1
|
Dittman AH, May D, Johnson MA, Baldwin DH, Scholz NL. Odor exposure during imprinting periods increases odorant-specific sensitivity and receptor gene expression in coho salmon (Oncorhynchus kisutch). J Exp Biol 2024; 227:jeb247786. [PMID: 39238479 DOI: 10.1242/jeb.247786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024]
Abstract
Pacific salmon are well known for their homing migrations; juvenile salmon learn odors associated with their natal streams prior to seaward migration, and then use these retained odor memories to guide them back from oceanic feeding grounds to their river of origin to spawn several years later. This memory formation, termed olfactory imprinting, involves (at least in part) sensitization of the peripheral olfactory epithelium to specific odorants. We hypothesized that this change in peripheral sensitivity is due to exposure-dependent increases in the expression of odorant receptor (OR) proteins that are activated by specific odorants experienced during imprinting. To test this hypothesis, we exposed juvenile coho salmon, Oncorhynchus kisutch, to the basic amino acid odorant l-arginine during the parr-smolt transformation (PST), when imprinting occurs, and assessed sensitivity of the olfactory epithelium to this and other odorants. We then identified the coho salmon ortholog of a basic amino acid odorant receptor (BAAR) and determined the mRNA expression levels of this receptor and other transcripts representing different classes of OR families. Exposure to l-arginine during the PST resulted in increased sensitivity to that odorant and a specific increase in BAAR mRNA expression in the olfactory epithelium relative to other ORs. These results suggest that specific increases in ORs activated during imprinting may be an important component of home stream memory formation and this phenomenon may ultimately be useful as a marker of successful imprinting to assess management strategies and hatchery practices that may influence straying in salmon.
Collapse
Affiliation(s)
- Andrew H Dittman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd East, Seattle, WA 98112, USA
| | - Darran May
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA
| | - Marc A Johnson
- Oregon Department of Fish and Wildlife Corvallis Research Laboratory, 28655 Highway 34, Corvallis, OR 97333, USA
| | - David H Baldwin
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd East, Seattle, WA 98112, USA
| | - Nathaniel L Scholz
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd East, Seattle, WA 98112, USA
| |
Collapse
|
2
|
Abrams KL, Ward DA, Sabiniewicz A, Hummel T. Olfaction evaluation in dogs with sudden acquired retinal degeneration syndrome. Vet Ophthalmol 2024; 27:127-138. [PMID: 37399129 DOI: 10.1111/vop.13121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 07/05/2023]
Abstract
PURPOSE To evaluate olfaction in dogs with sudden acquired retinal degeneration syndrome (SARDS) compared with sighted dogs and blind dogs without SARDS as control groups. ANIMALS STUDIED Forty client-owned dogs. PROCEDURE Olfactory threshold testing was performed on three groups: SARDS, sighted, and blind/non-SARDS using eugenol as the test odorant. The olfactory threshold was determined when subjects indicated the detection of a specific eugenol concentration with behavioral responses. Olfactory threshold, age, body weight, and environmental room factors were evaluated. RESULTS Sixteen dogs with SARDS, 12 sighted dogs, and 12 blind/non-SARDS dogs demonstrated mean olfactory threshold pen numbers of 2.8 (SD = 1.4), 13.8 (SD = 1.4), and 13.4 (SD = 1.1), respectively, which correspond to actual mean concentrations of 0.017 g/mL, 1.7 × 10-13 g/mL and 4.26 × 10-13 g/mL, respectively. Dogs with SARDS had significantly poorer olfactory threshold scores compared with the two control groups (p < .001), with no difference between the control groups (p = .5). Age, weight, and room environment did not differ between the three groups. CONCLUSIONS Dogs with SARDS have severely decreased olfaction capabilities compared with sighted dogs and blind/non-SARDS dogs. This finding supports the suspicion that SARDS is a systemic disease causing blindness, endocrinopathy, and hyposmia. Since the molecular pathways are similar in photoreceptors, olfactory receptors, and steroidogenesis with all using G-protein coupled receptors in the cell membrane, the cause of SARDS may exist at the G-protein associated interactions with intracellular cyclic nucleotides. Further investigations into G-protein coupled receptors pathway and canine olfactory receptor genes in SARDS patients may be valuable in revealing the cause of SARDS.
Collapse
Affiliation(s)
- Kenneth L Abrams
- Veterinary Ophthalmology Services, North Kingstown, Rhode Island, USA
| | - Daniel A Ward
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Agnieszka Sabiniewicz
- Department of Otorhinolaryngology, Smell and Taste Clinic, Technische Universität Dresden, Dresden, Germany
- Institute of Psychology, University of Wrocław, Wrocław, Poland
| | - Thomas Hummel
- Department of Otorhinolaryngology, Smell and Taste Clinic, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
3
|
Dias BG. Legacies of salient environmental experiences-insights from chemosensation. Chem Senses 2024; 49:bjae002. [PMID: 38219073 PMCID: PMC10825851 DOI: 10.1093/chemse/bjae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Indexed: 01/15/2024] Open
Abstract
Evidence for parental environments profoundly influencing the physiology, biology, and neurobiology of future generations has been accumulating in the literature. Recent efforts to understand this phenomenon and its underlying mechanisms have sought to use species like rodents and insects to model multi-generational legacies of parental experiences like stress and nutritional exposures. From these studies, we have come to appreciate that parental exposure to salient environmental experiences impacts the cadence of brain development, hormonal responses to stress, and the expression of genes that govern cellular responses to stress in offspring. Recent studies using chemosensory exposure have emerged as a powerful tool to shed new light on how future generations come to be influenced by environments to which parents are exposed. With a specific focus on studies that have leveraged such use of salient chemosensory experiences, this review synthesizes our current understanding of the concept, causes, and consequences of the inheritance of chemosensory legacies by future generations and how this field of inquiry informs the larger picture of how parental experiences can influence offspring biology.
Collapse
Affiliation(s)
- Brian G Dias
- Developmental Neuroscience and Neurogenetics Program, The Saban Research Institute, Los Angeles, CA, United States
- Division of Endocrinology, Diabetes and Metabolism, Children’s Hospital Los Angeles, Los Angeles, CA, United States
- Department of Pediatrics, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
4
|
Choi C, Bae J, Kim S, Lee S, Kang H, Kim J, Bang I, Kim K, Huh WK, Seok C, Park H, Im W, Choi HJ. Understanding the molecular mechanisms of odorant binding and activation of the human OR52 family. Nat Commun 2023; 14:8105. [PMID: 38062020 PMCID: PMC10703812 DOI: 10.1038/s41467-023-43983-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Structural and mechanistic studies on human odorant receptors (ORs), key in olfactory signaling, are challenging because of their low surface expression in heterologous cells. The recent structure of OR51E2 bound to propionate provided molecular insight into odorant recognition, but the lack of an inactive OR structure limited understanding of the activation mechanism of ORs upon odorant binding. Here, we determined the cryo-electron microscopy structures of consensus OR52 (OR52cs), a representative of the OR52 family, in the ligand-free (apo) and octanoate-bound states. The apo structure of OR52cs reveals a large opening between transmembrane helices (TMs) 5 and 6. A comparison between the apo and active structures of OR52cs demonstrates the inward and outward movements of the extracellular and intracellular segments of TM6, respectively. These results, combined with molecular dynamics simulations and signaling assays, shed light on the molecular mechanisms of odorant binding and activation of the OR52 family.
Collapse
Affiliation(s)
- Chulwon Choi
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jungnam Bae
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seonghan Kim
- Department of Bioengineering, Lehigh University, Bethlehem, PA, 18015, USA
| | - Seho Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyunook Kang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jinuk Kim
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Injin Bang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Kiheon Kim
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won-Ki Huh
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hahnbeom Park
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Wonpil Im
- Department of Bioengineering, Lehigh University, Bethlehem, PA, 18015, USA
- Departments of Biological Sciences, Chemistry, and Computer Science and Engineering, Lehigh University, Bethlehem, PA, 18015, USA
| | - Hee-Jung Choi
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
5
|
Matukhno AE, Petrushan MV, Kiroy VN, Arsenyev FV, Lysenko LV. The method for assessment of local permutations in the glomerular patterns of the rat olfactory bulb by aligning interindividual odor maps. J Comput Neurosci 2023; 51:433-444. [PMID: 37624481 DOI: 10.1007/s10827-023-00858-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
The comparison of odor functional maps in rodents demonstrates a high degree of inter-individual variability in glomerular activity patterns. There are substantial methodological difficulties in the interindividual assessment of local permutations in the glomerular patterns, since the position of anatomical extracranial landmarks, as well as the size, shape and angular orientation of olfactory bulbs can vary significantly. A new method for defining anatomical coordinates of active glomeruli in the rat olfactory bulb has been developed. The method compares the interindividual odor functional maps and calculates probabilistic maps of glomerular activity with adjustment. This adjustment involves rotation, scaling and shift of the functional map relative to its expected position in probabilistic map, computed according to the anatomical coordinates. The calculation of the probabilistic map of the odorant-specific response compensates for potential anatoamical errors due to individual variability in olfactory bulb dimensions and angular orientation. We show its efficiency on real data from a large animal sample recorded by two-photon calcium imaging in dorsal surface of the rat olfactory bulb. The proposed method with probabilistic map calculation enables the spatial consistency of the effects of individual odorants in different rats to be assessed and allow stereotypical positions of odor-specific clusters in the glomerular layer of the olfactory bulb to be identified.
Collapse
Affiliation(s)
- Aleksey E Matukhno
- Research Center for Neurotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia.
| | - Mikhail V Petrushan
- Research Center for Neurotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Valery N Kiroy
- Research Center for Neurotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | | | - Larisa V Lysenko
- Research Center for Neurotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
- Department of Physics, Southern Federal University, Rostov-on-Don, 344090, Russia
| |
Collapse
|
6
|
Kim WK, Choi K, Hyeon C, Jang SJ. General Chemical Reaction Network Theory for Olfactory Sensing Based on G-Protein-Coupled Receptors: Elucidation of Odorant Mixture Effects and Agonist-Synergist Threshold. J Phys Chem Lett 2023; 14:8412-8420. [PMID: 37712530 DOI: 10.1021/acs.jpclett.3c02310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
This work presents a general chemical reaction network theory for olfactory sensing processes that employ G-protein-coupled receptors as olfactory receptors (ORs). The theory can be applied to general mixtures of odorants and an arbitrary number of ORs. Reactions of ORs with G-proteins, in both the presence and absence of odorants, are explicitly considered. A unique feature of the theory is the definition of an odor activity vector consisting of strengths of odorant-induced signals from ORs relative to those due to background G-protein activity in the absence of odorants. It is demonstrated that each component of the odor activity defined this way reduces to a Michaelis-Menten form capable of accounting for cooperation or competition effects between different odorants. The main features of the theory are illustrated for a two-odorant mixture. Known and potential mixture effects, such as suppression, shadowing, inhibition, and synergy, are quantitatively described. Effects of relative values of rate constants, basal activity, and G-protein concentration are also demonstrated.
