were no extracellular vesicles in the blood samples of healthy controls. Besides, linear regression showed the linear correlation coefficient R = 0.901, P < .01 between the expression of PECAM1 and the systolic blood pressure of the high blood patients. Therefore, the exosome of protein of PECAM1 was a potential risking star in HBPP.
Collapse
Affiliation(s)
- Zhidong Zhu
- Department of Cardiology, North Hospital of Huashan Hospital Affiliated to Fudan University
| | | | | | - Haiming Shi
- Department of Cardiology, Huashan Sub-Hospital of Fudan University
| | - Yun Shi
- Department of Cardiovascular Medicine, Kong Jiang Hospital of Yangpu District, Shuangyang Road, Shanghai, China
| |
Collapse
|
14
|
Wolpe AG, Ruddiman CA, Hall PJ, Isakson BE. Polarized Proteins in Endothelium and Their Contribution to Function. J Vasc Res 2021; 58:65-91. [PMID: 33503620 DOI: 10.1159/000512618] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Protein localization in endothelial cells is tightly regulated to create distinct signaling domains within their tight spatial restrictions including luminal membranes, abluminal membranes, and interendothelial junctions, as well as caveolae and calcium signaling domains. Protein localization in endothelial cells is also determined in part by the vascular bed, with differences between arteries and veins and between large and small arteries. Specific protein polarity and localization is essential for endothelial cells in responding to various extracellular stimuli. In this review, we examine protein localization in the endothelium of resistance arteries, with occasional references to other vessels for contrast, and how that polarization contributes to endothelial function and ultimately whole organism physiology. We highlight the protein localization on the luminal surface, discussing important physiological receptors and the glycocalyx. The protein polarization to the abluminal membrane is especially unique in small resistance arteries with the presence of the myoendothelial junction, a signaling microdomain that regulates vasodilation, feedback to smooth muscle cells, and ultimately total peripheral resistance. We also discuss the interendothelial junction, where tight junctions, adherens junctions, and gap junctions all convene and regulate endothelial function. Finally, we address planar cell polarity, or axial polarity, and how this is regulated by mechanosensory signals like blood flow.
Collapse
Affiliation(s)
- Abigail G Wolpe
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Claire A Ruddiman
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Phillip J Hall
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA, .,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia, USA,
| |
Collapse
|
15
|
Endo M, Iwawaki T, Yoshimura H, Ozawa T. Photocleavable Cadherin Inhibits Cell-to-Cell Mechanotransduction by Light. ACS Chem Biol 2019; 14:2206-2214. [PMID: 31503442 DOI: 10.1021/acschembio.9b00460] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Precise integration of individual cell behaviors is indispensable for collective tissue morphogenesis and maintenance of tissue integrity. Organized multicellular behavior is achieved via mechanical coupling of individual cellular contractility, mediated by cell adhesion molecules at the cell-cell interface. Conventionally, gene depletion or laser microsurgery has been used for functional analysis of intercellular mechanotransduction. Nevertheless, these methods are insufficient to investigate either the spatiotemporal dynamics or the biomolecular contribution in cell-cell mechanical coupling within collective multicellular behaviors. Herein, we present our effort in adaption of PhoCl for attenuation of cell-to-cell tension transmission mediated by E-cadherin. To release intercellular contractile tension applied on E-cadherin molecules with external light, a genetically encoded photocleavable module called PhoCl was inserted into the intracellular domain of E-cadherin, thereby creating photocleavable cadherin (PC-cadherin). In response to light illumination, the PC-cadherin cleaved into two fragments inside cells, resulting in attenuating mechanotransduction at intercellular junctions in living epithelial cells. Light-induced perturbation of the intercellular tension balance with surrounding cells changed the cell shape in an epithelial cell sheet. The method is expected to enable optical manipulation of force-mediated cell-to-cell communications in various multicellular behaviors, which contributes to a deeper understanding of embryogenesis and oncogenesis.
Collapse
Affiliation(s)
- Mizuki Endo
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Takumi Iwawaki
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Hideaki Yoshimura
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Takeaki Ozawa
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| |
Collapse
|
16
|
Chatterjee S. Endothelial Mechanotransduction, Redox Signaling and the Regulation of Vascular Inflammatory Pathways. Front Physiol 2018; 9:524. [PMID: 29930512 PMCID: PMC5999754 DOI: 10.3389/fphys.2018.00524] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022] Open
Abstract
The endothelium that lines the interior of blood vessels is directly exposed to blood flow. The shear stress arising from blood flow is “sensed” by the endothelium and is “transduced” into biochemical signals that eventually control vascular tone and homeostasis. Sensing and transduction of physical forces occur via signaling processes whereby the forces associated with blood flow are “sensed” by a mechanotransduction machinery comprising of several endothelial cell elements. Endothelial “sensing” involves converting the physical cues into cellular signaling events such as altered membrane potential and activation of kinases, which are “transmission” signals that cause oxidant production. Oxidants produced are the “transducers” of the mechanical signals? What is the function of these oxidants/redox signals? Extensive data from various studies indicate that redox signals initiate inflammation signaling pathways which in turn can compromise vascular health. Thus, inflammation, a major response to infection or endotoxins, can also be initiated by the endothelium in response to various flow patterns ranging from aberrant flow to alteration of flow such as cessation or sudden increase in blood flow. Indeed, our work has shown that endothelial mechanotransduction signaling pathways participate in generation of redox signals that affect the oxidant and inflammation status of cells. Our goal in this review article is to summarize the endothelial mechanotransduction pathways that are activated with stop of blood flow and with aberrant flow patterns; in doing so we focus on the complex link between mechanical forces and inflammation on the endothelium. Since this “inflammation susceptible” phenotype is emerging as a trigger for pathologies ranging from atherosclerosis to rejection post-organ transplant, an understanding of the endothelial machinery that triggers these processes is very crucial and timely.
Collapse
Affiliation(s)
- Shampa Chatterjee
- Department of Physiology, Perelman School of Medicine, Institute for Environmental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
17
|
Abstract
Edema is typically presented as a secondary effect from injury, illness, disease, or medication, and its impact on patient wellness is nested within the underlying etiology. Therefore, it is often thought of more as an amplifier to current preexisting conditions. Edema, however, can be an independent risk factor for patient deterioration. Improper management of edema is costly not only to the patient, but also to treatment and care facilities, as mismanagement of edema results in increased lengths of hospital stay. Direct tissue trauma, disease, or inappropriate resuscitation and/or ventilation strategies result in edema formation through physical disruption and chemical messenger-based structural modifications of the microvascular barrier. Derangements in microvascular barrier function limit tissue oxygenation, nutrient flow, and cellular waste removal. Recent studies have sought to elucidate cellular signaling and structural alterations that result in vascular hyperpermeability in a variety of critical care conditions to include hemorrhage, burn trauma, and sepsis. These studies and many others have highlighted how multiple mechanisms alter paracellular and/or transcellular pathways promoting hyperpermeability. Roles for endothelial glycocalyx, extracellular matrix and basement membrane, vesiculo-vacuolar organelles, cellular junction and cytoskeletal proteins, and vascular pericytes have been described, demonstrating the complexity of microvascular barrier regulation. Understanding these basic mechanisms inside and out of microvessels aid in developing better treatment strategies to mitigate the harmful effects of excessive edema formation.
