1
|
Basso M, Mahuzier A, Ali SK, Marty A, Faucourt M, Lennon-Duménil AM, Srivastava A, Khoury Damaa M, Bankolé A, Meunier A, Yamada A, Plastino J, Spassky N, Delgehyr N. Actin-based deformations of the nucleus control mouse multiciliated ependymal cell differentiation. Dev Cell 2024:S1534-5807(24)00673-7. [PMID: 39662468 DOI: 10.1016/j.devcel.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 07/16/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024]
Abstract
Ependymal cells (ECs) are multiciliated cells in the brain that contribute to cerebrospinal fluid flow. ECs are specified during embryonic stages but differentiate later in development. Their differentiation depends on genes such as GEMC1 and MCIDAS in conjunction with E2F4/5 as well as on cell-cycle-related factors. In the mouse brain, we observe that nuclear deformation accompanies EC differentiation. Tampering with these deformations either by decreasing F-actin levels or by severing the link between the nucleus and the actin cytoskeleton blocks differentiation. Conversely, increasing F-actin by knocking out the Arp2/3 complex inhibitor Arpin or artificially deforming the nucleus activates differentiation. These data are consistent with actin polymerization triggering nuclear deformation and jump starting the signaling that produces ECs. A player in this process is the retinoblastoma 1 (RB1) protein, whose phosphorylation prompts MCIDAS activation. Overall, this study identifies a role for actin-based mechanical inputs to the nucleus as controlling factors in cell differentiation.
Collapse
Affiliation(s)
- Marianne Basso
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Alexia Mahuzier
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Syed Kaabir Ali
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France; Laboratoire de physique de l'Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France; PASTEUR, Département de Chimie, Ecole Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005 Paris, France
| | - Anaïs Marty
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005 Paris, France
| | - Marion Faucourt
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | | | - Ayush Srivastava
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Michella Khoury Damaa
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Alexia Bankolé
- Institut Necker Enfants Malades (INEM), Université Paris Cité, CNRS, INSERM, 75015 Paris, France
| | - Alice Meunier
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Ayako Yamada
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005 Paris, France
| | - Julie Plastino
- Laboratoire de physique de l'Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Nathalie Spassky
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Nathalie Delgehyr
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| |
Collapse
|
2
|
Nikhil K, Shah K. The significant others of aurora kinase a in cancer: combination is the key. Biomark Res 2024; 12:109. [PMID: 39334449 PMCID: PMC11438406 DOI: 10.1186/s40364-024-00651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
AURKA is predominantly famous as an essential mitotic kinase. Recent findings have also established its critical role in a plethora of other biological processes including ciliogenesis, mitochondrial dynamics, neuronal outgrowth, DNA replication and cell cycle progression. AURKA overexpression in numerous cancers is strongly associated with poor prognosis and survival. Still no AURKA-targeted drug has been approved yet, partially because of the associated collateral toxicity and partly due to its limited efficacy as a single agent in a wide range of tumors. Mechanistically, AURKA overexpression allows it to phosphorylate numerous pathological substrates promoting highly aggressive oncogenic phenotypes. Our review examines the most recent advances in AURKA regulation and focuses on 33 such direct cancer-specific targets of AURKA and their associated oncogenic signaling cascades. One of the common themes that emerge is that AURKA is often involved in a feedback loop with its substrates, which could be the decisive factor causing its sustained upregulation and hyperactivation in cancer cells, an Achilles heel not exploited before. This dynamic interplay between AURKA and its substrates offers potential opportunities for targeted therapeutic interventions. By targeting these substrates, it may be possible to disrupt this feedback loop to effectively reverse AURKA levels, thereby providing a promising avenue for developing safer AURKA-targeted therapeutics. Additionally, exploring the synergistic effects of AURKA inhibition with its other oncogenic and/or tumor-suppressor targets could provide further opportunities for developing effective combination therapies against AURKA-driven cancers, thereby maximizing its potential as a critical drug target.
Collapse
Affiliation(s)
- Kumar Nikhil
- Department of Chemistry, Purdue University Institute for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA.
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India.
| | - Kavita Shah
- Department of Chemistry, Purdue University Institute for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
3
|
Banks E, Francis V, Lin SJ, Kharfallah F, Fonov V, Lévesque M, Han C, Kulasekaran G, Tuznik M, Bayati A, Al-Khater R, Alkuraya FS, Argyriou L, Babaei M, Bahlo M, Bakhshoodeh B, Barr E, Bartik L, Bassiony M, Bertrand M, Braun D, Buchert R, Budetta M, Cadieux-Dion M, Calame DG, Cope H, Cushing D, Efthymiou S, Elmaksoud MA, El Said HG, Froukh T, Gill HK, Gleeson JG, Gogoll L, Goh ESY, Gowda VK, Haack TB, Hashem MO, Hauser S, Hoffman TL, Hogue JS, Hosokawa A, Houlden H, Huang K, Huynh S, Karimiani EG, Kaulfuß S, Korenke GC, Kritzer A, Lee H, Lupski JR, Marco EJ, McWalter K, Minassian A, Minassian BA, Murphy D, Neira-Fresneda J, Northrup H, Nyaga DM, Oehl-Jaschkowitz B, Osmond M, Person R, Pehlivan D, Petree C, Sadleir LG, Saunders C, Schoels L, Shashi V, Spillmann RC, Srinivasan VM, Torbati PN, Tos T, Zaki MS, Zhou D, Zweier C, Trempe JF, Durcan TM, Gan-Or Z, Avoli M, Alves C, Varshney GK, Maroofian R, Rudko DA, McPherson PS. Loss of symmetric cell division of apical neural progenitors drives DENND5A-related developmental and epileptic encephalopathy. Nat Commun 2024; 15:7239. [PMID: 39174524 PMCID: PMC11341845 DOI: 10.1038/s41467-024-51310-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) feature altered brain development, developmental delay and seizures, with seizures exacerbating developmental delay. Here we identify a cohort with biallelic variants in DENND5A, encoding a membrane trafficking protein, and develop animal models with phenotypes like the human syndrome. We demonstrate that DENND5A interacts with Pals1/MUPP1, components of the Crumbs apical polarity complex required for symmetrical division of neural progenitor cells. Human induced pluripotent stem cells lacking DENND5A fail to undergo symmetric cell division with an inherent propensity to differentiate into neurons. These phenotypes result from misalignment of the mitotic spindle in apical neural progenitors. Cells lacking DENND5A orient away from the proliferative apical domain surrounding the ventricles, biasing daughter cells towards a more fate-committed state, ultimately shortening the period of neurogenesis. This study provides a mechanism for DENND5A-related DEE that may be generalizable to other developmental conditions and provides variant-specific clinical information for physicians and families.
Collapse
Affiliation(s)
- Emily Banks
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | - Vincent Francis
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | - Sheng-Jia Lin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Fares Kharfallah
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | - Vladimir Fonov
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | - Maxime Lévesque
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | - Chanshuai Han
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | - Gopinath Kulasekaran
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | - Marius Tuznik
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | - Armin Bayati
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | | | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Loukas Argyriou
- Institute of Human Genetics, University Medical Center, Göttingen, Germany
| | - Meisam Babaei
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Melanie Bahlo
- Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, Australia
| | | | - Eileen Barr
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Lauren Bartik
- University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA
- Department of Pediatrics, Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO, USA
| | | | - Miriam Bertrand
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Dominique Braun
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Mauro Budetta
- Paediatric and Child Neurology Unit, Cava de' Tirreni AOU S. Giovanni di Dio e Ruggiero d'Aragona Hospital, Salerno, Italy
| | - Maxime Cadieux-Dion
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, USA
| | - Daniel G Calame
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Heidi Cope
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Donna Cushing
- Laboratory Medicine and Genetics, Trillium Health Partners, Mississauga, ON, Canada
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, University College London (UCL) Queen Square Institute of Neurology, London, UK
| | - Marwa Abd Elmaksoud
- Neurology Unit, Department of Pediatrics, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Huda G El Said
- Neurology Unit, Department of Pediatrics, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Tawfiq Froukh
- Department of Biotechnology and Genetic Engineering, Philadelphia University, Amman, Jordan
| | - Harinder K Gill
- Provincial Medical Genetics Program at BC Women's Health Centre, Vancouver, BC, Canada
| | - Joseph G Gleeson
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Laura Gogoll
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Elaine S-Y Goh
- Laboratory Medicine and Genetics, Trillium Health Partners, Mississauga, ON, Canada
| | - Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Mais O Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Stefan Hauser
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Center for Neurology and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, 72076, Germany
| | - Trevor L Hoffman
- Department of Regional Genetics, Southern California Kaiser Permanente Medical Group, Anaheim, CA, USA
| | | | - Akimoto Hosokawa
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Henry Houlden
- Department of Neuromuscular Diseases, University College London (UCL) Queen Square Institute of Neurology, London, UK
| | - Kevin Huang
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Stephanie Huynh
- Provincial Medical Genetics Program at BC Women's Health Centre, Vancouver, BC, Canada
| | - Ehsan G Karimiani
- Molecular and Clinical Sciences Institute, St. George's, University of London, Cranmer Terrace, London, UK
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Silke Kaulfuß
- Institute of Human Genetics, University Medical Center, Göttingen, Germany
| | - G Christoph Korenke
- Department of Neuropediatrics, University Children's Hospital, Klinikum Oldenburg, Oldenburg, Germany
| | - Amy Kritzer
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Hane Lee
- 3billion Inc, Seoul, South Korea
| | - James R Lupski
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Arakel Minassian
- Centre for Applied Genomics, Genetics, and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Berge A Minassian
- Department of Pediatrics and Neurology, UT Southwestern Medical Center, Dallas, TX, USA
| | - David Murphy
- Department of Clinical and Movement Neurosciences, University College London (UCL) Queen Square Institute of Neurology, London, UK
| | | | - Hope Northrup
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Denis M Nyaga
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | | | - Matthew Osmond
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | | | - Davut Pehlivan
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Cassidy Petree
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Carol Saunders
- University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, USA
- Center for Pediatric Genomic Medicine Children's Mercy, Kansas City, MO, USA
| | - Ludger Schoels
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Center for Neurology and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, 72076, Germany
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Rebecca C Spillmann
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | | | - Paria N Torbati
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Tulay Tos
- Department of Medical Genetics, University of Health Sciences, Zubeyde Hanim Research and Training Hospital of Women's Health and Diseases, Ankara, Turkey
| | - Maha S Zaki
- Human Genetics and Genome Research Institute, Clinical Genetics Department, National Research Centre, Cairo, Egypt
| | - Dihong Zhou
- University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA
- Department of Pediatrics, Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO, USA
| | - Christiane Zweier
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jean-François Trempe
- Department of Pharmacology & Therapeutics and Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada
| | - Thomas M Durcan
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | - Ziv Gan-Or
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Massimo Avoli
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | - Cesar Alves
- Division of Neuroradiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Reza Maroofian
- Department of Neuromuscular Diseases, University College London (UCL) Queen Square Institute of Neurology, London, UK
| | - David A Rudko
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
- McConnell Brain Imaging Centre, the Neuro, Montréal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montréal, QC, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada.
| |
Collapse
|
4
|
Manupati K, Hao M, Haas M, Yeo SK, Guan JL. Role of NuMA1 in breast cancer stem cells with implications for combination therapy of PIM1 and autophagy inhibition in triple negative breast cancer. RESEARCH SQUARE 2024:rs.3.rs-3953289. [PMID: 38645153 PMCID: PMC11030541 DOI: 10.21203/rs.3.rs-3953289/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Nuclear mitotic apparatus protein 1 (NuMA1) is a cell cycle protein and upregulated in breast cancer. However, the role of NuMA1 in TNBC and its regulation in heterogenous populations remains elusive. Methods We performed CRISPR mediated deletion of NuMA1 in mouse TNBC cells, BF3M. FACS was utilized to isolate BCSCs, and bulk cells based on CD29 and CD61 markers. Cell viability, migration, and invasion ability of BCSCs and bulk cells was evaluated using MTT, wound healing and transwell invasion assays, respectively. In vivo mouse breast cancer and lung metastatic models were generated to evaluate the combination treatment of SMI-4a and Lys-o5 inhibitors. Results We identified that high expression of NuMA1 associated with poor survival of breast cancer patients. Further, human tissue microarray results depicted high expression of NuMA1 in TNBC relative to non-adjacent normal tissues. Therefore, we performed CRISPR mediated deletion of NuMA1 in a mouse mammary tumor cell line, BF3M and revealed that NuMA1 deletion reduced mammary tumorigenesis. We also showed that NuMA1 deletion reduced ALDH+ and CD29hiCD61+ breast cancer stem cells (BCSCs), indicating a role of NuMA1 in BCSCs. Further, sorted and characterized BCSCs from BF3M depicted reduced metastasis with NuMA1 KO cells. Moreover, we found that PIM1, an upstream kinase of NuMA1 plays a preferential role in maintenance of BCSCs associated phenotypes, but not in bulk cells. In contrast, PIM1 kinase inhibition in bulk cells depicted increased autophagy (FIP200). Therefore, we applied a combination treatment strategy of PIM1 and autophagy inhibition using SMI-4a and Lys05 respectively, showed higher efficacy against cell viability of both these populations and further reduced breast tumor formation and metastasis. Together, our study demonstrated NuMA1 as a potential therapeutic target and combination treatment using inhibitors for an upstream kinase PIM1 and autophagy inhibitors could be a potentially new therapeutic approach for TNBC. Conclusions Our study demonstrated that combination treatment of PIM1 inhibitor and autophagy inhibitor depicted reduced mammary tumorigenesis and metastasis by targeting NuMA1 in BCSCs and bulk cells of TNBC, demonstrating this combination treatment approach could be a potentially effective therapy for TNBC patients.