Collapse
Affiliation(s)
- Won Kyu Kim
- Korea Institute for Advanced Study, Hoegiro 85, Dongdaemun-gu, Seoul 02455, Korea
| | - Kiri Choi
- Korea Institute for Advanced Study, Hoegiro 85, Dongdaemun-gu, Seoul 02455, Korea
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Hoegiro 85, Dongdaemun-gu, Seoul 02455, Korea
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, 65-30 Kissena Boulevard, Queens, New York 11367, United States
- PhD Programs in Chemistry and Physics, Graduate Center, City University of New York, New York, New York 10016, United States
| |
Collapse
|
7
|
Jin YJ, Kim JE, Roh YJ, Song HJ, Seol A, Park J, Lim Y, Seo S, Hwang DY. Characterisation of changes in global genes expression in the lung of ICR mice in response to the inflammation and fibrosis induced by polystyrene nanoplastics inhalation. Toxicol Res 2023:1-25. [PMID: 37360972 PMCID: PMC10201517 DOI: 10.1007/s43188-023-00188-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/15/2023] [Accepted: 04/26/2023] [Indexed: 06/28/2023] Open
Abstract
This study characterised the changes in global gene expression in the lung of ICR mice in response to the inflammation and fibrosis induced by the inhalation of 0.5 μm polystyrene (PS)-nanoplastics (NPs) at various concentrations (4, 8, and 16 μg/mL) for 2 weeks. The total RNA extracted from the lung tissue of NPs-inhaled mice was hybridised into oligonucleotide microarrays. Significant upregulation was detected in several inflammatory responses, including the number of immune cells in bronchoalveolar lavage fluid (BALF), the expression level of inflammatory cytokines, mucin secretion, and histopathological changes, while they accumulated average of 13.38 ± 1.0 μg/g in the lungs of the inhaled ICR mice. Similar responses were observed regarding the levels of fibrosis-related factors in the NPs-inhaled lung of ICR mice, such as pulmonary parenchymal area, expression of pro-fibrotic marker genes, and TGF-β1 downstream signalling without any significant hepatotoxicity and nephrotoxicity. In microarray analyses, 60 genes were upregulated, and 55 genes were downregulated in the lung of ICR mice during inflammation and fibrosis induced by NPs inhalation compared to the Vehicle-inhaled mice. Among these genes, many were categorised into several ontology categories, including the anatomical structure, binding, membrane, and metabolic process. Furthermore, the major genes in the upregulated categories included Igkv14-126000, Egr1, Scel, Lamb3, and Upk3b. In contrast, the major genes in the down-regulated categories were Olfr417, Olfr519, Rps16, Rap2b, and Vmn1r193. These results suggest several gene functional groups and individual genes as specific biomarkers respond to inflammation and fibrosis induced by PS-NPs inhalation in ICR mice. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00188-y.
Collapse
Affiliation(s)
- You Jeong Jin
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Republic of Korea
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Republic of Korea
| | - Yu Jeong Roh
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Republic of Korea
| | - Hee Jin Song
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Republic of Korea
| | - Ayun Seol
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Republic of Korea
| | - Jumin Park
- Department of Food Science and Nutrition, College of Human Ecology, Pusan National University, Busan, 46241 Republic of Korea
| | - Yong Lim
- Department of Clinical Laboratory Science, College of Nursing and Healthcare Science, Dong-Eui University, Busan, 47340 Republic of Korea
| | - Sungbaek Seo
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Republic of Korea
| |
Collapse
|
8
|
Inoue R, Fukutani Y, Niwa T, Matsunami H, Yohda M. Identification and Characterization of Proteins That Are Involved in RTP1S-Dependent Transport of Olfactory Receptors. Int J Mol Sci 2023; 24:ijms24097829. [PMID: 37175532 PMCID: PMC10177996 DOI: 10.3390/ijms24097829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Olfaction is mediated via olfactory receptors (ORs) that are expressed on the cilia membrane of olfactory sensory neurons in the olfactory epithelium. The functional expression of most ORs requires the assistance of receptor-transporting proteins (RTPs). We examined the interactome of RTP1S and OR via proximity biotinylation. Deubiquitinating protein VCIP135, the F-actin-capping protein sub-unit alpha-2, and insulin-like growth factor 2 mRNA-binding protein 2 were biotinylated via AirID fused with OR, RTP1S-AirID biotinylated heat shock protein A6 (HSPA6), and double-stranded RNA-binding protein Staufen homolog 2 (STAU2). Co-expression of HSPA6 partially enhanced the surface expression of Olfr544. The surface expression of Olfr544 increased by 50-80%. This effect was also observed when RTP1S was co-expressed. Almost identical results were obtained from the co-expression of STAU2. The interactions of HSPA6 and STAU2 with RTP1S were examined using a NanoBit assay. The results show that the RTP1S N-terminus interacted with the C-terminal domain of HSP6A and the N-terminal domain of STAU2. In contrast, OR did not significantly interact with STAU2 and HSPA6. Thus, HSP6A and STAU2 appear to be involved in the process of OR traffic through interaction with RTP1S.
Collapse
Affiliation(s)
- Ryosuke Inoue
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Yosuke Fukutani
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
9
|
Delvendahl I, Hu B, Murphy JG. Editorial: Methods and applications in cellular neurophysiology. Front Cell Neurosci 2023; 17:1172741. [PMID: 36970421 PMCID: PMC10036821 DOI: 10.3389/fncel.2023.1172741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Affiliation(s)
- Igor Delvendahl
- Department of Molecular Life Sciences, University of Zurich (UZH), Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Bo Hu
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
| | - Jonathan G. Murphy
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
10
|
Qureshi HA, Lane AP. Olfaction Now and in the Future in CRSwNP. Am J Rhinol Allergy 2023; 37:168-174. [PMID: 36848279 DOI: 10.1177/19458924231153485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is the leading cause of olfactory dysfunction in the general population. Olfactory dysfunction is more common in patients with CRS with nasal polyposis (CRSwNP) compared to those without polyps. PURPOSE The present review aims to summarize the current literature on the mechanism behind olfactory dysfunction in CRSwNP and the impact of therapy on olfactory outcomes in this patient population. METHODS A comprehensive review of the available literature on olfaction in CRSwNP was performed. We evaluated the most recent evidence from studies on the mechanisms behind smell loss in CRSwNP and the impact of medical and surgical therapy for CRS on olfactory outcomes. RESULTS The mechanism behind olfactory dysfunction in CRSwNP is not completely understood, but evidence from clinical research and animal models suggests both an obstructive component causing conductive olfactory loss and an inflammatory response in the olfactory cleft leading to sensorineural olfactory loss. Oral steroids and endoscopic sinus surgery have both shown efficacy in improving olfactory outcomes in CRSwNP in the short term; however, the long-term response of these treatments remains uncertain. Newer targeted biologic therapies, such as dupilumab, have also shown remarkable and durable improvement in smell loss for CRSwNP patients. CONCLUSION Olfactory dysfunction is highly prevalent in the CRSwNP population. Although significant advances have been made in our understanding of olfactory dysfunction in the setting of CRS, additional studies are needed to elucidate cellular and molecular changes mediated by type 2-mediated inflammation in the olfactory epithelium with potential downstream effects on the central olfactory system. Further identification of these underlying basic mechanisms will be vital for developing future therapies targeted to improve olfactory dysfunction in patients with CRSwNP.
Collapse
Affiliation(s)
- Hannan A Qureshi
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrew P Lane
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
11
|
Tsuzuki S. A point of view on human fat olfaction - do fatty derivatives serve as cues for awareness of dietary fats? Biomed Res 2023; 44:127-146. [PMID: 37544735 DOI: 10.2220/biomedres.44.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Fat (triglycerides) consumption is critical for the survival of animals, including humans. Being able to smell fat can be advantageous in judging food value. However, fat has poor volatility; thus, olfaction of fat seems impossible. What about fatty acids that comprise fat? Humans smell and discriminate medium-chain fatty acids. However, no conclusive evidence has been provided for the olfactory sense of long-chain fatty acids, including essential acids such as linoleic acid (LA). Instead, humans likely perceive the presence of essential fatty acids through the olfaction of volatile compounds generated by their oxidative breakdown (e.g., hexanal and γ-decalactone). For some people, such scents are pleasing, especially when they come from fruit. Nonetheless, it remains unclear whether the olfaction of these volatiles leads to the recognition of fat per se. Nowadays, people often smell LA-borne aldehydes such as E,E-2,4-decadienal that occur appreciably, for example, from edible oils during deep frying, and are pronely captivated by their characteristic "fatty" note, which can be considered a "pseudo-perception" of fat. However, our preference for such LA-borne aldehyde odors may be a potential cause behind the modern overdose of n-6 fatty acids. This review aims to provide a view of whether and, if any, how we olfactorily perceive dietary fats and raises future purposes related to human fat olfaction, such as investigating sub-olfactory systems for detecting long-chain fatty acids.
Collapse
Affiliation(s)
- Satoshi Tsuzuki
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
12
|
Application of artificial intelligence to decode the relationships between smell, olfactory receptors and small molecules. Sci Rep 2022; 12:18817. [PMID: 36335231 PMCID: PMC9637086 DOI: 10.1038/s41598-022-23176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Deciphering the relationship between molecules, olfactory receptors (ORs) and corresponding odors remains a challenging task. It requires a comprehensive identification of ORs responding to a given odorant. With the recent advances in artificial intelligence and the growing research in decoding the human olfactory perception from chemical features of odorant molecules, the applications of advanced machine learning have been revived. In this study, Convolutional Neural Network (CNN) and Graphical Convolutional Network (GCN) models have been developed on odorant molecules-odors and odorant molecules-olfactory receptors using a large set of 5955 molecules, 160 odors and 106 olfactory receptors. The performance of such models is promising with a Precision/Recall Area Under Curve of 0.66 for the odorant-odor and 0.91 for the odorant-olfactory receptor GCN models respectively. Furthermore, based on the correspondence of odors and ORs associated for a set of 389 compounds, an odor-olfactory receptor pairwise score was computed for each odor-OR combination allowing to suggest a combinatorial relationship between olfactory receptors and odors. Overall, this analysis demonstrate that artificial intelligence may pave the way in the identification of the smell perception and the full repertoire of receptors for a given odorant molecule.