Collapse
|
18
|
Poduri A, Chang AH, Raftrey B, Rhee S, Van M, Red-Horse K. Endothelial cells respond to the direction of mechanical stimuli through SMAD signaling to regulate coronary artery size. Development 2017; 144:3241-3252. [PMID: 28760815 DOI: 10.1242/dev.150904] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/22/2017] [Indexed: 02/01/2023]
Abstract
How mechanotransduction intersects with chemical and transcriptional factors to shape organogenesis is an important question in developmental biology. This is particularly relevant to the cardiovascular system, which uses mechanical signals from flowing blood to stimulate cytoskeletal and transcriptional responses that form a highly efficient vascular network. Using this system, artery size and structure are tightly regulated, but the underlying mechanisms are poorly understood. Here, we demonstrate that deletion of Smad4 increased the diameter of coronary arteries during mouse embryonic development, a phenotype that followed the initiation of blood flow. At the same time, the BMP signal transducers SMAD1/5/8 were activated in developing coronary arteries. In a culture model of blood flow-induced shear stress, human coronary artery endothelial cells failed to align when either BMPs were inhibited or SMAD4 was depleted. In contrast to control cells, SMAD4-deficient cells did not migrate against the direction of shear stress and increased proliferation rates specifically under flow. Similar alterations were seen in coronary arteries in vivo Thus, endothelial cells perceive the direction of blood flow and respond through SMAD signaling to regulate artery size.
Collapse
Affiliation(s)
- Aruna Poduri
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Andrew H Chang
- Department of Biology, Stanford University, Stanford, CA 94305, USA.,Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Brian Raftrey
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Siyeon Rhee
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Mike Van
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
19
|
Snyder JL, McBeath E, Thomas TN, Chiu YJ, Clark RL, Fujiwara K. Mechanotransduction properties of the cytoplasmic tail of PECAM-1. Biol Cell 2017. [DOI: 10.1111/boc.201600079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Jessica L. Snyder
- Department of Biomedical Engineering; University of Rochester; Rochester NY 14611 USA
| | - Elena McBeath
- Department of Cardiology; University of Texas MD Anderson Cancer Center; Houston TX 77030 USA
| | - Tamlyn N. Thomas
- Department of Cardiology; University of Texas MD Anderson Cancer Center; Houston TX 77030 USA
| | - Yi Jen Chiu
- Research and Development Department; Chris Cam Mirror; Yungkang Tainan Hsien 71 Taiwan
| | - Robert L. Clark
- Department of Mechanical Engineering; University of Rochester; Rochester NY 14611 USA
| | - Keigi Fujiwara
- Department of Cardiology; University of Texas MD Anderson Cancer Center; Houston TX 77030 USA
| |
Collapse
|
20
|
Komarova YA, Kruse K, Mehta D, Malik AB. Protein Interactions at Endothelial Junctions and Signaling Mechanisms Regulating Endothelial Permeability. Circ Res 2017; 120:179-206. [PMID: 28057793 DOI: 10.1161/circresaha.116.306534] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 12/31/2022]
Abstract
The monolayer of endothelial cells lining the vessel wall forms a semipermeable barrier (in all tissue except the relatively impermeable blood-brain and inner retinal barriers) that regulates tissue-fluid homeostasis, transport of nutrients, and migration of blood cells across the barrier. Permeability of the endothelial barrier is primarily regulated by a protein complex called adherens junctions. Adherens junctions are not static structures; they are continuously remodeled in response to mechanical and chemical cues in both physiological and pathological settings. Here, we discuss recent insights into the post-translational modifications of junctional proteins and signaling pathways regulating plasticity of adherens junctions and endothelial permeability. We also discuss in the context of what is already known and newly defined signaling pathways that mediate endothelial barrier leakiness (hyperpermeability) that are important in the pathogenesis of cardiovascular and lung diseases and vascular inflammation.
Collapse
Affiliation(s)
- Yulia A Komarova
- From the Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago
| | - Kevin Kruse
- From the Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago
| | - Dolly Mehta
- From the Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago
| | - Asrar B Malik
- From the Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago.
| |
Collapse
|
21
|
Sluysmans S, Vasileva E, Spadaro D, Shah J, Rouaud F, Citi S. The role of apical cell-cell junctions and associated cytoskeleton in mechanotransduction. Biol Cell 2017; 109:139-161. [PMID: 28220498 DOI: 10.1111/boc.201600075] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 01/13/2023]
Abstract
Tissues of multicellular organisms are characterised by several types of specialised cell-cell junctions. In vertebrate epithelia and endothelia, tight and adherens junctions (AJ) play critical roles in barrier and adhesion functions, and are connected to the actin and microtubule cytoskeletons. The interaction between junctions and the cytoskeleton is crucial for tissue development and physiology, and is involved in the molecular mechanisms governing cell shape, motility, growth and signalling. The machineries which functionally connect tight and AJ to the cytoskeleton comprise proteins which either bind directly to cytoskeletal filaments, or function as adaptors for regulators of the assembly and function of the cytoskeleton. In the last two decades, specific cytoskeleton-associated junctional molecules have been implicated in mechanotransduction, revealing the existence of multimolecular complexes that can sense mechanical cues and translate them into adaptation to tensile forces and biochemical signals. Here, we summarise the current knowledge about the machineries that link tight and AJ to actin filaments and microtubules, and the molecular basis for mechanotransduction at epithelial and endothelial AJ.
Collapse
Affiliation(s)
- Sophie Sluysmans
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Ekaterina Vasileva
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Domenica Spadaro
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Jimit Shah
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Florian Rouaud
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Sandra Citi
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
22
|
Russell-Puleri S, Dela Paz NG, Adams D, Chattopadhyay M, Cancel L, Ebong E, Orr AW, Frangos JA, Tarbell JM. Fluid shear stress induces upregulation of COX-2 and PGI 2 release in endothelial cells via a pathway involving PECAM-1, PI3K, FAK, and p38. Am J Physiol Heart Circ Physiol 2016; 312:H485-H500. [PMID: 28011582 PMCID: PMC5402016 DOI: 10.1152/ajpheart.00035.2016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 10/31/2016] [Accepted: 11/21/2016] [Indexed: 12/16/2022]
Abstract
Vascular endothelial cells play an important role in the regulation of vascular function in response to mechanical stimuli in both healthy and diseased states. Prostaglandin I2 (PGI2) is an important antiatherogenic prostanoid and vasodilator produced in endothelial cells through the action of the cyclooxygenase (COX) isoenzymes COX-1 and COX-2. However, the mechanisms involved in sustained, shear-induced production of COX-2 and PGI2 have not been elucidated but are determined in the present study. We used cultured endothelial cells exposed to steady fluid shear stress (FSS) of 10 dyn/cm2 for 5 h to examine shear stress-induced induction of COX-2/PGI2 Our results demonstrate the relationship between the mechanosensor platelet endothelial cell adhesion molecule-1 (PECAM-1) and the intracellular mechanoresponsive molecules phosphatidylinositol 3-kinase (PI3K), focal adhesion kinase (FAK), and mitogen-activated protein kinase p38 in the FSS induction of COX-2 expression and PGI2 release. Knockdown of PECAM-1 (small interference RNA) expression inhibited FSS-induced activation of α5β1-integrin, upregulation of COX-2, and release of PGI2 in both bovine aortic endothelial cells (BAECs) and human umbilical vein endothelial cells (HUVECs). Furthermore, inhibition of the PI3K pathway (LY294002) substantially inhibited FSS activation of α5β1-integrin, upregulation of COX-2 gene and protein expression, and release of PGI2 in BAECs. Inhibition of integrin-associated FAK (PF573228) and MAPK p38 (SB203580) also inhibited the shear-induced upregulation of COX-2. Finally, a PECAM-1-/- mouse model was characterized by reduced COX-2 immunostaining in the aorta and reduced plasma PGI2 levels compared with wild-type mice, as well as complete inhibition of acute flow-induced PGI2 release compared with wild-type animals.NEW & NOTEWORTHY In this study we determined the major mechanotransduction pathway by which blood flow-driven shear stress activates cyclooxygenase-2 (COX-2) and prostaglandin I2 (PGI2) release in endothelial cells. Our work has demonstrated for the first time that COX-2/PGI2 mechanotransduction is mediated by the mechanosensor platelet endothelial cell adhesion molecule-1 (PECAM-1).