Collapse
Affiliation(s)
- Kanakaraju Manupati
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Mingang Hao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Michael Haas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Syn Kok Yeo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267
| |
Collapse
|
5
|
Carvalho C, Barbosa DJ, Celestino R, Zanin E, Xavier Carvalho A, Gassmann R. Dynein directs prophase centrosome migration to control the stem cell division axis in the developing Caenorhabditis elegans epidermis. Genetics 2024; 226:iyae005. [PMID: 38213110 PMCID: PMC11491518 DOI: 10.1093/genetics/iyae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/10/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
The microtubule motor dynein is critical for the assembly and positioning of mitotic spindles. In Caenorhabditis elegans, these dynein functions have been extensively studied in the early embryo but remain poorly explored in other developmental contexts. Here, we use a hypomorphic dynein mutant to investigate the motor's contribution to asymmetric stem cell-like divisions in the larval epidermis. Live imaging of seam cell divisions that precede formation of the seam syncytium shows that mutant cells properly assemble but frequently misorient their spindle. Misoriented divisions misplace daughter cells from the seam cell row, generate anucleate compartments due to aberrant cytokinesis, and disrupt asymmetric cell fate inheritance. Consequently, the seam becomes disorganized and populated with extra cells that have lost seam identity, leading to fatal epidermal rupture. We show that dynein orients the spindle through the cortical GOA-1Gα-LIN-5NuMA pathway by directing the migration of prophase centrosomes along the anterior-posterior axis. Spindle misorientation in the dynein mutant can be partially rescued by elongating cells, implying that dynein-dependent force generation and cell shape jointly promote correct asymmetric division of epithelial stem cells.
Collapse
Affiliation(s)
- Cátia Carvalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4200-135, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Daniel J Barbosa
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4200-135, Portugal
- 1H-Toxrun—One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra 4585-116, Portugal
| | - Ricardo Celestino
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4200-135, Portugal
| | - Esther Zanin
- Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Ana Xavier Carvalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4200-135, Portugal
| | - Reto Gassmann
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4200-135, Portugal
| |
Collapse
|
6
|
Banks E, Francis V, Lin SJ, Kharfallah F, Fonov V, Levesque M, Han C, Kulasekaran G, Tuznik M, Bayati A, Al-Khater R, Alkuraya FS, Argyriou L, Babaei M, Bahlo M, Bakhshoodeh B, Barr E, Bartik L, Bassiony M, Bertrand M, Braun D, Buchert R, Budetta M, Cadieux-Dion M, Calame D, Cope H, Cushing D, Efthymiou S, Elmaksoud MA, El Said HG, Froukh T, Gill HK, Gleeson JG, Gogoll L, Goh ESY, Gowda VK, Haack TB, Hashem MO, Hauser S, Hoffman TL, Hogue JS, Hosokawa A, Houlden H, Huang K, Huynh S, Karimiani EG, Kaulfuß S, Korenke GC, Kritzer A, Lee H, Lupski JR, Marco EJ, McWalter K, Minassian A, Minassian BA, Murphy D, Neira-Fresneda J, Northrup H, Nyaga D, Oehl-Jaschkowitz B, Osmond M, Person R, Pehlivan D, Petree C, Sadleir LG, Saunders C, Schoels L, Shashi V, Spillman RC, Srinivasan VM, Torbati PN, Tos T, Zaki MS, Zhou D, Zweier C, Trempe JF, Durcan TM, Gan-Or Z, Avoli M, Alves C, Varshney GK, Maroofian R, Rudko DA, McPherson PS. Loss of symmetric cell division of apical neural progenitors drives DENND5A-related developmental and epileptic encephalopathy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2022.08.23.22278845. [PMID: 38352438 PMCID: PMC10863025 DOI: 10.1101/2022.08.23.22278845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Developmental and epileptic encephalopathies (DEEs) are a heterogenous group of epilepsies in which altered brain development leads to developmental delay and seizures, with the epileptic activity further negatively impacting neurodevelopment. Identifying the underlying cause of DEEs is essential for progress toward precision therapies. Here we describe a group of individuals with biallelic variants in DENND5A and determine that variant type is correlated with disease severity. We demonstrate that DENND5A interacts with MUPP1 and PALS1, components of the Crumbs apical polarity complex, which is required for both neural progenitor cell identity and the ability of these stem cells to divide symmetrically. Induced pluripotent stem cells lacking DENND5A fail to undergo symmetric cell division during neural induction and have an inherent propensity to differentiate into neurons, and transgenic DENND5A mice, with phenotypes like the human syndrome, have an increased number of neurons in the adult subventricular zone. Disruption of symmetric cell division following loss of DENND5A results from misalignment of the mitotic spindle in apical neural progenitors. A subset of DENND5A is localized to centrosomes, which define the spindle poles during mitosis. Cells lacking DENND5A orient away from the proliferative apical domain surrounding the ventricles, biasing daughter cells towards a more fate-committed state and ultimately shortening the period of neurogenesis. This study provides a mechanism behind DENND5A-related DEE that may be generalizable to other developmental conditions and provides variant-specific clinical information for physicians and families.
Collapse
Affiliation(s)
- Emily Banks
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Vincent Francis
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Sheng-Jia Lin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Fares Kharfallah
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Vladimir Fonov
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Maxime Levesque
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Chanshuai Han
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Gopinath Kulasekaran
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Marius Tuznik
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Armin Bayati
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Reem Al-Khater
- Johns Hopkins Aramco Healthcare, Dhahran 34465, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Loukas Argyriou
- Institute of Human Genetics, University Medical Center, Göttingen 37073, Germany
| | - Meisam Babaei
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Melanie Bahlo
- Walter and Eliza Hall Institute for Medical Research, Parkville Victoria 3052, Australia
| | | | - Eileen Barr
- Emory University, Department of Human Genetics, Atlanta, GA 30322, USA
| | - Lauren Bartik
- University of Missouri-Kansas City, School of Medicine, Kansas City, MO 64108, USA
- Department of Pediatrics, Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | | | - Miriam Bertrand
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
| | - Dominique Braun
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
| | - Mauro Budetta
- Paediatric and Child Neurology Unit, Cava de' Tirreni AOU S. Giovanni di Dio e Ruggiero d'Aragona Hospital, Salerno, Italy
| | - Maxime Cadieux-Dion
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Daniel Calame
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Heidi Cope
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Donna Cushing
- Laboratory Medicine and Genetics, Trillium Health Partners, Mississauga, ON L5B 1B8, Canada
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Marwa A Elmaksoud
- Neurology Unit, Department of Pediatrics, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Huda G El Said
- Department of Family Health, High Institute of Public Health, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Tawfiq Froukh
- Department of Biotechnology and Genetic Engineering, Philadelphia University, Amman 19392, Jordan
| | - Harinder K Gill
- Provincial Medical Genetics Program at BC Women's Health Centre, Vancouver, BC V6H 3N1, Canada
| | - Joseph G Gleeson
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Laura Gogoll
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Elaine S-Y Goh
- Laboratory Medicine and Genetics, Trillium Health Partners, Mississauga, ON L5B 1B8, Canada
| | - Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
| | - Mais O Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Stefan Hauser
- Center for Neurology and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen 72076, Germany
- German Center of Neurodegenerative Diseases (DZNE), Tübingen 72076, Germany
| | - Trevor L Hoffman
- Southern California Kaiser Permanente Medical Group, Department of Regional Genetics, Anaheim, CA 92806, USA
| | | | - Akimoto Hosokawa
- Department of Paediatrics and Child Health, University of Otago, Wellington, 6242, New Zealand
| | - Henry Houlden
- Department of Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Kevin Huang
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Stephanie Huynh
- Provincial Medical Genetics Program at BC Women's Health Centre, Vancouver, BC V6H 3N1, Canada
| | - Ehsan G Karimiani
- Molecular and Clinical Sciences Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Silke Kaulfuß
- Institute of Human Genetics, University Medical Center, Göttingen 37073, Germany
| | - G Christoph Korenke
- Department of Neuropediatrics, University Children's Hospital, Klinikum Oldenburg, Oldenburg 26133, Germany
| | - Amy Kritzer
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Hane Lee
- 3billion, Inc, Seoul, South Korea
| | - James R Lupski
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Arakel Minassian
- Centre for Applied Genomics, Genetics, and Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Berge A Minassian
- UT Southwestern Medical Center, Departments of Pediatrics and Neurology, Dallas, TX 75390, USA
| | - David Murphy
- Department of Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | | | - Hope Northrup
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children's Memorial Hermann Hospital, Houston, TX 77030, USA
| | - Denis Nyaga
- Department of Paediatrics and Child Health, University of Otago, Wellington, 6242, New Zealand
| | | | - Matthew Osmond
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa K1H 8L1, Canada
| | | | - Davut Pehlivan
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Cassidy Petree
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, 6242, New Zealand
| | - Carol Saunders
- University of Missouri-Kansas City, School of Medicine, Kansas City, MO 64108, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO 64108, USA
- Center for Pediatric Genomic Medicine Children's Mercy - Kansas City, Missouri, USA
| | - Ludger Schoels
- Center for Neurology and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen 72076, Germany
- German Center of Neurodegenerative Diseases (DZNE), Tübingen 72076, Germany
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Rebecca C Spillman
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Paria N Torbati
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Tulay Tos
- University of Health Sciences, Zubeyde Hanim Research and Training Hospital of Women's Health and Diseases, Department of Medical Genetics, Ankara 06080, Turkey
| | - Maha S Zaki
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Centre, Cairo, Egypt
| | - Dihong Zhou
- University of Missouri-Kansas City, School of Medicine, Kansas City, MO 64108, USA
- Department of Pediatrics, Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Christiane Zweier
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jean-François Trempe
- Department of Pharmacology & Therapeutics and Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Thomas M Durcan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Ziv Gan-Or
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
- Department of Human Genetics, McGill University, Montréal, QC H3A 2B4, Canada
| | - Massimo Avoli
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Cesar Alves
- Division of Neuroradiology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Guarav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Reza Maroofian
- Department of Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - David A Rudko
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| |
Collapse
|
7
|
Saleh J, Fardin MA, Barai A, Soleilhac M, Frenoy O, Gaston C, Cui H, Dang T, Gaudin N, Vincent A, Minc N, Delacour D. Length limitation of astral microtubules orients cell divisions in murine intestinal crypts. Dev Cell 2023; 58:1519-1533.e6. [PMID: 37419117 DOI: 10.1016/j.devcel.2023.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 05/25/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023]
Abstract
Planar spindle orientation is critical for epithelial tissue organization and is generally instructed by the long cell-shape axis or cortical polarity domains. We introduced mouse intestinal organoids in order to study spindle orientation in a monolayered mammalian epithelium. Although spindles were planar, mitotic cells remained elongated along the apico-basal (A-B) axis, and polarity complexes were segregated to basal poles, so that spindles oriented in an unconventional manner, orthogonal to both polarity and geometric cues. Using high-resolution 3D imaging, simulations, and cell-shape and cytoskeleton manipulations, we show that planar divisions resulted from a length limitation in astral microtubules (MTs) which precludes them from interacting with basal polarity, and orient spindles from the local geometry of apical domains. Accordingly, lengthening MTs affected spindle planarity, cell positioning, and crypt arrangement. We conclude that MT length regulation may serve as a key mechanism for spindles to sense local cell shapes and tissue forces to preserve mammalian epithelial architecture.
Collapse
Affiliation(s)
- Jad Saleh
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | | | - Amlan Barai
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Matis Soleilhac
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Olivia Frenoy
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Cécile Gaston
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Hongyue Cui
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Tien Dang
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Noémie Gaudin
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Audrey Vincent
- Université de Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277, 59000 Lille, France; ORGALille Core Facility, CANTHER, Université de Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277, 59000 Lille, France
| | - Nicolas Minc
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France; Equipe Labellisée La Ligue Contre le Cancer, France.
| | - Delphine Delacour
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France.
| |
Collapse
|
8
|
Guevara-Garcia A, Soleilhac M, Minc N, Delacour D. Regulation and functions of cell division in the intestinal tissue. Semin Cell Dev Biol 2023:S1084-9521(23)00004-6. [PMID: 36702722 DOI: 10.1016/j.semcdb.2023.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/16/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
In multicellular organisms, epithelial cells are key elements of tissue organization. In developing epithelial tissues, cellular proliferation and differentiation are under the tight regulation of morphogenetic programs to ensure correct organ formation and functioning. In these processes, proliferation rates and division orientation regulate the speed, timing and direction of tissue expansion but also its proper patterning. Moreover, tissue homeostasis relies on spatio-temporal modulations of daughter cell behavior and arrangement. These aspects are particularly crucial in the intestine, which is one of the most proliferative tissues in adults, making it a very attractive adult organ system to study the role of cell division on epithelial morphogenesis and organ function. Although epithelial cell division has been the subject of intense research for many years in multiple models, it still remains in its infancy in the context of the intestinal tissue. In this review, we focus on the current knowledge on cell division and regulatory mechanisms at play in the intestinal epithelial tissue, as well as their importance in developmental biology and physiopathology.