Collapse
|
13
|
Mulim HA, Brito LF, Batista Pinto LF, Moletta JL, Da Silva LR, Pedrosa VB. Genetic and Genomic Characterization of a New Beef Cattle Composite Breed (Purunã) Developed for Production in Pasture-Based Systems. Front Genet 2022; 13:858970. [PMID: 35923708 PMCID: PMC9341487 DOI: 10.3389/fgene.2022.858970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Purunã is a composite beef cattle breed, developed in Southern Brazil by crossing the Angus, Charolais, Canchim, and Caracu breeds. The goal of this study was to perform the first genetic characterization of the Purunã breed, based on both pedigree and genomic information. For this, 100 randomly selected animals were genotyped, and 11,205 animals born from 1997 to 2019 had pedigree information. The genetic analyses performed were principal component analysis, admixture, phylogenic tree, pedigree and genomic inbreeding, linkage disequilibrium (LD), effective population size (Ne), consistency of the gametic phase, runs of homozygosity (ROH), heterozygosity-enriched regions (HERs), and functional analyses of the ROH and HER regions identified. Our findings indicate that Purunã is more genetically related to the Charolais, Canchim, and Angus breeds than Caracu or Nellore. The levels of inbreeding were shown to be small based on all the metrics evaluated and ranged from −0.009 to 0.029. A low (−0.12–0.31) correlation of the pedigree-based inbreeding compared to all the genomic inbreeding coefficients evaluated was observed. The LD average was 0.031 (±0.0517), and the consistency of the gametic phase was shown to be low for all the breed pairs, ranging from 0.42 to 0.27 to the distance of 20 Mb. The Ne values based on pedigree and genomic information were 158 and 115, respectively. A total of 1,839 ROHs were found, and the majority of them are of small length (<4 Mb). An important homozygous region was identified on BTA5 with pathways related to behavioral traits (sensory perception, detection of stimulus, and others), as well as candidate genes related to heat tolerance (MY O 1A), feed conversion rate (RDH5), and reproduction (AMDHD1). A total of 1,799 HERs were identified in the Purunã breed with 92.3% of them classified within the 0.5–1 Mb length group, and 19 HER islands were identified in the autosomal genome. These HER islands harbor genes involved in growth pathways, carcass weight (SDCBP), meat and carcass quality (MT2A), and marbling deposition (CISH). Despite the genetic relationship between Purunã and the founder breeds, a multi-breed genomic evaluation is likely not feasible due to their population structure and low consistency of the gametic phase among them.
Collapse
Affiliation(s)
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | | | | | | | - Victor Breno Pedrosa
- Department of Animal Science, Federal University of Bahia, Salvador, Brazil
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
- Department of Animal Science, State University of Ponta Grossa, Ponta Grossa, Brazil
- *Correspondence: Victor Breno Pedrosa,
| |
Collapse
|
14
|
Patel ZM, Holbrook EH, Turner JH, Adappa ND, Albers MW, Altundag A, Appenzeller S, Costanzo RM, Croy I, Davis GE, Dehgani-Mobaraki P, Doty RL, Duffy VB, Goldstein BJ, Gudis DA, Haehner A, Higgins TS, Hopkins C, Huart C, Hummel T, Jitaroon K, Kern RC, Khanwalkar AR, Kobayashi M, Kondo K, Lane AP, Lechner M, Leopold DA, Levy JM, Marmura MJ, Mclelland L, Miwa T, Moberg PJ, Mueller CA, Nigwekar SU, O'Brien EK, Paunescu TG, Pellegrino R, Philpott C, Pinto JM, Reiter ER, Roalf DR, Rowan NR, Schlosser RJ, Schwob J, Seiden AM, Smith TL, Soler ZM, Sowerby L, Tan BK, Thamboo A, Wrobel B, Yan CH. International consensus statement on allergy and rhinology: Olfaction. Int Forum Allergy Rhinol 2022; 12:327-680. [PMID: 35373533 DOI: 10.1002/alr.22929] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/01/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The literature regarding clinical olfaction, olfactory loss, and olfactory dysfunction has expanded rapidly over the past two decades, with an exponential rise in the past year. There is substantial variability in the quality of this literature and a need to consolidate and critically review the evidence. It is with that aim that we have gathered experts from around the world to produce this International Consensus on Allergy and Rhinology: Olfaction (ICAR:O). METHODS Using previously described methodology, specific topics were developed relating to olfaction. Each topic was assigned a literature review, evidence-based review, or evidence-based review with recommendations format as dictated by available evidence and scope within the ICAR:O document. Following iterative reviews of each topic, the ICAR:O document was integrated and reviewed by all authors for final consensus. RESULTS The ICAR:O document reviews nearly 100 separate topics within the realm of olfaction, including diagnosis, epidemiology, disease burden, diagnosis, testing, etiology, treatment, and associated pathologies. CONCLUSION This critical review of the existing clinical olfaction literature provides much needed insight and clarity into the evaluation, diagnosis, and treatment of patients with olfactory dysfunction, while also clearly delineating gaps in our knowledge and evidence base that we should investigate further.
Collapse
Affiliation(s)
- Zara M Patel
- Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Eric H Holbrook
- Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, USA
| | - Justin H Turner
- Otolaryngology, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - Nithin D Adappa
- Otolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark W Albers
- Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Aytug Altundag
- Otolaryngology, Biruni University School of Medicine, İstanbul, Turkey
| | - Simone Appenzeller
- Rheumatology, School of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Richard M Costanzo
- Physiology and Biophysics and Otolaryngology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Ilona Croy
- Psychology and Psychosomatic Medicine, TU Dresden, Dresden, Germany
| | - Greg E Davis
- Otolaryngology, Proliance Surgeons, Seattle and Puyallup, Washington, USA
| | - Puya Dehgani-Mobaraki
- Associazione Naso Sano, Umbria Regional Registry of Volunteer Activities, Corciano, Italy
| | - Richard L Doty
- Smell and Taste Center, Otolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Valerie B Duffy
- Allied Health Sciences, University of Connecticut, Storrs, Connecticut, USA
| | | | - David A Gudis
- Otolaryngology, Columbia University Irving Medical Center, New York, USA
| | - Antje Haehner
- Smell and Taste, Otolaryngology, TU Dresden, Dresden, Germany
| | - Thomas S Higgins
- Otolaryngology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Claire Hopkins
- Otolaryngology, Guy's and St. Thomas' Hospitals, London Bridge Hospital, London, UK
| | - Caroline Huart
- Otorhinolaryngology, Cliniques universitaires Saint-Luc, Institute of Neuroscience, Université catholgique de Louvain, Brussels, Belgium
| | - Thomas Hummel
- Smell and Taste, Otolaryngology, TU Dresden, Dresden, Germany
| | | | - Robert C Kern
- Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ashoke R Khanwalkar
- Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Masayoshi Kobayashi
- Otorhinolaryngology-Head and Neck Surgery, Mie University Graduate School of Medicine, Mie, Japan
| | - Kenji Kondo
- Otolaryngology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Andrew P Lane
- Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matt Lechner
- Otolaryngology, Barts Health and University College London, London, UK
| | - Donald A Leopold
- Otolaryngology, University of Vermont Medical Center, Burlington, Vermont, USA
| | - Joshua M Levy
- Otolaryngology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael J Marmura
- Neurology Thomas Jefferson University School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lisha Mclelland
- Otolaryngology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Takaki Miwa
- Otolaryngology, Kanazawa Medical University, Ishikawa, Japan
| | - Paul J Moberg
- Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Sagar U Nigwekar
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Erin K O'Brien
- Otolaryngology, Mayo Clinic Rochester, Rochester, Minnesota, USA
| | - Teodor G Paunescu
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Carl Philpott
- Otolaryngology, University of East Anglia, Norwich, UK
| | - Jayant M Pinto
- Otolaryngology, University of Chicago, Chicago, Illinois, USA
| | - Evan R Reiter
- Otolaryngology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - David R Roalf
- Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nicholas R Rowan
- Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rodney J Schlosser
- Otolaryngology, Medical University of South Carolina, Mt Pleasant, South Carolina, USA
| | - James Schwob
- Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Allen M Seiden
- Otolaryngology, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA
| | - Timothy L Smith
- Otolaryngology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Zachary M Soler
- Otolaryngology, Medical University of South Carolina, Mt Pleasant, South Carolina, USA
| | - Leigh Sowerby
- Otolaryngology, University of Western Ontario, London, Ontario, Canada
| | - Bruce K Tan
- Otolaryngology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andrew Thamboo
- Otolaryngology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bozena Wrobel
- Otolaryngology, Keck School of Medicine, USC, Los Angeles, California, USA
| | - Carol H Yan
- Otolaryngology, School of Medicine, UCSD, La Jolla, California, USA
| |
Collapse
|
15
|
Liccardo F, Luini A, Di Martino R. Endomembrane-Based Signaling by GPCRs and G-Proteins. Cells 2022; 11:528. [PMID: 35159337 PMCID: PMC8834376 DOI: 10.3390/cells11030528] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) and G-proteins have a range of roles in many physiological and pathological processes and are among the most studied signaling proteins. A plethora of extracellular stimuli can activate the GPCR and can elicit distinct intracellular responses through the activation of specific transduction pathways. For many years, biologists thought that GPCR signaling occurred entirely on the plasma membrane. However, in recent decades, many lines of evidence have proved that the GPCRs and G-proteins may reside on endomembranes and can start or propagate signaling pathways through the organelles that form the secretory route. How these alternative intracellular signaling pathways of the GPCR and G-proteins influence the physiological and pathological function of the endomembranes is still under investigation. Here, we review the general role and classification of GPCRs and G-proteins with a focus on their signaling pathways in the membrane transport apparatus.
Collapse
Affiliation(s)
- Federica Liccardo
- Cardiovascular Research Institute, University of California San Francisco (UCSF), 555 Mission Bay Blvd., San Francisco, CA 94158, USA;
| | - Alberto Luini
- Istituto per L’endocrinologia e L’oncologia Sperimentale “Gaetano Salvatore” (IEOS)—Sede Secondaria, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Rosaria Di Martino
- Istituto per L’endocrinologia e L’oncologia Sperimentale “Gaetano Salvatore” (IEOS)—Sede Secondaria, Via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
16
|
Lakshmanan HG, Miller E, White-Canale A, McCluskey LP. Immune responses in the injured olfactory and gustatory systems: a role in olfactory receptor neuron and taste bud regeneration? Chem Senses 2022; 47:bjac024. [PMID: 36152297 PMCID: PMC9508897 DOI: 10.1093/chemse/bjac024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Sensory cells that specialize in transducing olfactory and gustatory stimuli are renewed throughout life and can regenerate after injury unlike their counterparts in the mammalian retina and auditory epithelium. This uncommon capacity for regeneration offers an opportunity to understand mechanisms that promote the recovery of sensory function after taste and smell loss. Immune responses appear to influence degeneration and later regeneration of olfactory sensory neurons and taste receptor cells. Here we review surgical, chemical, and inflammatory injury models and evidence that immune responses promote or deter chemosensory cell regeneration. Macrophage and neutrophil responses to chemosensory receptor injury have been the most widely studied without consensus on their net effects on regeneration. We discuss possible technical and biological reasons for the discrepancy, such as the difference between peripheral and central structures, and suggest directions for progress in understanding immune regulation of chemosensory regeneration. Our mechanistic understanding of immune-chemosensory cell interactions must be expanded before therapies can be developed for recovering the sensation of taste and smell after head injury from traumatic nerve damage and infection. Chemosensory loss leads to decreased quality of life, depression, nutritional challenges, and exposure to environmental dangers highlighting the need for further studies in this area.