Collapse
Affiliation(s)
| | | | - Diana Adams
- La Jolla Bioengineering Institute, La Jolla, California
| | | | - Limary Cancel
- Department of Biomedical Engineering, City College of New York, New York, New York
| | - Eno Ebong
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts; and
| | - A Wayne Orr
- Department of Pathology, Louisiana State University, Shreveport, Louisiana
| | | | - John M Tarbell
- Department of Biomedical Engineering, City College of New York, New York, New York;
| |
Collapse
|
23
|
Di Russo J, Luik AL, Yousif L, Budny S, Oberleithner H, Hofschröer V, Klingauf J, van Bavel E, Bakker EN, Hellstrand P, Bhattachariya A, Albinsson S, Pincet F, Hallmann R, Sorokin LM. Endothelial basement membrane laminin 511 is essential for shear stress response. EMBO J 2016; 36:183-201. [PMID: 27940654 PMCID: PMC5239996 DOI: 10.15252/embj.201694756] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 11/09/2022] Open
Abstract
Shear detection and mechanotransduction by arterial endothelium requires junctional complexes containing PECAM-1 and VE-cadherin, as well as firm anchorage to the underlying basement membrane. While considerable information is available for junctional complexes in these processes, gained largely from in vitro studies, little is known about the contribution of the endothelial basement membrane. Using resistance artery explants, we show that the integral endothelial basement membrane component, laminin 511 (laminin α5), is central to shear detection and mechanotransduction and its elimination at this site results in ablation of dilation in response to increased shear stress. Loss of endothelial laminin 511 correlates with reduced cortical stiffness of arterial endothelium in vivo, smaller integrin β1-positive/vinculin-positive focal adhesions, and reduced junctional association of actin-myosin II In vitro assays reveal that β1 integrin-mediated interaction with laminin 511 results in high strengths of adhesion, which promotes p120 catenin association with VE-cadherin, stabilizing it at cell junctions and increasing cell-cell adhesion strength. This highlights the importance of endothelial laminin 511 in shear response in the physiologically relevant context of resistance arteries.
Collapse
Affiliation(s)
- Jacopo Di Russo
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Anna-Liisa Luik
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Lema Yousif
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Sigmund Budny
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Hans Oberleithner
- Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany.,Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Verena Hofschröer
- Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany.,Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Juergen Klingauf
- Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany.,Institute of Medical Physics, University of Muenster, Muenster, Germany
| | - Ed van Bavel
- Biomedical Engineering and Physics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Erik Ntp Bakker
- Biomedical Engineering and Physics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Per Hellstrand
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | | | - Frederic Pincet
- Laboratoire de Physique Statistique, École Normale Superieure - PSL Research University, Paris, France.,CNRS UMR8550, Sorbonne Universités - UPMC Univ Paris 06, Université Paris, Paris, France
| | - Rupert Hallmann
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Lydia M Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany .,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| |
Collapse
|
24
|
Abstract
Flowing blood exerts a frictional force, fluid shear stress (FSS), on the endothelial cells that line the blood and lymphatic vessels. The magnitude, pulsatility, and directional characteristics of FSS are constantly sensed by the endothelium. Sustained increases or decreases in FSS induce vessel remodeling to maintain proper perfusion of tissue. In this review, we discuss these mechanisms and their relevance to physiology and disease, and propose a model for how information from different mechanosensors might be integrated to govern remodeling.
Collapse
Affiliation(s)
- Nicolas Baeyens
- Yale Cardiovascular Research Center, Department of Internal Medicine
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Department of Internal Medicine Department of Cell Biology, Yale University, New Haven, CT 06511 Department of Biomedical Engineering, Yale University, New Haven, CT 06511
| |
Collapse
|
25
|
Abstract
SIGNIFICANCE Forces are important in the cardiovascular system, acting as regulators of vascular physiology and pathology. Residing at the blood vessel interface, cells (endothelial cell, EC) are constantly exposed to vascular forces, including shear stress. Shear stress is the frictional force exerted by blood flow, and its patterns differ based on vessel geometry and type. These patterns range from uniform laminar flow to nonuniform disturbed flow. Although ECs sense and differentially respond to flow patterns unique to their microenvironment, the mechanisms underlying endothelial mechanosensing remain incompletely understood. RECENT ADVANCES A large body of work suggests that ECs possess many mechanosensors that decorate their apical, junctional, and basal surfaces. These potential mechanosensors sense blood flow, translating physical force into biochemical signaling events. CRITICAL ISSUES Understanding the mechanisms by which proposed mechanosensors sense and respond to shear stress requires an integrative approach. It is also critical to understand the role of these mechanosensors not only during embryonic development but also in the different vascular beds in the adult. Possible cross talk and integration of mechanosensing via the various mechanosensors remain a challenge. FUTURE DIRECTIONS Determination of the hierarchy of endothelial mechanosensors is critical for future work, as is determination of the extent to which mechanosensors work together to achieve force-dependent signaling. The role and primary sensors of shear stress during development also remain an open question. Finally, integrative approaches must be used to determine absolute mechanosensory function of potential mechanosensors. Antioxid. Redox Signal. 25, 373-388.
Collapse
Affiliation(s)
- Chris Givens
- 1 Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill , Chapel Hill, North Carolina
| | - Ellie Tzima
- 1 Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill , Chapel Hill, North Carolina.,2 Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics , Oxford, United Kingdom
| |
Collapse
|
26
|
Abstract
Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are uniquely required to balance the formation of new blood vessels with the maintenance and remodelling of existing ones, during development and in adult tissues. Recent advances have greatly expanded our understanding of the tight and multi-level regulation of VEGFR2 signalling, which is the primary focus of this Review. Important insights have been gained into the regulatory roles of VEGFR-interacting proteins (such as neuropilins, proteoglycans, integrins and protein tyrosine phosphatases); the dynamics of VEGFR2 endocytosis, trafficking and signalling; and the crosstalk between VEGF-induced signalling and other endothelial signalling cascades. A clear understanding of this multifaceted signalling web is key to successful therapeutic suppression or stimulation of vascular growth.