Collapse
Affiliation(s)
| | - Matis Soleilhac
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France
| | - Delphine Delacour
- Université de Paris, CNRS, Institut Jacques Monod, F-75006 Paris, France.
| |
Collapse
|
9
|
Fankhaenel M, Hashemi FSG, Mourao L, Lucas E, Hosawi MM, Skipp P, Morin X, Scheele CLGJ, Elias S. Annexin A1 is a polarity cue that directs mitotic spindle orientation during mammalian epithelial morphogenesis. Nat Commun 2023; 14:151. [PMID: 36631478 PMCID: PMC9834401 DOI: 10.1038/s41467-023-35881-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Oriented cell divisions are critical for the formation and maintenance of structured epithelia. Proper mitotic spindle orientation relies on polarised anchoring of force generators to the cell cortex by the evolutionarily conserved protein complex formed by the Gαi subunit of heterotrimeric G proteins, the Leucine-Glycine-Asparagine repeat protein (LGN) and the nuclear mitotic apparatus protein. However, the polarity cues that control cortical patterning of this ternary complex remain largely unknown in mammalian epithelia. Here we identify the membrane-associated protein Annexin A1 (ANXA1) as an interactor of LGN in mammary epithelial cells. Annexin A1 acts independently of Gαi to instruct the accumulation of LGN and nuclear mitotic apparatus protein at the lateral cortex to ensure cortical anchoring of Dynein-Dynactin and astral microtubules and thereby planar alignment of the mitotic spindle. Loss of Annexin A1 randomises mitotic spindle orientation, which in turn disrupts epithelial architecture and luminogenesis in three-dimensional cultures of primary mammary epithelial cells. Our findings establish Annexin A1 as an upstream cortical cue that regulates LGN to direct planar cell divisions during mammalian epithelial morphogenesis.
Collapse
Affiliation(s)
- Maria Fankhaenel
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Farahnaz S Golestan Hashemi
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Larissa Mourao
- VIB-KULeuven Center for Cancer Biology, Herestraat 49, 3000, Leuven, Belgium
| | - Emily Lucas
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Manal M Hosawi
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Paul Skipp
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Centre for Proteomic Research, University of Southampton, Southampton, SO17 1BJ, UK
| | - Xavier Morin
- Ecole Normale Supérieure, CNRS, Inserm, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), PSL Research University, Paris, France
| | | | - Salah Elias
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK. .,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
10
|
Akbar H, Cao J, Wang D, Yuan X, Zhang M, Muthusamy S, Song X, Liu X, Aikhionbare F, Yao X, Gao X, Liu X. Acetylation of Nup62 by TIP60 ensures accurate chromosome segregation in mitosis. J Mol Cell Biol 2022; 14:6747133. [PMID: 36190325 PMCID: PMC9926331 DOI: 10.1093/jmcb/mjac056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/14/2022] [Accepted: 09/29/2022] [Indexed: 11/14/2022] Open
Abstract
Stable transmission of genetic information during cell division requires faithful mitotic spindle assembly and chromosome segregation. In eukaryotic cells, nuclear envelope breakdown (NEBD) is required for proper chromosome segregation. Although a list of mitotic kinases has been implicated in NEBD, how they coordinate their activity to dissolve the nuclear envelope and protein machinery such as nuclear pore complexes was unclear. Here, we identified a regulatory mechanism in which Nup62 is acetylated by TIP60 in human cell division. Nup62 is a novel substrate of TIP60, and the acetylation of Lys432 by TIP60 dissolves nucleoporin Nup62-Nup58-Nup54 complex during entry into mitosis. Importantly, this acetylation-elicited remodeling of nucleoporin complex promotes the distribution of Nup62 to the mitotic spindle, which is indispensable for orchestrating correct spindle orientation. Moreover, suppression of Nup62 perturbs accurate chromosome segregation during mitosis. These results establish a previously uncharacterized regulatory mechanism in which TIP60-elicited nucleoporin dynamics promotes chromosome segregation in mitosis.
Collapse
Affiliation(s)
- Hameed Akbar
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Jun Cao
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Dongmei Wang
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Xiao Yuan
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Manjuan Zhang
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | | | - Xiaoyu Song
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xu Liu
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | | | | | | | - Xing Liu
- Correspondence to: Xing Liu, E-mail:
| |
Collapse
|
11
|
Zhong T, Gongye X, Wang M, Yu J. Understanding the underlying mechanisms governing spindle orientation: How far are we from there? J Cell Mol Med 2022; 26:4904-4910. [PMID: 36029193 PMCID: PMC9549511 DOI: 10.1111/jcmm.17526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Proper spindle orientation is essential for cell fate determination and tissue morphogenesis. Recently, accumulating studies have elucidated several factors that regulate spindle orientation, including geometric, internal and external cues. Abnormality in these factors generally leads to defects in the physiological functions of various organs and the development of severe diseases. Herein, we first review models that are commonly used for studying spindle orientation. We then review a conservative heterotrimeric complex critically involved in spindle orientation regulation in different models. Finally, we summarize some cues that affect spindle orientation and explore whether we can establish a model that precisely elucidates the effects of spindle orientation without interfusing other spindle functions. We aim to summarize current models used in spindle orientation studies and discuss whether we can build a model that disturbs spindle orientation alone. This can substantially improve our understanding of how spindle orientation is regulated and provide insights to investigate this complex event.
Collapse
Affiliation(s)
- Tao Zhong
- Medical Integration and Practice Center, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Cancer Hospital and InstituteShandong First Medical University, Shandong Academy of Medical SciencesJinanChina
| | - Xiaoxiao Gongye
- Medical Integration and Practice Center, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Cancer Hospital and InstituteShandong First Medical University, Shandong Academy of Medical SciencesJinanChina
| | - Minglei Wang
- Shandong Cancer Hospital and InstituteShandong First Medical University, Shandong Academy of Medical SciencesJinanChina
| | - Jinming Yu
- Medical Integration and Practice Center, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Cancer Hospital and InstituteShandong First Medical University, Shandong Academy of Medical SciencesJinanChina
| |
Collapse
|
12
|
Kelkar M, Bohec P, Smith MB, Sreenivasan V, Lisica A, Valon L, Ferber E, Baum B, Salbreux G, Charras G. Spindle reorientation in response to mechanical stress is an emergent property of the spindle positioning mechanisms. Proc Natl Acad Sci U S A 2022; 119:e2121868119. [PMID: 35727980 PMCID: PMC9245638 DOI: 10.1073/pnas.2121868119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/28/2022] [Indexed: 11/18/2022] Open
Abstract
Proper orientation of the mitotic spindle plays a crucial role in embryos, during tissue development, and in adults, where it functions to dissipate mechanical stress to maintain tissue integrity and homeostasis. While mitotic spindles have been shown to reorient in response to external mechanical stresses, the subcellular cues that mediate spindle reorientation remain unclear. Here, we used a combination of optogenetics and computational modeling to investigate how mitotic spindles respond to inhomogeneous tension within the actomyosin cortex. Strikingly, we found that the optogenetic activation of RhoA only influences spindle orientation when it is induced at both poles of the cell. Under these conditions, the sudden local increase in cortical tension induced by RhoA activation reduces pulling forces exerted by cortical regulators on astral microtubules. This leads to a perturbation of the balance of torques exerted on the spindle, which causes it to rotate. Thus, spindle rotation in response to mechanical stress is an emergent phenomenon arising from the interaction between the spindle positioning machinery and the cell cortex.
Collapse
Affiliation(s)
- Manasi Kelkar
- London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
| | - Pierre Bohec
- London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
| | | | - Varun Sreenivasan
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE1 1UL, United Kingdom
- Medical Research Council Centre for Neurodevelopmental Disorders, King’s College London, London SE1 1UL, United Kingdom
| | - Ana Lisica
- London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
| | - Léo Valon
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 75015 Paris , France
| | - Emma Ferber
- London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
| | - Buzz Baum
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
- Division of Cell Biology, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
| | - Guillaume Salbreux
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Genetics and Evolution, Quai Ernest-Ansermet 30, 1205 Geneva, Switzerland
| | - Guillaume Charras
- London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
- Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
13
|
Shi Y, Lin L, Wang C, Zhu J. Promotion of row 1-specific tip complex condensates by Gpsm2-Gαi provides insights into row identity of the tallest stereocilia. SCIENCE ADVANCES 2022; 8:eabn4556. [PMID: 35687681 PMCID: PMC9187228 DOI: 10.1126/sciadv.abn4556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/26/2022] [Indexed: 06/12/2023]
Abstract
The mechanosensory stereocilia in hair cells are organized into rows of graded height, a property crucial for auditory perception. Gpsm2-Gαi-Whirlin-Myo15-Eps8 complex at tips of the tallest stereocilia is proposed to define hair bundle row identity, although the underlying mechanism remains elusive. Here, we find that Gpsm2 could undergo phase separation. Moreover, row 1-specific Gpsm2-Gαi complex significantly promotes the formation of the five-component tip complex density (5xTCD) condensates. The 5xTCD condensates display much stronger actin-bundling ability than those without Gpsm2-Gαi, which may provide critical insights into how Gpsm2-Gαi specifies the tallest stereocilia. A deafness-associated mutation of Gpsm2 leads to impaired formation of the 5xTCD condensates and consequently reduced actin bundling, providing possible clues for etiology of hearing loss in patients with Chudley-McCullough syndrome.
Collapse
Affiliation(s)
- Yingdong Shi
- Department of Neurology, the First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Lin Lin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Wang
- Department of Neurology, the First Affiliated Hospital of USTC, Ministry of Education Key Laboratory for Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jinwei Zhu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Casas Gimeno G, Paridaen JTML. The Symmetry of Neural Stem Cell and Progenitor Divisions in the Vertebrate Brain. Front Cell Dev Biol 2022; 10:885269. [PMID: 35693936 PMCID: PMC9174586 DOI: 10.3389/fcell.2022.885269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/20/2022] [Indexed: 12/23/2022] Open
Abstract
Robust brain development requires the tight coordination between tissue growth, neuronal differentiation and stem cell maintenance. To achieve this, neural stem cells need to balance symmetric proliferative and terminal divisions with asymmetric divisions. In recent years, the unequal distribution of certain cellular components in mitosis has emerged as a key mechanism to regulate the symmetry of division, and the determination of equal and unequal sister cell fates. Examples of such components include polarity proteins, signaling components, and cellular structures such as endosomes and centrosomes. In several types of neural stem cells, these factors show specific patterns of inheritance that correlate to specific cell fates, albeit the underlying mechanism and the potential causal relationship is not always understood. Here, we review these examples of cellular neural stem and progenitor cell asymmetries and will discuss how they fit into our current understanding of neural stem cell function in neurogenesis in developing and adult brains. We will focus mainly on the vertebrate brain, though we will incorporate relevant examples from invertebrate organisms as well. In particular, we will highlight recent advances in our understanding of the complexities related cellular asymmetries in determining division mode outcomes, and how these mechanisms are spatiotemporally regulated to match the different needs for proliferation and differentiation as the brain forms.
Collapse
|
15
|
Lechler T, Mapelli M. Spindle positioning and its impact on vertebrate tissue architecture and cell fate. Nat Rev Mol Cell Biol 2021; 22:691-708. [PMID: 34158639 PMCID: PMC10544824 DOI: 10.1038/s41580-021-00384-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 12/18/2022]
Abstract
In multicellular systems, oriented cell divisions are essential for morphogenesis and homeostasis as they determine the position of daughter cells within the tissue and also, in many cases, their fate. Early studies in invertebrates led to the identification of conserved core mechanisms of mitotic spindle positioning centred on the Gαi-LGN-NuMA-dynein complex. In recent years, much has been learnt about the way this complex functions in vertebrate cells. In particular, studies addressed how the Gαi-LGN-NuMA-dynein complex dynamically crosstalks with astral microtubules and the actin cytoskeleton, and how it is regulated to orient the spindle according to cellular and tissue-wide cues. We have also begun to understand how dynein motors and actin regulators interact with mechanosensitive adhesion molecules sensing extracellular mechanical stimuli, such as cadherins and integrins, and with signalling pathways so as to respond to extracellular cues instructing the orientation of the division axis in vivo. In this Review, with the focus on epithelial tissues, we discuss the molecular mechanisms of mitotic spindle orientation in vertebrate cells, and how this machinery is regulated by epithelial cues and extracellular signals to maintain tissue cohesiveness during mitosis. We also outline recent knowledge of how spindle orientation impacts tissue architecture in epithelia and its emerging links to the regulation of cell fate decisions. Finally, we describe how defective spindle orientation can be corrected or its effects eliminated in tissues under physiological conditions, and the pathological implications associated with spindle misorientation.