Collapse
Affiliation(s)
- Hari G Lakshmanan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Elayna Miller
- Department of Medical Illustration, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - AnnElizabeth White-Canale
- Department of Medical Illustration, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Lynnette P McCluskey
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
17
|
Olfactory receptor choice: a case study for gene regulation in a multi-enhancer system. Curr Opin Genet Dev 2021; 72:101-109. [PMID: 34896807 DOI: 10.1016/j.gde.2021.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/25/2021] [Accepted: 11/11/2021] [Indexed: 12/14/2022]
Abstract
The mammalian genome possesses >2000 olfactory receptor (OR) alleles regulated by 63 known OR-Enhancer elements, yet each olfactory sensory neuron (OSN) expresses only a single OR allele. Choreographed changes to OSN nuclear architecture are evidently necessary for OR expression. Additionally, the insulated organization of OR-enhancers around an OR allele is a hallmark of the chosen OR. However, the biology guiding OR choice itself is unclear. Innovations in single-cell and biophysics-based analysis of nuclear architecture are revising previous models of the nucleus to include its dynamic and probabilistic nature. In this review, we ground current knowledge of OR gene regulation in these emerging theories to speculate on mechanisms that may give rise to diverse and singular OR expression.
Collapse
|
18
|
Cheng H, Liu Y, Xue Y, Shao J, Tan Z, Liu S, Duan S, Kang L. Molecular Strategies for Intensity-Dependent Olfactory Processing in Caenorhabditis elegans. Front Mol Neurosci 2021; 14:748214. [PMID: 34803606 PMCID: PMC8600271 DOI: 10.3389/fnmol.2021.748214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Various odorants trigger complex animal behaviors across species in both quality- and quantity-dependent manners. However, how the intensity of olfactory input is encoded remains largely unknown. Here we report that isoamyl alcohol (IAA) induces bi-directional currents through a Gα- guanylate cyclase (GC)- cGMP signaling pathway in Caenorhabditis elegans olfactory neuron amphid wing “C” cell (AWC), while two opposite cGMP signaling pathways are responsible for odor-sensing in olfactory neuron amphid wing “B” cell (AWB): (1) a depolarizing Gα (GPA-3)- phosphodiesterase (PDE) – cGMP pathway which can be activated by low concentrations of isoamyl alcohol (IAA), and (2) a hyperpolarizing Gα (ODR-3)- GC- cGMP pathway sensing high concentrations of IAA. Besides, IAA induces Gα (ODR-3)-TRPV(OSM-9)-dependent currents in amphid wing “A” cell (AWA) and amphid neuron “H” cell with single ciliated sensory ending (ASH) neurons with different thresholds. Our results demonstrate that an elaborate combination of multiple signaling machineries encode the intensity of olfactory input, shedding light on understanding the molecular strategies on sensory transduction.
Collapse
Affiliation(s)
- Hankui Cheng
- Department of Neurobiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Yu Liu
- Department of Neurobiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Yadan Xue
- Department of Neurobiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajie Shao
- Department of Neurobiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhibing Tan
- Department of Neurobiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siyan Liu
- Department of Neurobiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Shumin Duan
- Department of Neurobiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China.,Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lijun Kang
- Department of Neurobiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Aoki M, Gamayun I, Wyatt A, Grünewald R, Simon-Thomas M, Philipp SE, Hummel O, Wagenpfeil S, Kattler K, Gasparoni G, Walter J, Qiao S, Grattan DR, Boehm U. Prolactin-sensitive olfactory sensory neurons regulate male preference in female mice by modulating responses to chemosensory cues. SCIENCE ADVANCES 2021; 7:eabg4074. [PMID: 34623921 PMCID: PMC8500514 DOI: 10.1126/sciadv.abg4074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 08/19/2021] [Indexed: 06/10/2023]
Abstract
Chemosensory cues detected in the nose need to be integrated with the hormonal status to trigger appropriate behaviors, but the neural circuits linking the olfactory and the endocrine system are insufficiently understood. Here, we characterize olfactory sensory neurons in the murine nose that respond to the pituitary hormone prolactin. Deletion of prolactin receptor in these cells results in impaired detection of social odors and blunts male preference in females. The prolactin-responsive olfactory sensory neurons exhibit a distinctive projection pattern to the brain that is similar across different individuals and express a limited subset of chemosensory receptors. Prolactin modulates the responses within these neurons to discrete chemosensory cues contained in male urine, providing a mechanism by which the hormonal status can be directly linked with distinct olfactory cues to generate appropriate behavioral responses.
Collapse
Affiliation(s)
- Mari Aoki
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Igor Gamayun
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Amanda Wyatt
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Ramona Grünewald
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Martin Simon-Thomas
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Stephan E. Philipp
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Oliver Hummel
- Faculty of Computer Science, Mannheim University of Applied Sciences, Mannheim, Germany
| | - Stefan Wagenpfeil
- Institute for Medical Biometry, Epidemiology and Medical Informatics, Saarland University School of Medicine, Homburg, Germany
| | - Kathrin Kattler
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Gilles Gasparoni
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Jörn Walter
- Department of Genetics, Saarland University, Saarbrücken, Germany
| | - Sen Qiao
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - David R. Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ulrich Boehm
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| |
Collapse
|
20
|
Husson H, Bukanov NO, Moreno S, Smith MM, Richards B, Zhu C, Picariello T, Park H, Wang B, Natoli TA, Smith LA, Zanotti S, Russo RJ, Madden SL, Klinger KW, Modur V, Ibraghimov-Beskrovnaya O. Correction of cilia structure and function alleviates multi-organ pathology in Bardet-Biedl syndrome mice. Hum Mol Genet 2021; 29:2508-2522. [PMID: 32620959 PMCID: PMC7471507 DOI: 10.1093/hmg/ddaa138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/22/2020] [Accepted: 07/01/2020] [Indexed: 12/21/2022] Open
Abstract
Bardet–Biedl syndrome (BBS) is a pleiotropic autosomal recessive ciliopathy affecting multiple organs. The development of potential disease-modifying therapy for BBS will require concurrent targeting of multi-systemic manifestations. Here, we show for the first time that monosialodihexosylganglioside accumulates in Bbs2−/− cilia, indicating impairment of glycosphingolipid (GSL) metabolism in BBS. Consequently, we tested whether BBS pathology in Bbs2−/− mice can be reversed by targeting the underlying ciliary defect via reduction of GSL metabolism. Inhibition of GSL synthesis with the glucosylceramide synthase inhibitor Genz-667161 decreases the obesity, liver disease, retinal degeneration and olfaction defect in Bbs2−/− mice. These effects are secondary to preservation of ciliary structure and signaling, and stimulation of cellular differentiation. In conclusion, reduction of GSL metabolism resolves the multi-organ pathology of Bbs2−/− mice by directly preserving ciliary structure and function towards a normal phenotype. Since this approach does not rely on the correction of the underlying genetic mutation, it might translate successfully as a treatment for other ciliopathies.
Collapse
Affiliation(s)
- Hervé Husson
- Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA
| | - Nikolay O Bukanov
- Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA
| | - Sarah Moreno
- Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA
| | - Mandy M Smith
- Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA
| | | | - Cheng Zhu
- Translational Sciences, Sanofi, Framingham, MA 01701, USA
| | - Tyler Picariello
- Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA
| | - Hyejung Park
- Pre-Development Sciences, Sanofi, Waltham, MA 02451, USA
| | - Bing Wang
- Pre-Development Sciences, Sanofi, Waltham, MA 02451, USA
| | - Thomas A Natoli
- Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA
| | - Laurie A Smith
- Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA
| | - Stefano Zanotti
- Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA
| | - Ryan J Russo
- Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA
| | | | | | - Vijay Modur
- Rare Diseases Development, Sanofi, Cambridge, MA 02142, USA
| | | |
Collapse
|
21
|
Abstract
Olfaction is fundamentally distinct from other sensory modalities. Natural odor stimuli are complex mixtures of volatile chemicals that interact in the nose with a receptor array that, in rodents, is built from more than 1,000 unique receptors. These interactions dictate a peripheral olfactory code, which in the brain is transformed and reformatted as it is broadcast across a set of highly interconnected olfactory regions. Here we discuss the problems of characterizing peripheral population codes for olfactory stimuli, of inferring the specific functions of different higher olfactory areas given their extensive recurrence, and of ultimately understanding how odor representations are linked to perception and action. We argue that, despite the differences between olfaction and other sensory modalities, addressing these specific questions will reveal general principles underlying brain function.
Collapse
Affiliation(s)
- David H Brann
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Sandeep Robert Datta
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
22
|
Optogenetic Manipulation of Olfactory Responses in Transgenic Zebrafish: A Neurobiological and Behavioral Study. Int J Mol Sci 2021; 22:ijms22137191. [PMID: 34281244 PMCID: PMC8269104 DOI: 10.3390/ijms22137191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/01/2021] [Indexed: 11/18/2022] Open
Abstract
Olfaction is an important neural system for survival and fundamental behaviors such as predator avoidance, food finding, memory formation, reproduction, and social communication. However, the neural circuits and pathways associated with the olfactory system in various behaviors are not fully understood. Recent advances in optogenetics, high-resolution in vivo imaging, and reconstructions of neuronal circuits have created new opportunities to understand such neural circuits. Here, we generated a transgenic zebrafish to manipulate olfactory signal optically, expressing the Channelrhodopsin (ChR2) under the control of the olfactory specific promoter, omp. We observed light-induced neuronal activity of olfactory system in the transgenic fish by examining c-fos expression, and a calcium indicator suggesting that blue light stimulation caused activation of olfactory neurons in a non-invasive manner. To examine whether the photo-activation of olfactory sensory neurons affect behavior of zebrafish larvae, we devised a behavioral choice paradigm and tested how zebrafish larvae choose between two conflicting sensory cues, an aversive odor or the naturally preferred phototaxis. We found that when the conflicting cues (the preferred light and aversive odor) were presented together simultaneously, zebrafish larvae swam away from the aversive odor. However, the transgenic fish with photo-activation were insensitive to the aversive odor and exhibited olfactory desensitization upon optical stimulation of ChR2. These results show that an aversive olfactory stimulus can override phototaxis, and that olfaction is important in decision making in zebrafish. This new transgenic model will be useful for the analysis of olfaction related behaviors and for the dissection of underlying neural circuits.