Collapse
|
27
|
Scott DW, Tolbert CE, Burridge K. Tension on JAM-A activates RhoA via GEF-H1 and p115 RhoGEF. Mol Biol Cell 2016; 27:1420-30. [PMID: 26985018 PMCID: PMC4850030 DOI: 10.1091/mbc.e15-12-0833] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/10/2016] [Indexed: 12/20/2022] Open
Abstract
Forces on JAM-A activate RhoA to increase cell stiffness. Activation of RhoA requires GEF-H1 and p115 RhoGEF activation downstream of FAK/ERK and Src family kinases, respectively. Junctional adhesion molecule A (JAM-A) is a broadly expressed adhesion molecule that regulates cell–cell contacts and facilitates leukocyte transendothelial migration. The latter occurs through interactions with the integrin LFA-1. Although we understand much about JAM-A, little is known regarding the protein’s role in mechanotransduction or as a modulator of RhoA signaling. We found that tension imposed on JAM-A activates RhoA, which leads to increased cell stiffness. Activation of RhoA in this system depends on PI3K-mediated activation of GEF-H1 and p115 RhoGEF. These two GEFs are further regulated by FAK/ERK and Src family kinases, respectively. Finally, we show that phosphorylation of JAM-A at Ser-284 is required for RhoA activation in response to tension. These data demonstrate a direct role of JAM-A in mechanosignaling and control of RhoA and implicate Src family kinases in the regulation of p115 RhoGEF.
Collapse
Affiliation(s)
- David W Scott
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Caitlin E Tolbert
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Keith Burridge
- Department of Cell Biology and Physiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
28
|
Tian Y, Gawlak G, O'Donnell JJ, Birukova AA, Birukov KG. Activation of Vascular Endothelial Growth Factor (VEGF) Receptor 2 Mediates Endothelial Permeability Caused by Cyclic Stretch. J Biol Chem 2016; 291:10032-45. [PMID: 26884340 DOI: 10.1074/jbc.m115.690487] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Indexed: 01/28/2023] Open
Abstract
High tidal volume mechanical ventilation and the resultant excessive mechanical forces experienced by lung vascular endothelium are known to lead to increased vascular endothelial leak, but the underlying molecular mechanisms remain incompletely understood. One reported mechanotransduction pathway of increased endothelial cell (EC) permeability caused by high magnitude cyclic stretch (18% CS) involves CS-induced activation of the focal adhesion associated signalosome, which triggers Rho GTPase signaling. This study identified an alternative pathway of CS-induced EC permeability. We show here that high magnitude cyclic stretch (18% CS) rapidly activates VEGF receptor 2 (VEGFR2) signaling by dissociating VEGFR2 from VE-cadherin at the cell junctions. This results in VEGFR2 activation, Src-dependent VE-cadherin tyrosine phosphorylation, and internalization leading to increased endothelial permeability. This process is also accompanied by CS-induced phosphorylation and internalization of PECAM1. Importantly, CS-induced endothelial barrier disruption was attenuated by VEGFR2 inhibition. 18% CS-induced EC permeability was linked to dissociation of cell junction scaffold afadin from the adherens junctions. Forced expression of recombinant afadin in pulmonary endothelium attenuated CS-induced VEGFR2 and VE-cadherin phosphorylation, preserved adherens junction integrity and VEGFR2·VE-cadherin complex, and suppressed CS-induced EC permeability. This study shows for the first time a mechanism whereby VEGFR2 activation mediates EC permeability induced by pathologically relevant cyclic stretch. In this mechanism, CS induces dissociation of the VE-cadherin·VEGFR2 complex localized at the adherens juctions, causing activation of VEGFR2, VEGFR2-mediated Src-dependent phosphorylation of VE-cadherin, disassembly of adherens junctions, and EC barrier failure.
Collapse
Affiliation(s)
- Yufeng Tian
- From the Lung Injury Center and Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Grzegorz Gawlak
- From the Lung Injury Center and Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - James J O'Donnell
- From the Lung Injury Center and Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Anna A Birukova
- From the Lung Injury Center and Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Konstantin G Birukov
- From the Lung Injury Center and Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
29
|
Huang W, Ahmad B, Kawahara T. On-line tracking of living cell subjected to cyclic stretch. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:3553-6. [PMID: 26737060 DOI: 10.1109/embc.2015.7319160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We propose a novel system for the observation of living cell exposed to cyclic stretch under dynamic conditions. The developed system is mainly composed of a laptop PC, a stretching unit with three motorized stages, and a microscope with a CCD camera. The design of the cell tracking system is based on the deformation characteristics of the elastic chamber and its performance was confirmed through the basic experiments. Finally, we succeeded in on-line imaging of living single cells under the microscope with a high magnification ratio. We believe that the developed system is a promising platform for studying the immediate responses of cells exposed to cyclic stretch.
Collapse
|
30
|
|
31
|
Xu S, Ha CH, Wang W, Xu X, Yin M, Jin FQ, Mastrangelo M, Koroleva M, Fujiwara K, Jin ZG. PECAM1 regulates flow-mediated Gab1 tyrosine phosphorylation and signaling. Cell Signal 2015; 28:117-124. [PMID: 26706435 DOI: 10.1016/j.cellsig.2015.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/09/2015] [Accepted: 12/14/2015] [Indexed: 01/25/2023]
Abstract
Endothelial dysfunction, characterized by impaired activation of endothelial nitric oxide (NO) synthase (eNOS) and ensued decrease of NO production, is a common mechanism of various cardiovascular pathologies, including hypertension and atherosclerosis. Laminar blood flow-mediated specific signaling cascades modulate vascular endothelial cells (ECs) structure and functions. We have previously shown that flow-stimulated Gab1 (Grb2-associated binder-1) tyrosine phosphorylation mediates eNOS activation in ECs, which in part confers laminar flow atheroprotective action. However, the molecular mechanisms whereby flow regulates Gab1 tyrosine phosphorylation and its downstream signaling events remain unclear. Here we show that platelet endothelial cell adhesion molecule-1 (PECAM1), a key molecule in an endothelial mechanosensing complex, specifically mediates Gab1 tyrosine phosphorylation and its downstream Akt and eNOS activation in ECs upon flow rather than hepatocyte growth factor (HGF) stimulation. Small interfering RNA (siRNA) targeting PECAM1 abolished flow- but not HGF-induced Gab1 tyrosine phosphorylation and Akt, eNOS activation as well as Gab1 membrane translocation. Protein-tyrosine phosphatase SHP2, which has been shown to interact with Gab1, was involved in flow signaling and HGF signaling, as SHP2 siRNA diminished the flow- and HGF-induced Gab1 tyrosine phosphorylation, membrane localization and downstream signaling. Pharmacological inhibition of PI3K decreased flow-, but not HGF-mediated Gab1 phosphorylation and membrane localization as well as eNOS activation. Finally, we observed that flow-mediated Gab1 and eNOS phosphorylation in vivo induced by voluntary wheel running was reduced in PECAM1 knockout mice. These results demonstrate a specific role of PECAM1 in flow-mediated Gab1 tyrosine phosphorylation and eNOS signaling in ECs.