Collapse
Affiliation(s)
- Terry Lechler
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA.
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| | - Marina Mapelli
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
16
|
Identification of hub genes associated with prognosis, diagnosis, immune infiltration and therapeutic drug in liver cancer by integrated analysis. Hum Genomics 2021; 15:39. [PMID: 34187556 PMCID: PMC8243535 DOI: 10.1186/s40246-021-00341-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022] Open
Abstract
Background Liver cancer is one of the most common cancers and causes of cancer death worldwide. The objective was to elucidate novel hub genes which were benefit for diagnosis, prognosis, and targeted therapy in liver cancer via integrated analysis. Methods GSE84402, GSE101685, and GSE112791 were filtered from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were identified by using the GEO2R. The GO and KEGG pathway of DEGs were analyzed in the DAVID. PPI and TF network of the DEGs were constructed by using the STRING, TRANSFAC, and Harmonizome. The relationship between hub genes and prognoses in liver cancer was analyzed in UALCAN based on The Cancer Genome Atlas (TCGA). The diagnostic value of hub genes was evaluated by ROC. The relationship between hub genes and tumor-infiltrate lymphocytes was analyzed in TIMER. The protein levels of hub genes were verified in HPA. The interaction between the hub genes and the drug were identified in DGIdb. Results In total, 108 upregulated and 60 downregulated DEGs were enriched in 148 GO terms and 20 KEGG pathways. The mRNA levels and protein levels of CDK1, HMMR, PTTG1, and TTK were higher in liver cancer tissues compared to normal tissues, which showed excellent diagnostic and prognostic value. CDK1, HMMR, PTTG1, and TTK were positively correlated with tumor-infiltrate lymphocytes, which might involve tumor immune response. The CDK1, HMMR, and TTK had close interaction with anticancer agents. Conclusions The CDK1, HMMR, PTTG1, and TTK were hub genes in liver cancer; hence, they might be potential biomarkers for diagnosis, prognosis, and targeted therapy of liver cancer.
Collapse
|
17
|
Kiyomitsu T, Boerner S. The Nuclear Mitotic Apparatus (NuMA) Protein: A Key Player for Nuclear Formation, Spindle Assembly, and Spindle Positioning. Front Cell Dev Biol 2021; 9:653801. [PMID: 33869212 PMCID: PMC8047419 DOI: 10.3389/fcell.2021.653801] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/10/2021] [Indexed: 01/10/2023] Open
Abstract
The nuclear mitotic apparatus (NuMA) protein is well conserved in vertebrates, and dynamically changes its subcellular localization from the interphase nucleus to the mitotic/meiotic spindle poles and the mitotic cell cortex. At these locations, NuMA acts as a key structural hub in nuclear formation, spindle assembly, and mitotic spindle positioning, respectively. To achieve its variable functions, NuMA interacts with multiple factors, including DNA, microtubules, the plasma membrane, importins, and cytoplasmic dynein. The binding of NuMA to dynein via its N-terminal domain drives spindle pole focusing and spindle positioning, while multiple interactions through its C-terminal region define its subcellular localizations and functions. In addition, NuMA can self-assemble into high-ordered structures which likely contribute to spindle positioning and nuclear formation. In this review, we summarize recent advances in NuMA’s domains, functions and regulations, with a focus on human NuMA, to understand how and why vertebrate NuMA participates in these functions in comparison with invertebrate NuMA-related proteins.
Collapse
Affiliation(s)
- Tomomi Kiyomitsu
- Cell Division Dynamics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| | - Susan Boerner
- Cell Division Dynamics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| |
Collapse
|
18
|
Singh D, Schmidt N, Müller F, Bange T, Bird AW. Destabilization of Long Astral Microtubules via Cdk1-Dependent Removal of GTSE1 from Their Plus Ends Facilitates Prometaphase Spindle Orientation. Curr Biol 2020; 31:766-781.e8. [PMID: 33333009 DOI: 10.1016/j.cub.2020.11.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/25/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022]
Abstract
The precise regulation of microtubule dynamics over time and space in dividing cells is critical for several mitotic mechanisms that ultimately enable cell proliferation, tissue organization, and development. Astral microtubules, which extend from the centrosome toward the cell cortex, must be present for the mitotic spindle to properly orient, as well as for the faithful execution of anaphase and cytokinesis. However, little is understood about how the dynamic properties of astral microtubules are regulated spatiotemporally, or the contribution of astral microtubule dynamics to spindle positioning. The mitotic regulator Cdk1-CyclinB promotes destabilization of centrosomal microtubules and increased microtubule dynamics as cells enter mitosis, but how Cdk1 activity modulates astral microtubule stability, and whether it impacts spindle positioning, is unknown. Here, we uncover a mechanism revealing that Cdk1 destabilizes astral microtubules in prometaphase and thereby influences spindle reorientation. Phosphorylation of the EB1-dependent microtubule plus-end tracking protein GTSE1 by Cdk1 in early mitosis abolishes its interaction with EB1 and recruitment to microtubule plus ends. Loss of Cdk1 activity, or mutation of phosphorylation sites in GTSE1, induces recruitment of GTSE1 to growing microtubule plus ends in mitosis. This decreases the catastrophe frequency of astral microtubules and causes an increase in the number of long astral microtubules reaching the cell cortex, which restrains the ability of cells to reorient spindles along the long cellular axis in early mitosis. Astral microtubules thus must not only be present but also dynamic to allow the spindle to reorient, a state assisted by selective destabilization of long astral microtubules via Cdk1.
Collapse
Affiliation(s)
- Divya Singh
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Nadine Schmidt
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Franziska Müller
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Tanja Bange
- Department for Systems Chronobiology, Institute of Medical Psychology, LMU Munich, Goethestrasse 31/ I, 80336 Munich, Germany
| | - Alexander W Bird
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| |
Collapse
|
19
|
Markus SM, Marzo MG, McKenney RJ. New insights into the mechanism of dynein motor regulation by lissencephaly-1. eLife 2020; 9:59737. [PMID: 32692650 PMCID: PMC7373426 DOI: 10.7554/elife.59737] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Lissencephaly (‘smooth brain’) is a severe brain disease associated with numerous symptoms, including cognitive impairment, and shortened lifespan. The main causative gene of this disease – lissencephaly-1 (LIS1) – has been a focus of intense scrutiny since its first identification almost 30 years ago. LIS1 is a critical regulator of the microtubule motor cytoplasmic dynein, which transports numerous cargoes throughout the cell, and is a key effector of nuclear and neuronal transport during brain development. Here, we review the role of LIS1 in cellular dynein function and discuss recent key findings that have revealed a new mechanism by which this molecule influences dynein-mediated transport. In addition to reconciling prior observations with this new model for LIS1 function, we also discuss phylogenetic data that suggest that LIS1 may have coevolved with an autoinhibitory mode of cytoplasmic dynein regulation.
Collapse
Affiliation(s)
- Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Matthew G Marzo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| |
Collapse
|
20
|
Liu ZY, Li B, Zhao ZL, Xu GK, Feng XQ, Gao H. Mesoscopic dynamic model of epithelial cell division with cell-cell junction effects. Phys Rev E 2020; 102:012405. [PMID: 32794908 DOI: 10.1103/physreve.102.012405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Cell division is central for embryonic development, tissue morphogenesis, and tumor growth. Experiments have evidenced that mitotic cell division is manipulated by the intercellular cues such as cell-cell junctions. However, it still remains unclear how these cortical-associated cues mechanically affect the mitotic spindle machinery, which determines the position and orientation of the cell division. In this paper, a mesoscopic dynamic cell division model is established to explore the integrated regulations of cortical polarity, microtubule pulling forces, cell deformability, and internal osmotic pressure. We show that the distributed pulling forces of astral microtubules play a key role in encoding the instructive cortical cues to orient and position the spindle of a dividing cell. The present model can not only predict the spindle orientation and position, but also capture the morphological evolution of cell rounding. The theoretical results agree well with relevant experiments both qualitatively and quantitatively. This work sheds light on the mechanical linkage between cell cortex and mitotic spindle, and holds potential in regulating cell division and sculpting tissue morphology.
Collapse
Affiliation(s)
- Zong-Yuan Liu
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Zi-Long Zhao
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Guang-Kui Xu
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Huajian Gao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Institute of High Performance Computing, A*STAR, Singapore 138632, Singapore
| |
Collapse
|
21
|
Sharma A, Dagar S, Mylavarapu SVS. Transgelin-2 and phosphoregulation of the LIC2 subunit of dynein govern mitotic spindle orientation. J Cell Sci 2020; 133:jcs239673. [PMID: 32467330 DOI: 10.1242/jcs.239673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 04/29/2020] [Indexed: 08/31/2023] Open
Abstract
The molecular motor dynein is essential for mitotic spindle orientation, which defines the axis of cell division. The light intermediate chain subunits, LIC1 and LIC2, define biochemically and functionally distinct vertebrate dynein complexes, with LIC2-dynein playing a crucial role in ensuring spindle orientation. We reveal a novel, mitosis-specific interaction of LIC2-dynein with the cortical actin-bundling protein transgelin-2. Transgelin-2 is required for maintaining proper spindle length, equatorial metaphase chromosome alignment, spindle orientation and timely anaphase onset. We show that transgelin-2 stabilizes the cortical recruitment of LGN-NuMA, which together with dynein is required for spindle orientation. The opposing actions of transgelin-2 and LIC2-dynein maintain optimal cortical levels of LGN-NuMA. In addition, we show that the highly conserved serine 194 phosphorylation of LIC2 is required for proper spindle orientation, by maintaining mitotic centrosome integrity to ensure optimal astral microtubule nucleation. The work reveals two specific mechanisms through which LIC2-dynein regulates mitotic spindle orientation; namely, through a new interactor transgelin-2, which is required for engagement of LGN-NuMA with the actin cortex, and through mitotic phosphoregulation of LIC2 to control microtubule nucleation from the poles.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Amit Sharma
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
- Affiliated to the Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sunayana Dagar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
- Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
- Affiliated to the Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
22
|
Aguilar‐Aragon M, Bonello TT, Bell GP, Fletcher GC, Thompson BJ. Adherens junction remodelling during mitotic rounding of pseudostratified epithelial cells. EMBO Rep 2020; 21:e49700. [PMID: 32030856 PMCID: PMC7132200 DOI: 10.15252/embr.201949700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/10/2019] [Accepted: 01/15/2020] [Indexed: 12/26/2022] Open
Abstract
Epithelial cells undergo cortical rounding at the onset of mitosis to enable spindle orientation in the plane of the epithelium. In cuboidal epithelia in culture, the adherens junction protein E-cadherin recruits Pins/LGN/GPSM2 and Mud/NuMA to orient the mitotic spindle. In the pseudostratified columnar epithelial cells of Drosophila, septate junctions recruit Mud/NuMA to orient the spindle, while Pins/LGN/GPSM2 is surprisingly dispensable. We show that these pseudostratified epithelial cells downregulate E-cadherin as they round up for mitosis. Preventing cortical rounding by inhibiting Rho-kinase-mediated actomyosin contractility blocks downregulation of E-cadherin during mitosis. Mitotic activation of Rho-kinase depends on the RhoGEF ECT2/Pebble and its binding partners RacGAP1/MgcRacGAP/CYK4/Tum and MKLP1/KIF23/ZEN4/Pav. Cell cycle control of these Rho activators is mediated by the Aurora A and B kinases, which act redundantly during mitotic rounding. Thus, in Drosophila pseudostratified epithelia, disruption of adherens junctions during mitosis necessitates planar spindle orientation by septate junctions to maintain epithelial integrity.
Collapse
Affiliation(s)
| | - Teresa T Bonello
- EMBL AustraliaThe John Curtin School of Medical ResearchThe Australian National UniversityActonACTAustralia
| | - Graham P Bell
- Epithelial Biology LaboratoryFrancis Crick InstituteLondonUK
| | | | - Barry J Thompson
- Epithelial Biology LaboratoryFrancis Crick InstituteLondonUK
- EMBL AustraliaThe John Curtin School of Medical ResearchThe Australian National UniversityActonACTAustralia
| |
Collapse
|
23
|
Nakamoto A, Kumano G. Dynein-Mediated Regional Cell Division Reorientation Shapes a Tailbud Embryo. iScience 2020; 23:100964. [PMID: 32199290 PMCID: PMC7082557 DOI: 10.1016/j.isci.2020.100964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/17/2020] [Accepted: 03/03/2020] [Indexed: 11/17/2022] Open
Abstract
Regulation of cell division orientation controls the spatial distribution of cells during development and is essential for one-directional tissue transformation, such as elongation. However, little is known about whether it plays a role in other types of tissue morphogenesis. Using an ascidian Halocynthia roretzi, we found that differently oriented cell divisions in the epidermis of the future trunk (anterior) and tail (posterior) regions create an hourglass-like epithelial bending between the two regions to shape the tailbud embryo. Our results show that posterior epidermal cells are polarized with dynein protein anteriorly localized, undergo dynein-dependent spindle rotation, and divide along the anteroposterior axis. This cell division facilitates constriction around the embryo's circumference only in the posterior region and epithelial bending formation. Our findings, therefore, provide an important insight into the role of oriented cell division in tissue morphogenesis.