Collapse
|
23
|
Bloom ML, Johnston LB, Datta SR. Renewal and Differentiation of GCD Necklace Olfactory Sensory Neurons. Chem Senses 2021; 45:333-346. [PMID: 32333759 DOI: 10.1093/chemse/bjaa027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Both canonical olfactory sensory neurons (OSNs) and sensory neurons belonging to the guanylate cyclase D (GCD) "necklace" subsystem are housed in the main olfactory epithelium, which is continuously bombarded by toxins, pathogens, and debris from the outside world. Canonical OSNs address this challenge, in part, by undergoing renewal through neurogenesis; however, it is not clear whether GCD OSNs also continuously regenerate and, if so, whether newborn GCD precursors follow a similar developmental trajectory to that taken by canonical OSNs. Here, we demonstrate that GCD OSNs are born throughout adulthood and can persist in the epithelium for several months. Phosphodiesterase 2A is upregulated early in the differentiation process, followed by the sequential downregulation of β-tubulin and the upregulation of CART protein. The GCD and MS4A receptors that confer sensory responses upon GCD neurons are initially expressed midway through this process but become most highly expressed once CART levels are maximal late in GCD OSN development. GCD OSN maturation is accompanied by a horizontal migration of neurons toward the central, curved portions of the cul-de-sac regions where necklace cells are concentrated. These findings demonstrate that-like their canonical counterparts-GCD OSNs undergo continuous renewal and define a GCD-specific developmental trajectory linking neurogenesis, maturation, and migration.
Collapse
|
24
|
Keller LA, Merkel O, Popp A. Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Deliv Transl Res 2021; 12:735-757. [PMID: 33491126 PMCID: PMC7829061 DOI: 10.1007/s13346-020-00891-5] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
Over the past 10 years, the interest in intranasal drug delivery in pharmaceutical R&D has increased. This review article summarises information on intranasal administration for local and systemic delivery, as well as for CNS indications. Nasal delivery offers many advantages over standard systemic delivery systems, such as its non-invasive character, a fast onset of action and in many cases reduced side effects due to a more targeted delivery. There are still formulation limitations and toxicological aspects to be optimised. Intranasal drug delivery in the field of drug development is an interesting delivery route for the treatment of neurological disorders. Systemic approaches often fail to efficiently supply the CNS with drugs. This review paper describes the anatomical, histological and physiological basis and summarises currently approved drugs for administration via intranasal delivery. Further, the review focuses on toxicological considerations of intranasally applied compounds and discusses formulation aspects that need to be considered for drug development.
Collapse
Affiliation(s)
- Lea-Adriana Keller
- Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81337 Munich, Germany
| | - Olivia Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5-13, 81337 Munich, Germany
| | - Andreas Popp
- Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
| |
Collapse
|
25
|
S1-Leitlinie: Neurologische Manifestationen bei COVID-19. DGNEUROLOGIE 2020. [PMCID: PMC7550844 DOI: 10.1007/s42451-020-00254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Hosseinzadeh M, Amiri BM, Poorbagher H, Perelló-Amorós M, Schlenk D. The effects of diazinon on the cell types and gene expression of the olfactory epithelium and whole-body hormone concentrations in the Persian sturgeon (Acipenser persicus). Comp Biochem Physiol A Mol Integr Physiol 2020; 250:110809. [PMID: 32971289 DOI: 10.1016/j.cbpa.2020.110809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/07/2022]
Abstract
The olfactory function and imprinting of odorant information of the native stream play a critical role during the homing migration in fish. Pesticides may impair olfactory imprinting by altering olfaction and hormone functions. The present study aimed to determine how diazinon impacts olfactory epithelium morphology and cell composition, as well as hormone concentrations in Persian sturgeon (Acipenser persicus) during their lifetime in freshwater and, also during diazinon-free saltwater acclimation. Fingerlings were exposed to 0, 150, 300, and 450 μg·L-1 of diazinon in freshwater for 7 days and then were transferred to diazinon-free saltwater by gradually increasing salinity up to 12 ppt. After diazinon exposure, the number of olfactory receptor cells (ORCs) and goblet cells (GCs) decreased and increased, respectively, and the expression of G-protein αolf (GPαolf) and calmodulin-dependent kinase II delta (CAMKIId) was down-regulated and up-regulated, respectively. Transferring the fish to diazinon-free saltwater (8 and 12 ppt) raised the number of ORCs, supporting cells (SCs), GCs, and GPαolf expression, and down-regulated CAMKIId without any significant differences among treatments. Exposure to diazinon increased whole-body cortisol at the high concentration, while decreased whole-body thyroxin (T4) and triiodothyronine (T3) in a dose-dependent manner. Although whole-body T4 and T3 increased in all the treatments after saltwater acclimation (8 and 12 ppt), the level of these hormones was lower in fish that had been exposed to diazinon than in the control. These results showed that diazinon can disrupt olfactory epithelium morphology and cell composition as well as hormone concentrations, which in turn may affect the olfactory imprinting in Persian sturgeon fingerlings.
Collapse
Affiliation(s)
- Mahboubeh Hosseinzadeh
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, 31585-4314 Karaj, Iran
| | - Bagher Mojazi Amiri
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, 31585-4314 Karaj, Iran.
| | - Hadi Poorbagher
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, 31585-4314 Karaj, Iran
| | - Miquel Perelló-Amorós
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
27
|
Gore S, Ukhanov K, Herbivo C, Asad N, Bobkov YV, Martens JR, Dore TM. Photoactivatable Odorants for Chemosensory Research. ACS Chem Biol 2020; 15:2516-2528. [PMID: 32865973 DOI: 10.1021/acschembio.0c00541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The chemosensory system of any animal relies on a vast array of detectors tuned to distinct chemical cues. Odorant receptors and the ion channels of the TRP family are all uniquely expressed in olfactory tissues in a species-specific manner. Great effort has been made to characterize the molecular and pharmacological properties of these proteins. Nevertheless, most of the natural ligands are highly hydrophobic molecules that are not amenable to controlled delivery. We sought to develop photoreleasable, biologically inactive odorants that could be delivered to the target receptor or ion channel and effectively activated by a short light pulse. Chemically distinct ligands eugenol, benzaldehyde, 2-phenethylamine, ethanethiol, butane-1-thiol, and 2,2-dimethylethane-1-thiol were modified by covalently attaching the photoremovable protecting group (8-cyano-7-hydroxyquinolin-2-yl)methyl (CyHQ). The CyHQ derivatives were shown to release the active odorant upon illumination with 365 and 405 nm light. We characterized their bioactivity by measuring activation of recombinant TRPV1 and TRPA1 ion channels expressed in HEK 293 cells and the electroolfactogram (EOG) response from intact mouse olfactory epithelium (OE). Illumination with 405 nm light was sufficient to robustly activate TRP channels within milliseconds of the light pulse. Photoactivation of channels was superior to activation by conventional bath application of the ligands. Photolysis of the CyHQ-protected odorants efficiently activated an EOG response in a dose-dependent manner with kinetics similar to that evoked by the vaporized odorant amyl acetate (AAc). We conclude that CyHQ-based, photoreleasable odorants can be successfully implemented in chemosensory research.
Collapse
Affiliation(s)
- Sangram Gore
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Kirill Ukhanov
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida 32610, United States
- Center for Smell and Taste, University of Florida, Gainesville, Florida 32610, United States
| | - Cyril Herbivo
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Naeem Asad
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Yuriy V. Bobkov
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida 32610, United States
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida 32080, United States
| | - Jeffrey R. Martens
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida 32610, United States
- Center for Smell and Taste, University of Florida, Gainesville, Florida 32610, United States
| | - Timothy M. Dore
- New York University Abu Dhabi, Saadiyat Island, PO Box 129188, Abu Dhabi, United Arab Emirates
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
28
|
Frezza E, Amans TM, Martin J. Allosteric Inhibition of Adenylyl Cyclase Type 5 by G-Protein: A Molecular Dynamics Study. Biomolecules 2020; 10:E1330. [PMID: 32957635 PMCID: PMC7563791 DOI: 10.3390/biom10091330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/17/2022] Open
Abstract
Adenylyl cyclases (ACs) have a crucial role in many signal transduction pathways, in particular in the intricate control of cyclic AMP (cAMP) generation from adenosine triphosphate (ATP). Using homology models developed from existing structural data and docking experiments, we have carried out all-atom, microsecond-scale molecular dynamics simulations on the AC5 isoform of adenylyl cyclase bound to the inhibitory G-protein subunit Gαi in the presence and in the absence of ATP. The results show that Gαi has significant effects on the structure and flexibility of adenylyl cyclase, as observed earlier for the binding of ATP and Gsα. New data on Gαi bound to the C1 domain of AC5 help explain how Gαi inhibits enzyme activity and obtain insight on its regulation. Simulations also suggest a crucial role of ATP in the regulation of the stimulation and inhibition of AC5.
Collapse
Affiliation(s)
- Elisa Frezza
- CiTCoM, CNRS, Université de Paris, F-75006 Paris, France
| | - Tina-Méryl Amans
- CNRS, UMR 5086 Molecular Microbiology and Structural Biochemistry, University of Lyon, F-69367 Lyon, France;
| | - Juliette Martin
- CNRS, UMR 5086 Molecular Microbiology and Structural Biochemistry, University of Lyon, F-69367 Lyon, France;
| |
Collapse
|
29
|
Aoued HS, Sannigrahi S, Hunter SC, Doshi N, Sathi ZS, Chan AWS, Walum H, Dias BG. Proximate causes and consequences of intergenerational influences of salient sensory experience. GENES BRAIN AND BEHAVIOR 2020; 19:e12638. [PMID: 31943801 DOI: 10.1111/gbb.12638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 12/20/2022]
Abstract
Salient sensory environments experienced by a parental generation can exert intergenerational influences on offspring. While these data provide an exciting new perspective on biological inheritance, questions remain about causes and consequences of intergenerational influences of salient sensory experience. We previously showed that exposing male mice to a salient olfactory experience, like olfactory fear conditioning, resulted in offspring demonstrating a sensitivity to the odor used to condition the paternal generation and possessing enhanced neuroanatomical representation for that odor. In this study, we first injected RNA extracted from sperm of male mice that underwent olfactory fear conditioning into naïve single-cell zygotes and found that adults that developed from these embryos had increased sensitivity and enhanced neuroanatomical representation for the odor (Odor A) with which the paternal male had been conditioned. Next, we found that female, but not male offspring sired by males conditioned with Odor A show enhanced consolidation of a weak single-trial Odor A + shock fear conditioning protocol. Our data provide evidence that RNA found in the paternal germline after exposure to salient sensory experiences can contribute to intergenerational influences of such experiences, and that such intergenerational influences confer an element of adaptation to the offspring. In so doing, our study of intergenerational influences of parental sensory experience adds to existing literature on intergenerational influences of parental exposures to stress and dietary manipulations and suggests that some causes (sperm RNA) and consequences (behavioral flexibility) of intergenerational influences of parental experiences may be conserved across a variety of parental experiences.