Collapse
Affiliation(s)
- Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Chang Hoon Ha
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Weiye Wang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Xiangbin Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Meimei Yin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Felix Q Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Michael Mastrangelo
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Marina Koroleva
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Keigi Fujiwara
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
32
|
Mechanoreception at the cell membrane: More than the integrins. Arch Biochem Biophys 2015; 586:20-6. [DOI: 10.1016/j.abb.2015.07.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 07/24/2015] [Accepted: 07/26/2015] [Indexed: 01/14/2023]
|
33
|
Abstract
Vascular development and maintenance of proper vascular function through various regulatory mechanisms are critical to our wellbeing. Delineation of the regulatory processes involved in development of the vascular system and its function is one of the most important topics in human physiology and pathophysiology. Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31), a cell adhesion molecule with proangiogenic and proinflammatory activity, has been the subject of numerous studies. In the present review, we look at the important roles that PECAM-1 and its isoforms play during angiogenesis, and its molecular mechanisms of action in the endothelium. In the endothelium, PECAM-1 not only plays a role as an adhesion molecule but also participates in intracellular signalling pathways which have an impact on various cell adhesive mechanisms and endothelial nitric oxide synthase (eNOS) expression and activity. In addition, recent studies from our laboratory have revealed an important relationship between PECAM-1 and endoglin expression. Endoglin is an essential molecule during angiogenesis, vascular development and integrity, and its expression and activity are compromised in the absence of PECAM-1. In the present review we discuss the roles that PECAM-1 isoforms may play in modulation of endothelial cell adhesive mechanisms, eNOS and endoglin expression and activity, and angiogenesis.
Collapse
|
34
|
Han J, Shuvaev VV, Davies PF, Eckmann DM, Muro S, Muzykantov VR. Flow shear stress differentially regulates endothelial uptake of nanocarriers targeted to distinct epitopes of PECAM-1. J Control Release 2015; 210:39-47. [PMID: 25966362 DOI: 10.1016/j.jconrel.2015.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/04/2015] [Accepted: 05/06/2015] [Indexed: 01/01/2023]
Abstract
Targeting nanocarriers (NC) to endothelial cell adhesion molecules including Platelet-Endothelial Cell Adhesion Molecule-1 (PECAM-1 or CD31) improves drug delivery and pharmacotherapy of inflammation, oxidative stress, thrombosis and ischemia in animal models. Recent studies unveiled that hydrodynamic conditions modulate endothelial endocytosis of NC targeted to PECAM-1, but the specificity and mechanism of effects of flow remain unknown. Here we studied the effect of flow on endocytosis by human endothelial cells of NC targeted by monoclonal antibodies Ab62 and Ab37 to distinct epitopes on the distal extracellular domain of PECAM. Flow in the range of 1-8dyn/cm(2), typical for venous vasculature, stimulated the uptake of spherical Ab/NC (~180nm diameter) carrying ~50 vs 200 Ab62 and Ab37 per NC, respectively. Effect of flow was inhibited by disruption of cholesterol-rich plasmalemma domains and deletion of PECAM-1 cytosolic tail. Flow stimulated endocytosis of Ab62/NC and Ab37/NC via eliciting distinct signaling pathways mediated by RhoA/ROCK and Src Family Kinases, respectively. Therefore, flow stimulates endothelial endocytosis of Ab/NC in a PECAM-1 epitope specific manner. Using ligands of binding to distinct epitopes on the same target molecule may enable fine-tuning of intracellular delivery based on the hemodynamic conditions in the vascular area of interest.
Collapse
Affiliation(s)
- Jingyan Han
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA19104, USA; Vascular Biology Section, Department of Medicine, Boston University, Boston, MA 02421, USA
| | - Vladimir V Shuvaev
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA19104, USA
| | - Peter F Davies
- Department of Pathology & Lab Medicine and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA19104, USA
| | - David M Eckmann
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104, USA
| | - Silvia Muro
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Vladimir R Muzykantov
- Department of Pharmacology and Center for Translational Targeted Therapeutics and Nanomedicine of the Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA19104, USA.
| |
Collapse
|
35
|
Chatterjee S, Fujiwara K, Pérez NG, Ushio-Fukai M, Fisher AB. Mechanosignaling in the vasculature: emerging concepts in sensing, transduction and physiological responses. Am J Physiol Heart Circ Physiol 2015; 308:H1451-62. [PMID: 25862828 DOI: 10.1152/ajpheart.00105.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/23/2015] [Indexed: 01/08/2023]
Abstract
Cells are constantly exposed to mechanical forces that play a role in modulating cellular structure and function. The cardiovascular system experiences physical forces in the form of shear stress and stretch associated with blood flow and contraction, respectively. These forces are sensed by endothelial cells and cardiomyocytes and lead to responses that control vascular and cardiac homeostasis. This was highlighted at the Pan American Physiological Society meeting at Iguassu Falls, Brazil, in a symposium titled "Mechanosignaling in the Vasculature." This symposium presented recent research that showed the existence of a vital link between mechanosensing and downstream redox sensitive signaling cascades. This link helps to transduce and transmit the physical force into an observable physiological response. The speakers showcased how mechanosensors such as ion channels, membrane receptor kinases, adhesion molecules, and other cellular components transduce the force via redox signals (such as reactive oxygen species and nitric oxide) to receptors (transcription factors, growth factors, etc.). Receptor activated pathways then lead to cellular responses including cellular proliferation, contraction, and remodeling. These responses have major relevance to the physiology and pathophysiology of various cardiovascular diseases. Thus an understanding of the complex series of events, from the initial sensing through the final response, is essential for progress in this field. Overall, this symposium addressed some important emerging concepts in the field of mechanosignaling and the eventual pathophysiological responses.
Collapse
Affiliation(s)
- Shampa Chatterjee
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania;
| | - Keigi Fujiwara
- Department of Cardiology University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Néstor Gustavo Pérez
- Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, La Plata, Argentina; and
| | - Masuko Ushio-Fukai
- Department of Pharmacology, Center for Lung and Vascular Biology, University of Illinois at Chicago, Chicago, Illinois
| | - Aron B Fisher
- Institute for Environmental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
36
|
Lakshmikanthan S, Zheng X, Nishijima Y, Sobczak M, Szabo A, Vasquez-Vivar J, Zhang DX, Chrzanowska-Wodnicka M. Rap1 promotes endothelial mechanosensing complex formation, NO release and normal endothelial function. EMBO Rep 2015; 16:628-37. [PMID: 25807985 DOI: 10.15252/embr.201439846] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/02/2015] [Indexed: 11/09/2022] Open
Abstract
Decreased nitric oxide (NO) bioavailability underlies a number of cardiovascular pathologies, including hypertension. The shear stress exerted by flowing blood is the main determinant of NO release. Rap1 promotes integrin- and cadherin-mediated signaling. Here, we show that Rap1 is a critical regulator of NO production and endothelial function. Rap1 deficiency in murine endothelium attenuates NO production and diminishes NO-dependent vasodilation, leading to endothelial dysfunction and hypertension, without deleterious effects on vessel integrity. Mechanistically, Rap1 is activated by shear stress, promotes the formation of the endothelial mechanosensing complex-comprised of PECAM-1, VE-cadherin and VEGFR2- and downstream signaling to NO production. Our study establishes a novel paradigm for Rap1 as a regulator of mechanotransduction.