Collapse
Affiliation(s)
- Ayaki Nakamoto
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, 9 Sakamoto, Asamushi, Aomori 039-3501, Japan.
| | - Gaku Kumano
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, 9 Sakamoto, Asamushi, Aomori 039-3501, Japan
| |
Collapse
|
24
|
Marthiens V, Basto R. Centrosomes: The good and the bad for brain development. Biol Cell 2020; 112:153-172. [PMID: 32170757 DOI: 10.1111/boc.201900090] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 12/15/2022]
Abstract
Centrosomes nucleate and organise the microtubule cytoskeleton in animal cells. These membraneless organelles are key structures for tissue organisation, polarity and growth. Centrosome dysfunction, defined as deviation in centrosome numbers and/or structural integrity, has major impact on brain size and functionality, as compared with other tissues of the organism. In this review, we discuss the contribution of centrosomes to brain growth during development. We discuss in particular the impact of centrosome dysfunction in Drosophila and mammalian neural stem cell division and fitness, which ultimately underlie brain growth defects.
Collapse
Affiliation(s)
- Véronique Marthiens
- Biology of Centrosomes and Genetic Instability Laboratory, Institut Curie, PSL Research University, CNRS, UMR144, Paris, 75005, France
| | - Renata Basto
- Biology of Centrosomes and Genetic Instability Laboratory, Institut Curie, PSL Research University, CNRS, UMR144, Paris, 75005, France
| |
Collapse
|
25
|
Anastasiou O, Hadjisavva R, Skourides PA. Mitotic cell responses to substrate topological cues are independent of the molecular nature of adhesion. Sci Signal 2020; 13:13/620/eaax9940. [PMID: 32098802 DOI: 10.1126/scisignal.aax9940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Correct selection of the cell division axis is important for cell differentiation, tissue and organ morphogenesis, and homeostasis. Both integrins, which mediate interactions with extracellular matrix (ECM) components such as fibronectin, and cadherins, which mediate interactions between cells, are implicated in the determination of spindle orientation. We found that both cadherin- and integrin-based adhesion resulted in cell divisions parallel to the attachment plane and elicited identical spindle responses to spatial adhesive cues. This suggests that adhesion topology provides purely mechanical spatial cues that are independent of the molecular nature of the interaction or signaling from adhesion complexes. We also demonstrated that cortical integrin activation was indispensable for correct spindle orientation on both cadherin and fibronectin substrates. These data suggest that spindle orientation responses to adhesion topology are primarily a result of force anisotropy on the cell cortex and show that integrins play a central role in this process that is distinct from their role in cell-ECM interactions.
Collapse
Affiliation(s)
- Ouranio Anastasiou
- Department of Biological Sciences, University of Cyprus, University Avenue 1, New Campus, Nicosia 2109, Cyprus
| | - Rania Hadjisavva
- Department of Biological Sciences, University of Cyprus, University Avenue 1, New Campus, Nicosia 2109, Cyprus
| | - Paris A Skourides
- Department of Biological Sciences, University of Cyprus, University Avenue 1, New Campus, Nicosia 2109, Cyprus.
| |
Collapse
|
26
|
Franco M, Carmena A. Eph signaling in mitotic spindle orientation: what´s your angle here? Cell Cycle 2019; 18:2590-2597. [PMID: 31475621 DOI: 10.1080/15384101.2019.1658479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The orientation of the mitotic spindle is a crucial process during development and adult tissue homeostasis and multiple mechanisms have been shown to intrinsically regulate this process. However, much less is known about the extrinsic cues involved in modulating spindle orientation. We have recently uncovered a novel function of Eph intercellular signaling in regulating spindle alignment by ultimately ensuring the correct cortical distribution of central components within the intrinsic spindle orientation machinery. Here, we comment on these results, novel questions that they open and potential additional research to address in the future.
Collapse
Affiliation(s)
- Maribel Franco
- Developmental Neurobiology Unit, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández , Alicante , Spain
| | - Ana Carmena
- Developmental Neurobiology Unit, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández , Alicante , Spain
| |
Collapse
|
27
|
Freeman S, Mateo Sánchez S, Pouyo R, Van Lerberghe P, Hanon K, Thelen N, Thiry M, Morelli G, Van Hees L, Laguesse S, Chariot A, Nguyen L, Delacroix L, Malgrange B. Proteostasis is essential during cochlear development for neuron survival and hair cell polarity. EMBO Rep 2019; 20:e47097. [PMID: 31321879 PMCID: PMC6726910 DOI: 10.15252/embr.201847097] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 06/13/2019] [Accepted: 06/22/2019] [Indexed: 01/23/2023] Open
Abstract
Protein homeostasis is essential to cell function, and a compromised ability to reduce the load of misfolded and aggregated proteins is linked to numerous age-related diseases, including hearing loss. Here, we show that altered proteostasis consequent to Elongator complex deficiency also impacts the proper development of the cochlea and results in deafness. In the absence of the catalytic subunit Elp3, differentiating spiral ganglion neurons display large aggresome-like structures and undergo apoptosis before birth. The cochlear mechanosensory cells are able to survive proteostasis disruption but suffer defects in polarity and stereociliary bundle morphogenesis. We demonstrate that protein aggregates accumulate at the apical surface of hair cells, where they cause a local slowdown of microtubular trafficking, altering the distribution of intrinsic polarity proteins and affecting kinocilium position and length. Alleviation of protein misfolding using the chemical chaperone 4-phenylbutyric acid during embryonic development ameliorates hair cell polarity in Elp3-deficient animals. Our study highlights the importance of developmental proteostasis in the cochlea and unveils an unexpected link between proteome integrity and polarized organization of cellular components.
Collapse
Affiliation(s)
- Stephen Freeman
- GIGA‐NeurosciencesInterdisciplinary Cluster for Applied Genoproteomics (GIGA‐R)C.H.U. Sart TilmanUniversity of LiègeLiègeBelgium
| | - Susana Mateo Sánchez
- GIGA‐NeurosciencesInterdisciplinary Cluster for Applied Genoproteomics (GIGA‐R)C.H.U. Sart TilmanUniversity of LiègeLiègeBelgium
| | - Ronald Pouyo
- GIGA‐NeurosciencesInterdisciplinary Cluster for Applied Genoproteomics (GIGA‐R)C.H.U. Sart TilmanUniversity of LiègeLiègeBelgium
| | - Pierre‐Bernard Van Lerberghe
- GIGA‐NeurosciencesInterdisciplinary Cluster for Applied Genoproteomics (GIGA‐R)C.H.U. Sart TilmanUniversity of LiègeLiègeBelgium
| | - Kevin Hanon
- GIGA‐NeurosciencesInterdisciplinary Cluster for Applied Genoproteomics (GIGA‐R)C.H.U. Sart TilmanUniversity of LiègeLiègeBelgium
| | - Nicolas Thelen
- GIGA‐NeurosciencesInterdisciplinary Cluster for Applied Genoproteomics (GIGA‐R)C.H.U. Sart TilmanUniversity of LiègeLiègeBelgium
| | - Marc Thiry
- GIGA‐NeurosciencesInterdisciplinary Cluster for Applied Genoproteomics (GIGA‐R)C.H.U. Sart TilmanUniversity of LiègeLiègeBelgium
| | - Giovanni Morelli
- GIGA‐NeurosciencesInterdisciplinary Cluster for Applied Genoproteomics (GIGA‐R)C.H.U. Sart TilmanUniversity of LiègeLiègeBelgium
- UHasseltBIOMEDHasseltBelgium
| | - Laura Van Hees
- GIGA‐NeurosciencesInterdisciplinary Cluster for Applied Genoproteomics (GIGA‐R)C.H.U. Sart TilmanUniversity of LiègeLiègeBelgium
| | - Sophie Laguesse
- GIGA‐NeurosciencesInterdisciplinary Cluster for Applied Genoproteomics (GIGA‐R)C.H.U. Sart TilmanUniversity of LiègeLiègeBelgium
| | - Alain Chariot
- GIGA‐NeurosciencesInterdisciplinary Cluster for Applied Genoproteomics (GIGA‐R)C.H.U. Sart TilmanUniversity of LiègeLiègeBelgium
- GIGA‐Molecular Biology of DiseasesInterdisciplinary Cluster for Applied Genoproteomics (GIGA‐R)C.H.U. Sart TilmanUniversity of LiègeLiègeBelgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO)WavreBelgium
| | - Laurent Nguyen
- GIGA‐NeurosciencesInterdisciplinary Cluster for Applied Genoproteomics (GIGA‐R)C.H.U. Sart TilmanUniversity of LiègeLiègeBelgium
| | - Laurence Delacroix
- GIGA‐NeurosciencesInterdisciplinary Cluster for Applied Genoproteomics (GIGA‐R)C.H.U. Sart TilmanUniversity of LiègeLiègeBelgium
| | - Brigitte Malgrange
- GIGA‐NeurosciencesInterdisciplinary Cluster for Applied Genoproteomics (GIGA‐R)C.H.U. Sart TilmanUniversity of LiègeLiègeBelgium
| |
Collapse
|
28
|
Doerr S, Ragkousi K. Cell polarity oscillations in mitotic epithelia. Curr Opin Genet Dev 2019; 57:47-53. [PMID: 31465986 DOI: 10.1016/j.gde.2019.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022]
Abstract
Epithelial organization and function depend on coordinated cell polarity. In developing tissues, proliferative epithelia maintain whole tissue polarity as individual cells undergo symmetric divisions. However, recent work has shown that cells in diverse epithelia remodel their polarity in a cell cycle-dependent manner. Here, we discuss the different mechanisms that drive mitotic polarity oscillations and their implications for tissue morphogenesis.
Collapse
Affiliation(s)
- Sophia Doerr
- Department of Biology, Amherst College, Amherst, MA 01002, United States; Program in Biochemistry and Biophysics, Amherst College, Amherst, MA 01002, United States
| | - Katerina Ragkousi
- Department of Biology, Amherst College, Amherst, MA 01002, United States; Program in Biochemistry and Biophysics, Amherst College, Amherst, MA 01002, United States.
| |
Collapse
|
29
|
Li J, Cheng L, Jiang H. Cell shape and intercellular adhesion regulate mitotic spindle orientation. Mol Biol Cell 2019; 30:2458-2468. [PMID: 31411941 PMCID: PMC6743358 DOI: 10.1091/mbc.e19-04-0227] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cell division orientation plays an essential role in tissue morphogenesis and cell fate decision. Recent studies showed that either cell shape or adhesion geometry can regulate the orientation of mitotic spindles and thereby the cell division orientation. However, how they together regulate the spindle orientation remains largely unclear. In this work, we use a general computational model to investigate the competitive mechanism of determining the spindle orientation between cell shape and intercellular adhesion in epithelial cells. We find the spindle orientation is dominated by the intercellular adhesion when the cell shape anisotropy is small, but dominated by the cell shape when the shape anisotropy is large. A strong adhesion and moderate adhesive size can ensure the planar division of epithelial cells with large apico-basal elongation. We also find the spindle orientation could be perpendicular to the adhesive region when only one side of the cell is adhered to an E-cadherin-coated matrix. But after the cell is compressed, the spindle orientation is governed by the cell shape and the spindle will be parallel to the adhesive region when the cell shape anisotropy is large. Finally, we demonstrate the competition between cell shape and tricellular junctions can also effectively regulate the spindle orientation.
Collapse
Affiliation(s)
- Jingchen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei National Laboratory for Physical Science at the Microscale, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Longcan Cheng
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei National Laboratory for Physical Science at the Microscale, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongyuan Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei National Laboratory for Physical Science at the Microscale, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
30
|
Bustamante FA, Miró MP, VelÁsquez ZD, Molina L, Ehrenfeld P, Rivera FJ, BÁtiz LF. Role of adherens junctions and apical-basal polarity of neural stem/progenitor cells in the pathogenesis of neurodevelopmental disorders: a novel perspective on congenital Zika syndrome. Transl Res 2019; 210:57-79. [PMID: 30904442 DOI: 10.1016/j.trsl.2019.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 01/08/2019] [Accepted: 02/28/2019] [Indexed: 12/18/2022]
Abstract
Radial glial cells (RGCs) are the neural stem/progenitor cells (NSPCs) that give rise to most of neurons and glial cells that constitute the adult central nervous system. A hallmark of RGCs is their polarization along the apical-basal axis. They extend a long basal process that contacts the pial surface and a short apical process to the ventricular surface. Adherens junctions (AJs) are organized as belt-like structures at the most-apical lateral plasma membrane of the apical processes. These junctional complexes anchor RGCs to each other and allow the recruitment of cytoplasmic proteins that act as apical-basal determinants. It has been proposed that disruption of AJs underlies the onset of different neurodevelopmental disorders. In fact, studies performed in different animal models indicate that loss of function of AJs-related proteins in NSPCs can disrupt cell polarity, imbalance proliferation and/or differentiation rates and increase cell death, which, in turn, lead to disruption of the cytoarchitecture of the ventricular zone, protrusion of non-polarized cells into the ventricles, cortical thinning, and ventriculomegaly/hydrocephalus, among other neuropathological findings. Recent Zika virus (ZIKV) outbreaks and the high comorbidity of ZIKV infection with congenital neurodevelopmental defects have led to the World Health Organization to declare a public emergency of international concern. Thus, noteworthy advances have been made in clinical and experimental ZIKV research. This review summarizes the current knowledge regarding the function of AJs in normal and pathological corticogenesis and focuses on the neuropathological and cellular mechanisms involved in congenital ZIKV syndrome, highlighting the potential role of cell-to-cell junctions between NSPCs in the etiopathogenesis of such syndrome.