Collapse
Affiliation(s)
- Hadj S Aoued
- Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, Georgia
| | - Soma Sannigrahi
- Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, Georgia
| | - Sarah C Hunter
- Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, Georgia
| | - Nandini Doshi
- Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, Georgia
| | - Zakia S Sathi
- Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, Georgia
| | - Anthony W S Chan
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, Georgia.,Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Hasse Walum
- Division of Autism and Related Disabilities, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia.,Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia
| | - Brian G Dias
- Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Atlanta, Georgia.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
30
|
Abstract
Olfactory and taste receptors are expressed primarily in the nasal olfactory epithelium and gustatory taste bud cells, where they transmit real-time sensory signals to the brain. However, they are also expressed in multiple extra-nasal and extra-oral tissues, being implicated in diverse biological processes including sperm chemotaxis, muscle regeneration, bronchoconstriction and bronchodilatation, inflammation, appetite regulation and energy metabolism. Elucidation of the physiological roles of these ectopic receptors is revealing potential therapeutic and diagnostic applications in conditions including wounds, hair loss, asthma, obesity and cancers. This Review outlines current understanding of the diverse functions of ectopic olfactory and taste receptors and assesses their potential to be therapeutically exploited.
Collapse
|
31
|
Misawa N, Osaki T, Takeuchi S. Membrane protein-based biosensors. J R Soc Interface 2019; 15:rsif.2017.0952. [PMID: 29669891 DOI: 10.1098/rsif.2017.0952] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/19/2018] [Indexed: 01/09/2023] Open
Abstract
This review highlights recent development of biosensors that use the functions of membrane proteins. Membrane proteins are essential components of biological membranes and have a central role in detection of various environmental stimuli such as olfaction and gustation. A number of studies have attempted for development of biosensors using the sensing property of these membrane proteins. Their specificity to target molecules is particularly attractive as it is significantly superior to that of traditional human-made sensors. In this review, we classified the membrane protein-based biosensors into two platforms: the lipid bilayer-based platform and the cell-based platform. On lipid bilayer platforms, the membrane proteins are embedded in a lipid bilayer that bridges between the protein and a sensor device. On cell-based platforms, the membrane proteins are expressed in a cultured cell, which is then integrated in a sensor device. For both platforms we introduce the fundamental information and the recent progress in the development of the biosensors, and remark on the outlook for practical biosensing applications.
Collapse
Affiliation(s)
- Nobuo Misawa
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu, Kawasaki 213-0012, Japan
| | - Toshihisa Osaki
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu, Kawasaki 213-0012, Japan.,Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| | - Shoji Takeuchi
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu, Kawasaki 213-0012, Japan .,Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| |
Collapse
|
32
|
Enhancement of membrane protein reconstitution on 3D free-standing lipid bilayer array in a microfluidic channel. Biosens Bioelectron 2019; 141:111404. [DOI: 10.1016/j.bios.2019.111404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/24/2019] [Accepted: 06/01/2019] [Indexed: 12/11/2022]
|
33
|
Fukutani Y, Tamaki R, Inoue R, Koshizawa T, Sakashita S, Ikegami K, Ohsawa I, Matsunami H, Yohda M. The N-terminal region of RTP1S plays important roles in dimer formation and odorant receptor-trafficking. J Biol Chem 2019; 294:14661-14673. [PMID: 31395660 PMCID: PMC6779431 DOI: 10.1074/jbc.ra118.007110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 07/30/2019] [Indexed: 12/31/2022] Open
Abstract
Receptor-transporting protein 1S (RTP1S) is an accessory protein that mediates the transport of mammalian odorant receptors (ORs) into the plasma membrane. Although most ORs fail to localize to the cell surface when expressed alone in nonolfactory cells, functional expression of ORs is achieved with the coexpression of RTP1S. However, the mechanism for RTP1S-mediated OR trafficking remains unclear. In this study, we attempted to reveal the mode of action and critical residues of RTP1S in OR trafficking. Experiments using N-terminal truncation and Ala substitution mutants of RTP1S demonstrated that four N-terminal amino acids have essential roles in OR trafficking. Additionally, using recombinant proteins and split luciferase assays in mammalian cells, we provided evidence for the dimer formation of RTP1S. Furthermore, we determined that the 2nd Cys residue is required for the efficient dimerization of RTP1S. Altogether, these findings provide insights into the mechanism for plasma membrane transport of ORs by RTP1S.
Collapse
Affiliation(s)
- Yosuke Fukutani
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Ryohei Tamaki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Ryosuke Inoue
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Tomoyo Koshizawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Shuto Sakashita
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Kentaro Ikegami
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Ikuroh Ohsawa
- Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710.,Department of Neurobiology, Duke Institute for Brain Sciences, Duke University Medical Center, Durham, North Carolina 27705.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan .,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
34
|
Genva M, Kenne Kemene T, Deleu M, Lins L, Fauconnier ML. Is It Possible to Predict the Odor of a Molecule on the Basis of its Structure? Int J Mol Sci 2019; 20:ijms20123018. [PMID: 31226833 PMCID: PMC6627536 DOI: 10.3390/ijms20123018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
The olfactory sense is the dominant sensory perception for many animals. When Richard Axel and Linda B. Buck received the Nobel Prize in 2004 for discovering the G protein-coupled receptors’ role in olfactory cells, they highlighted the importance of olfaction to the scientific community. Several theories have tried to explain how cells are able to distinguish such a wide variety of odorant molecules in a complex context in which enantiomers can result in completely different perceptions and structurally different molecules. Moreover, sex, age, cultural origin, and individual differences contribute to odor perception variations that complicate the picture. In this article, recent advances in olfaction theory are presented, and future trends in human olfaction such as structure-based odor prediction and artificial sniffing are discussed at the frontiers of chemistry, physiology, neurobiology, and machine learning.
Collapse
Affiliation(s)
- Manon Genva
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.
| | - Tierry Kenne Kemene
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.
| | - Magali Deleu
- Laboratory of Molecular Biophysics at Interfaces, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.
| | - Laurence Lins
- Laboratory of Molecular Biophysics at Interfaces, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.
| |
Collapse
|
35
|
OR14I1 is a receptor for the human cytomegalovirus pentameric complex and defines viral epithelial cell tropism. Proc Natl Acad Sci U S A 2019; 116:7043-7052. [PMID: 30894498 PMCID: PMC6452726 DOI: 10.1073/pnas.1814850116] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A human cytomegalovirus (HCMV) pentameric glycoprotein complex (PC), gH-gL-UL128-UL130-UL131A, is necessary for viral infection of clinically relevant cell types, including epithelial cells, which are important for interhost transmission and disease. We performed genome-wide CRISPR/Cas9 screens of different cell types in parallel to identify host genes specifically required for HCMV infection of epithelial cells. This effort identified a multipass membrane protein, OR14I1, as a receptor for HCMV infection. This olfactory receptor family member is required for HCMV attachment, entry, and infection of epithelial cells and is dependent on the presence of viral PC. OR14I1 is required for AKT activation and mediates endocytosis entry of HCMV. We further found that HCMV infection of epithelial cells is blocked by a synthetic OR14I1 peptide and inhibitors of adenylate cyclase and protein kinase A (PKA) signaling. Identification of OR14I1 as a PC-dependent HCMV host receptor associated with epithelial tropism and the role of the adenylate cyclase/PKA/AKT-mediated signaling pathway in HCMV infection reveal previously unappreciated targets for the development of vaccines and antiviral therapies.
Collapse
|
36
|
Morgan JLW, Evans EGB, Zagotta WN. Functional characterization and optimization of a bacterial cyclic nucleotide-gated channel. J Biol Chem 2019; 294:7503-7515. [PMID: 30885945 DOI: 10.1074/jbc.ra119.007699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/15/2019] [Indexed: 02/01/2023] Open
Abstract
Cyclic nucleotide-gated (CNG) channels produce the initial electrical signal in mammalian vision and olfaction. They open in response to direct binding of cyclic nucleotide (cAMP or cGMP) to a cytoplasmic region of the channel. However, the conformational rearrangements occurring upon binding to produce pore opening (i.e. gating) are not well understood. SthK is a bacterial CNG channel that has the potential to serve as an ideal model for structure-function studies of gating but is currently limited by its toxicity, native cysteines, and low open probability (P o). Here, we expressed SthK in giant Escherichia coli spheroplasts and performed patch-clamp recordings to characterize SthK gating in a bacterial membrane. We demonstrated that the P o in cAMP is higher than has been previously published and that cGMP acts as a weak partial SthK agonist. Additionally, we determined that SthK expression is toxic to E. coli because of gating by cytoplasmic cAMP. We overcame this toxicity by developing an adenylate cyclase-knockout E. coli cell line. Finally, we generated a cysteine-free SthK construct and introduced mutations that further increase the P o in cAMP. We propose that this SthK model will help elucidate the gating mechanism of CNG channels.
Collapse
Affiliation(s)
- Jacob L W Morgan
- From the Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - Eric G B Evans
- From the Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| | - William N Zagotta
- From the Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195
| |
Collapse
|
37
|
Zhou Y, Qiu L, Sterpka A, Wang H, Chu F, Chen X. Comparative Phosphoproteomic Profiling of Type III Adenylyl Cyclase Knockout and Control, Male, and Female Mice. Front Cell Neurosci 2019; 13:34. [PMID: 30814930 PMCID: PMC6381875 DOI: 10.3389/fncel.2019.00034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/23/2019] [Indexed: 11/26/2022] Open
Abstract
Type III adenylyl cyclase (AC3, ADCY3) is predominantly enriched in neuronal primary cilia throughout the central nervous system (CNS). Genome-wide association studies in humans have associated ADCY3 with major depressive disorder and autistic spectrum disorder, both of which exhibit sexual dimorphism. To date, it is unclear how AC3 affects protein phosphorylation and signal networks in central neurons, and what causes the sexual dimorphism of autism. We employed a mass spectrometry (MS)-based phosphoproteomic approach to quantitatively profile differences in phosphorylation between inducible AC3 knockout (KO) and wild type (WT), male and female mice. In total, we identified 4,655 phosphopeptides from 1,756 proteins, among which 565 phosphopeptides from 322 proteins were repetitively detected in all samples. Over 46% phosphopeptides were identified in at least three out of eight biological replicas. Comparison of AC3 KO and WT datasets revealed that phosphopeptides with motifs matching proline-directed kinases' recognition sites had a lower abundance in the KO dataset than in WTs. We detected 14 phosphopeptides restricted to WT dataset (i.e., Rabl6, Spast and Ppp1r14a) and 35 exclusively in KOs (i.e., Sptan1, Arhgap20, Arhgap44, and Pde1b). Moreover, 95 phosphopeptides (out of 90 proteins) were identified only in female dataset and 26 only in males. Label-free MS spectrum quantification using Skyline further identified phosphopeptides that had higher abundance in each sample group. In total, 204 proteins had sex-biased phosphorylation and 167 of them had increased expression in females relative to males. Interestingly, among the 204 gender-biased phosphoproteins, 31% were found to be associated with autism, including Dlg1, Dlgap2, Syn1, Syngap1, Ctnna1, Ctnnd1, Ctnnd2, Pkp4, and Arvcf. Therefore, this study also provides the first phosphoproteomics evidence suggesting that gender-biased post-translational phosphorylation may be implicated in the sexual dimorphism of autism.