Collapse
Affiliation(s)
| | - Xiaodong Zheng
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yoshinori Nishijima
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Magdalena Sobczak
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
| | - Aniko Szabo
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jeannette Vasquez-Vivar
- Department of Biophysics and Redox Biology Program, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David X Zhang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | | |
Collapse
|
37
|
Coon BG, Baeyens N, Han J, Budatha M, Ross TD, Fang JS, Yun S, Thomas JL, Schwartz MA. Intramembrane binding of VE-cadherin to VEGFR2 and VEGFR3 assembles the endothelial mechanosensory complex. ACTA ACUST UNITED AC 2015; 208:975-86. [PMID: 25800053 PMCID: PMC4384728 DOI: 10.1083/jcb.201408103] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
VE-cadherin plays a critical role in endothelial shear stress mechanotransduction by interacting with VEGFRs through their transmembrane domains. Endothelial responses to fluid shear stress are essential for vascular development and physiology, and determine the formation of atherosclerotic plaques at regions of disturbed flow. Previous work identified VE-cadherin as an essential component, along with PECAM-1 and VEGFR2, of a complex that mediates flow signaling. However, VE-cadherin’s precise role is poorly understood. We now show that the transmembrane domain of VE-cadherin mediates an essential adapter function by binding directly to the transmembrane domain of VEGFR2, as well as VEGFR3, which we now identify as another component of the junctional mechanosensory complex. VEGFR2 and VEGFR3 signal redundantly downstream of VE-cadherin. Furthermore, VEGFR3 expression is observed in the aortic endothelium, where it contributes to flow responses in vivo. In summary, this study identifies a novel adapter function for VE-cadherin mediated by transmembrane domain association with VEGFRs.
Collapse
Affiliation(s)
- Brian G Coon
- Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510 Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Nicolas Baeyens
- Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510 Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Jinah Han
- Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510 Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Madhusudhan Budatha
- Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510 Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Tyler D Ross
- Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510 Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Jennifer S Fang
- Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510 Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Sanguk Yun
- Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510 Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510
| | - Jeon-Leon Thomas
- Université Pierre and Marie Curie-Paris 6, 75005 Paris, France Institut National de la Santé et de la Recherche Médicale/Centre National de la Recherche Scientifique U-1127/UMR-7225, 75654 Paris, France Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpètrière, 75013 Paris, France Department of Cell Biology, Department of Biomedical Engineering, and Department of Neurology, Yale University, New Haven, CT 06520
| | - Martin A Schwartz
- Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510 Yale Cardiovascular Research Center and Department of Internal Medicine, Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510 Department of Cell Biology, Department of Biomedical Engineering, and Department of Neurology, Yale University, New Haven, CT 06520 Department of Cell Biology, Department of Biomedical Engineering, and Department of Neurology, Yale University, New Haven, CT 06520
| |
Collapse
|
38
|
Hamzeh MT, Sridhara R, Alexander LD. Cyclic stretch-induced TGF-β1 and fibronectin expression is mediated by β1-integrin through c-Src- and STAT3-dependent pathways in renal epithelial cells. Am J Physiol Renal Physiol 2014; 308:F425-36. [PMID: 25477471 DOI: 10.1152/ajprenal.00589.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Extracellular matrix (ECM) proteins, including fibronectin, may contribute to the early development and progression of renal interstitial fibrosis associated with chronic renal disease. Recent studies showed that β1-integrin is associated with the development of renal fibrosis in a murine model of unilateral ureteral obstruction (UUO). However, the molecular events responsible for β1-integrin-mediated signaling, following UUO, have yet to be determined. In this study, we investigated the mechanism by which mechanical stretch, an in vitro model for chronic obstructive nephropathy, regulates fibronectin and transforming growth factor-β1 (TGF-β1) expression in cultured human proximal tubular epithelium (HK-2) cells. Mechanical stretch upregulated fibronectin and TGF-β1 expression and activated signal transducer and transcription factor 3 (STAT3) in a time-dependent manner. Stretch-induced fibronectin and TGF-β1 were suppressed by a STAT3 inhibitor, S3I-201, and by small interfering RNA (siRNA) targeting human STAT3 (STAT3 siRNA). Similarly, fibronectin and TGF-β1 expression and STAT3 activation induced by mechanical stretch were suppressed by the Src family kinase inhibitor PP2 and by transfection of HK-2 cells with a dominant-negative mutant of c-Src (DN-Src), whereas PP3, an inactive analog of PP2, had no significant effect. Furthermore, mechanical stretch resulted in increased β1-integrin mRNA and protein levels in HK-2 cells. Furthermore, neutralizing antibody against β1-integrin and silencing of β1-integrin expression with siRNAs resulted in decreased c-Src and STAT3 activation and TGF-β1 and fibronectin expression evoked by mechanical stretch. This work demonstrates, for the first time, a role for β1-integrin in stretch-induced renal fibrosis through the activation of c-Src and STAT3 signaling pathways.
Collapse
Affiliation(s)
- Mona T Hamzeh
- Department of Biology, Division of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan
| | - Rashmi Sridhara
- Midwestern University, Arizona College of Osteopathic Medicine, Department of Physiology, Glendale, Arizona; and
| | - Larry D Alexander
- Midwestern University, Arizona College of Osteopathic Medicine, Department of Physiology, Glendale, Arizona; and
| |
Collapse
|
39
|
Marjoram RJ, Lessey EC, Burridge K. Regulation of RhoA activity by adhesion molecules and mechanotransduction. Curr Mol Med 2014; 14:199-208. [PMID: 24467208 PMCID: PMC3929014 DOI: 10.2174/1566524014666140128104541] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 07/05/2013] [Accepted: 12/02/2013] [Indexed: 12/26/2022]
Abstract
The low molecular weight GTP-binding protein RhoA regulates many cellular events, including cell migration, organization of the cytoskeleton, cell adhesion, progress through the cell cycle and gene expression. Physical forces influence these cellular processes in part by regulating RhoA activity through mechanotransduction of cell adhesion molecules (e.g. integrins, cadherins, Ig superfamily molecules). RhoA activity is regulated by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) that are themselves regulated by many different signaling pathways. Significantly, the engagement of many cell adhesion molecules can affect RhoA activity in both positive and negative ways. In this brief review, we consider how RhoA activity is regulated downstream from cell adhesion molecules and mechanical force. Finally, we highlight the importance of mechanotransduction signaling to RhoA in normal cell biology as well as in certain pathological states.
Collapse
Affiliation(s)
| | | | - K Burridge
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
40
|
Conway DE, Schwartz MA. Mechanotransduction of shear stress occurs through changes in VE-cadherin and PECAM-1 tension: implications for cell migration. Cell Adh Migr 2014; 9:335-9. [PMID: 25482618 DOI: 10.4161/19336918.2014.968498] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Recent work has shown that cadherins at cell-cell junctions bear tensile forces. Using novel FRET-based tension sensors, we showed first that in response to shear stress, endothelial cells rapidly reduce mechanical tension on vascular endothelial (VE)-cadherin. Second, we observed a simultaneous increase in tension on platelet endothelial cell adhesion molecule (PECAM)-1, induced by an interaction with vimentin. In this commentary, we discuss how our results fit with existing data on cadherins as important mediators of mechanotransduction, in particular, in cell migration where mechanical tension across cadherins may communicate the direction of movement. The ability of PECAM-1 to bear mechanical tension may also be important in other PECAM-1 functions, such as leukocyte transmigration through the endothelium. Additionally, our observation that vimentin expression was required for PECAM-1 tension and mechanotransduction of fluid flow suggests that intermediate filaments are capable of transmitting tension. Overall, our results argue against models where an external force is passively transferred across the cytoskeleton, and instead suggest that cells actively respond to extracellular forces by modulating tension across junctional proteins.