Collapse
Affiliation(s)
- Felipe A Bustamante
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile
| | - MarÍa Paz Miró
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile
| | - Zahady D VelÁsquez
- Laboratory of Developmental Neuropathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Institute für Parasitologie, Biomedizinisches Forschungszentrum Seltersberg, Justus Liebig Universität, Gießen, Germany
| | - Luis Molina
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile; Departamento de Ciencias Biológicas y Químicas, Facultad de Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | - Pamela Ehrenfeld
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Laboratory of Cellular Pathology, Institute of Anatomy, Histology & Pathology, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Francisco J Rivera
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile; Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Luis Federico BÁtiz
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia Chile; Centro de Investigación Biomédica (CIB), Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
| |
Collapse
|
31
|
Porter AP, White GRM, Mack NA, Malliri A. The interaction between CASK and the tumour suppressor Dlg1 regulates mitotic spindle orientation in mammalian epithelia. J Cell Sci 2019; 132:jcs230086. [PMID: 31289196 PMCID: PMC6679578 DOI: 10.1242/jcs.230086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/14/2019] [Indexed: 12/30/2022] Open
Abstract
Oriented cell divisions are important for the formation of normal epithelial structures. Dlg1, a tumour suppressor, is required for mitotic spindle orientation in Drosophila epithelia and chick neuroepithelia, but how Dlg1 is localised to the membrane and its importance in mammalian epithelia are unknown. We show that Dlg1 is required in non-transformed mammalian epithelial cells for oriented cell divisions and normal lumen formation. We demonstrate that the MAGUK protein CASK, a membrane-associated scaffold, is the factor responsible for Dlg1 membrane localisation during spindle orientation, thereby identifying a new cellular function for CASK. Depletion of CASK leads to misoriented divisions in 3D, and to the formation of multilumen structures in cultured kidney and breast epithelial cells. Blocking the CASK-Dlg1 interaction with an interfering peptide, or by deletion of the CASK-interaction domain of Dlg1, disrupts spindle orientation and causes multilumen formation. We show that the CASK-Dlg1 interaction is important for localisation of the canonical LGN-NuMA complex known to be required for spindle orientation. These results establish the importance of the CASK-Dlg1 interaction in oriented cell division and epithelial integrity.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Andrew P Porter
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK
| | - Gavin R M White
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK
| | - Natalie A Mack
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK
| | - Angeliki Malliri
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK
| |
Collapse
|
32
|
Nakajima YI, Lee ZT, McKinney SA, Swanson SK, Florens L, Gibson MC. Junctional tumor suppressors interact with 14-3-3 proteins to control planar spindle alignment. J Cell Biol 2019; 218:1824-1838. [PMID: 31088859 PMCID: PMC6548121 DOI: 10.1083/jcb.201803116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 03/01/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022] Open
Abstract
Nakajima et al. reveal a novel mechanism of planar spindle alignment through junctional tumor suppressors Scrib/Dlg and 14-3-3 proteins in the Drosophila wing disc epithelium. Their results suggest that 14-3-3 proteins interact with Scrib/Dlg to control planar spindle orientation and maintain epithelial architecture. Proper orientation of the mitotic spindle is essential for cell fate determination, tissue morphogenesis, and homeostasis. During epithelial proliferation, planar spindle alignment ensures the maintenance of polarized tissue architecture, and aberrant spindle orientation can disrupt epithelial integrity. Nevertheless, in vivo mechanisms that restrict the mitotic spindle to the plane of the epithelium remain poorly understood. Here we show that the junction-localized tumor suppressors Scribbled (Scrib) and Discs large (Dlg) control planar spindle orientation via Mud and 14-3-3 proteins in the Drosophila wing disc epithelium. During mitosis, Scrib is required for the junctional localization of Dlg, and both affect mitotic spindle movements. Using coimmunoprecipitation and mass spectrometry, we identify 14-3-3 proteins as Dlg-interacting partners and further report that loss of 14-3-3s causes both abnormal spindle orientation and disruption of epithelial architecture as a consequence of basal cell delamination and apoptosis. Combined, these biochemical and genetic analyses indicate that 14-3-3s function together with Scrib, Dlg, and Mud during planar cell division.
Collapse
Affiliation(s)
- Yu-Ichiro Nakajima
- Stowers Institute for Medical Research, Kansas City, MO .,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Zachary T Lee
- Stowers Institute for Medical Research, Kansas City, MO
| | | | | | | | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO.,Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS
| |
Collapse
|
33
|
Abstract
For over a century, the centrosome has been an organelle more easily tracked than understood, and the study of its peregrinations within the cell remains a chief underpinning of its functional investigation. Increasing attention and new approaches have been brought to bear on mechanisms that control centrosome localization in the context of cleavage plane determination, ciliogenesis, directional migration, and immunological synapse formation, among other cellular and developmental processes. The Golgi complex, often linked with the centrosome, presents a contrasting case of a pleiomorphic organelle for which functional studies advanced somewhat more rapidly than positional tracking. However, Golgi orientation and distribution has emerged as an area of considerable interest with respect to polarized cellular function. This chapter will review our current understanding of the mechanism and significance of the positioning of these organelles.
Collapse
|
34
|
Greenberg SR, Tan W, Lee WL. Num1 versus NuMA: insights from two functionally homologous proteins. Biophys Rev 2018; 10:1631-1636. [PMID: 30402673 PMCID: PMC6297085 DOI: 10.1007/s12551-018-0472-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/21/2018] [Indexed: 12/19/2022] Open
Abstract
In both animals and fungi, spindle positioning is dependent upon pulling forces generated by cortically anchored dynein. In animals, cortical anchoring is accomplished by a ternary complex containing the dynein-binding protein NuMA and its cortical attachment machinery. The same function is accomplished by Num1 in budding yeast. While not homologous in primary sequence, NuMA and Num1 appear to share striking similarities in their mechanism of function. Here, we discuss evidence supporting that Num1 in fungi is a functional homolog of NuMA due to their similarity in domain organization and role in the generation of cortical pulling forces.
Collapse
Affiliation(s)
- Samuel R Greenberg
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Weimin Tan
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Wei-Lih Lee
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
35
|
Wang X, Dong B, Zhang K, Ji Z, Cheng C, Zhao H, Sheng Y, Li X, Fan L, Xue W, Gao WQ, Zhu HH. E-cadherin bridges cell polarity and spindle orientation to ensure prostate epithelial integrity and prevent carcinogenesis in vivo. PLoS Genet 2018; 14:e1007609. [PMID: 30118484 PMCID: PMC6115016 DOI: 10.1371/journal.pgen.1007609] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 08/29/2018] [Accepted: 08/02/2018] [Indexed: 12/24/2022] Open
Abstract
Cell polarity and correct mitotic spindle positioning are essential for the maintenance of a proper prostate epithelial architecture, and disruption of the two biological features occurs at early stages in prostate tumorigenesis. However, whether and how these two epithelial attributes are connected in vivo is largely unknown. We herein report that conditional genetic deletion of E-cadherin, a key component of adherens junctions, in a mouse model results in loss of prostate luminal cell polarity and randomization of spindle orientations. Critically, E-cadherin ablation causes prostatic hyperplasia which progresses to invasive adenocarcinoma. Mechanistically, E-cadherin and the spindle positioning determinant LGN interacts with the PDZ domain of cell polarity protein SCRIB and form a ternary protein complex to bridge cell polarity and cell division orientation. These findings provide a novel mechanism by which E-cadherin acts an anchor to maintain prostate epithelial integrity and to prevent carcinogenesis in vivo. Luminal cells are the most abundant type of the prostate epithelial cells. Most prostate cancers also display a luminal phenotype. Horizontal cell division of luminal cells allows the surface expansion of the secretory prostate lumen and meanwhile maintains the monolayer and polarized epithelial architecture. Disruption of the epithelial integrity and appearance of multilayer epithelia are early events in prostate adenocarcinoma development. However, the molecular mechanism that ensures the horizontal division in luminal cells remains largely unknown. Here, we generated a genetically engineered mouse model in which E-cadherin, a key component of the adherens junction that serves to connect the lateral plasma membrane of neighboring epithelial cells, was knocked out in the prostate luminal cells. E-cadherin deletion leads to loss of cell polarity and disoriented cell division, which subsequently causes dysregulated cell proliferation and strongly predisposes mice for prostate tumorigenesis. Importantly, we revealed that E-cadherin acts as an anchor to recruit cell polarity protein SCRIB and spindle positioning determinant LGN to the lateral cell membrane, thereby ensure a proper alignment of the cell division plane. All these findings uncover a novel mechanism by which E-cadherin links cell polarity and spindle orientation to keep prostate epithelial integrity and prevent carcinogenesis.
Collapse
Affiliation(s)
- Xue Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Zhang
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongzhong Ji
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Chaping Cheng
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Huifang Zhao
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yaru Sheng
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxia Li
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Liancheng Fan
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (W-QG); (HHZ)
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (W-QG); (HHZ)
| |
Collapse
|
36
|
Abstract
Primary microcephaly (MCPH, for "microcephaly primary hereditary") is a disorder of brain development that results in a head circumference more than 3 standard deviations below the mean for age and gender. It has a wide variety of causes, including toxic exposures, in utero infections, and metabolic conditions. While the genetic microcephaly syndromes are relatively rare, studying these syndromes can reveal molecular mechanisms that are critical in the regulation of neural progenitor cells, brain size, and human brain evolution. Many of the causative genes for MCPH encode centrosomal proteins involved in centriole biogenesis. However, other MCPH genes fall under different mechanistic categories, notably DNA replication and repair. Recent gene discoveries and functional studies have implicated novel cellular processes, such as cytokinesis, centromere and kinetochore function, transmembrane or intracellular transport, Wnt signaling, and autophagy, as well as the apical polarity complex. Thus, MCPH genes implicate a wide variety of molecular and cellular mechanisms in the regulation of cerebral cortical size during development.
Collapse
Affiliation(s)
- Divya Jayaraman
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Harvard-MIT MD-PhD Program, Harvard Medical School, Boston, Massachusetts 02115, USA.,Current affiliation: Boston Combined Residency Program (Child Neurology), Boston Children's Hospital, Boston, Massachusetts 02115, USA;
| | - Byoung-Il Bae
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510, USA;
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
37
|
Varjabedian A, Kita A, Bement W. Living Xenopus oocytes, eggs, and embryos as models for cell division. Methods Cell Biol 2018; 144:259-285. [PMID: 29804672 PMCID: PMC6050073 DOI: 10.1016/bs.mcb.2018.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Xenopus laevis has long been a popular model for studies of development and, based on the use of cell-free extracts derived from its eggs, as a model for reconstitution of cell cycle regulation and other basic cellular processes. However, work over the last several years has shown that intact Xenopus eggs and embryos are also powerful models for visualization and characterization of cell cycle-regulated cytoskeletal dynamics. These findings were something of a surprise, given that the relatively low opacity of Xenopus eggs and embryos was assumed to make them poor subjects for live-cell imaging. In fact, however, the high tolerance for light exposure, the development of new imaging approaches, new probes for cytoskeletal components and cytoskeletal regulators, and the ease of microinjection make the Xenopus oocytes, eggs, and embryos one of the most useful live-cell imaging models among the vertebrates. In this review, we describe the basics of using X. laevis as a model organism for studying cell division and outline experimental approaches for imaging cytoskeletal components in vivo in X. laevis embryos and eggs.