Collapse
Affiliation(s)
- Yuxin Zhou
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Liyan Qiu
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Ashley Sterpka
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Haiying Wang
- Department of Statistics, University of Connecticut, Storrs, CT, United States
| | - Feixia Chu
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Xuanmao Chen
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
38
|
Salazar I, Sanchez-Quinteiro P, Barrios AW, López Amado M, Vega JA. Anatomy of the olfactory mucosa. HANDBOOK OF CLINICAL NEUROLOGY 2019; 164:47-65. [PMID: 31604563 DOI: 10.1016/b978-0-444-63855-7.00004-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The classic notion that humans are microsmatic animals was born from comparative anatomy studies showing the reduction in the size of both the olfactory bulbs and the limbic brain relative to the whole brain. However, the human olfactory system contains a number of neurons comparable to that of most other mammals, and humans have exquisite olfactory abilities. Major advances in molecular and genetic research have resulted in the identification of extremely large gene families that express receptors for sensing odors. Such advances have led to a renaissance of studies focused on both human and nonhuman aspects of olfactory physiology and function. Evidence that olfactory dysfunction is among the earliest signs of a number of neurodegenerative and neuropsychiatric disorders has led to considerable interest in the use of olfactory epithelial biopsies for potentially identifying such disorders. Moreover, the unique features of the olfactory ensheathing cells have made the olfactory mucosa a promising and unexpected source of cells for treating spinal cord injuries and other neural injuries in which cell guidance is critical. The olfactory system of humans and other primates differs in many ways from that of other species. In this chapter we provide an overview of the anatomy of not only the human olfactory mucosa but of mucosae from a range of mammals from which more detailed information is available. Basic information regarding the general organization of the olfactory mucosa, including its receptor cells and the large number of other cell types critical for their maintenance and function, is provided. Cross-species comparisons are made when appropriate. The polemic issue of the human vomeronasal organ in both the adult and fetus is discussed, along with recent findings regarding olfactory subsystems within the nose of a number of mammals (e.g., the septal organ and Grüneberg ganglion).
Collapse
Affiliation(s)
- Ignacio Salazar
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Unit of Anatomy and Embryology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain.
| | - Pablo Sanchez-Quinteiro
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Unit of Anatomy and Embryology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Arthur W Barrios
- Laboratory of Histology, Embryology and Animal Pathology, Faculty of Veterinary Medicine, University Nacional Mayor of San Marcos, Lima, Peru
| | - Manuel López Amado
- Department of Otorhinolaryngology, University Hospital La Coruña, La Coruña, Spain
| | - José A Vega
- Unit of Anatomy, Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| |
Collapse
|
39
|
The complexity of the cilium: spatiotemporal diversity of an ancient organelle. Curr Opin Cell Biol 2018; 55:139-149. [PMID: 30138887 DOI: 10.1016/j.ceb.2018.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023]
Abstract
Cilia are microtubule-based appendages present on almost all vertebrate cell types where they mediate a myriad of cellular processes critical for development and homeostasis. In humans, impaired ciliary function is associated with an ever-expanding repertoire of phenotypically-overlapping yet highly variable genetic disorders, the ciliopathies. Extensive work to elucidate the structure, function, and composition of the cilium is offering hints that the `static' representation of the cilium is a gross oversimplification of a highly dynamic organelle whose functions are choreographed dynamically across cell types, developmental, and homeostatic contexts. Understanding this diversity will require discerning ciliary versus non-ciliary roles for classically-defined `ciliary' proteins; defining ciliary protein-protein interaction networks within and beyond the cilium; and resolving the spatiotemporal diversity of ciliary structure and function. Here, focusing on one evolutionarily conserved ciliary module, the intraflagellar transport system, we explore these ideas and propose potential future studies that will improve our knowledge gaps of the oversimplified cilium and, by extension, inform the reasons that underscore the striking range of clinical pathologies associated with ciliary dysfunction.
Collapse
|
40
|
Kaelberer MM, Bohórquez DV. The now and then of gut-brain signaling. Brain Res 2018; 1693:192-196. [PMID: 29580839 DOI: 10.1016/j.brainres.2018.03.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 01/06/2023]
Abstract
Since their very beginnings, animals had gut sensory epithelial cells. In one of the first multicellular animals, Trichoplax - a literal wandering gut - food sensing and feeding was coordinated by specialized ventral sensor cells. In mammals, including humans, gut epithelial sensor cells (a.k.a enteroendocrine cells) have been recognized for an array of neuropeptides, like ghrelin and cholecystokinin, that modulate hunger or satiety. Indeed, since first described as "clear cells" by Rudfolf Heidenhain (1868), research efforts increasingly focused on their hormone neuropeptides leading to the alphabetical classification of one cell-one hormone (e.g. I-cell synthesizes only cholecystokinin). A recent explosion of molecular tools to study the biology of single cells is expanding the imagination of studies and unveiling intriguing aspects of gut sensory transduction. To mention a few: multimodal sensing, one cell expressing both ghrelin and cholecystokinin-the yin and yang of appetite-, and synapses with nerves. This brief account examines recent advances on gut sensory transduction to highlight how food and bacteria in the gut alter eating.
Collapse
Affiliation(s)
- Melanie M Kaelberer
- Division of Gastroenterology, Department of Medicine, Duke University, #221A, Medical Sciences Research Building 1, 203 Research Drive, Durham, NC, USA
| | - Diego V Bohórquez
- Division of Gastroenterology, Department of Medicine, Duke University, #221A, Medical Sciences Research Building 1, 203 Research Drive, Durham, NC, USA; Department of Neurobiology, Duke University, #221A, Medical Sciences Research Building 1, 203 Research Drive, Durham, NC, USA.
| |
Collapse
|
41
|
Asakawa M, Fukutani Y, Savangsuksa A, Noguchi K, Matsunami H, Yohda M. Modification of the response of olfactory receptors to acetophenone by CYP1a2. Sci Rep 2017; 7:10167. [PMID: 28860658 PMCID: PMC5579037 DOI: 10.1038/s41598-017-10862-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 08/16/2017] [Indexed: 01/03/2023] Open
Abstract
Olfaction is mediated by the binding of odorant molecules to olfactory receptors (ORs). There are numerous proteins in the nasal mucus, and they contribute to olfaction through various mechanisms. Cytochrome P450 (CYP) family members are known to be present in the olfactory epithelium and are thought to affect olfaction by enzymatic conversion of odorant molecules. In this study, we examined the effects of CYPs on the ligand responses of ORs in heterologous cells. Among the CYPs tested, co-expression of CYP1a2 significantly affected the responses of various ORs, including MOR161-2, to acetophenone. Conversion of acetophenone to methyl salicylate was observed in the medium of CYP1a2-expressing cells. MOR161-2-expressing cells exhibited significantly greater responses to methyl salicylate than to acetophenone. Finally, we analyzed the responses of olfactory neurons expressing MOR161-2 in vivo using the phosphorylated ribosomal protein S6 as a marker. MOR161-2 responded to both acetophenone and methyl salicylate in vivo. When the olfactory mucus was washed out by the injection of PBS to mouse nasal cavity, the response of MOR161-2 to acetophenone was reduced, while that to methyl salicylate did not change. Our data suggest that CYP1a2 affects OR activation by converting acetophenone to methyl salicylate.
Collapse
Affiliation(s)
- Masashi Asakawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Yosuke Fukutani
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Aulaphan Savangsuksa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Keiich Noguchi
- Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan. .,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
42
|
Jang S, Hyeon C. Kinetic Model for the Activation of Mammalian Olfactory Receptor. J Phys Chem B 2017; 121:1304-1311. [PMID: 28118707 DOI: 10.1021/acs.jpcb.7b00486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The sense of smell is triggered by binding of odorants to a set of olfactory receptors (ORs), the activation of which generates specific patterns of neuronal signals in olfactory bulbs. Despite a long history of research and speculations, very little is known about the actual mechanism of OR activation. In particular, there is virtually no theoretical framework capable of describing the kinetics of olfactory activation at a quantitative level. Based on the fact that mammalian ORs belong to a class of G-protein coupled receptors (GPCRs) and utilizing the information available from recent studies on other types of GPCRs with known structural data, we construct a minimal kinetic model for mammalian olfactory activation, obtaining a new expression for the signal strength as a function of odorant and G-protein concentrations and defining this as odor activity (OA). The parametric dependence of OA on equilibrium dissociation and rate constants provides a new comprehensive means to describe how odorant-OR binding kinetics affects the odor signal, and offers new quantitative criteria for classifying agonistic, partially agonistic, and antagonistic (or inverse agonistic) behavior. The dependence of OA on the concentration of G-proteins also suggests a new experimental method to determine key equilibrium constants for odorant-OR and G-protein-OR association/dissociation processes.
Collapse
Affiliation(s)
- Seogjoo Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York , 65-30 Kissena Boulevard, Queens, New York 11367, United States.,PhD programs in Chemistry and Physics, and Initiative for Theoretical Sciences, Graduate Center, City University of New York , 365 Fifth Avenue, New York, New York 10016, United States
| | - Changbong Hyeon
- School of Computational Sciences, Korea Institute for Advanced Study , Hoegiro 85, Dongdaemun-gu, Seoul 02455, Korea
| |
Collapse
|
43
|
Jovancevic N, Wunderlich KA, Haering C, Flegel C, Maßberg D, Weinrich M, Weber L, Tebbe L, Kampik A, Gisselmann G, Wolfrum U, Hatt H, Gelis L. Deep Sequencing of the Human Retinae Reveals the Expression of Odorant Receptors. Front Cell Neurosci 2017; 11:03. [PMID: 28174521 PMCID: PMC5258773 DOI: 10.3389/fncel.2017.00003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/09/2017] [Indexed: 01/17/2023] Open
Abstract
Several studies have demonstrated that the expression of odorant receptors (ORs) occurs in various tissues. These findings have served as a basis for functional studies that demonstrate the potential of ORs as drug targets for a clinical application. To the best of our knowledge, this report describes the first evaluation of the mRNA expression of ORs and the localization of OR proteins in the human retina that set a stage for subsequent functional analyses. RNA-Sequencing datasets of three individual neural retinae were generated using Next-generation sequencing and were compared to previously published but reanalyzed datasets of the peripheral and the macular human retina and to reference tissues. The protein localization of several ORs was investigated by immunohistochemistry. The transcriptome analyses detected an average of 14 OR transcripts in the neural retina, of which OR6B3 is one of the most highly expressed ORs. Immunohistochemical stainings of retina sections localized OR2W3 to the photosensitive outer segment membranes of cones, whereas OR6B3 was found in various cell types. OR5P3 and OR10AD1 were detected at the base of the photoreceptor connecting cilium, and OR10AD1 was also localized to the nuclear envelope of all of the nuclei of the retina. The cell type-specific expression of the ORs in the retina suggests that there are unique biological functions for those receptors.