Collapse
Affiliation(s)
- Daniel E Conway
- a Department of Biomedical Engineering ; Virginia Commonwealth University ; Richmond , VA USA
| | - Martin A Schwartz
- b Yale Cardiovascular Research Center ; Department of Internal Medicine (Section of Cardiovascular Medicine) and Departments of Cell Biology and Biomedical Engineering ; New Haven , CT USA
| |
Collapse
|
41
|
Zhang X, Simons M. Receptor tyrosine kinases endocytosis in endothelium: biology and signaling. Arterioscler Thromb Vasc Biol 2014; 34:1831-7. [PMID: 24925972 DOI: 10.1161/atvbaha.114.303217] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Receptor tyrosine kinases are involved in regulation of key processes in endothelial biology, including proliferation, migration, and angiogenesis. It is now generally accepted that receptor tyrosine kinase signaling occurs intracellularly and on the plasma membrane, although many important details remain to be worked out. Endocytosis and subsequent intracellular trafficking spatiotemporally regulate receptor tyrosine kinase signaling, whereas signaling endosomes provide a platform for the compartmentalization of signaling events. This review summarizes recent advances in our understanding of endothelial receptor tyrosine kinase endocytosis and signaling using vascular endothelial growth factor receptor-2 as a paradigm.
Collapse
Affiliation(s)
- Xi Zhang
- From the Department of Cell Biology, and Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Michael Simons
- From the Department of Cell Biology, and Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT.
| |
Collapse
|
42
|
Abstract
Mammals are endowed with a complex set of mechanisms that sense mechanical forces imparted by blood flow to endothelial cells (ECs), smooth muscle cells, and circulating blood cells to elicit biochemical responses through a process referred to as mechanotransduction. These biochemical responses are critical for a host of other responses, including regulation of blood pressure, control of vascular permeability for maintaining adequate perfusion of tissues, and control of leukocyte recruitment during immunosurveillance and inflammation. This review focuses on the role of the endothelial surface proteoglycan/glycoprotein layer-the glycocalyx (GCX)-that lines all blood vessel walls and is an agent in mechanotransduction and the modulation of blood cell interactions with the EC surface. We first discuss the biochemical composition and ultrastructure of the GCX, highlighting recent developments that reveal gaps in our understanding of the relationship between composition and spatial organization. We then consider the roles of the GCX in mechanotransduction and in vascular permeability control and review the prominent interaction of plasma-borne sphingosine-1 phosphate (S1P), which has been shown to regulate both the composition of the GCX and the endothelial junctions. Finally, we consider the association of GCX degradation with inflammation and vascular disease and end with a final section on future research directions.
Collapse
Affiliation(s)
- John M Tarbell
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031
| | | | | |
Collapse
|
43
|
Abstract
Hemodynamic shear stress, the frictional force acting on vascular endothelial cells, is crucial for endothelial homeostasis under normal physiological conditions. When discussing blood flow effects on various forms of endothelial (dys)function, one considers two flow patterns: steady laminar flow and disturbed flow because endothelial cells respond differently to these flow types both in vivo and in vitro. Laminar flow which exerts steady laminar shear stress is atheroprotective while disturbed flow creates an atheroprone environment. Emerging evidence has provided new insights into the cellular mechanisms of flow-dependent regulation of vascular function that leads to cardiovascular events such as atherosclerosis, atherothrombosis, and myocardial infarction. In order to study effects of shear stress and different types of flow, various models have been used. In this review, we will summarize our current views on how disturbed flow-mediated signaling pathways are involved in the development of atherosclerosis.
Collapse
Affiliation(s)
- Kyung-Sun Heo
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY 14642,
USA
| | - Keigi Fujiwara
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY 14642,
USA
| | - Jun-ichi Abe
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY 14642,
USA
| |
Collapse
|
44
|
Wilkins JR, Pike DB, Gibson CC, Kubota A, Shiu YT. Differential effects of cyclic stretch on bFGF- and VEGF-induced sprouting angiogenesis. Biotechnol Prog 2014; 30:879-88. [PMID: 24574264 DOI: 10.1002/btpr.1883] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 01/26/2014] [Indexed: 02/03/2023]
Abstract
How mechanical factors affect angiogenesis and how they and chemical angiogenic factors work in concert remain not yet well-understood. This study investigated the interactive effects of cyclic uniaxial stretch and two potent proangiogenic molecules [basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF)] on angiogenesis using a stretchable three-dimensional (3-D) cell culture model. Endothelial cells seeded atop a 3-D collagen gel underwent sprouting angiogenesis while being subjected to either 10 or 20% cyclic uniaxial stretch at a frequency of either 1/12 or 1 Hz, in conjunction with an elevated concentration of bFGF or VEGF. Without the presence of additional growth factors, 10 and 20% stretch at 1 Hz induced angiogenesis and the perpendicular alignment of new sprouts, and both inductive effects were abolished by cytochalasin D (an actin polymerization inhibitor). While "10% stretch at 1 Hz," "20% stretch at 1 Hz," bFGF, and VEGF were strong angiogenesis stimulants individually, only the combination of "20% stretch at 1 Hz" and bFGF had an additive effect on inducing new sprouts. Interestingly, the combination of "20% stretch at a lower frequency (1/12 Hz)" and bFGF decreased sprouting angiogenesis, even though the level of perpendicular alignment of new sprouts was the same for both stretch frequencies. Taken together, these results demonstrate that both stretch frequency and magnitude, along with interactions with various growth factors, are essential in mediating formation of endothelial sprouts and vascular patterning. Furthermore, work in this area is warranted to elucidate synergistic or competitive signaling mechanisms.
Collapse
Affiliation(s)
- Justin R Wilkins
- Div. of Nephrology, Dept. of Medicine, University of Utah School of Medicine, Salt Lake City, UT, 84112; Dept. of Bioengineering, University of Utah, Salt Lake City, UT, 84112
| | | | | | | | | |
Collapse
|
45
|
Chatterjee S, Fisher AB. Mechanotransduction in the endothelium: role of membrane proteins and reactive oxygen species in sensing, transduction, and transmission of the signal with altered blood flow. Antioxid Redox Signal 2014; 20:899-913. [PMID: 24328670 PMCID: PMC3924805 DOI: 10.1089/ars.2013.5624] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Changes in shear stress associated with alterations in blood flow initiate a signaling cascade that modulates the vascular phenotype. Shear stress is "sensed" by the endothelium via a mechanosensitive complex on the endothelial cell (EC) membrane that has been characterized as a "mechanosome" consisting of caveolae, platelet endothelial cell adhesion molecule (PECAM), vascular endothelial growth factor receptor 2 (VEGFR2), vascular endothelial (VE)-cadherin, and possibly other elements. This shear signal is transduced by cell membrane ion channels and various kinases and results in the activation of NADPH oxidase (type 2) with the production of reactive oxygen species (ROS). RECENT ADVANCES The signaling cascade associated with stop of shear, as would occur in vivo with various obstructive pathologies, leads to cell proliferation and eventual revascularization. CRITICAL ISSUES AND FUTURE DIRECTIONS Although several elements of mechanosensing such as the sensing event, the transduction, transmission, and reception of the mechanosignal are now reasonably well understood, the links among these discrete steps in the pathway are not clear. Thus, identifying the mechanisms for the interaction of the K(ATP) channel, the kinases, and ROS to drive long-term adaptive responses in ECs is necessary. A critical re-examination of the signaling events associated with complex flow patterns (turbulent, oscillatory) under physiological conditions is also essential for the progress in the field. Since these complex shear patterns may be associated with an atherosclerosis susceptible phenotype, a specific challenge will be the pharmacological modulation of the responses to altered signaling events that occur at specific sites of disturbed or obstructed flow.