Collapse
Affiliation(s)
- Ani Varjabedian
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI, United States; Graduate Program in Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI, United States
| | - Angela Kita
- Graduate Program in Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI, United States; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - William Bement
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI, United States; Graduate Program in Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI, United States; Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
38
|
Abstract
Asymmetric cell divisions balance stem cell proliferation and differentiation to sustain tissue morphogenesis and homeostasis. During asymmetric divisions, fate determinants and niche contacts segregate unequally between daughters, but little is known on how this is achieved mechanistically. In Drosophila neuroblasts and murine mammary stem cells, the association of the spindle orientation protein LGN with the stem cell adaptor Inscuteable has been connected to asymmetry. Here we report the crystal structure of Drosophila LGN in complex with the asymmetric domain of Inscuteable, which reveals a tetrameric arrangement of intertwined molecules. We show that Insc:LGN tetramers constitute stable cores of Par3–Insc-LGN-GαiGDP complexes, which cannot be dissociated by NuMA. In mammary stem cells, the asymmetric domain of Insc bound to LGN:GαiGDP suffices to drive asymmetric fate, and reverts aberrant symmetric divisions induced by p53 loss. We suggest a novel role for the Insc-bound pool of LGN acting independently of microtubule motors to promote asymmetric fate specification. During asymmetric divisions fate determinants and niche contacts segregate unequally between daughter cells, but the mechanism is unclear. Here the authors show that Insc:LGN tetramers promote assembly of Par3-Insc-LGN-GαiGDP complexes and asymmetric fate specification independently of microtubule motors.
Collapse
|
39
|
Mukhtar T, Taylor V. Untangling Cortical Complexity During Development. J Exp Neurosci 2018; 12:1179069518759332. [PMID: 29551911 PMCID: PMC5846925 DOI: 10.1177/1179069518759332] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 01/23/2018] [Indexed: 12/23/2022] Open
Abstract
The cerebral cortex is composed of billions of morphologically and functionally distinct neurons. These neurons are produced and organized in a regimental fashion during development. The ability of neurons to encode and elicit complex cognitive and motor functions depends on their precise molecular processes, identity, and connectivity established during development. Elucidating the cellular and molecular mechanisms that regulate development of the neocortex has been a challenge for many years. The cerebral cortical neuronal subtypes are classified based on morphology, function, intrinsic synaptic properties, location, connectivity, and marker gene expression. Development of the neocortex requires an orchestration of a series of processes including the appropriate determination, migration and positioning of the neurons, acquisition of layer-specific transcriptional hallmarks, and formation of precise axonal projections and networks. Historically, fate mapping, genome-wide analysis, and transcriptome profiling have provided many opportunities for the characterization of neuronal subtypes. During the course of this review, we will address the regimental organization of the cerebral cortex, dissect the cellular subtypes that contribute to cortical complexity, and outline their molecular hallmarks to understand cellular diversity in the cerebral cortex with a focus on the excitatory neurons.
Collapse
Affiliation(s)
- Tanzila Mukhtar
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Verdon Taylor
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
40
|
Heppert JK, Pani AM, Roberts AM, Dickinson DJ, Goldstein B. A CRISPR Tagging-Based Screen Reveals Localized Players in Wnt-Directed Asymmetric Cell Division. Genetics 2018; 208:1147-1164. [PMID: 29348144 PMCID: PMC5844328 DOI: 10.1534/genetics.117.300487] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/08/2018] [Indexed: 11/18/2022] Open
Abstract
Oriented cell divisions are critical to establish and maintain cell fates and tissue organization. Diverse extracellular and intracellular cues have been shown to provide spatial information for mitotic spindle positioning; however, the molecular mechanisms by which extracellular signals communicate with cells to direct mitotic spindle positioning are largely unknown. In animal cells, oriented cell divisions are often achieved by the localization of force-generating motor protein complexes to discrete cortical domains. Disrupting either these force-generating complexes or proteins that globally affect microtubule stability results in defects in mitotic positioning, irrespective of whether these proteins function as spatial cues for spindle orientation. This poses a challenge to traditional genetic dissection of this process. Therefore, as an alternative strategy to identify key proteins that act downstream of intercellular signaling, we screened the localization of many candidate proteins by inserting fluorescent tags directly into endogenous gene loci, without overexpressing the proteins. We tagged 23 candidate proteins in Caenorhabditis elegans and examined each protein's localization in a well-characterized, oriented cell division in the four-cell-stage embryo. We used cell manipulations and genetic experiments to determine which cells harbor key localized proteins and which signals direct these localizations in vivo We found that Dishevelled and adenomatous polyposis coli homologs are polarized during this oriented cell division in response to a Wnt signal, but two proteins typically associated with mitotic spindle positioning, homologs of NuMA and Dynein, were not detectably polarized. These results suggest an unexpected mechanism for mitotic spindle positioning in this system, they pinpoint key proteins of interest, and they highlight the utility of a screening approach based on analyzing the localization of endogenously tagged proteins.
Collapse
Affiliation(s)
- Jennifer K Heppert
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Ariel M Pani
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Allyson M Roberts
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Daniel J Dickinson
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, North Carolina 27599
| |
Collapse
|
41
|
Barui A, Chowdhury F, Pandit A, Datta P. Rerouting mesenchymal stem cell trajectory towards epithelial lineage by engineering cellular niche. Biomaterials 2018; 156:28-44. [DOI: 10.1016/j.biomaterials.2017.11.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/22/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023]
|
42
|
Sandquist JC, Larson ME, Woolner S, Ding Z, Bement WM. An interaction between myosin-10 and the cell cycle regulator Wee1 links spindle dynamics to mitotic progression in epithelia. J Cell Biol 2018; 217:849-859. [PMID: 29321170 PMCID: PMC5839792 DOI: 10.1083/jcb.201708072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/20/2017] [Accepted: 12/06/2017] [Indexed: 01/02/2023] Open
Abstract
Proper spindle orientation must be achieved before anaphase onset, but whether and how cells link spindle position to anaphase onset is unknown. Sandquist, Larson, et al. identify a novel interaction between the motor protein myosin-10 and the cell cycle regulator wee1 that is proposed to help coordinate preanaphase spindle dynamics and positioning with mitotic exit. Anaphase in epithelia typically does not ensue until after spindles have achieved a characteristic position and orientation, but how or even if cells link spindle position to anaphase onset is unknown. Here, we show that myosin-10 (Myo10), a motor protein involved in epithelial spindle dynamics, binds to Wee1, a conserved regulator of cyclin-dependent kinase 1 (Cdk1). Wee1 inhibition accelerates progression through metaphase and disrupts normal spindle dynamics, whereas perturbing Myo10 function delays anaphase onset in a Wee1-dependent manner. Moreover, Myo10 perturbation increases Wee1-mediated inhibitory phosphorylation on Cdk1, which, unexpectedly, concentrates at cell–cell junctions. Based on these and other results, we propose a model in which the Myo10–Wee1 interaction coordinates attainment of spindle position and orientation with anaphase onset.
Collapse
Affiliation(s)
- Joshua C Sandquist
- Biology Department, Grinnell College, Grinnell, IA .,Department of Zoology, University of Wisconsin-Madison, Madison, WI
| | - Matthew E Larson
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI.,Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI
| | - Sarah Woolner
- Department of Zoology, University of Wisconsin-Madison, Madison, WI.,Wellcome Trust Centre for Cell-Matrix Research, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, England, UK
| | - Zhiwei Ding
- Biology Department, Grinnell College, Grinnell, IA
| | - William M Bement
- Department of Zoology, University of Wisconsin-Madison, Madison, WI .,Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI.,Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI.,Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
43
|
Kschonsak YT, Hoffmann I. Activated Ezrin controls MISP levels to ensure correct NuMA polarization and spindle orientation. J Cell Sci 2018; 131:jcs.214544. [DOI: 10.1242/jcs.214544] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/11/2018] [Indexed: 12/11/2022] Open
Abstract
Correct spindle orientation is achieved through signaling pathways that provide a molecular link between the cell cortex and spindle microtubules in an F-actin dependent manner. A conserved cortical protein complex, composed of LGN, NuMA, dynein-dynactin, plays a key role in establishing proper spindle orientation. It has also been shown that the actin-binding protein MISP and the ERM family, that are activated by LOK/SLK in mitosis, regulate spindle orientation. Here, we report that MISP functions between the ERM family member Ezrin and NuMA to allow optimal spindle positioning. We show that MISP directly interacts with Ezrin and that SLK/LOK-activated Ezrin ensures appropriate cortical MISP levels in mitosis by competing with MISP for actin-binding sites at the cell cortex. Furthermore, we found that regulation of proper cortical MISP levels by preventing its excessive accumulation is essential for crescent-like polarized NuMA localization at the cortex and as a consequence for highly dynamic astral microtubules. Our results uncover how appropriate MISP levels at the cortex are required for proper NuMA polarization and therefore an optimal placement of the mitotic spindle within the cell.
Collapse
Affiliation(s)
- Yvonne T. Kschonsak
- Cell Cycle Control and Carcinogenesis, F045, German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
- University of Heidelberg, F045, German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
| | - Ingrid Hoffmann
- Cell Cycle Control and Carcinogenesis, F045, German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
| |
Collapse
|
44
|
Jayaraman S, Chittiboyina S, Bai Y, Abad PC, Vidi PA, Stauffacher CV, Lelièvre SA. The nuclear mitotic apparatus protein NuMA controls rDNA transcription and mediates the nucleolar stress response in a p53-independent manner. Nucleic Acids Res 2017; 45:11725-11742. [PMID: 28981686 PMCID: PMC5714241 DOI: 10.1093/nar/gkx782] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022] Open
Abstract
The nuclear mitotic apparatus protein, NuMA, is involved in major cellular events such as DNA damage response, apoptosis and p53-mediated growth-arrest, all of which are under the control of the nucleolus upon stress. Proteomic investigation has identified NuMA among hundreds of nucleolar proteins. Yet, the precise link between NuMA and nucleolar function remains undetermined. We confirm that NuMA is present in the nucleolus and reveal redistribution of NuMA upon actinomycin D or doxorubicin-induced nucleolar stress. NuMA coimmunoprecipitates with RNA polymerase I, with ribosomal proteins RPL26 and RPL24, and with components of B-WICH, an ATP-dependent chromatin remodeling complex associated with rDNA transcription. NuMA also binds to 18S and 28S rRNAs and localizes to rDNA promoter regions. Downregulation of NuMA expression triggers nucleolar stress, as shown by decreased nascent pre-rRNA synthesis, fibrillarin perinucleolar cap formation and upregulation of p27kip1, but not p53. Physiologically relevant nucleolar stress induction with reactive oxygen species reaffirms a p53-independent p27kip1 response pathway and leads to nascent pre-rRNA reduction. It also promotes the decrease in the amount of NuMA. This previously uncharacterized function of NuMA in rDNA transcription and p53-independent nucleolar stress response supports a central role for this nuclear structural protein in cellular homeostasis.
Collapse
Affiliation(s)
- Swaathi Jayaraman
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907-2026, USA.,Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2026, USA
| | - Shirisha Chittiboyina
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907-2026, USA
| | - Yunfeng Bai
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907-2026, USA
| | - Patricia C Abad
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907-2026, USA
| | - Pierre-Alexandre Vidi
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907-2026, USA
| | - Cynthia V Stauffacher
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-2026, USA.,Center for Cancer Research, Purdue University, West Lafayette, IN 47907-2026, USA
| | - Sophie A Lelièvre
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907-2026, USA.,Center for Cancer Research, Purdue University, West Lafayette, IN 47907-2026, USA
| |
Collapse
|
45
|
Golub O, Wee B, Newman RA, Paterson NM, Prehoda KE. Activation of Discs large by aPKC aligns the mitotic spindle to the polarity axis during asymmetric cell division. eLife 2017; 6. [PMID: 29185419 PMCID: PMC5706957 DOI: 10.7554/elife.32137] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/21/2017] [Indexed: 12/14/2022] Open
Abstract
Asymmetric division generates cellular diversity by producing daughter cells with different fates. In animals, the mitotic spindle aligns with Par complex polarized fate determinants, ensuring that fate determinant cortical domains are bisected by the cleavage furrow. Here, we investigate the mechanisms that couple spindle orientation to polarity during asymmetric cell division of Drosophila neuroblasts. We find that the tumor suppressor Discs large (Dlg) links the Par complex component atypical Protein Kinase C (aPKC) to the essential spindle orientation factor GukHolder (GukH). Dlg is autoinhibited by an intramolecular interaction between its SH3 and GK domains, preventing Dlg interaction with GukH at cortical sites lacking aPKC. When co-localized with aPKC, Dlg is phosphorylated in its SH3 domain which disrupts autoinhibition and allows GukH recruitment by the GK domain. Our work establishes a molecular connection between the polarity and spindle orientation machineries during asymmetric cell division.