Collapse
Affiliation(s)
| | - Kirsten A Wunderlich
- Department of Cell and Matrix Biology, Johannes Gutenberg University of Mainz Mainz, Germany
| | - Claudia Haering
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Caroline Flegel
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Désirée Maßberg
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Markus Weinrich
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Lea Weber
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Lars Tebbe
- Department of Cell and Matrix Biology, Johannes Gutenberg University of Mainz Mainz, Germany
| | - Anselm Kampik
- Department of Ophthalmology, Ludwig Maximilian University of Munich Munich, Germany
| | - Günter Gisselmann
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Uwe Wolfrum
- Department of Cell and Matrix Biology, Johannes Gutenberg University of Mainz Mainz, Germany
| | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| | - Lian Gelis
- Department of Cell Physiology, Ruhr-University Bochum Bochum, Germany
| |
Collapse
|
44
|
Belloir C, Miller-Leseigneur ML, Neiers F, Briand L, Le Bon AM. Biophysical and functional characterization of the human olfactory receptor OR1A1 expressed in a mammalian inducible cell line. Protein Expr Purif 2017; 129:31-43. [DOI: 10.1016/j.pep.2016.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/07/2016] [Accepted: 09/15/2016] [Indexed: 10/21/2022]
|
45
|
Kawamura S, Melin AD. Evolution of Genes for Color Vision and the Chemical Senses in Primates. EVOLUTION OF THE HUMAN GENOME I 2017. [DOI: 10.1007/978-4-431-56603-8_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
46
|
Lhx2 Determines Odorant Receptor Expression Frequency in Mature Olfactory Sensory Neurons. eNeuro 2016; 3:eN-NWR-0230-16. [PMID: 27822500 PMCID: PMC5086798 DOI: 10.1523/eneuro.0230-16.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/04/2016] [Accepted: 10/10/2016] [Indexed: 02/08/2023] Open
Abstract
A developmental program of epigenetic repression prepares each mammalian olfactory sensory neuron (OSN) to strongly express one allele from just one of hundreds of odorant receptor (OR) genes, but what completes this process of OR gene choice by driving the expression of this allele is incompletely understood. Conditional deletion experiments in mice demonstrate that Lhx2 is necessary for normal expression frequencies of nearly all ORs and all trace amine-associated receptors, irrespective of whether the deletion of Lhx2 is initiated in immature or mature OSNs. Given previous evidence that Lhx2 binds OR gene control elements, these findings indicate that Lhx2 is directly involved in driving OR expression. The data also support the conclusion that OR expression is necessary to allow immature OSNs to complete differentiation and become mature. In contrast to the robust effects of conditional deletion of Lhx2, the loss of Emx2 has much smaller effects and more often causes increased expression frequencies. Lhx2:Emx2 double mutants show opposing effects on Olfr15 expression that reveal independent effects of these two transcription factors. While Lhx2 is necessary for OR expression that supports OR gene choice, Emx2 can act differently; perhaps by helping to control the availability of OR genes for expression.
Collapse
|
47
|
Gao S, Liu S, Yao J, Li N, Yuan Z, Zhou T, Li Q, Liu Z. Genomic organization and evolution of olfactory receptors and trace amine-associated receptors in channel catfish, Ictalurus punctatus. Biochim Biophys Acta Gen Subj 2016; 1861:644-651. [PMID: 27773705 DOI: 10.1016/j.bbagen.2016.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/05/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Channel catfish (Ictalurus punctatus) live in turbid waters with limited visibility to chase prey within a certain distance. This can be compensated through detecting specific water-soluble substances by the olfactory receptors (ORs) and trace amine associated receptors (TAARs) expressed on the olfactory epithelium. METHODS We identified the OR and TAAR repertoires in channel catfish, and characterized the genomic organizations of these two gene families by data mining available genomic resources. RESULTS A total of 47 putative OR genes and 36 putative TAAR genes were identified in the channel catfish genome, including 27 functional OR genes and 28 functional TAAR genes. Phylogenetic and orthogroup analyses were conducted to illustrate the evolutionary dynamics of the vertebrate ORs and TAARs. Collinear analysis revealed the presence of two conserved orthologous blocks that contain OR genes between the catfish genome and zebrafish genome. The complete loss of a conserved motif in fish OR family H may contribute to the divergence of family H from other families. The dN/dS analysis indicated that the highest degree of selection pressure was imposed on TAAR subfamily 14 among all fish ORs and TAARs. CONCLUSIONS The present study provides understanding of the evolutionary dynamics of the two gene families (OR and TAAR) associated with olfaction in channel catfish. GENERAL SIGNIFICANCE This is the first systematic study of ORs and TAARs in catfish, which could provide valuable genomic resources for further investigation of olfactory mechanisms in teleost fish.
Collapse
Affiliation(s)
- Sen Gao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jun Yao
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Ning Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Qi Li
- Key Laboratory of Mariculture Ministry of Education, Ocean University of China, Qingdao, China
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
48
|
Shepard BD, Cheval L, Peterlin Z, Firestein S, Koepsell H, Doucet A, Pluznick JL. A Renal Olfactory Receptor Aids in Kidney Glucose Handling. Sci Rep 2016; 6:35215. [PMID: 27739476 PMCID: PMC5064317 DOI: 10.1038/srep35215] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/22/2016] [Indexed: 12/27/2022] Open
Abstract
Olfactory receptors (ORs) are G protein-coupled receptors which serve important sensory functions beyond their role as odorant detectors in the olfactory epithelium. Here we describe a novel role for one of these ORs, Olfr1393, as a regulator of renal glucose handling. Olfr1393 is specifically expressed in the kidney proximal tubule, which is the site of renal glucose reabsorption. Olfr1393 knockout mice exhibit urinary glucose wasting and improved glucose tolerance, despite euglycemia and normal insulin levels. Consistent with this phenotype, Olfr1393 knockout mice have a significant decrease in luminal expression of Sglt1, a key renal glucose transporter, uncovering a novel regulatory pathway involving Olfr1393 and Sglt1. In addition, by utilizing a large scale screen of over 1400 chemicals we reveal the ligand profile of Olfr1393 for the first time, offering new insight into potential pathways of physiological regulation for this novel signaling pathway.
Collapse
Affiliation(s)
- Blythe D. Shepard
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lydie Cheval
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, CNRS, ERL 8228, Centre de Recherche des Cordeliers, Paris, France
| | - Zita Peterlin
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Stuart Firestein
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Hermann Koepsell
- Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University Wurzburg, Julius-von-Sachs-Platz 2, 97082 Wurzburg, Germany
| | - Alain Doucet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, CNRS, ERL 8228, Centre de Recherche des Cordeliers, Paris, France
| | - Jennifer L. Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
49
|
Williams CR, MacDonald JW, Bammler TK, Paulsen MH, Simpson CD, Gallagher EP. From the Cover: Cadmium Exposure Differentially Alters Odorant-Driven Behaviors and Expression of Olfactory Receptors in Juvenile Coho Salmon (Oncorhynchus kisutch). Toxicol Sci 2016; 154:267-277. [PMID: 27621283 DOI: 10.1093/toxsci/kfw172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Salmon exposed to waterborne metals can experience olfactory impairment leading to disrupted chemosensation. In the current study, we investigated the effects of cadmium (Cd) on salmon olfactory function by modeling an exposure scenario where juvenile salmon transiently migrate through a polluted waterway. Coho were exposed to environmentally relevant concentrations of waterborne Cd (2 and 30 µg/L) for 48 h and (0.3 and 2 μg/L) for 16 days, followed by a 16-day depuration associated with outmigration. Cadmium exposures inhibited behavioral responses towards L-cysteine and conspecific odorants, with effects persisting following the depuration. Behavioral alterations following the 30 µg/L exposure were associated with increased olfactory epithelial gene expression of metallothionein (mt1a) and heme oxygenase (hmox1); reduced expression of olfactory signal transduction (OST) molecules; and reduced expression of mRNAs encoding major coho odorant receptors (ORs). Salmon OR array analysis indicated that Cd preferentially impacted expression of OST and OR markers for ciliated olfactory sensory neurons (OSNs) relative to microvillus OSNs, suggesting a differential sensitivity of these two major OSN populations. Behavioral alterations on exposure to 0.3 and 2 µg/L Cd were associated with increased mt1a, but not with major histological or OR molecular changes, likely indicating disrupted OST as a major mechanism underlying the behavioral dysfunction at the low-level Cd exposures. Laser-ablation mass spectrometry analysis revealed that the OSN injury and behavioral dysfunction was associated with significant Cd bioaccumulation within the olfactory sensory epithelium. In summary, low-level Cd exposures associated with polluted waterways can induce differential and persistent olfactory dysfunction in juvenile coho salmon.
Collapse
Affiliation(s)
- Chase R Williams
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Michael H Paulsen
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Christopher D Simpson
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| | - Evan P Gallagher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105
| |
Collapse
|
50
|
Decreased demand for olfactory periglomerular cells impacts on neural precursor cell viability in the rostral migratory stream. Sci Rep 2016; 6:32203. [PMID: 27573347 PMCID: PMC5004164 DOI: 10.1038/srep32203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/03/2016] [Indexed: 11/17/2022] Open
Abstract
The subventricular zone (SVZ) provides a constant supply of new neurons to the olfactory bulb (OB). Different studies have investigated the role of olfactory sensory input to neural precursor cell (NPC) turnover in the SVZ but it was not addressed if a reduced demand specifically for periglomerular neurons impacts on NPC-traits in the rostral migratory stream (RMS). We here report that membrane type-1 matrix metalloproteinase (MT1-MMP) deficient mice have reduced complexity of the nasal turbinates, decreased sensory innervation of the OB, reduced numbers of olfactory glomeruli and reduced OB-size without alterations in SVZ neurogenesis. Large parts of the RMS were fully preserved in MT1-MMP-deficient mice, but we detected an increase in cell death-levels and a decrease in SVZ-derived neuroblasts in the distal RMS, as compared to controls. BrdU-tracking experiments showed that homing of NPCs specifically to the glomerular layer was reduced in MT1-MMP-deficient mice in contrast to controls while numbers of tracked cells remained equal in other OB-layers throughout all experimental groups. Altogether, our data show the demand for olfactory interneurons in the glomerular layer modulates cell turnover in the RMS, but has no impact on subventricular neurogenesis.
Collapse
|