Collapse
Affiliation(s)
- Shampa Chatterjee
- Institute for Environmental Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | | |
Collapse
|
46
|
Noel J, Wang H, Hong N, Tao JQ, Yu K, Sorokina EM, Debolt K, Heayn M, Rizzo V, Delisser H, Fisher AB, Chatterjee S. PECAM-1 and caveolae form the mechanosensing complex necessary for NOX2 activation and angiogenic signaling with stopped flow in pulmonary endothelium. Am J Physiol Lung Cell Mol Physiol 2013; 305:L805-18. [PMID: 24077950 PMCID: PMC3882530 DOI: 10.1152/ajplung.00123.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/24/2013] [Indexed: 12/14/2022] Open
Abstract
We showed that stop of flow triggers a mechanosignaling cascade that leads to the generation of reactive oxygen species (ROS); however, a mechanosensor coupled to the cytoskeleton that could potentially transduce flow stimulus has not been identified. We showed a role for KATP channel, caveolae (caveolin-1), and NADPH oxidase 2 (NOX2) in ROS production with stop of flow. Based on reports of a mechanosensory complex that includes platelet endothelial cell adhesion molecule-1 (PECAM-1) and initiates signaling with mechanical force, we hypothesized that PECAM-1 could serve as a mechanosensor in sensing disruption of flow. Using lungs in situ, we observed that ROS production with stop of flow was significantly reduced in PECAM-1(-/-) lungs compared with lungs from wild-type (WT) mice. Lack of PECAM-1 did not affect NOX2 activation machinery or the caveolin-1 expression or caveolae number in the pulmonary endothelium. Stop of flow in vitro triggered an increase in angiogenic potential of WT pulmonary microvascular endothelial cells (PMVEC) but not of PECAM-1(-/-) PMVEC. Obstruction of flow in lungs in vivo showed that the neutrophil infiltration as observed in WT mice was significantly lowered in PECAM-1(-/-) mice. With stop of flow, WT lungs showed higher expression of the angiogenic marker VEGF compared with untreated (sham) and PECAM-1(-/-) lungs. Thus PECAM-1 (and caveolae) are parts of the mechanosensing machinery that generates superoxide with loss of shear; the resultant ROS potentially drives neutrophil influx and acts as an angiogenic signal.
Collapse
Affiliation(s)
- John Noel
- Institute for Environmental Medicine, Univ. of Pennsylvania School of Medicine, 1 John Morgan Bldg., 3620 Hamilton Walk, Philadelphia, PA 19104-6068.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Conway DE, Schwartz MA. Flow-dependent cellular mechanotransduction in atherosclerosis. J Cell Sci 2013; 126:5101-9. [PMID: 24190880 DOI: 10.1242/jcs.138313] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Atherosclerosis depends on risk factors such as hyperlipidemia, smoking, hypertension and diabetes. Although these risk factors are relatively constant throughout the arterial circulation, atherosclerotic plaques occur at specific sites where flow patterns are disturbed, with lower overall magnitude and complex changes in speed and direction. Research over the past few decades has provided new insights into the cellular mechanisms of force transduction and how mechanical effects act in concert with conventional risk factors to mediate plaque formation and progression. This Commentary summarizes our current understanding of how mechanotransduction pathways synergize with conventional risk factors in atherosclerosis. We attempt to integrate cellular studies with animal and clinical data, and highlight major questions that need to be answered to develop more effective therapies.
Collapse
Affiliation(s)
- Daniel E Conway
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
48
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
49
|
Hang TC, Tedford NC, Reddy RJ, Rimchala T, Wells A, White FM, Kamm RD, Lauffenburger DA. Vascular endothelial growth factor (VEGF) and platelet (PF-4) factor 4 inputs modulate human microvascular endothelial signaling in a three-dimensional matrix migration context. Mol Cell Proteomics 2013; 12:3704-18. [PMID: 24023389 PMCID: PMC3861718 DOI: 10.1074/mcp.m113.030528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The process of angiogenesis is under complex regulation in adult organisms, particularly as it often occurs in an inflammatory post-wound environment. As such, there are many impacting factors that will regulate the generation of new blood vessels which include not only pro-angiogenic growth factors such as vascular endothelial growth factor, but also angiostatic factors. During initial postwound hemostasis, a large initial bolus of platelet factor 4 is released into localized areas of damage before progression of wound healing toward tissue homeostasis. Because of its early presence and high concentration, the angiostatic chemokine platelet factor 4, which can induce endothelial anoikis, can strongly affect angiogenesis. In our work, we explored signaling crosstalk interactions between vascular endothelial growth factor and platelet factor 4 using phosphotyrosine-enriched mass spectrometry methods on human dermal microvascular endothelial cells cultured under conditions facilitating migratory sprouting into collagen gel matrices. We developed new methods to enable mass spectrometry-based phosphorylation analysis of primary cells cultured on collagen gels, and quantified signaling pathways over the first 48 h of treatment with vascular endothelial growth factor in the presence or absence of platelet factor 4. By observing early and late signaling dynamics in tandem with correlation network modeling, we found that platelet factor 4 has significant crosstalk with vascular endothelial growth factor by modulating cell migration and polarization pathways, centered around P38α MAPK, Src family kinases Fyn and Lyn, along with FAK. Interestingly, we found EphA2 correlational topology to strongly involve key migration-related signaling nodes after introduction of platelet factor 4, indicating an influence of the angiostatic factor on this ambiguous but generally angiogenic signal in this complex environment.
Collapse
Affiliation(s)
- Ta-Chun Hang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Feaver RE, Gelfand BD, Blackman BR. Human haemodynamic frequency harmonics regulate the inflammatory phenotype of vascular endothelial cells. Nat Commun 2013; 4:1525. [PMID: 23443553 DOI: 10.1038/ncomms2530] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 01/21/2013] [Indexed: 01/14/2023] Open
Abstract
Haemodynamic variations are inherent to blood vessel geometries (such as bifurcations) and correlate with regional development of inflammation and atherosclerosis. However, the complex frequency spectrum characteristics from these haemodynamics have never been exploited to test whether frequency variations are critical determinants of endothelial inflammatory phenotype. Here we utilize an experimental Fourier transform analysis to systematically manipulate individual frequency harmonics from human carotid shear stress waveforms applied in vitro to human endothelial cells. The frequency spectrum, specifically the 0 th and 1st harmonics, is a significant regulator of inflammation, including NF-κB activity and downstream inflammatory phenotype. Further, a harmonic-based regression-model predicts eccentric NF-κB activity observed in the human internal carotid artery. Finally, short interfering RNA-knockdown of the mechanosensor PECAM-1 reverses frequency-dependent regulation of NF-κB activity. Thus, PECAM-1 may have a critical role in the endothelium's exquisite sensitivity to complex shear stress frequency harmonics and provide a mechanism for the focal development of vascular inflammation.
Collapse
Affiliation(s)
- Ryan E Feaver
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|