Collapse
Affiliation(s)
- Ognjen Golub
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, University of Oregon, Eugene, United States
| | - Brett Wee
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, University of Oregon, Eugene, United States
| | - Rhonda A Newman
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, University of Oregon, Eugene, United States
| | - Nicole M Paterson
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, University of Oregon, Eugene, United States
| | - Kenneth E Prehoda
- Institute of Molecular Biology, Department of Chemistry and Biochemistry, University of Oregon, Eugene, United States
| |
Collapse
|
46
|
Almada E, Tonucci FM, Hidalgo F, Ferretti A, Ibarra S, Pariani A, Vena R, Favre C, Girardini J, Kierbel A, Larocca MC. Akap350 Recruits Eb1 to The Spindle Poles, Ensuring Proper Spindle Orientation and Lumen Formation in 3d Epithelial Cell Cultures. Sci Rep 2017; 7:14894. [PMID: 29097729 PMCID: PMC5668257 DOI: 10.1038/s41598-017-14241-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/06/2017] [Indexed: 01/08/2023] Open
Abstract
The organization of epithelial cells to form hollow organs with a single lumen requires the accurate three-dimensional arrangement of cell divisions. Mitotic spindle orientation is defined by signaling pathways that provide molecular links between specific spots at the cell cortex and astral microtubules, which have not been fully elucidated. AKAP350 is a centrosomal/Golgi scaffold protein, implicated in the regulation of microtubule dynamics. Using 3D epithelial cell cultures, we found that cells with decreased AKAP350 expression (AKAP350KD) formed polarized cysts with abnormal lumen morphology. Analysis of mitotic cells in AKAP350KD cysts indicated defective spindle alignment. We established that AKAP350 interacts with EB1, a microtubule associated protein that regulates spindle orientation, at the spindle poles. Decrease of AKAP350 expression lead to a significant reduction of EB1 levels at spindle poles and astral microtubules. Conversely, overexpression of EB1 rescued the defective spindle orientation induced by deficient AKAP350 expression. The specific delocalization of the AKAP350/EB1complex from the centrosome decreased EB1 levels at astral microtubules and lead to the formation of 3D-organotypic structures which resembled AKAP350KD cysts. We conclude that AKAP350 recruits EB1 to the spindle poles, ensuring EB1 presence at astral microtubules and proper spindle orientation during epithelial morphogenesis.
Collapse
Affiliation(s)
- Evangelina Almada
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Facundo M Tonucci
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Florencia Hidalgo
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Anabela Ferretti
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Solange Ibarra
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Alejandro Pariani
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Rodrigo Vena
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Cristián Favre
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Javier Girardini
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Arlinet Kierbel
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín, CONICET, San Martín, Buenos Aires, Argentina
| | - M Cecilia Larocca
- Instituto de Fisiología Experimental, Consejo de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
47
|
Connell M, Chen H, Jiang J, Kuan CW, Fotovati A, Chu TLH, He Z, Lengyell TC, Li H, Kroll T, Li AM, Goldowitz D, Frappart L, Ploubidou A, Patel MS, Pilarski LM, Simpson EM, Lange PF, Allan DW, Maxwell CA. HMMR acts in the PLK1-dependent spindle positioning pathway and supports neural development. eLife 2017; 6:e28672. [PMID: 28994651 PMCID: PMC5681225 DOI: 10.7554/elife.28672] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/05/2017] [Indexed: 01/08/2023] Open
Abstract
Oriented cell division is one mechanism progenitor cells use during development and to maintain tissue homeostasis. Common to most cell types is the asymmetric establishment and regulation of cortical NuMA-dynein complexes that position the mitotic spindle. Here, we discover that HMMR acts at centrosomes in a PLK1-dependent pathway that locates active Ran and modulates the cortical localization of NuMA-dynein complexes to correct mispositioned spindles. This pathway was discovered through the creation and analysis of Hmmr-knockout mice, which suffer neonatal lethality with defective neural development and pleiotropic phenotypes in multiple tissues. HMMR over-expression in immortalized cancer cells induces phenotypes consistent with an increase in active Ran including defects in spindle orientation. These data identify an essential role for HMMR in the PLK1-dependent regulatory pathway that orients progenitor cell division and supports neural development.
Collapse
Affiliation(s)
- Marisa Connell
- Department of PaediatricsUniversity of British ColumbiaVancouverCanada
| | - Helen Chen
- Department of PaediatricsUniversity of British ColumbiaVancouverCanada
| | - Jihong Jiang
- Department of PaediatricsUniversity of British ColumbiaVancouverCanada
| | - Chia-Wei Kuan
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverCanada
| | - Abbas Fotovati
- Department of PaediatricsUniversity of British ColumbiaVancouverCanada
| | - Tony LH Chu
- Department of PaediatricsUniversity of British ColumbiaVancouverCanada
| | - Zhengcheng He
- Department of PaediatricsUniversity of British ColumbiaVancouverCanada
| | - Tess C Lengyell
- Centre for Molecular Medicine and TherapeuticsUniversity of British ColumbiaVancouverCanada
| | - Huaibiao Li
- Leibniz Institute on Aging—Fritz Lipmann InstituteBeutenbergstrasseGermany
| | - Torsten Kroll
- Leibniz Institute on Aging—Fritz Lipmann InstituteBeutenbergstrasseGermany
| | - Amanda M Li
- Department of PaediatricsUniversity of British ColumbiaVancouverCanada
| | - Daniel Goldowitz
- Centre for Molecular Medicine and TherapeuticsUniversity of British ColumbiaVancouverCanada
- Department of Medical GeneticsUniversity of British ColumbiaVancouverCanada
| | - Lucien Frappart
- Leibniz Institute on Aging—Fritz Lipmann InstituteBeutenbergstrasseGermany
| | - Aspasia Ploubidou
- Leibniz Institute on Aging—Fritz Lipmann InstituteBeutenbergstrasseGermany
| | - Millan S Patel
- Department of Medical GeneticsUniversity of British ColumbiaVancouverCanada
| | - Linda M Pilarski
- Cross Cancer Institute, Department of OncologyUniversity of AlbertaEdmontonCanada
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and TherapeuticsUniversity of British ColumbiaVancouverCanada
- Department of Medical GeneticsUniversity of British ColumbiaVancouverCanada
| | - Philipp F Lange
- Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverCanada
- Michael Cuccione Childhood Cancer Research ProgramBC Children’s HospitalVancouverCanada
| | - Douglas W Allan
- Department of Cellular and Physiological SciencesLife Sciences Centre, University of British ColumbiaVancouverCanada
| | - Christopher A Maxwell
- Department of PaediatricsUniversity of British ColumbiaVancouverCanada
- Michael Cuccione Childhood Cancer Research ProgramBC Children’s HospitalVancouverCanada
| |
Collapse
|
48
|
Falk S, Bugeon S, Ninkovic J, Pilz GA, Postiglione MP, Cremer H, Knoblich JA, Götz M. Time-Specific Effects of Spindle Positioning on Embryonic Progenitor Pool Composition and Adult Neural Stem Cell Seeding. Neuron 2017; 93:777-791.e3. [PMID: 28231465 PMCID: PMC5338691 DOI: 10.1016/j.neuron.2017.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/12/2016] [Accepted: 01/06/2017] [Indexed: 12/27/2022]
Abstract
The developmental mechanisms regulating the number of adult neural stem cells (aNSCs) are largely unknown. Here we show that the cleavage plane orientation in murine embryonic radial glia cells (RGCs) regulates the number of aNSCs in the lateral ganglionic eminence (LGE). Randomizing spindle orientation in RGCs by overexpression of Insc or a dominant-negative form of Lgn (dnLgn) reduces the frequency of self-renewing asymmetric divisions while favoring symmetric divisions generating two SNPs. Importantly, these changes during embryonic development result in reduced seeding of aNSCs. Interestingly, no effects on aNSC numbers were observed when Insc was overexpressed in postnatal RGCs or aNSCs. These data suggest a new mechanism for controlling aNSC numbers and show that the role of spindle orientation during brain development is highly time and region dependent. Randomization of the spindle orientation changes the progenitor pool composition Overexpression of Insc or dnLgn reduces asymmetric self-renewing division of aRGCs The change in embryonic progenitor pool leads to reduced seeding of adult NSCs Insc influences the seeding of adult NSCs in a narrow developmental time window
Collapse
Affiliation(s)
- Sven Falk
- Institute for Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Physiological Genomics, Biomedical Center, Ludwig-Maximilian University Munich, 82152 Planegg/Munich, Germany
| | - Stéphane Bugeon
- Aix-Marseille Université, Centre National de la Recherche Scientifique, IBDM, UMR7288, 13284 Marseille, France
| | - Jovica Ninkovic
- Institute for Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Physiological Genomics, Biomedical Center, Ludwig-Maximilian University Munich, 82152 Planegg/Munich, Germany
| | - Gregor-Alexander Pilz
- Institute for Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Maria Pia Postiglione
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), 1030 Vienna, Austria
| | - Harold Cremer
- Aix-Marseille Université, Centre National de la Recherche Scientifique, IBDM, UMR7288, 13284 Marseille, France
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), 1030 Vienna, Austria
| | - Magdalena Götz
- Institute for Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Physiological Genomics, Biomedical Center, Ludwig-Maximilian University Munich, 82152 Planegg/Munich, Germany; SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilian University Munich, 82152 Planegg/Munich, Germany.
| |
Collapse
|
49
|
di Pietro F, Valon L, Li Y, Goïame R, Genovesio A, Morin X. An RNAi Screen in a Novel Model of Oriented Divisions Identifies the Actin-Capping Protein Z β as an Essential Regulator of Spindle Orientation. Curr Biol 2017; 27:2452-2464.e8. [PMID: 28803871 DOI: 10.1016/j.cub.2017.06.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/06/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
Abstract
Oriented cell divisions are controlled by a conserved molecular cascade involving Gαi, LGN, and NuMA. We developed a new cellular model of oriented cell divisions combining micropatterning and localized recruitment of Gαi and performed an RNAi screen for regulators acting downstream of Gαi. Remarkably, this screen revealed a unique subset of dynein regulators as being essential for spindle orientation, shedding light on a core regulatory aspect of oriented divisions. We further analyze the involvement of one novel regulator, the actin-capping protein CAPZB. Mechanistically, we show that CAPZB controls spindle orientation independently of its classical role in the actin cytoskeleton by regulating the assembly, stability, and motor activity of the dynein/dynactin complex at the cell cortex, as well as the dynamics of mitotic microtubules. Finally, we show that CAPZB controls planar divisions in vivo in the developing neuroepithelium. This demonstrates the power of this in cellulo model of oriented cell divisions to uncover new genes required in spindle orientation in vertebrates.
Collapse
Affiliation(s)
- Florencia di Pietro
- Cell Division and Neurogenesis, IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France; Sorbonne Universités, UPMC Université Paris 06, IFD, 4 Place Jussieu, 75252 Paris, France
| | - Léo Valon
- Laboratoire Physico-Chimie, Institut Curie, PSL Research University, CNRS, UPMC Université Paris 06, 75005 Paris, France
| | - Yingbo Li
- Cell Division and Neurogenesis, IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France; Scientific Center for Computational Biology, IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France
| | - Rosette Goïame
- Cell Division and Neurogenesis, IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France
| | - Auguste Genovesio
- Scientific Center for Computational Biology, IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France
| | - Xavier Morin
- Cell Division and Neurogenesis, IBENS, Département de Biologie, Ecole Normale Supérieure, CNRS, Inserm, PSL Research University, 75005 Paris, France.
| |
Collapse
|
50
|
Saadaoui M, Konno D, Loulier K, Goiame R, Jadhav V, Mapelli M, Matsuzaki F, Morin X. Loss of the canonical spindle orientation function in the Pins/LGN homolog AGS3. EMBO Rep 2017; 18:1509-1520. [PMID: 28684399 DOI: 10.15252/embr.201643048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 05/14/2017] [Accepted: 05/19/2017] [Indexed: 11/09/2022] Open
Abstract
In many cell types, mitotic spindle orientation relies on the canonical "LGN complex" composed of Pins/LGN, Mud/NuMA, and Gαi subunits. Membrane localization of this complex recruits motor force generators that pull on astral microtubules to orient the spindle. Drosophila Pins shares highly conserved functional domains with its two vertebrate homologs LGN and AGS3. Whereas the role of Pins and LGN in oriented divisions is extensively documented, involvement of AGS3 remains controversial. Here, we show that AGS3 is not required for planar divisions of neural progenitors in the mouse neocortex. AGS3 is not recruited to the cell cortex and does not rescue LGN loss of function. Despite conserved interactions with NuMA and Gαiin vitro, comparison of LGN and AGS3 functional domains in vivo reveals unexpected differences in the ability of these interactions to mediate spindle orientation functions. Finally, we find that Drosophila Pins is unable to substitute for LGN loss of function in vertebrates, highlighting that species-specific modulations of the interactions between components of the Pins/LGN complex are crucial in vivo for spindle orientation.
Collapse
Affiliation(s)
- Mehdi Saadaoui
- Cell Division and Neurogenesis Group, Ecole Normale Supérieure, CNRS, Inserm, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), PSL Research University, Paris, France
| | - Daijiro Konno
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Karine Loulier
- UPMC Université Paris 06, Sorbonne Universités, CNRS, Inserm, Institut de la Vision, Paris, France
| | - Rosette Goiame
- Cell Division and Neurogenesis Group, Ecole Normale Supérieure, CNRS, Inserm, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), PSL Research University, Paris, France
| | - Vaibhav Jadhav
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Marina Mapelli
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, RIKEN Center for Developmental Biology, Chuo-ku, Kobe, Japan
| | - Xavier Morin
- Cell Division and Neurogenesis Group, Ecole Normale Supérieure, CNRS, Inserm, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), PSL Research University, Paris, France
| |
Collapse
|